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Integrated transcriptomic and
metabolomic analysis reveals the
molecular mechanisms
underlying wheat germinating
seed response to exogenous
abscisic acid stress

Xiaolei Wang*, Chuchu Chen, Xiaoxuan Sun
and Chuanzhi Wang

School of Food and Biological Engineering, Suzhou University, Suzhou, Anhui, China

Introduction: Phytohormone abscisic acid (ABA) plays a pivotal regulatory role in
crop responses to abiotic stress. However, the specificities of the coordinated
transcriptional and metabolic regulatory network in wheat under ABA signaling
remain to be fully elucidated.

Methods: This study systematically investigated the regulatory effects of
exogenous ABA on wheat germinating seeds through integrated physiological,
transcriptomic, and metabolomic analyses.

Results: Physiological results demonstrated that low-concentration ABA (2
mg-L™Y) promoted primary root elongation (12% increase vs. 0 mg-L™* (CK)),
whereas high concentrations (>4 mg-L™) significantly inhibited growth (40%
root length reduction under 6 mg-L'1 ABA). Concurrently, electrolyte leakage,
malondialdehyde (MDA) content, and catalase (CAT) activity markedly increased
with ABA concentration (P < 0.05), indicating aggravated oxidative stress.
Transcriptomic profiling (CK vs. 6 mg-L™ ABA) identified 854 differentially
expressed genes (DEGs; 470 up-regulated/384 down-regulated). Gene
Ontology (GO) enrichment revealed DEGs predominantly involved in “Cellular
process”, "“Metabolic process”, “Catalytic activity”, and “Transporter activity”.
KEGG analysis highlighted activation of “Linoleic acid metabolism”, “Alpha-
Linolenic acid metabolism”, “Glycolysis/Gluconeogenesis”, and "Biosynthesis of
amino acids” pathways. Metabolomics detected 665 differentially accumulated
metabolites (DAMs), with “Lipids”, "Organic acids’, and "Amino acids” exhibiting
significant alterations. KEGG enrichment emphasized "benzoxazinoid
biosynthesis” and “Nicotinate/nicotinamide metabolism”. Integrative multi-
omics analysis uncovered 10 core pathways, such as "Glycolysis/
Gluconeogenesis”, "Biosynthesis of amino acids”, and "Cysteine and
methionine metabolism”, that orchestrating ABA stress responses. Notably, L-
serine and the genes TraesCS3A02G276100 and TraesCS5A02G398300 were
recurrently implicated in multiple pathways, indicating their function as key
network nodes.
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Discussion: This study elucidates the molecular mechanisms by which wheat
adapts to ABA stress through dynamic reprogramming of its metabolic and gene
expression networks, thereby laying a theoretical foundation for developing
future ABA-based seed treatment technologies or stress-resistant

breeding strategies.
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Introduction

Wheat (Triticum aestivum L.), an allohexaploid species, stands
as one of the world’s most vital cereal crops, serving as the primary
food source for over 40% of the global population (Mastrangelo and
Cattivelli, 2021; Ana et al, 2024). Seed germination in wheat
represents a critical physiological process characterized by three
distinct phases: rapid initial water uptake, a lag phase (plateau
period), and further water absorption (Paparella et al., 2015; Nile
et al., 2022). This process involves complex metabolic transitions,
progressing from sucrose degradation to the activation of major
nutrient reserves (starch, proteins, and lipids), ultimately providing
the energy and biomaterials essential for seedling establishment
and photosynthesis.

Abscisic acid (ABA), a central phytohormone, extensively
regulates multiple aspects of plant physiology, including seed
dormancy induction/maintenance, germination suppression,
adaptive responses to biotic/abiotic stresses, and developmental
modulation under non-stress conditions (Brookbank et al., 2021).
ABA exhibits a canonical concentration-dependent biphasic effect:
low concentrations typically activate defense mechanisms and
moderately promote growth—e.g., rescuing growth defects in
ABA-deficient mutants (Cheng et al., 2002; Vishwakarma et al,
2017), while high concentrations inhibit growth or even trigger
programmed cell death (Tu et al., 2025). Notably, this biphasic effect
is pronounced in root development; for instance, in Arabidopsis,
low-dose exogenous ABA promotes primary and lateral root
growth, whereas high concentrations suppress elongation
(Emenecker and Strader, 2020; Li et al., 2017). ABA maintains
root meristem homeostasis by inhibiting quiescent center (QC) cell
division and stem cell differentiation (Zhang et al., 2010), and
orchestrates resource allocation via long-distance signaling
(McAdam et al.,, 2016).

ABA also modulates central metabolism and nutrient signaling,
particularly carbon metabolism and sugar sensing. Basal ABA levels
regulate cell cycle gene expression, chloroplast biogenesis, cuticle
deposition, epidermal development, plant metabolism (e.g., carbon
metabolism/transport), and xylem differentiation (Kishor et al,
2022). However, high ABA concentrations mimicking stress
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conditions negatively regulate photosynthesis and carbon
assimilation, down-regulating photosynthetic genes encoded by
the nuclear and chloroplast genomes (Cutler et al., 2010; Fujita
et al, 2011; Yamburenko et al, 2015), while promoting soluble
sugar accumulation, sucrose transport, and wax biosynthesis
regulation (Gibson, 2004; Ma et al,, 2017; Li et al., 2021). In crops
like wheat, foliar ABA application enhances carbohydrate
accumulation and remobilization to grains, thereby increasing
yield (Travaglia et al., 2007), highlighting its agronomic potential.

The advent of multi-omics technologies (e.g., transcriptomics,
metabolomics) provides powerful tools for deciphering complex
stress-response mechanisms. Transcriptomics systematically
identifies differentially expressed genes (DEGs) and enriched
signaling pathways, while metabolomics captures dynamic
reprogramming of small-molecule metabolites. Their integration
reveals the “gene-metabolite-phenotype” cascade logic. Plants
produce a vast diversity of metabolic compounds (>200,000
reported compounds) (Goodacre et al., 2004), with primary
metabolites (e.g., carbohydrates, nucleotides, sulfur-containing
compounds) often induced by ABA (Zhu and Assmann, 2017).
These metabolites serve as precursors for secondary metabolites
(SMs) through core pathways: glycolysis, TCA cycle, pentose
phosphate pathway, shikimate pathway, and amino acid
metabolism. As a key signal responding to water availability
(Yoshida et al., 2019; Dekkers et al., 2015; Munemasa et al., 2015;
Nakashima and Yamaguchi-Shinozaki, 2013; LeNoble et al., 2004;
Sharp etal,, 2000), ABA precisely coordinates metabolic and growth
adaptations to environmental pressures (Yoshida et al, 2019).
Although significant advances have been made in understanding
the ABA signaling pathway in wheat (Walker-Simmons, 1987;
Nakamura et al., 2011; Schramm et al., 2012; Chono et al., 2013;
Utsugi et al., 2020; Rehal et al., 2022), the specific nature of the
ABA-responsive transcriptional-metabolic network in this crucial
crop requires further in-depth exploration.

Building upon the well-documented biphasic, concentration-
dependent effect of ABA and its central role in metabolic regulation,
we propose the overarching hypothesis that exogenous ABA
triggers a highly coordinated and dose-dependent reprogramming
of the transcriptomic and metabolomic networks in germinating
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wheat. Specifically, we hypothesize that: at a low concentration,
ABA fine-tunes pathways related to carbon metabolism and reserve
mobilization, thereby maintaining or moderately promoting
adaptive responses such as root growth; whereas at a high
concentration, it strongly induces stress-associated genes and
metabolites (e.g., antioxidants and specific secondary metabolites)
while repressing growth-related pathways, leading to the
coordinated suppression of germination progression and
enhancement of stress tolerance. To test this, wheat seeds at the
germination stage were subjected to a gradient of ABA treatments
0, 2, 4, and 6 mg~L'1), a design intended to mimic basal
physiological and stress-response states, respectively. By
integrating physiological phenotyping with multi-omics data, this
study aims to systematically identify the core regulatory modules
and key metabolic hubs underlying the ABA response in wheat. Our
findings are expected to provide a molecular framework for
understanding wheat adaptation and to inform the development
of ABA-based seed treatment technologies for future
crop improvement.

Materials and methods
Plant materials and experimental design

Wheat seeds (Triticum aestivum L. cv. Suzhou) were stored at 4
°C. Uniform plump seeds were surface-sterilized with 0.5% (w/v)
NaClO for 10min, rinsed 5 times with ultrapure water, and soaked
in distilled water for 12h. After blot-drying with sterile filter paper,
seeds were germinated on double-layered sterile filter paper in
60mm Petri dishes (30 mL distilled water per dish) under
controlled conditions: 25 °C, 12h photoperiod/12h dark, 65%
relative humidity.

Upon radicle protrusion (=2 mm), uniformly germinated seeds
were transferred to new Petri- dishes (30 seeds/dish) containing 30
mL of ABA (Hefei BASF Biotechnology Co., Ltd., China; >98.5%
purity by HPLC) solutions at concentrations of 0 (CK), 2, 4, 6 mg-L"
!, prepared from 100 mM stock in 0.01% ethanol. Three biological
replicates per treatment were maintained in growth chambers
under identical conditions for 7d. To maintain humidity and
ABA concentration, 30 mL of corresponding solutions were
replenished every 48h. Root length was measured after treatment.
Seedlings were flash-frozen in liquid N, for physiological assays,
transcriptomics, and metabolomics.

Physiological parameter analysis

Malondialdehyde (MDA) content was measured following
(Nahakpam and Shah, 2011). Samples (0.5g FW) were
homogenized in 2 mL 10% (w/v) trichloroacetic acid (TCA) on
ice. After centrifugation (10,000 xg, 10min), 1 mL supernatant was
mixed with 2 mL 0.67% (w/v) thiobarbituric acid (TBA). The
mixture was incubated at 95 °C for 30min, cooled, and
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centrifuged (12,000 xg, 10min). Absorbance at 532, 600, and 450
nm was measured. MDA content = [6.45X(As35 - Aggo) - 0.56XA 450]
x V/(W x 1000) (}Lmol-g’1 FW). Catalase (CAT) activity was
measured following (Rao and Sresty, 2000). Reaction mixture: 1.5
mL 0.2 M phosphate buffer (PBS; 50 mM Na,HPO,/NaH,PO,, pH
7.8), 1.0 mL H,0, 0.3 mL 0.1 M H,O,. After pre-incubation at 25 °C
for 5min, 0.2 mL enzyme extract was added. CAT activity was
calculated from AA,4-min™ and expressed as U~g'1 FW-min™.
Relative electrolyte leakage (REL) was measured following (Zhu
et al, 2025; Han et al, 2022). Samples (0.5g FW) were rinsed,
blotted dry, and incubated in 10 mL ultrapure water at 25 °C for 24h
with shaking (100 rpm). Initial conductivity (C;) was measured.
After autoclaving (121 °C, 0.1 MPa, 20min), final conductivity (C,)
was recorded. REL (%) = (C1/C,) x 100. All assays included three
technical replicates.

Transcriptomic analysis, RNA extraction
and library construction

Total RNA was extracted from six samples (CK and 6 mg L™
ABA; 3 biological replicates each) using TRIzol® (Takara). RNA
integrity was confirmed by: 1% agarose gel electrophoresis (intact
285/18S rRNA bands), NanoDrop 2000 (Azs0/Azso = 1.8; Asso/Azzo
>2.0) and Qubit® 2.0 Fluorometer, Agilent 2100 Bioanalyzer (RIN
> 8.0). Libraries were prepared using NEBNext® Ultra' " RNA
Library Prep Kit (lumina®) with unique indices. Poly(A)+ mRNA
was enriched, fragmented, and reverse-transcribed. After end-repair
and adapter ligation, libraries were size-selected (200-300 bp) using
AMPure XP beads. Final libraries were quantified by qPCR (KAPA
Biosystems) and sequenced on Illumina NovaSeq 6000 (150 bp
paired-end). Bioinformatic Analysis: Reads were aligned to T.
aestivum reference genome (IWGSC RefSeq v2.1) using HISAT2.
Gene expression was quantified as FPKM (Trapnell et al., 2010).
Differentially expressed genes (DEGs) were identified by DESeq2
(Pertea et al., 2015) (Jlog,FC| > 1, FDR < 0.05). GO and KEGG
enrichment used Blast2GO with Fisher’s exact test (FDR < 0.05).

Metabolomic analysis, metabolite
extraction and profiling

Lyophilized samples (100 mg) were extracted with 1.2 mL 80%
methanol at 4 °C. After centrifugation (12,000 xg, 15min),
supernatants were analyzed by UPLC (SHIMADZU Nexera X2)-
MS/MS (AB Sciex 4500 QTRAP). The liquid chromatography
separation was performed on an Agilent SB-C18 column (100mm
x 2.1mm, 1.8 um) maintained at 40 °C. The mobile phase consisted
of ultrapure water with 0.1% formic acid (eluent A) and acetonitrile
with 0.1% formic acid (eluent B). A gradient elution program was
applied as follows: 5% B initially, increased linearly to 95% B
over 9 minutes, held for 1 minute, then returned to 5% B within
0.1 minutes and re-equilibrated for 4.9 minutes (total run time: 15
minutes). The flow rate was 0.35 mL/min, and the injection volume
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was 4 UL (Cao et al,, 2015). DAMs were filtered by: VIP > 1.0 (from
OPLS-DA model) (Phahlane et al., 2022), |log,FC| > 1, and P<0.05
(Student’s t-test).

gRT-PCR validation of differentially
expressed genes

To independently verify the reliability of the transcriptome
sequencing data, we randomly selected 12 differentially expressed
genes (DEGs) for expression level confirmation by quantitative real-
time PCR (qRT-PCR). First-strand cDNA was synthesized from the
isolated total RNA using the TaKaRa PrimeScrip‘[TM RT Master
Mix. All gene-specific primers were designed utilizing the Primer-
BLAST tool available on the NCBI website, with their sequences
detailed in Supplementary Table 1. The qPCR assays were
conducted in a final volume of 20 L, which contained 10 pL of
TaKaRa SYBR® Premix Ex Taq " 11, 0.8 uL of each gene-specific
primer (10 uM), 0.4 pL of Rox Reference Dye, 2 pL of cDNA, and 6
pL of ddH,O. Amplification was performed on a Thermo Fisher
Quantum Studio 5 real-time PCR system, following the thermal
cycling protocol established by Chen et al. (2021). The GADPH
gene served as the endogenous control for normalization, and the
relative expression of each target gene, based on three biological
replicates per condition, was determined using the comparative 2
“AACT method.

Statistical analysis

Data were processed in Excel 2019 (Microsoft) and analyzed by
one-way ANOVA (SPSS 22.0; IBM). Significant differences among
treatments were determined by ANOVA followed by Duncan’s
multiple range test. Mean values labeled with different letters are

10.3389/fphgy.2025.1684534

significantly different at the 5% level (P<0.05). Values represent
mean + SD of three biological replicates.

Results

Effects of exogenous ABA on morpho-
physiological parameters

Increasing ABA concentrations induced a biphasic response in
root elongation of wheat germinating seeds (Figure 1A).
Specifically, 2 mg-L™" ABA treatment yielded maximal root length,
representing a 1.12-fold increase versus CK (P<0.05). However,
concentrations > 4 mg-L™" significantly suppressed growth, with 6
mg-L" ABA reducing root length by 40% relative to CK (Figure 1B).

Physiological assessments revealed no significant changes in
electrolyte leakage, malondialdehyde (MDA), or catalase (CAT)
activity content at 2 mg-L"' ABA versus CK (Figures 1C-E).
Elevated ABA concentrations (4 — 6 mg-L") triggered significant
increases in these markers (P<0.01), indicating progressive
oxidative damage. Collectively, wheat exhibited biphasic
adaptation to ABA stress: initial ROS scavenging enhancement
followed by physiological dysfunction upon exceeding
tolerance thresholds.

Transcriptomic profiling and DEG
functional annotation

Given the pronounced phenotypic divergence between CK and
6 mg~L'1 ABA groups, transcriptome sequencing was performed to
decipher molecular mechanisms. High-quality data were obtained
(Q30: 92.93-93.50%; GC content: 53.50-55.38%; Supplementary
Table 2). Pairwise comparison identified 854 differentially expressed
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FIGURE 1

Effect of exogenous ABA treatment on morphological characteristics and physiological traits during wheat seed germination. (A) represent
Morphological Characteristics changes under different Exogenous ABA treatments. Bar = 1cm. (B) ABA treatments on wheat root length. (C-E)
represent respectively (REL, MDA, and CAT) changes under different Exogenous ABA treatments.
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genes (DEGs; [log,FC| > 1, adj. P<0.05), comprising 470 up-
regulated and 384 down-regulated genes (Figure 2A,
Supplementary Table 4). Hierarchical clustering analysis revealed
a clear separation between the CK and 6 mg/L ABA-treated samples
based on the 854 differentially expressed genes (DEGs) (Figure 2B).
This result indicates that exogenous ABA stress induces significant
alterations in the transcriptome of germinating wheat seeds. Gene
Ontology (GO) enrichment categorized DEGs into three domains
(Figure 2C). First, Cellular components including “Intracellular”,
“Protein-containing complex”, and “Cellular anatomical entity”
were significantly enriched. Second, Biological processes including
“Cellular process” and “Metabolic process”, reflecting dynamic
stress adaptation. Third, Molecular functions including “Binding”,
“Catalytic activity”, and “Transporter activity” indicated roles in
biochemical reactions and transmembrane transport. KEGG

pathway analysis highlighted ABA-responsive pathways: “Linoleic

» « » «

acid metabolism”, “Alpha-Linolenic acid metabolism”, “Glycolysis/
Gluconeogenesis”, “Biosynthesis of amino acids”, and “Cysteine
and methionine metabolism” (Figure 2D), underscoring their roles
in ROS scavenging, energy provision, and protein homeostasis.
To validate the reliability of the transcriptome data, we
performed qRT-PCR analysis on 12 randomly selected
differentially expressed genes (DEGs) identified from the
comparison between the CK and 6 mg-L”' ABA treatment. The

qRT-PCR results correlated well with the RNA-seq data

750~

500+ type
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duwn
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250+

%
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(Supplementary Figure 1), confirming the high reproducibility of
our transcriptomic dataset.

Metabolomic profiling and DAM functional
annotation

Untargeted LC/MS metabolomics detected 21,651 metabolic
features, annotated as 6,080 compounds. Principal component
analysis (PCA) showed clear separation between CK and 6 mg/L
ABA groups (Figure 3A). Volcano plot analysis identified 665
differentially accumulated metabolites (DAMs; VIP >1, |FC|>2),
with 345 up- regulated and 320 down-regulated (Figure 3B,
Supplementary Table 5). These DAMs were systematically
classified into 16 distinct groups. Ketones, aldehydes, and esters
(104, 15.6%) constituted the largest group, followed by lipids (103,
15.5%), saccharides (40, 6.0%), organic acids (45, 6.8%), terpenoids
(53, 8.0%), amino acids (30, 4.5%), alkaloids (24, 3.6%), flavonoids
(22, 3.3%), polyphenols (14, 2.1%), alcohols (13, 2.0%), steroids (11,
1.7%), nucleotides (10, 1.5%), quinones (7, 1.0%), coumarins (5,
0.8%), and phenylpropanoids (1, 0.2%). Additionally, other
compounds (94, 14.1%) and unannotated compounds (89, 13.3%)
comprised the classification (Supplementary Figure 2). Cluster
analysis revealed distinct metabolic profiles between treatments
(Figure 3C). KEGG enrichment identified “Benzoxazinoid
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Transcriptomic analysis of germinating wheat seeds under exogenous ABA treatment: CK vs. 6 mg-L"* ABA. (A) Identification of differentially
expressed genes (DEGs) between CK and 6 mg-L™* ABA treatment groups in germinating wheat seeds under exogenous ABA application. (B)
Hierarchical clustering heatmap of DEG expression profiles between CK and 6 mg-L™ ABA treatments. (C) Gene Ontology (GO) enrichment analysis
of DEGs categorized in cellular components, biological processes and molecular functions. (D) KEGG pathway enrichment analysis of DEGs from CK

vs 6 mg-L™* ABA comparison.
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metabolites (DAMs). (D) KEGG pathway enrichment analysis of DAMs.

biosynthesis” and “Nicotinate and nicotinamide metabolism” as
pathways with the largest changes (Figure 3D).

Integrative transcriptomic-metabolomic
analysis

Co-expression network analysis (Pearson |r| > 0.8, P<0.01)
revealed strong positive correlations between DEGs and DAMs
(Figure 4A). O2PLS integration highlighted 15 key gene-metabolite
pairs (Figure 4B). Joint KEGG enrichment identified 10 core pathways
including: Glycolysis/Gluconeogenesis, Biosynthesis of amino acids,
Cysteine and methionine metabolism, Starch and sucrose
metabolism, ABC transporters, and others (Figure 4C). Crucially,
the metabolite L-serine was enriched in five pathways (Biosynthesis of
amino acids, Cysteine and methionine metabolism, Glycine/serine/
threonine metabolism, ABC transporters, Fructose and mannose
metabolism). Key genes demonstrated cross-pathway regulation:
TraesCS3A02G276100, TraesCS3B02G309700, TraesCS3D02G276000
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and TraesCS5B02G078300 co-regulated Starch and sucrose
metabolism, Fructose and mannose metabolism, and Glycolysis/
Gluconeogenesis. TraesCS5A02G398300, TraesCS5D02G407800,
TraesCS7A02G102700 modulated Biosynthesis of amino acids and
Cysteine and methionine metabolism. NewGene_15595,
TraesCS1D02G062800, TraesCS7A02G015900, TraesCS7D02G012500
participated in Biosynthesis of amino acids and Glycolysis/
Gluconeogenesis. These multi-pathway hubs (L-serine and
highlighted genes) constitute critical key network nodes in ABA
response networks (Figure 5, Supplementary Table 3).

Discussion

Biphasic physiological response to
exogenous ABA and critical threshold

As a key phytohormone, ABA regulates plant growth and stress
adaptation through multifaceted signaling (Chen et al., 2020). Basal
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Integrated transcriptomic and metabolomic analysis of germinating wheat seeds under exogenous ABA treatment: CK vs. 6 mg-L™*ABA. (A) Co-
expression network analysis of differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) in germinating wheat seeds
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metabolomic datasets. (C) Joint KEGG pathway enrichment analysis of DEGs and DAMs.
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ABA levels are essential for growth modulation across tissues (Jiang
etal., 2025), while its accumulation underpins adaptive responses to
environmental challenges (Chen et al., 2006). This study delineated
a concentration-dependent biphasic response in wheat roots: 2
mg-L" ABA increased root length (1.12-fold vs. CK), whereas 6
mg-L™" caused 40% reduction. This biphasicity correlated with ROS
dynamics: low ABA mildly induced ROS, activating CAT (initially
unchanged), but concentrations >4 mgL" triggered ROS burst
(2.1-fold MDA increase), causing membrane peroxidation
(electrolyte leakage surge) and homeostasis collapse. These
findings align with ABA’s biphasic model, identifying 4 mg-L™" as
the oxidative damage threshold.

The significant increase in MDA content observed in our study
is consistent with the findings of Rehal et al. (2022) in wheat
seedlings, reinforcing that membrane lipid peroxidation is a key
consequence of ABA-induced oxidative stress. However, the
observed physiological response may exhibit species-specific
variations. For instance, Xie et al. (2021) found less root
elongation at any ABA concentration above 0 mg/L in
Arabidopsis, which is inconsistent with the present findings. This
discrepancy could be attributed to intrinsic differences between the
plant species investigated, such as variations in ABA receptor
sensitivity, antioxidant capacity, and the efficiency of downstream
signaling pathways, which collectively determine the physiological
response to phytohormone-induced stress. However, to further
refine the dose-response relationship and precisely determine the
toxicity threshold, future studies could be strengthened by
incorporating a wider concentration gradient (e.g., up to 8 and 10

10.3389/fphgy.2025.1684534

mg-L") and calculating the half-maximal inhibitory concentration
(ICs0). This approach would provide a more quantitative
assessment of the inhibitory effects and enhance the predictive
power of the model for agricultural applications.

Metabolic adaptation to stress and ABA-
mediated linolenic acid regulation

Plants deploy metabolic reprogramming to cope with stress
(Cramer et al, 2011), where metabolomics predicts adaptive
capacity (Sweetlove et al., 2008; Fiers et al., 2005). Core strategies
include osmotic adjustment (Krasensky and Jonak, 2012) and
protective secondary metabolite accumulation—e.g., phenolics,
proline, and soluble sugars maintain water potential, stabilize
proteins/membranes, and scavenge ROS (Dixon and Paiva, 1995;
Takahashi et al., 2020).

Our transcriptomics under 6 mg-L ' ABA identified 854 DEGs.
GO enrichment highlighted “metabolic process” and “transporter
activity”, indicating metabolic and transport network remodeling.
KEGG analysis pinpointed three core pathways: Linolenic acid
metabolism, Gene TraesCS5B02G078300 enrichment suggests
jasmonate (JA) precursor synthesis for defense signaling.
Cysteine-methionine metabolism: Supplies glutathione precursors
for ROS scavenging and alleviating oxidative damage induced by
ABA. The glycolysis/luconeogenesis pathway, highlighted by the
recurrent enrichment of gene TraesCS3A02G276100, is implicated
in sustaining energy homeostasis and generating carbon precursors
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for the potential synthesis of compatible solutes under ABA-
induced stress.

Metabolomics corroborated these findings: lipids (15.5% of
DAMs) and organic acids (6.8%) dominated the profile. Pathway
analysis further revealed benzoxazinoid (stress resistance) and
nicotinate (NAD+ synthesis) activation. Integratively, we propose
an ABA-induced adaptation axis: ABA triggers lipid oxidation for
signaling (e.g., JA precursors) while mobilizing secondary
metabolites (e.g., benzoxazinoids) to mitigate oxidative damage.
Crucially, linolenic acid metabolism holds strategic importance, as
exogenous ABA specifically induces its genes and promotes
endodermal deposition (Barberon et al, 2016; Cottle and
Kolattukudy, 1982; Boher et al., 2013; Kosma et al., 2014, 2014;
Yadav et al., 2014; Verdaguer et al., 2016; Shukla et al., 2021).

Gene-metabolite network drives stress
adaptation

Co-expression networks (|r] > 0.8, P<0.01) identified two
hub types. First, a metabolite hub is represented by the accumulation
of L-Serine which is involved in five pathways and showed a strong
correlation with TraesCS7A02G015900 expression (r = 0.92, P<0.001).
As a carbon-nitrogen flux node, it balances resource allocation. Second,
a gene hub represented TraesCS3A02G276100 (glycolytic enzyme) co-
regulated starch/sucrose, fructose/mannose, and glycolysis,
coordinating carbon partitioning for energy homeostasis.

Of particular note, our integrated analysis revealed that the
expression changes of amino acid biosynthesis genes (e.g.,
TraesCS5A02G398300) were highly correlated with the abundance of
the lysine precursor (2S,4S)-4-hydroxy-2,3,4,5-tetrahydrodipicolinate.
We speculate that this co-variation may suggest a potential
mechanism for regulating reactive oxygen species (ROS)
homeostasis through nitrogen metabolism. Based on these
correlations, we propose a working model wherein under high ABA
stress, energy supply (glycolysis), the ROS scavenging system, and
nitrogen metabolism (amino acid balance) form a functionally
interconnected network. Our data indicate that ABA treatment was
accompanied by attenuated glycolysis, decreased ATP levels, altered
amino acid metabolic profiles, and accumulated ROS, collectively
pointing to a state of overall metabolic dysfunction (Figure 6). It
must be emphasized that this model is proposed based on correlative
data obtained under specific experimental conditions, and the
underlying causal relationships and molecular mechanisms require
future validation through functional gain-/loss-of-function
experiments and metabolic flux analysis.

Conclusion

This study elucidates a biphasic regulation of root growth by
exogenous ABA in wheat germinating seeds: low concentrations (2
mg-L™") mildly promote elongation, whereas high levels (>4 mg-L™")
suppress growth via oxidative stress (MDA accumulation,
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electrolyte leakage). Integrated transcriptomics and metabolomics
identified 10 core pathways—notably Glycolysis/Gluconeogenesis,
Biosynthesis of amino acids, and Cysteine and methionine
metabolism—as response hubs. Critical regulators include the
metabolite L-serine and multi-pathway genes
(TraesCS3A02G276100, TraesCS5A02G398300), which orchestrate
energy provision, ROS clearance, and osmoprotection to maintain
homeostasis. Collectively, wheat dynamically balances ABA stress
through transcriptional and metabolic reprogramming, providing
novel insights for stress-resilient crop breeding.
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