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Introduction: Plant trait networks (PTNs) reveal integrated adaptation strategies,

but how elevational stress gradients reshape PTN architecture and influence

species distribution remains unclear.

Methods: We analyzed 14 leaf, stem, and root traits across 37 woody sapling

species along a 600 – 2200m elevational gradient on Mt. Fanjingshan, China. We

linked PTN metrics (connectivity, modularity, hub traits) to environmental drivers

and species distributions.

Results: PTN integration increased with elevation, evidenced by declining

average path length (R² = 0.93, P = 0.008) and graph diameter (R² = 0.92, P =

0.011), indicating intensified trait coordination at higher elevations. Modularity

peaked at mid-elevations (unimodal pattern: R² = 0.97, P = 0.017), reflecting

heightened trade-offs between stress tolerance and resource acquisition.

Crucially, litter depth and soil phosphorus—not climate—were the primary

drivers of PTN structure, jointly explaining 84.2% of variation (P = 0.011) and

promoting integration via root-hub traits (specific root length, specific root area).

Species distribution was strongly correlated with PTN efficiency (84.8% explained

variance, P = 0.038), driven by reduced graph diameter, greater litter depth, and

lower temperature.

Discussion: These findings indicate that elevational stress selects for highly

integrated PTNs optimized by belowground trait hubs and microhabitat

buffering, highlighting litter-soil interactions as critical mediators of species

distributions under climatic constraints.
KEYWORDS

plant trait networks, elevation gradient, climate regulating, trait integration,
species distribution
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1 Introduction

Plant trait networks (PTNs) provide a transformative

framework for decoding plant adaptive complexity by quantifying

interdependencies among functional traits. In PTNs, nodes

represent traits and edges reflect trait correlations, revealing how

plants optimize resource acquisition under environmental

constraints (He et al., 2020). Crucially, key PTN properties

encode critical ecological trade-offs: high network connectivity

(characterized by low average path length and diameter) enhances

resource-use efficiency (Rao et al., 2023); high modularity (reflected

in a high clustering coefficient) facilitates specialized stress

responses (Li et al., 2022); and hub traits (with high betweenness

centrality) dictate strategic resource allocation priorities (Rao et al.,

2023). Saplings, with heightened sensitivity to climate shifts and

vital roles in forest regeneration and biodiversity maintenance

(Kirk et al., 2021; Wang et al., 2022a; Yang et al., 2023), therefore

offer a critical lens for studying these adaptive mechanisms. While

functional traits are established indicators of plant strategies

(Green et al., 2022; Wang et al., 2022b; Wang and Ali, 2021),

research has predominantly focused on adults, leaving a significant

gap in understanding sapling adaptation through the lens of PTNs.

Elevational gradients function as natural laboratories where

temperature, resource availability, and biotic interactions vary

predictably together (Weemstra et al., 2022), enabling tests of

how PTNs respond to environmental stressors. At low elevations,

intense light competition drives carbon allocation toward

photosynthetic structures, potentially constraining overall trait

network integration (de la Riva et al., 2021; Sierra Cornejo et al.,

2020; Flores-Moreno et al., 2019). Conversely, high-elevation

saplings face nutrient limitation and cold stress while benefiting

from reduced canopy cover and litter-mediated soil insulation

(Ameztegui et al., 2021; Wang et al., 2022b; Kaspari and

Yanoviak, 2008). These conditions are predicted to select for

highly connected PTNs that maximize growth efficiency during

brief favorable growing periods (Weemstra et al., 2020; Wang et al.,

2023). Concomitant shifts in hub traits—those possessing high

network centrality—are expected. Specifically, hub traits likely

shift from leaf traits (e.g., specific leaf area), which prioritize light

capture at low elevations, to root traits (e.g., specific root length,

specific root area), which optimize nutrient foraging at high

elevations (Wang et al., 2025). Critical knowledge gaps persist

regarding how PTN architecture in saplings responds to

elevational stressors and whether PTN properties can predict

species distribution patterns. Understanding this nexus is essential

for biodiversity forecasting. However, current trait-based

distribution models yield inconsistent results (Bueno et al., 2023;

van der Plas et al., 2023), likely due to their oversimplification of the

trait synergies inherent in PTNs.

To address these gaps, we leverage Mt. Fanjingshan’s 2000-m

elevational gradient—a UNESCO World Heritage Site with

pronounced climatic and edaphic zonation supporting

exceptional biodiversity (Wang et al., 2022b, 2023). We integrate

meteorological data, soil analyses, and functional traits of 164

woody saplings (37 species) across six elevations to test five
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hypotheses: (1) Trait network integration increases with elevation,

reflected in shorter average path lengths and reduced graph

diameter due to stronger environmental filtering; (2) Modularity

follows a nonlinear (hump-shaped) relationship with elevation,

peaking where trade-offs between stress tolerance and resource

acquisition are most acute; (3) hub traits transition from leaf

traits (low elevation) to absorptive root traits (high elevation) as

resource constraints shift; (4) Species distribution is associated with

efficient PTNs (shorter path lengths, smaller diameters), indicating

optimized trait combinations for habitat occupancy. By testing

these hypotheses , we advance understanding of how

multidimensional drivers shape trait coordination and

community assembly along environmental gradients.
2 Materials and methods

2.1 Study site and design

The study was conducted at Mt. Fanjingshan (27.78 – 28.02°N,

108.60 – 108.81°E) in northeastern Guizhou Province, Southwest

China, characterized by a humid subtropical monsoon climate with

mean annual temperatures of 5.0 – 17.0°C and annual precipitation of

1100 – 3000 mm. Encompassing an elevational gradient exceeding

2000 m, the mountain exhibits a well-defined vertical vegetation

zonation comprising five distinct belts: evergreen broad-leaved

forest, evergreen-deciduous broad-leaved mixed forest, deciduous

broad-leaved forest, subalpine coniferous forest, and alpine shrub

meadow (Wang et al., 2022b). Soils are predominantly mountainous

yellow soil or yellow-brown soil (classified as Dystric Cambisols under

the FAO system), with silty loam texture. Six sampling sites without

disturbance were established on relatively uniform slopes devoid of

major ridges or valleys, positioned at 600 m (evergreen broad-leaved

forest dominated by Litsea elongata and Litsea pedunculata), 1100 m

(evergreen broad-leaved forest with Symplocos sumuntia and

Cyclobalanopsis sessilifolia as codominants), 1480 m (evergreen-

deciduous broad-leaved mixed forest dominated by Lindera

fragrans), 1700 m (evergreen-deciduous broad-leaved mixed forest

dominated by Camellia cuspidata), 2000 m (deciduous broad-leaved

forest with codominant Camellia cuspidata and Camellia japonica),

and 2200 m (evergreen-deciduous broad-leaved mixed forest where

Rhododendron auriculatum predominates).
2.2 Field methods and calculations

At each site, a transect parallel to the elevation contour

contained 10 sampling points spaced 15 m apart (Wason and

Dovciak, 2017) (Supplementary Figure S3). Using the point-

centred-quarter method (Mitchell, 2007) to investigate all woody

species trees >2 cm in diameter at breast height (DBH) at each

sampling point. A cross-shaped frame oriented with a transect

expansion direction as the x-axis defined the local coordinate

system, dividing the area into four quadrants. Within each

quadrant, the nearest woody plant (>2 cm DBH) was selected as
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the target species. And then, saplings (2 cm ≤ DBH < 10.2 cm)

followed the classification of Wason and Dovciak (2017). In this

study, we sampled 164 sapling individuals belonging to 37 species,

with 3 – 5 individuals per species (Supplementary Table S1). For

every selected plant, we recorded species identity and measured: (i)

distance from base to sampling point, (ii) DBH, and (iii) height.

Following Mitchell (2007), we calculated tree density, basal area,

relative frequency, and importance value for each species, where

importance value = Relative density + Relative cover + Relative

frequency. Specifically:

Relative density (Species k) = [Occurrences of species k/(4 × n)]

× 100.

( n = numbe r o f s amp l i n g p o i n t s ; 4 n = t o t a l

possible occurrences).

Relative cover (Species k) = [Total basal area of species k/Total

basal area of all species] × 100.

Relative frequency (Species k) = [Absolute frequency of species

k/Total absolute frequency of all species] × 100.
2.3 Sampling and trait measurement

Sampling was conducted between July and August 2022, and

one terminal, fully expanded, sun-exposed branch was selected

from the current growing season from each dominant species.

The branches were cut using a 5.6 m telescoping pole (ARS

Corp., Senboku, Japan), labeled, and then placed in a cooler for

transport to the laboratory. At the same time, roots were sampled

from the uppermost 20 cm of soil by tracing the coarse roots of a

target tree from the trunk until strands of fine roots (diameter < 2

mm) were reached. Then, the roots from each tree with intact root
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networks (i.e., including the first five orders) were collected. Each

root sample was placed into ice bags and then stored at -20 °C for

later dissection and analyses of morphological and chemical traits.

Simultaneously, we measured the tree height (TH, abbreviations in

Table 1) of each target tree using a graduated pole (maximum

graduation: 15 m).

In the laboratory, the branches were placed in water to

minimize leaf dehydration, and 20 leaves were selected from each

branch to measure for fresh weight. These leaves were separately

laid flat and imaged together with a reference square (4 cm2) using

an EPSON perfection V700 scanner (EPSON America Inc.), and the

total projected leaf area was calculated using the image-processing

software ImageJ (Systat Software Inc., Richmond, CA). Then, fine

roots were stored in deionized water. The larger intact roots were

carefully removed from the soil with a pair of forceps, and the

remaining soil on the roots was brushed away and dissected as

described by (Pregitzer et al., 2002). The most distal root tips with

no branches were defined as the first order, and the roots in which

two first-order roots intersected comprised the second order. The

remaining branch orders were determined similarly. We classified

the absorptive roots as first- and second-order roots (McCormack

et al., 2015). Then, 60 absorptive roots per species were measured

for fresh weight and subsequently scanned using an EPSON

perfection V700 scanner (EPSON America Inc.), and the captured

images were analyzed to determine the diameter (Rdia), length, and

surface area using WinRHIZO Version 2005c (Regent Instrument

Inc., Nepean, ON, Canada).

After scanning, the leaves and roots were dried in a forced-air

oven at 70 °C for 48 hours, followed by weighing, homogenization

using a coffee mill, grinding, and sieving through a 0.15 mm mesh.

Leaf nitrogen concentration (LN), leaf carbon concentration (LC),
TABLE 1 Variation in fourteen leaf and fine-root traits measured in 37 tree species.

Traits Abbreviations Unit Mean SD Min Max Blomberg’s K P value

Tree height TH m 5.00 1.81 1.72 10.07 0.16 0.09

Root dry matter content RDMC g/g 0.25 0.06 0.12 0.43 0.12 0.55

Specific root length SRL m/g 44.93 28.8 12.73 147.35 0.11 0.58

Root tissue density RTD m3/g 0.94 0.51 0.26 2.95 0.08 0.82

Root diameter Rdia mm 0.23 0.06 0.07 0.47 0.12 0.42

Specific root area SRA cm2/g 290.67 180.61 131.12 1050.54 0.09 0.69

Root N RN % 2.05 0.43 1.05 3.13 0.17 0.20

Root C RC % 48.09 2.23 43.06 53.63 0.09 0.72

Root P RP g/kg 0.69 0.29 0.33 1.95 0.43 0.06

Specific leaf area SLA cm2/g 168.63 79.96 70.07 553.04 0.26 0.05

Leaf dry matter content LDMC g/g 22.36 7.71 3 37 0.15 0.24

Leaf N LN g/g 2.13 0.6 1.32 4.05 0.18 0.14

Leaf C LC % 47.69 3.33 39.02 52.07 0.12 0.08

Leaf P LP g/kg 0.83 0.45 0.33 2.67 0.08 0.21
fro
SD, is standard deviation; Max, is maximum; and Min, is minimum.
Phylogenetic signal and significance were tested using a two-sided Blomberg’s K test.
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root carbon concentration (RC), and root nitrogen concentration

(RN) were determined using an elemental analyzer (Vario EL III,

Germany). The molybdate/ascorbic acid method was applied to

measure the total phosphorus concentrations in the leaves (LP) and

absorptive roots (RP) after H2SO4–H2O2 digestion (Jones, 2001).

Leaf dry matter content (LDMC) and root dry matter content

(RDMC) were calculated as dry mass divided by fresh mass (g/g).

Specific leaf area (SLA) was calculated as the total leaf surface per

unit dry mass (cm2/g). Specific root length (SRL) was estimated as

root length divided by root biomass (m/g). Root tissue density

(RTD) was estimated as the ratio of root biomass to root volume,

assuming a cylindrical shape (g/m3), and specific root area (SRA)

was calculated as root surface area divided by root biomass (cm2/g).
2.4 Soil properties and climate properties

For every target tree across all sampling sites, a 1 × 1 m subplot

was established centered on the tree. Within each subplot, five

random points were designated for soil property measurements.

Litter depth (LD, cm) and soil depth (SD, cm) were measured using

a ruler, with SD additionally assessed using a steel stick. Soil pH

(SpH) was determined using a pH meter. Soil temperature (ST) and

soil humidity (SH) were recorded at three random points per

subplot with a portable soil sensor (TZS-ECW-G). Fresh soil

samples collected from each sampling point were immediately

placed in sealed bags, refrigerated, and transported to the

laboratory within 24 hours. Total soil nitrogen (N) was analyzed

using an elemental analyzer (Vario EL III, Germany), while total

soil phosphorus (P) concentrations were measured via perchloric

acid digestion followed by molybdate colorimetry. Since 2018, a

meteorological observation station has been operational at each of

the six elevations. Consequently, the mean daily values for mean

daily air temperature (AT), air humility (AH), and air pressure (AP)

for each elevation were calculated from the Mt. Fanjingshan

Meteorological Station records.
2.5 Data analysis

For the plant trait network analysis encompassing 14 traits

(Table 1), traits served as nodes and significant pairwise correlations

formed edges. Using the V. PhyloMaker package (Jin and Qian,

2022), we first assessed phylogenetic signals but detected none

(Table 1). We then calculated Pearson correlations among traits

within each elevational band. To minimize spurious relationships,

only correlations significant at P < 0.05 were retained; absolute

correlation coefficients (|r|) defined edge strength. PTNs for each

elevation were constructed and visualized using the igraph package

(Csardi and Nepusz, 2006). For network connectivity metrics, we

calculated graph diameter and average path length using igraph’s

diameter and average.path.length functions, respectively. For

community structure, we identified modules and calculated

modularity using the cluster_spinglass algorithm. The average

clustering coefficient was computed with igraph’s transitivity
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function. Hub traits per elevation were identified based on high

node betweenness centrality, indicating pivotal network positions.

Effects of environmental factors on PTN metrics (hub traits and

structure) was used a Redundancy Analysis (RDA; vegan package,

Oksanen et al., 2022). Initial explanatory variables comprised

climate (AT, AP, AH) and soil properties (SN, SP, SD, LD, ST,

SH). To avoid collinearity, pairwise Pearson correlations among

predictors were calculated. Variables exhibiting correlation

coefficients > 0.70 were excluded Supplementary Figure S2),

resulting in the final retained predictors: AT, AH, SP, and LD.

The relative contributions of these retained environmental controls

were further partitioned using the varpart() function (vegan).

Separate RDA models examined the influence of PTN metrics

(graph diameter), climate (AT), and soil properties (LD) on

species distribution (represented by tree density and species

importance value), identifying graph diameter, AT, and LD as the

key retained predictors. Additionally, polynomial regression models

tested variations in PTN metrics, climate variables, and soil

properties across the elevation gradient. Model assumptions were

verified by checking for outliers and assessing the normality,

heterogeneity, and homogeneity of residuals (Zuur et al., 2009);

variables were log-transformed where necessary to meet

these assumptions.

All calculations were performed using R software (v 4.2.1, R

Core Team 2022), and significant effects were detected at the level

of P<0.05.
3 Results

3.1 Variations in soil properties and climate
with elevation

Soil nitrogen (R² = 0.15, P = 0.004), soil phosphorus (R² = 0.08,

P = 0.031), soil depth (R² = 0.23, P = 0.002), and soil humidity (R² =

0.29, P < 0.001), as well as litter depth (R² = 0.27, P < 0.001),

significantly increased with elevation Supplementary Figures S1a–c,

e, h). In contrast, soil pH (R² = 0.49, P < 0.001), soil temperature (R²

= 0.86, P < 0.001), air pressure (R² = 0.98, P < 0.001), and air

temperature (R² = 0.98, P < 0.001) decreased significantly with

increasing elevation Supplementary Figures S1d, f, k, i). Air

humidity exhibited a significant U-shaped relationship with

elevation (R² = 0.75, P < 0.001, Supplementary Figure S1j). Both

species importance value Supplementary Figure S1g) and tree

density Supplementary Figure S1l) exhibited significant positive

correlations with elevation (importance value: R² = 0.20, P = 0.002;

tree density: R² = 0.44, P < 0.001).
3.2 Variations in trait network metrics with
elevation

Plant trait networks exhibited significant elevational variations

in connectivity and complexity, reflecting whole-plant coordination

strategies between above- and belowground organs for
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environmental adaptation Figure 1). Hub traits varied across

elevations: tree height at 600 m (E1), SLA at 1100 m (E2) and

1480m (E3), SLA at 1700 m (E4), SRA at 2000 m (E5), and SRL at

2200 m (E6) Figure 2). Elevational increases were associated with

significant reductions in average path length (R² = 0.93, P = 0.008)

and graph diameter (R² = 0.92, P = 0.011) Figures 3B, C). Network

modularity exhibited an inverted U-shaped relationship with

elevation (R² = 0.97, P = 0.017; Figure 3A), while the average

clustering coefficient showed no elevational trend Figure 3D, P >

0.05). Among hub traits: specific root length (R² = 0.10, P = 0.013)

and specific root area (R² = 0.24, P = 0.001) increased nonlinearly

with elevation Figures 3G, H), tree height decreased linearly (R² =

0.10, P = 0.016; Figure 3F). In contrast, specific leaf area

demonstrated no significant elevational pattern Figure 3E, P > 0.05).
3.3 Controls on the trait network structure

Air temperature, air humidity, soil P, and litter depth

collectively accounted for 84.2% of the variation in all plant trait

network metrics (P = 0.011, Figure 4A). Individually, these factors

accounted for 86.9% (litter depth), 63.3% (soil P), 50.9% (air

temperature), and 32.9% (air humidity) of the variation

Figures 4B, C), while their four-way joint effect contributed 0%
Frontiers in Plant Science 05
Figure 4B). The joint effects of specific three-factor combinations

were significant: air humidity, litter depth, and soil P contributed

61.4%; air temperature, litter depth, and soil P contributed 41.1%;

air temperature, air humidity, and litter depth contributed 26.2%;

and air temperature, air humidity, and soil P contributed 20.6%

Figures 4B, C). In contrast, the joint effects of any two variables had

no effect on the trait network metrics (0% explained variation)

Figures 4B, C). Regarding correlations between specific metrics and

environmental factors Figure 4A), average path length and graph

diameter showed positive correlations with air temperature but

negative correlations with litter depth and soil P. SRA and SRL were

positively correlated with litter depth and soil P but negatively

correlated with air temperature. Tree height was positively

correlated with air temperature and negatively correlated with

litter depth and soil P. SLA showed positive correlations with air

temperature, air humidity, litter depth, and soil P. Conversely,

modularity was negatively correlated with air temperature, air

humidity, litter depth, and soil P Figure 4A).
3.4 Controls on species distribution

Air temperature, graph diameter, and litter depth collectively

explained 84.8% of the variation in species distribution (P = 0.038,
FIGURE 1

Plant trait networks (PTNs) across species at six elevations: (A) 600 m, (B) 1100 m, (C) 1480 m, (D) 1700 m, (E) 2000 m, and (F) 2200 m. Within each
panel, modules within the PTN are color-coded. Edges represent significant trait correlations, with red and green lines indicating positive and
negative correlations, respectively. Node size corresponds to node degree. Traits showing no significant correlations with others are omitted from
the visualization. Trait abbreviations are defined in Table 1.
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FIGURE 2

Betweenness centrality in plant trait networks across the elevational gradient. Trait abbreviations are provided in Table 1. Labels E1–E6 correspond to
sampling elevations: 600 m, 1100 m, 1480 m, 1700 m, 2000 m, and 2200 m.
FIGURE 3

Variation in (A–D) plant trait network metrics and (E–H) hub traits across the elevational gradient. Shaded grey areas indicate 95% confidence
intervals.
Frontiers in Plant Science frontiersin.org06
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Figure 5A). Individually, these factors accounted for 35.0% (air

temperature), 58.0% (graph diameter), and 53.2% (litter depth) of

the variation, while their three-way joint effect contributed 38.7%

Figure 5B). Regarding species-level responses Figure 5A), both

species importance value and tree density exhibited negative

correlations with air temperature and graph diameter, but

positive correlations with litter depth (Figure 5A).
4 Discussion

Our study reveals that elevational gradients systematically

reconfigure PTN architecture in woody saplings, primarily

through litter-mediated microclimate buffering and soil

phosphorus availability—mechanisms that outweigh direct
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climatic effects. These shifts in PTN structure subsequently

mediate species distribution patterns. Below, we contextualize

these findings in relation to our hypotheses and broader

trait ecology.
4.1 Elevational restructuring of PTNs:
Integration, modularity, and hub shifts

Supporting our first hypothesis, the significant decline in both

average path length and graph diameter with increasing elevation

Figures 3B, C) indicates that plant trait networks (PTNs) become

more integrated under high-elevation stress. This aligns with

theoretical predictions that cold environments select for tightly

coordinated trait networks to optimize resource-use efficiency
FIGURE 4

(A) Biplot from redundancy analysis (RDA) examining relationships between plant trait network metrics (red text labels) and environmental predictors
(blue vectors). (B) Bar diagram and (C) variance partitioning diagram illustrating the relative contributions of environmental predictors to explained
variance in trait network metrics. AT, air temperature; Soil P, soil phosphorus; LD, litter depth.
FIGURE 5

(A) Biplot from redundancy analysis (RDA) examining relationships between species distribution (red text labels) and environmental predictors (blue
vectors). (B) Bar diagram illustrating the relative contributions of environmental predictors to explained variance in species distribution. AT, air temperature;
LD, litter depth.
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(Benavides et al., 2021; Segui et al., 2017). However, this contrasts

with studies reporting reduced network connectivity under stressful

conditions (Li et al., 2022; Rao et al., 2023). This inconsistency may

stem from differences in study scale: previous findings often

originated from broader (macroscopic) scales (He et al., 2020; Li

et al., 2021), whereas our regional-scale study captured diverse

microhabitats. Specifically, we observed negative relationships

between litter depth/soil phosphorus (P) and both network

diameter and average path length (Figure 4A), suggesting sapling

PTNs become more integrated where litter is deeper, and soil P is

higher at the tree bases. This finding contrasts with macroscopic-

scale reports of declining soil nutrients with elevation (Weemstra

et al., 2022). The deeper litter layer observed in colder areas

(Supplementary Figure S1h) likely acts as an insulating layer for

saplings, extending their suitable growth period. Enhanced litter

accumulation further supports plant survival by reducing soil

erosion, retaining moisture and nutrients, and providing critical

habitat for microorganisms (Kaspari and Yanoviak, 2008).

Furthermore, high-elevation saplings in our study, dominated by

Rhododendron species, frequently form associations with ericoid

mycorrhizal (ErM) fungi. These symbionts enhance survival in cold,

acidic soils by enzymatically degrading organic matter, thereby

increasing nutrient availability (Tedersoo et al., 2020). Critically,

previous studies primarily focused on aboveground trait networks

(Li et al., 2022; Matesanz et al., 2021). Given that plant growth

requires integrated resources (light, carbon, water, nutrients;

Weemstra et al., 2022), a whole-plant trait perspective is

scientifically essential. Therefore, PTN integration appears

strongly influenced by microenvironmental factors and plant

mycorrhizal type, underscoring the need to incorporate these

elements in future research.

Consistent with our second hypothesis, modularity peaked at

mid-elevation Figure 3A). This inverted U-shaped pattern reflects

intensified functional trade-offs at intermediate elevations, where

plants must simultaneously balance traits for tolerance to cold/

acidic stress with those for light/nutrient acquisition. Modularity

decreased with increasing soil phosphorus, litter depth, air

temperature, and air humidity Figure 4A). Crucially, litter depth

showed little change or even a slight decrease from low to mid-

elevations, while air humidity exhibited a U-shaped relationship,

resulting in drier conditions at mid-elevations (Supplementary

Figure S1j). Combined with the linear decrease in air temperature

(Supplementary Figure S1i), these microenvironmental factors

collectively drive the observed modularity peak at mid-elevation

(Figure 4A), forcing trait decoupling into specialized modules to

adapt to complex environmental demands (Li et al., 2021). At high-

elevation extremes, higher humidity, soil P, and deeper litter layers

reduce modularity (He et al., 2020). Conversely, at low elevations,

higher temperatures and humidity also decrease modularity.

Although litter depth and soil P are lower here, accelerated

decomposition rates under warm, humid conditions enhance

nutrient cycling (Dai et al., 2020), further reducing modularity.

Therefore, plant trait network modularity is shaped by the interplay
Frontiers in Plant Science 08
of multiple factors, with microenvironmental conditions playing a

critical role. Future studies should incorporate additional soil

nutrient metrics to test this framework.

The shift in hub traits from aboveground (height, SLA) to

belowground (specific root length - SRL, specific root area - SRA)

indicates changing resource limitations across the elevation

gradient (Figure 2), supporting hypothesis H3. The increase in

SRL and SRA with elevation (Figures 3G, H) signifies carbon

reallocation towards efficient nutrient foraging—a critical

adaptation to phosphorus-limited, acidic soils prevalent at

higher elevations (Jian et al., 2022; Wang et al., 2023). This

strategy is particularly evident in the dominant high-elevation

Rhododendron species in our study. These plants form ericoid

mycorrhizal (ErM) associations, which release specific enzymes to

decompose litter and access nutrients (Tedersoo et al., 2020). High

SRL/SRA allows efficient nutrient acquisition with low carbon

investment, enabling rapid growth during the brief growing

season at high elevations (Wang et al., 2025). Conversely, SLA

remained a central hub trait across mid-elevations (1100–1700 m;

Figure 2), reflecting persistent competition for light before

nutrient constraints become the dominant limiting factor (Wang

et al., 2022b). Therefore, the architecture of plant trait networks

effectively reveals the core strategies plants employ to adapt to

environmental challenges.
4.2 PTN efficiency drives species
distribution

Species distribution exhibited a stronger correlation with

network-wide efficiency – reflected by reduced graph diameter

and path length (Figure 5A) – supporting hypothesis H4. This

suggests that resource acquisition and utilization efficiency in

saplings increases with elevation (Li et al., 2021), enhancing

growth rates (Lei et al., 2025) and enabling high-elevation

saplings to complete essential growth processes within their

shorter favorable temperature window, thereby reducing

mortality. This adaptation further explains the observed

elevational increase in woody saplings with higher leaf carbon

content (Wang et al., 2022b). Constructing highly connected trait

networks requires substantial carbon investment (Rao et al., 2023),

making saplings with greater leaf carbon reserves better equipped to

establish within forest overstories.

Crucially, while hub traits within the network were

environmentally sensitive (Figure 4), they did not directly correlate

with sapling elevation distribution (Figure 5). This finding aligns with

prior studies documenting weak trait-distribution relationships in

species distribution modeling (Beissinger and Riddell, 2021; Lawlor

et al., 2024). Three key factors likely explain this pattern: First, many

studies assume linear trait-distribution relationships despite evidence

of nonlinear associations (Beissinger and Riddell, 2021). Second,

predictive capacity depends critically on trait selection—while leaf

traits show no elevational correlation, plant size and hydraulic traits
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exhibit stronger distribution-predictive power (Maharjan et al., 2021;

Lawlor et al., 2024; Estrada et al., 2016). Third, mycorrhizal mediation

significantly influences outcomes; absorptive root traits predict

elevational niches in ErM species but not in arbuscular or

ectomycorrhizal species (Wang et al., 2025). This implies that shifts

in individual traits or pairwise trait correlations alone are unlikely to

alter species distributions or ecosystem functions (Kleyer et al., 2019).

This network-level perspective clarifies why previous studies found

limited predictive power in individual plant functional traits for

community dynamics (Garcia Criado et al., 2023; van der Plas

et al., 2020).

Instead, environmental pressures drive reorganization of the

overall network structure, which subsequently impacts distribution

and function (He et al., 2020). Supporting this framework, species

distribution correlated negatively with air temperature (Figure 5A)

– consistent with numerous studies – indicating that climate

warming will likely drive an upward shift in regional woody plant

distributions (Steinbauer et al., 2018; Lawlor et al., 2024). Future

species-level research is needed to predict migration extent and

direction for specific taxa. Furthermore, greater litter depth

significantly increased species importance value and tree density

(Figure 5A), identifying it as a previously overlooked facilitator of

network efficiency. As established, the deep litter layer in cold,

humid high-elevation environments acts as a critical thermal

insulator for saplings, extending their viable growth period.

Consequently, analyzing plant trait networks within their

microenvironmental context emerges as a powerful approach for

unraveling species distribution mechanisms under global change.
4.3 Theoretical reconciliation: Scale and
organ integration matter

Our findings clarify contradictions in stress-PTN relationships:

Whole-plant integration (leaves and roots) reveals increased PTN

connectivity under elevation stress—contrasting studies focused

solely on leaves (Matesanz et al., 2021). Litter’s microclimate role

explains why high-elevation saplings sustain integrated networks

despite cold stress: litter buffers temperature extremes and prolongs

growth (Wang et al., 2022b). Soil P’s joint effects with litter

(Figure 4C) underscore that nutrient availability enables resource-

acquisitive root traits (SRL/SRA), facilitating network integration.

Thus, PTNs capture context-dependent strategies where

belowground organs and habitat modifiers (litter) dictate high-

elevation adaptation.
4.4 Limitations and future directions

While elevation provided a natural environmental stress

gradient, future research should test PTN responses in low-

competition systems such as arid zones where modularity may

dominate; experimentally manipulate key drivers (litter depth, soil

phosphorus, and temperature) to isolate causal effects on PTN

architecture; and track ontogenetic shifts in PTN organization

across life stages from saplings to mature trees.
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Elevation-driven stresses reconfigure sapling PTNs toward greater

integration (shorter path lengths, smaller diameters), primarily

mediated by litter depth (thermal buffering) and soil phosphorus

(nutrient provisioning)—not direct climate effects. This integration

optimizes whole-plant efficiency, explaining why species distribution

correlates strongly with streamlined network architecture. While hub

traits shift from leaves (light capture) to roots (nutrient foraging; SRL/

SRA) with elevation, species distribution arises from system-wide

optimization, not isolated hubs. Consequently, predicting community

responses to global change requires, prioritizing litter-soil-climate

interactions in PTN models, tracking whole-plant trait coordination

across life stages, and recognizing microhabitat modifiers (litter) as

critical resilience buffers.
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SUPPLEMENTARY TABLE 1

Species names across different elevational gradients in our study.

SUPPLEMENTARY FIGURE 1

Variation in soil properties (a–e, h), climate (i–k), species importance value
(g), and tree density (l) with elevation. SN, soil nitrogen; SP, soil phosphorus;

SD, soil depth; SpH, soil pH; SH, soil humidity; ST, soil temperature; LD, litter
depth; AT, air temperature; AP, air pressure; AH, air humidity.

SUPPLEMENTARY FIGURE 2

Pairwise Pearson correlations among environmental factors. SN, soil nitrogen; SP,
soil phosphorus; AH, air humidity; AT, air temperature; AP, air pressure; SD, soil

depth; LD, litter depth; SH, soil moisture; ST, soil temperature; SpH, soil pH.

SUPPLEMENTARY FIGURE 3

Locations of sampling sites on Mt. Fanjingshan. T1 to T6 represent elevational

gradients. At each gradient, one site is established, where a 150-meter
transect line parallel to the contour lines is set. Along each transect, 10

sampling points are placed at 15-meter equidistant intervals.
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