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Elevated growth [CO2] enhances
heat stress resistance of
photosynthesis in young leaves
of avocado (Persea americana)
Yusuph Olawale Abiola1*, Hassan Yusuf Sulaiman1,
Eve Kaurilind1 and Ülo Niinemets1,2

1Chair of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, Estonia,
2Estonian Academy of Sciences, Tallinn, Estonia
Climate change is associated with higher atmospheric [CO2] and more frequent

temperature extremes, with the strongest impact expected in the tropics where

plants often operate close to their heat stress limit. How the resistance of foliage

photosynthetic traits to heat stress varies with [CO2] elevation remains largely

unknown, particularly in tropical species with continuously expanding canopies,

where the heat resistance of leaves can vary with age. We studied the impact of

heat shock stress resembling heatflecks due to fluctuating light (48 °C for 10 min)

on foliage physiological traits and chemical contents in young-mature and old-

mature foliage of the tropical species Persea americana Mill. plants grown under

ambient (400 mmol mol-1) and elevated (800 mmol mol-1) [CO2]. Leaf

characteristics were studied through a 48 h recovery period. Light-saturated

net assimilation rate (A) decreased with leaf age in both ambient and elevated

[CO2]. In young-mature leaves, A in plants grown under elevated [CO2] was

greater than A in plants grown under ambient [CO2]. In old-mature leaves, A was

similar under both [CO2] and this was associated with increased nutrient

limitation under elevated [CO2]. Upon heat stress application, A decreased in

all cases due to both reduction in stomatal conductance and inhibition of

biochemical photosynthetic capacity (maximum Rubisco carboxylase activity).

During recovery, A increased to pre-stress level in all but in young-mature plants

grown under ambient [CO2] where A remained much lower (78% reduction) than

in control plants. As young leaves have a longer remaining lifespan and higher

future potential contribution to plant carbon gain, preservation of photosynthetic

capacity in young leaves under elevated [CO2] suggests that elevated [CO2] can

enhance long-term photosynthetic production in P. americana exposed to

heat episodes.
KEYWORDS
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1 Introduction

Since the industrial revolution, the global atmospheric

CO2 concentration has risen from around 280 mol mol-1 to over

420 mol mol-1. Contingent on socio-economic trajectory taken,

[CO2] is expected to reach 730-1000 mmol mol-1 by the end of this

century (Strandsbjerg Tristan Pedersen et al., 2021). Whole plant

responses to elevated [CO2] depend on modifications in plant

photosynthesis and respiration rates (carbon balance), carbon

allocation and nutrient availability, whereas the importance of

individual factors depends on plant species and functional type

(Drake et al., 1997; Ainsworth and Long, 2005; Dusenge et al.,

2019). Alterations in leaf photosynthesis rates, in turn, are

intimately linked to changes in leaf structure and chemical

composition (Niinemets et al., 1999; Onoda et al., 2017). As the

ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is not

[CO2]-saturated at current atmospheric [CO2], leaf photosynthesis

is typically immediately enhanced upon the increase of [CO2]

(Singh and Reddy, 2016; Cummins, 2021). Stimulated

photosynthesis rate further leads to improved plant growth rate

in short to medium term (Drake et al., 1997; Ainsworth and Long,

2005; Singh and Reddy, 2016; Reich et al., 2018). However, the

stimulation of biomass accumulation under longer-term [CO2]

increase may not be sustainable, and plants often reduce

photosynthetic capacity through an acclimation process

commonly referred to as ‘down-regulation’ due to factors such as

limited nutrient and water availability and other sub- or

supraoptimal environmental conditions (Sanz-Sáez et al., 2013;

Atkin et al., 2015; Terrer et al., 2018; Zheng et al., 2019; Jiang

et al., 2020). In addition, the impact of the increase in [CO2] on

whole plant performance can be strongly affected by how [CO2]

affects the rate of new leaf production and leaf senescence and

nutrient resorption (Li et al., 2019; Abiola et al., 2025a), and thus,

the share of young mature and old mature leaves. The impact of leaf

age can be particularly important in species continuously forming

new leaves such as common in many tropical long-living species,

but there is little information of how elevated [CO2]-driven

photosynthetic downregulation depends on leaf age.

The increase in [CO2], combined with rising levels of other

greenhouse gases, has resulted in a 0.8 °C increase in mean annual

global temperature (Hansen et al., 2010) and it is expected to rise

further by 2-5 °C before the end of this century (Tian et al., 2020).

Overall higher temperatures are associated with increased

frequency of heatwaves (Breshears et al., 2021; Ahrens et al.,

2021), and consequently, with more severe heat stress impacts on

plants, curbing plant growth and survival in future climates. Both

stomatal and biochemical factors can inhibit photosynthesis at
Abbreviations: A, light-saturated net assimilation rate; Ci, intercellular [CO2]

concentrations; CM, leaf carbon content per unit dry mass; gs, stomatal

conductance; MA, leaf dry mass per unit area; NM, leaf nitrogen content per

unit dry mass; PM, leaf phosphorus content per unit dry mass; Rubisco, ribulose-

1,5-bisphosphate carboxylase/oxygenase; Vcmax, maximum carboxylase activity

of Rubisco.
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temperatures slightly above the thermal optimum, and the

contribution of these factors varies among species (Kask et al.,

2016; Slot and Winter, 2017; Kumarathunge et al., 2018; Turan

et al., 2019; Sulaiman et al., 2023). The thermal optimum itself, and

accordingly the severity of stress at the given temperature is also

species-dependent and might vary with the plant developmental

stage (Ruelland and Zachowski, 2010; Okereke et al., 2021). In this

study, the term “heatwave” denotes extreme temperatures that

significantly exceed the optimal photosynthetic range of tropical

species, typically 30-35 °C (Slot and Winter, 2017). Photosynthesis

is highly susceptible to heat stress, especially photosystem II (PSII)

and oxygen-evolving complex are the first components to sustain

thermal damage (Falcioni et al., 2024; Paethaisong et al., 2025).

Temperatures above 45 °C for just a few minutes can cause losses in

membrane integrity, and lead to photoinhibition and reactive

oxygen species (ROS) generation; ROS propagation and reduction

of photosynthetic activity can continue even after returning to lower

temperatures (Hüve et al., 2011; Bernacchi et al., 2025). Acclimatory

responses to heat stress involve changes in the activities of

photosynthetic enzymes, adjustments of stomatal openness for

more effective transpiratory cooling, and increases in

photoprotective energy dissipation, while redox signals from the

photosynthetic electron transport activate heat shock proteins and

antioxidant defenses which enhance both thermal protection and

recovery capacity (Tarvainen et al., 2022; Diao et al., 2024).

The impact of heat stress varies among leaves of differential

developmental stage with mature leaves generally exhibit higher

heat tolerance compared to young leaves (Wahid et al., 2007; Marias

et al., 2017). However, why heat responses of leaves of different

developmental stages vary and how the contribution of stomatal

and biochemical modifications to overall heat stress response varies

among leaves of different ages are poorly understood (Gu et al.,

2012; Zhu et al., 2021; Sun et al., 2024b). Higher heat resistance of

older leaves might be attributed to their more developed structural

characteristics such as greater leaf thickness, more robust cell walls,

and higher mass per area, well-established antioxidant systems and

rapid capacity for formation of heat shock proteins as well as non-

specific protective compounds such as sugars (Hüve et al., 2011;

Wahid et al., 2007; Marias et al., 2017; Yurina, 2023; Watson-

Lazowski et al., 2024). Meanwhile, fully-developed photosynthesis

apparatus is also essential in regulating plant heat responses by

balancing carbon assimilation with protective mechanisms in

mature leaves (Zahra et al., 2023; Bernacchi et al., 2025).

Apart from the direct effect of [CO2] on photosynthesis rate,

higher [CO2] can potentially ameliorate the impact of heat stress

(Rodrigues et al., 2016; Abo Gamar et al., 2019; Diao et al., 2024).

Improvement of stress resistance by elevated [CO2] in stressed

plants is evident in a reduced cellular oxidative damage (such as

lipid peroxidation and protein oxidation), in a lower content of

stress-generated reactive oxygen species (ROS) and in a lower

degree of reduction in photosynthesis rate (Geissler et al., 2010;

Sun et al., 2013a; Zinta et al., 2014; AbdElgawad et al., 2015; Ulfat

et al., 2021). A greater stress resistance has been associated with

reduced photorespiration and as a consequence, with lower

production of active oxygen species and H2O2 (Foyer and Noctor,
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2009; Munné-Bosch et al., 2013; Zinta et al., 2014), enhanced

contents of lipophilic antioxidants and membrane-protecting

enzymes through upregulation of antioxidant defense metabolism

(Xu et al., 2014; Naudts et al., 2014) and higher content of sugars

that stabilize membranes (Sun et al., 2013a; Ulfat et al., 2021).

However, how elevated [CO2]-dependent improvement of heat

stress resistance varies among leaves of different developmental

stage has not been studied. Given that elevated [CO2] might alter

the share of young and old leaves in the canopy, this is a

relevant omission.

To the best of our knowledge, interactive effects of heat stress and

elevated [CO2] on primary metabolism in leaves of different

developmental stage have not been studied, especially in tropical

plants with continuous leaf formation. We grew the saplings of

tropical evergreen fruit tree avocado (Persea americana Mill.,

Lauraceae) under ambient [CO2] of 400 mmol mol-1 and elevated

[CO2] of 800 mmol mol-1 and studied the interaction between

photosynthetic acclimation to [CO2] and heat stress response in

leaves of different age. We hypothesized that: (i) elevated [CO2]

enhances photosynthesis rate, but leads to a down-regulation of

biochemical photosynthetic capacity; (ii) the degree of

photosynthetic downregulation is greater in older leaves; (iii)

elevated [CO2] increases heat resistance of photosynthesis; (iv) older

foliage sustains less physiological damage and exhibits faster recovery

than young-mature foliage, and this difference is more pronounced

under elevated [CO2]. Persea americana is an economically important

crop species and there is an unprecedented increase in the production

and consumption of its products worldwide (Schaffer et al., 2013).

Thus, we expect that the results of this study contribute to predicting

the avocado performance in future climates. Furthermore, we

consider avocado as a representative tropical species with

continuous leaf formation, and thus, we argue that this study

provides general insight into how a large part of vegetation in

humid tropics responds to global change.
2 Materials and methods

2.1 Plant material and growing conditions

We used seeds of Persea americana Mill. cv. Hass, a cultivar

bred in California from Mexican-Guatemalan ancestry and

currently cultivated worldwide. The fruits (origin Aconcagua

basin, Chile) were bought from a local fruit shop. The seeds were

planted in 2 L clay pots and grown at the plant growth room of the

Estonian University of Life Sciences under the following conditions:

light intensity of 500-700 mmol m-2 s-1 with day/night temperatures

of 28/24 °C for a 12 h light period and 60% relative humidity. The

growth substrate was a commercial organic garden soil and a

mixture of peat and sand (0–2 mm, Bauhof, Tartu, Estonia). The

plants were watered every other day to soil field capacity and

fertilized with 10 g slow-release fertilizer with microelements (N:

P:K = 14:11:25, AS Baltic Agro, Tartu, Estonia) once per month.

The seedlings were grown under these conditions until they were

50–70 cm tall and had utilized all seed reserves. Before the start of
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CO2 treatments, the plants were transplanted into 5 L pots and the

foliated parts of the plants were removed leaving ca. 5 cm long

stems. Subsequently, the plants were transferred to the plant growth

chamber (FITOCLIMA S600PLLH, Aralab, Lisbon, Portugal)

to either ambient (400 mmol mol-1) or elevated [CO2] (800 mmol

mol-1). Chamber conditions were consistent with those in the plant

growth room, except that light intensity was maintained at 1000

mmol m-2 s-1. The plants were watered every other day to the soil

field capacity and fertilized in the beginning and in the middle of the

growth period (see Abiola et al., 2025a for details of the growth

conditions). At the time of the experiment, the plants had

approximately 30–40 leaves and were 80–100 cm tall, after a

growth period of four months. In this experiment, new leaves

were formed continuously, and the plastochron (interval between

the formations of successive leaves) was 11–12 days. Fully expanded

young-mature leaves were ca. 60–70 days old, and old-mature non-

senescent leaves were ca. 110–120 days old. We estimated that the

available C and N stored in the root system could have been

responsible for less than 10% of new growth, and thus, most of

the above-ground biomass developed after removal of above-

ground plant parts and transfer of plants to the new growth

environment resulted from de novo carbon fixation and nutrient

uptake from soil.
2.2 Gas exchange measurements

A custom-made open gas-exchange system was used to measure

the foliage gas-exchange rate (Copolovici and Niinemets, 2010 for

the full description of the system). The measurement system was

specifically designed for simultaneous measurement of

photosynthesis, transpiration, and volatile organic compound

(VOC) emission rates, with all components constructed from

glass, stainless steel, and Teflon®. The 1.2 L measurement

chamber was made with double glass walls. Water with preset

temperature circulated between the chamber walls to regulate the

chamber temperature (Copolovici and Niinemets, 2010). The CO2

and H2O vapor concentrations at the chamber inlets and outlets

were measured with an infra-red dual-channel gas analyzer

operated in differential mode (CIRAS III, PP-Systems, Amesbury,

MA, USA).

After the measurement leaf was enclosed in the chamber,

following standard conditions were established: light intensity at

the leaf surface of 700 mmol m-2 s-1, chamber temperature of 24°C,

CO2 concentration of 390-410 mmol mol-1 (ambient [CO2]

measurements), relative air humidity 60%, and leaf-to-air vapor

pressure deficit of 1.7 kPa. After the steady-state gas exchange rates

were achieved, typically between 25–30 minutes after leaf enclosure,

differences in CO2 and water vapor concentrations were recorded.

Net assimilation rate (A), transpiration rate (E), stomatal

conductance (gs) and intercellular CO2 concentration (Ci) were

calculated according to von Caemmerer and Farquhar (1981). The

apparent maximum Rubisco carboxylase activity (Vcmax) was

computed according to Niinemets et al., 1999 as explained in

detail in De Kauwe et al. (2016). In these calculations, average
frontiersin.org
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Rubisco kinetic characteristics for “warm” C3 species from Galmés

et al. (2016) were used. As Ci was used as the substitute for

chloroplastic CO2 concentration, the estimates of Vcmax provide

an estimate of foliage photosynthetic activity without stomatal

effects, but they do not consider possible variation in

mesophyll conductance.
2.3 Heat stress treatments

Before the heat treatment, steady-state values of A and gs were

recorded under standard conditions (24 °C). Heat stress was applied

by immersing the sample leaves in distilled water at 48 °C for

10 min according to the procedure detailed in previous studies

(Copolovici et al., 2012; Kask et al., 2016; Okereke et al., 2022).

During immersion, the leaves were enclosed in a chemically inert

polyester bag to avoid direct contact with water. The control

treatment consisted of leaf immersion in distilled water at 25°C

for 10 min. A controlled temperature water bath (VWR

International, West Chester, Pennsylvania, USA) was used to

maintain a highly stable temperature of the immersion medium.

We choose this procedure as it does not depend on stomatal effects

that can alter leaf temperature at given air temperature due to

transpiratory cooling. We have demonstrated that the heat stress

applied this way is highly repeatable and the severity of heat stress

scales quantitatively with photosynthetic reduction, volatile

emission and ion leakage (e.g., Okereke et al., 2022; Sulaiman

et al., 2023).

In these experiments, four replicates of young-mature and old-

mature leaves from different plants were used. Foliage gas-exchange

measurements were conducted at 0.25, 1, 3, 24, and 48 h after the

treatment under the standard conditions (chamber temperature of

24 °C).
2.4 Estimation of leaf dry mass per area,
and carbon, nitrogen, and phosphorous
contents per dry mass

Data of nitrogen (NM), carbon (CM), and phosphorus (PM)

content per dry mass used in this study are those from (Abiola et al.,

2025a). Fresh leaves were scanned at 300 dpi and leaf area was

measured using ImageJ 1.8.0 (NIH, Bethesda, Maryland, USA). Leaf

dry mass was estimated after oven-drying at 70°C for 48 h, and leaf

dry mass per unit area (MA) was calculated.
2.5 Data analyses

The measurements of control and heat-treated plants were

conducted in four replicate plants (n = 4), with one young-

mature and one old-mature leaf measured per plant, using

different plants grown under ambient and elevated [CO2]. The

data were presented as averages ± SE. The degree of heat stress
Frontiers in Plant Physiology 04
recovery of gas exchange characteristics for each plant age groups

was calculated as:

RC,i =  (xi,after stress − xi,before stress)=xi,before stress � 100% (1)

whereRC,i is the relative change of trait i and xi,before stress and xi,after

stress the trait values assessed before and after stress application (Liu

et al., 2022). Linear mixed models (LMM) with heat stress and [CO2]

levels as fixed effects and time as a random effect were used to test the

effects of individual and interactive effects of treatments and [CO2] on

gas exchange characteristics through the stress recovery time. Tukey’s

honestly significant difference (HSD) test following one-way ANOVA

was used to compare averages at different heat stress recovery time

points. Two-way analyses of variance with leaf age and [CO2] as main

effects and leaf age x [CO2] interaction were used to estimate the global

effects of growth [CO2], leaf age and their interaction. All statistical

analyses were conducted with R statistical software ver. 4.2.0 (2021)

and visualized with OriginPro 2018 (OriginLab Corporation,

Northampton, USA). The data used for ANOVA and LMM were

tested for normality of distribution (Kolmogorov-Smirnov test), and

when necessary, the data were log-transformed to improve the

normality of data. All statistical effects were considered significant at

P < 0.05. All datasets analyzed during this study are available in the

EMU DSpace repository (Abiola et al. 2025b).
3 Results

3.1 Effects of growth [CO2] and leaf age on
photosynthetic characteristics

In Persea americana, the net assimilation rates ranged from 6.42

to 8.61 μmol m-² s-¹, with the lowest value observed in mature leaves

under ambient [CO2] and the highest in young leaves under

elevated [CO2] (Figure 1). The net assimilation rate (A) in

unstressed young-mature leaves was 14% greater in elevated

[CO2]-grown plants compared to ambient [CO2]-grown plants,

indicated by a significant [CO2] effect on (P < 0.05), whereas A was

similar between old-mature leaves, regardless of growth [CO2]

(Table 1). A similar A measured suggest photosynthetic

downregulation in high-[CO2]-grown plants, and this was

supported by lower leaf nitrogen content per dry mass (NM) and

leaf phosphorus content per dry mass (PM) under elevated [CO2]

(Abiola et al., 2025a) for the effect of growth [CO2] on elemental

contents). The apparent (Ci-based) maximum carboxylase activity

of Rubisco (Vcmax) was higher in young-mature leaves under

elevated [CO2] (mean ± SE = 51.95 ± 2.19) compared to young

leaves under ambient [CO2] (42.38 ± 1.8, P < 0.001, Table 1).

However, Vcmax was similar in old-mature leaves under both [CO2]

conditions (P > 0.05, Table 1) despite reduced nutrient content

(Abiola et al., 2025a) for the effect of growth [CO2] on elemental

contents). For intercellular CO2 concentration (Ci), young-mature

leaves under elevated CO2 exhibited significant main effects of

growth [CO2] (mean ± SE = 175.02 ± 9.55) compared to ambient

young-mature (205.15 ± 9.84, P < 0.001, Table 1). Again, old-
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mature leaves exhibited no Ci difference between [CO2] treatments

(P > 0.05; Table 1).

Meanwhile, in both growth [CO2], A decreased with leaf age

(P < 0.05 in ambient [CO2] and P = 0.001 for elevated [CO2]),

whereas the interactive effects of leaf age x [CO2] were not

significant (P > 0.05; Table 2). There was no significant difference

in Vcmax and stomatal conductance (gs) between leaf ages in both

growth [CO2]. However, leaf dry mass per unit area (MA) increased

with leaf age, and the interaction between leaf age x [CO2] was

significant (P < 0.05, Table 2).
3.2 Impacts of heat stress on foliage
photosynthetic characteristics as affected
by growth [CO2] and leaf age

Heat stress (48 °C) led to immediate decreases in foliage

photosynthetic characteristics in all cases with full or partial

recovery depending on growth [CO2] and leaf age. The degree of
Frontiers in Plant Physiology 05
recovery varied between young- and old-mature leaves and

dependence on the growth [CO2] as well (Figures 1, 2; Table 1).

Heat shock resulted in decreases in light saturated photosynthesis

(A) in both young and old-mature leaves grown under different

[CO2] (Figures 1A, B, 2A, B, Table 1). The degree of reductions in A

in all the heat-stressed plants was proportional to reductions in

Vcmax (Figures 1A, B, G, H, 2A, B, E, F, Supplementary Figure S1,

Table 1). The application of heat stress uncoupled the relationship

between A and gs (Figures 1C, D, 2C, D, Table 1), and thus, the heat

stress-dependent changes in net assimilation rate through recovery

were primarily driven by changes in Vcmax (biochemical limitation)

for different combinations of leaf age and growth [CO2]

(Supplementary Figure S1).

Reductions of A due to heat stress were the greatest in young-

mature leaves of plants grown under ambient [CO2] (Figures 1A,

2A, Table 1). At the end of the 48 h heat stress recovery period, A, gs
and Vcmax in all the stressed plants recovered fully, except for the

young-mature leaves grown under ambient [CO2] (Figures 1A–D,

G, H, 2A–F). In heat-stressed young-mature leaves grown under
FIGURE 1

Light-saturated net assimilation rate (A) (A, B), stomatal conductance to water vapor (gs) (C, D), intercellular CO2 concentration (Ci) (E, F), and maximum
carboxylase activity of Rubisco (Vcmax) (G, H) in control (25°C) and heat-treated (48°C) leaves of Persea americana measured at recovery time points of 0.25,
1, 3, 24 and 48 h. The heat treatment was applied by submerging the leaves in distilled water at 48°C for 10 min. For the control treatment, the water
temperature was 25°C. All photosynthetic measurements were conducted at 24°C, at 700 mmol m-2 s-1 light, and at CO2 concentration of 390-410 mmol
mol-1. Each bar represents the treatment average ± SE measured at different recovery times. Averages at each recovery time were compared by one-way
ANOVA followed by a Tukey post-hoc test. Different lowercase letters denote significant differences (P < 0.05) among the treatment groups. n = 4.
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TABLE 1 Output of linear mixed model for individual and interactive effects of growth [CO2], ambient (400 mmol mol-1) vs. elevated (800 mmol mol-1)
and treatment, control vs. heat stress, and recovery time on leaf gas exchange characteristics (light-saturated net assimilation rate, A; stomatal
conductance to water vapor, gs; intercellular CO2 concentration (Ci) and maximum carboxylase activity of Rubisco; Vcmax) within the same leaf age
groups (young- or old-mature leaves grown under ambient and elevated [CO2]) in Persea americana.

Traits Effects c2 df P value

A (mmol m-2 s-1)

Young-mature leaves [CO2]
Time
Treatment
Time x Treatment
[CO2] x Time
[CO2] x Treatment

58.9
20.78
260.09
21.57
15.00
22.07

1
1
1
1
1
1

0.000***
0.000***
0.000***
0.000***
0.000***
0.000***

Old-mature leaves [CO2]
Time
Treatment
Time x Treatment
[CO2] x Time
[CO2] x Treatment

0.88
33.85
107.27
45
0.26
2.34

1
1
1
1
1
1

0.35ns

0.000***
0.000***
0.000***
0.61ns

0.13ns

gs (mmol m-2 s-1)

Young-mature leaves [CO2]
Time
Treatment
Time x Treatment
[CO2] x Time
[CO2] x Treatment

0.65
0.20
20.38
3.35
1.23
0.51

1
1
1
1
1
1

0.42ns

0.66ns

0.000***
0.07ns

0.27ns

0.48ns

Old-mature leaves [CO2]
Time
Treatment
Time x Treatment
[CO2] x Time
[CO2] x Treatment

0.32
13.72
8.35
15.79
0.64
0.97

1
1
1
1
1
1

0.57ns

0.000***
0.004**
0.000***
0.42ns

0.33ns

Ci (mmol mol-1)

Young-mature leaves [CO2]
Time
Treatment
Time x Treatment
[CO2] x Time
[CO2] x Treatment

51.91
9.53
54.35
3.65
0.08
29.10

1
1
1
1
1
1

0.000***
0.002**
0.000***
0.06 ns

0.77
0.000***

Old-mature leaves [CO2]
Time
Treatment
Time x Treatment
[CO2] x Time
[CO2] x Treatment

2.90
4.02
20.30
1.65
0.20
0.00

1
1
1
1
1
1

0.09ns

0.04*
0.000***
0.20ns

0.65ns

0.99ns

Vcmax (mmol m-2 s-1)

Young-mature leaves [CO2]
Time
Treatment
Time x Treatment
[CO2] x Time
[CO2] x Treatment

68.85
25.22
162.28
14.04
15.93
20.63

1
1
1
1
1
1

0.000***
0.000***
0.000***
0.000***
0.002***
0.000***

Old-mature leaves [CO2]
Time
Treatment
Time x Treatment
[CO2] x Time
[CO2] x Treatment

2.95
9.43
37.71
6.48
0.62
1.85

1
1
1
1
1
1

0.09ns

0.002**
0.000***
0.01*
0.43ns

0.17ns
F
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Experimental treatments as in Figure 1. All photosynthetic measurements were conducted at 24 °C, at 700 mmol m-2 s-1 light and at CO2 concentration of 390-410 mmol mol-1. After application of
the heat stress (48 °C for 10 min) or control treatment (25 °C for 10 min) the leaf physiological characteristics were measured at 0.25, 1, 3, 24 and 48 h (Time effect). n = 4 for each leaf age/[CO2]
treatment combination. The models were fitted by maximum likelihood method. Data from Abiola et al. (2025b), available at EMU DSpace: https://doi.org/10.15159/EDS.DT.25.02.
frontiersin.org
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elevated [CO2], full recovery of A (P > 0.6 between control and at

48 h after heat shock) was accompanied by a greater recovery of gs
and Vcmax and a decrease in intercellular CO2 concentration (Ci)

than in young-mature leaves grown under ambient [CO2]

(Figures 1A–F, 2A–F).
4 Discussion

We grew the saplings of tropical evergreen fruit tree avocado

(Persea americana) under ambient (400 mmol mol-1) and elevated

(800 mmol mol-1) growth [CO2] and determined the leaf

photosynthetic responses to an heat shock treatment (10 min.

exposure to 48 °C) in young-mature and old-mature leaves. The

heat stress applied is close to the heat stress limit of vascular plants

(Kask et al., 2016; Turan et al., 2019; Okereke et al., 2022) and allows

gaining an insight into variation in heat stress resistance and recovery

in dependence on leaf age and [CO2] treatment. In nature, it

resembles the heat stress the plants might be exposed on hot days

upon sunflecks when the leaves can rapidly heat up 5-10 °C above the

ambient temperature (Leakey et al., 2005; Hüve et al., 2019).

So far, the effects of heat stress on primary and secondary

metabolism have been investigated in numerous studies (Jardine

et al., 2015; Teskey et al., 2015; Chatterjee et al., 2020; Okereke et al.,

2021; 2022; Sulaiman et al., 2023), however, much less is known

about the interaction between elevated [CO2] and heat stress, and

no study has looked at heat stress and growth [CO2] x leaf age

interaction. This is a significant omission as both aging and elevated

[CO2] alter leaf physiological activity, structure and content of

protective chemicals such as antioxidants and sugars that

collectively can also affect heat resistance.
4.1 Leaf-age and growth [CO2]-dependent
changes in foliage photosynthetic activity
as related to leaf elemental contents and
structure

Changes in foliage net assimilation rate (A) can occur due to

alterations in stomatal conductance (gs), mesophyll conductance
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(gm) and maximum carboxylase activity of Rubisco (Vcmax) (Ethier

et al., 2006; Niinemets, 2018). In our study we looked at changes in

gs and apparent Vcmax that does not consider possible differences in

gm. Generally, A decreases in non-senescent leaves with increasing

leaf age, but the underlying physiological mechanisms can be

species-specific (Ethier et al., 2006; Kositsup et al., 2010; Abiola

et al., 2025a). In the current study, A was lower in old-mature leaves

in comparison to young-mature leaves. Given the similar nutrient

contents in the leaves with varying age in P. americana (Abiola

et al., 2025a), the age-related reduction in photosynthetic capacity

was not associated with limiting nutrient contents, but might

indicate a decrease in mesophyll conductance due to thickening

of cell walls (Niinemets et al., 2005, 2006; Onoda et al., 2017). This is

plausible given the increase of leaf dry mass per unit area (MA) with

increasing leaf age (Table 2).

Elevated [CO2] is expected to increase A as the result of

enhanced CO2 availability for photosynthesis (Reich et al., 2018;

Zheng et al., 2019; Jiang et al., 2020). However, previous studies have

shown that A in plants under elevated [CO2] can increase, reduce or

even remain unaffected (Urban et al., 2012; Abiola et al., 2025a).

Unaffected or reduced A is indicative of photosynthetic

downregulation (see Introduction). Typically, plants grown under

elevated [CO2] have lower nutrient contents and higher MA (Sun

et al., 2013a; Fleischer and Terrer, 2022; Abiola et al., 2025a). In our

study, leaf nitrogen content per dry mass (NM) and leaf phosphorus

content per dry mass (PM) were higher in both young-mature and

old-mature leaves grown under ambient [CO2] compared to elevated

[CO2]-grown plants (Abiola et al., 2025a). Previous studies have

shown that decreases in foliage nutrient contents such as N and P

contribute to decreases in photosynthesis under elevated [CO2]-

grown plants (Jifon and Wolfe, 2002; Sanz-Sáez et al., 2013; Reich

and Hobbie, 2013; Arrizabalaga-Arriazu et al., 2020). Lower NM is

typically associated with lower photosynthetic capacity per dry mass

(Amass), while the rate of photosynthesis per area (Aarea) also depends

on MA, i.e., Aarea = MA x Amass (Onoda et al., 2017; Onoda and

Wright, 2018). Thus, the enhancement of MA under elevated [CO2]

might compensate for reductions in Amass. However, as discussed

above, a higherMA can be associated with greater investment in cell

walls, which reduces photosynthetic efficiency by lowering N

allocation to photosynthetic proteins and decreasing CO2 diffusion
TABLE 2 Output of two-way ANOVA for individual and interactive effects of leaf age, young-mature vs. old-mature, and growth [CO2], ambient (400
mmol mol-1) vs. elevated (800 mmol mol-1), on light-saturated net assimilation rate (A, mmol m-2 s-1), stomatal conductance to water vapor (gs, mmol
m-2 s-1), intercellular CO2 concentration (Ci, mmol mol-1), maximum carboxylase activity of Rubisco (Vcmax, mmol m-2 s-1), and leaf dry mass per unit
area (MA) in P. americana.

Species A gs Ci Vcmax MA

F-values for two-way ANOVA

P. americana

[CO2] 3.97* 0.31ns 4.56* 14.46*** 98.64***

Leaf age 17.19*** 1.85ns 1.64ns 3.99ns 551.78***

[CO2] x Leaf age 0.96ns 0.14ns 0.88ns 0.42ns 9.51*
The young-mature leaves were 60–70 days old, and the old-mature leaves were 110–120 days old. All photosynthetic measurements were conducted at 24 °C, at 700 mmol m-2 s-1 light and at CO2

concentration of 390-410 mmol mol-1. The global effects of [CO2] and leaf age as analyzed by two-way ANOVA are reported in the main text. Statistical significance is shown as: * - P < 0.05, ** -
P < 0.01, and *** - P < 0.001. n = 3-4. Data from Abiola et al. (2025b), available at EMU DSpace: https://doi.org/10.15159/EDS.DT.25.02.
frontiersin.org
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due to low mesophyll conductance associated with thick cell walls

(Tosens et al., 2016; Osnas et al., 2018). We argue that further studies

should look at elevated [CO2] effects on mesophyll conductance in

different aged leaves.
4.2 Leaf maturation and elevated [CO2]
enhanced heat stress tolerance of
photosynthesis in P. americana

We demonstrated that reductions of A in all heat-stressed

P. americana were primarily due to non-stomatal factors,

specifically, reductions in ribulose 1,5-bisphosphate carboxylase/

oxygenase (Rubisco) activity (Figures 1, 2, Supplementary Figure

S1). Rapid reductions in Rubisco maximum activity upon heat

stress might be attributed to thermal inhibition of Rubisco

enzymatic activity (Hüve et al., 2011; Kask et al., 2016;

Djanaguiraman et al., 2018). However, photosynthesis recovered

in all the heat shock-treated P. americana leaves except in young-
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mature leaves of P. americana grown under ambient [CO2]

(Figures 1A, E), likely indicating direct thermal damage of

photosynthetic components in these leaves (Hüve et al., 2019;

Sulaiman et al., 2023).

Previous studies have associated severe heat stress (>47°C) with

rapid reductions in A in several tropical species (Okereke et al., 2021;

2022). The current study showed that severe heat resulted in an

immediate decrease in A by ca. 82% in old-mature leaves of P.

americana (Figures 1B, 2B; Table 1), similar to the reductions

observed previously in foliage of old-mature tropical herbaceous

species including Amaranthus cruentus, A. hybridus, Solanum

aethiopicum, Telfairia occidentalis and Vigna unguiculata (Okereke

et al., 2021), but less than the reductions observed in the foliage of the

tree species Carica papaya (Okereke et al., 2022). Also, unlike in C.

papaya (Okereke et al., 2022),A in old-mature P. americana recovered

completely after severe heat stress application (Figures 1B, 2B),

suggesting greater heat stress tolerance of old-mature P. americana

leaves. The recovery of old-mature leaves under ambient [CO2]

indicates enhancement of photosynthetic apparatus tolerance of
FIGURE 2

The relative change (Equation 1; degree of recovery) of net assimilation rate (A) (A, B), stomatal conductance to water vapor (gs) (C, D), and
maximum carboxylase activity of Rubisco (Vcmax) (E, F) after heat stress application (48 °C applied for 10 min) in leaves of Persea americana with
recovery time points of 0.25, 1, 3, 24 and 48 h (average ± SE). (A–F) show the degree of recovery of leaf age groups from plants grown at ambient
(400 mmol mol-1) and elevated (800 mmol mol-1) [CO2], relative to each treatment/leaf age combination prior to heat stress application. The
photosynthetic measurements were conducted at 24 °C, at 700 mmol m-2 s-1 light and at CO2 concentration of 390-410 mmol mol-1. Statistically
significant differences (P < 0.05) of heat-treated leaf trait values relative to control treatment are shown by * for ambient [CO2]-grown plants and by
# for elevated [CO2]-grown plants. Significant differences among heat-treated ambient and elevated-[CO2]-grown plants are shown by x (one-way
ANOVA, P < 0.05; n = 4).
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heat-stressed plants. As suggested in the Introduction, such an

enhancement in heat resistance with increasing leaf age might have

multiple causes, including greater antioxidative capacity, enhanced

repair capacity and enhanced formation of stress-protective

compounds, partly as the result of greater physiological activity

(Albert et al., 2018; Krause et al., 2014; Drake et al., 2018; Tarvainen

et al., 2022). However, in young-mature leaves of P. americana grown

under ambient [CO2] (Figures 1A, 2A), photosynthesis did not

recover (<78%) after severe heat stress application, suggesting the

photosynthetic sensitivity of the young-mature leaves.

Both young and old-mature leaves grown under elevated [CO2]

exhibit greater heat resistance than those grown under ambient [CO2],

as evidenced by their enhanced recovery to control conditions

following heat shock (Figures 1A, B, 2A, B). This demonstrate that

increased leaf age and elevated [CO2] independently and

synergistically improved heat shock tolerance and recovery of

photosynthetic activities in P. americana. Typically, heat protection

of photosynthesis by elevated [CO2] is associated with higher

concentration of sugars in leaves under elevated [CO2] (Taub et al.,

2000; Zhang et al., 2019). This is because of greater photosynthesis

rate under elevated [CO2], and nutrient limitation of growth (lower

sink activity) (Leakey et al., 2009; Habermann et al., 2019).

In conclusion, our study demonstrates that P. americana is a

relatively heat tolerant species. Nevertheless, under transient

heatwaves at current ambient [CO2], photosynthesis of young

leaves is expected to be strongly reduced. Increases in ambient

[CO2] are expected to improve the heat resistance of young leaves

and thus, elevation in [CO2] might improve the whole canopy

photosynthesis in heat-exposed avocado. Future research should

examine effects of heat stress on a wider range of tropical woody

species, including impacts on canopy-level carbon gain, reproductive

development, and yield under future climate scenarios.
5 Conclusions

Our study suggests that the interactive effect of elevated [CO2]

and heat stress might in nature contribute to improved heat

resistance in plants with actively growing canopy. We

demonstrated that leaf developmental stage and the growth [CO2]

play a major role in how plant photosynthetic characteristics

respond to heat stress conditions through a 48 h recovery period.

The results showed a certain downregulation of photosynthesis in

old-mature plants grown under elevated [CO2]. Upon heat stress

application, photosynthetic reductions were mainly associated with

Rubisco limitation with a minimal contribution of stomatal

conductance. During 48 h recovery under ambient temperature,

plants from all leaf age/treatment combinations recovered to the

control condition at the end of the experiment, except young-

mature leaves under ambient [CO2]. Thus, elevated [CO2] is

expected to enhance the heat resistance of younger leaves. Given

that these leaves have more time left to photosynthesize than older

mature leaves, losing these leaves due to a heat stress episode would

be highly devastating for the whole plant. Thus, the overall impact

of elevated [CO2] in Persea americana would be the increased heat
Frontiers in Plant Physiology 09
resistance of the long-term whole canopy photosynthetic

production. Although elevated [CO2] improved the heat

resistance of P. americana, heat waves during leaf development

are expected to have a major impact on foliage photosynthetic

activity under the current and future [CO2]. Future studies should

examine the biochemical and physiological mechanisms responsible

for greater heat resistance of young leaves in elevated [CO2]-grown

plants and look at the generality of this finding across tropical

species with continuously expanding canopies.
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SUPPLEMENTARY FIGURE 1

Correlations between the apparent (Ci-based) maximum carboxylation rate

of Rubisco (Vcmax) and net CO2 assimilation rate (A) after heat treatment (48 °
C applied for 10min) in P. americana leaves grown at ambient (400 mmolmol-

1 and elevated (800 mmol mol-1) [CO2]. Each data point represents an average
of four independent replicates measured at 0.25, 1, 3, 24, and 48 h after heat

stress treatments. Panel A shows young-mature leaves from ambient and

elevated growth [CO2], while panel B shows old-mature leaves from ambient
and elevated growth [CO2].
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