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Characteristics of energy 
metabolism and stress load in 
elite MOBA E-sports athletes

Ziyang Li† , Mengli Wei*† , Yaping Zhong*, Yiyuan Chong and 
Minghui Li

School of Sports Training, Wuhan Sports University, Wuhan, China

Background: E-sports gained growing recognition as a competitive pursuit with 
quantifiable physiological demands. While previous studies have shown that 
cognitive stress modulates energy metabolism and autonomic nervous system 
regulation, phase-specific physiological responses during gameplay remain 
poorly understood.
Methods: 20 elite League of Legends players (rank ≥ Platinum) were enrolled. 
Their cardiopulmonary function and autonomic nervous system activity were 
monitored during rest and across three distinct match phases (early-, mid-, and 
late-game). Energy metabolism parameters were measured using a portable 
cardiopulmonary testing system, and heart rate variability indices were assessed 
with a chest-worn monitor.
Results: Compared with the resting state, the early-game elicited significant 
increases in energy expenditure oxygen consumption (VO2), carbon dioxide 
production (VCO2), and respiratory exchange ratio (all p < 0.001), with 
carbohydrate oxidation accounting for approximately 63% of total energy 
supply. Heart rate (HR) increased by 12.8%, while the root mean square 
of successive differences (RMSSD) rose by 52.2%, indicating sympathetic-
parasympathetic coactivation. In the mid-game, metabolic indices declined 
but remained above baseline levels, characterized by sustained carbohydrate 
dominance (about 63.6%) and increased fat oxidation (about 30.2%); heart rate 
variability indices reflected sympathetic predominance accompanied by partial 
parasympathetic recovery. The late-game was characterized by slight rebounds 
in metabolic load and carbohydrate utilization (about 68.2%), accompanied 
by decreased Heart rate and elevated RMSSD, suggesting partial autonomic 
recovery alongside incipient neural fatigue.
Conclusion: Elite e-sports athletes demonstrate dynamic, phase-dependent 
alterations in energy metabolism and autonomic nervous system regulation. 
The early phase is characterized by carbohydrate-dominated physiological 
activation, the mid phase by metabolic stabilization amid sustained cognitive 
demand, and the late phase by partial autonomic recovery with cumulative 
neural fatigue. These findings highlight the physiological mechanisms 
underlying E-sports performance and provide actionable insights for optimizing 
training regimens, fatigue monitoring protocols, and recovery interventions.
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Highlights

• For the first time, this study systematically analyzed the 
dynamic differences in physiological energy metabolism and 
stress load of elite MOBA e-sports athletes across three distinct 
match phases: the early (0–10 min), middle (11–25 min), and 
late (≥26 min) phases of MOBA games, thereby addressing a 
key limitation of prior research that relied on homogenizing 
whole-game analysis.

• The core physiological rules of the three phases were clarified. 
During the early phase, energy metabolism increased sharply 
(with carbohydrate-dominated energy supply) and stress load 
peaked; in the middle phase, metabolic indices decreased but 
remained above baseline levels (with a higher proportion of 
fat oxidation contributing to energy supply), and sympathetic-
parasympathetic regulation tended toward equilibrium; in 
the late phase, metabolism showed a slight rebound (with a 
further increased proportion of carbohydrate oxidation for 
energy supply), and athletes manifested cumulative neural 
fatigue. These results explicitly confirm the phase-specific 
physiological alterations underlying MOBA gameplay.

• Based on the phase characteristics, E-sports training schemes 
were proposed: enhancing energy mobilization capacity 
under cognitive stress during the early-game; utilizing heart 
rate variability (HRV) for fatigue monitoring throughout 
the mid- and late-game; and incorporating neural recovery 
interventions in the late-game. This achieves precise alignment 
between phase-specific physiological traits and targeted 
training/intervention approaches.

1 Introduction

On 11 February 2025, the International Olympic Committee 
(IOC) officially declared that the first “E-sports Olympic Games” 
would be held in Riyadh, Saudi Arabia, in 2027. This landmark 
event marks the first time that e-sports has been incorporated into 
the Olympic framework as an independent sport. E-sports is a 
competitive form highly dependent on information technology and 
mental confrontation; although it involves relatively little external 
physical activity, the challenges it poses to athletes’ cognitive, 
psychological, and physiological loads have attracted increasing 
attention (Jenny et al., 2016).

The essence of human movement lies in the synergy between 
movement and energy metabolism: its external manifestation 
is visible physical activity, while its internal mechanism relies 
on the continuous support of energy metabolism processes 
(Li et al., 2014). Relevant studies have shown that during e-
sports competitions, athletes’ physiological indicators, such as 
respiratory rate, oxygen uptake, and carbon dioxide emission, 
increase significantly. This indicates that e-sports is not a sedentary 
behavior in the traditional sense, but a special form of exercise 
with a distinct energy metabolism load (Kocak, 2021). Furthermore, 
the characteristics of energy metabolism are also affected by 
multiple factors, including exercise intensity, duration, and task 
nature. Among these factors, studies have pointed out that under 
conditions of short-duration exercise with high cognitive load, 
carbohydrate metabolism becomes the dominant energy supply 

mode (Mul et al., 2015). This is particularly important for e-
sports: as a competitive discipline characterized by sustained 
high concentration and rapid, complex motor operations, it 
constitutes a typical high-cognitive-demand, short-term explosive 
competitive activity. Energy substrate utilization in esports may 
shift from fat oxidation to carbohydrate oxidation to fulfill the 
central nervous system’s immediate requirement for rapid energy 
provision (Laborde et al., 2017). In addition, energy metabolism also 
exhibits a regular pattern of dynamic fluctuations across different 
exercise phases. Such metabolic characteristics not only affect 
competitive performance but also provide important references for 
the formulation of competitive strategies, fatigue management, and 
the arrangement of recovery mechanisms (Li, 2013).

A number of studies have hitherto been conducted, which have 
furnished preliminary insights into the physiological responses of 
participants during esports. For instance, Kocak et al. monitored 
respiratory-metabolic indices in amateur esports players under 
resting and gaming conditions, reporting that METs and EE 
were significantly higher during gameplay than at rest, overall 
corresponding to light-intensity physical activity (Kocak, 2021). 
Another study by Haupt et al. demonstrated that, although 
players exhibited responses such as increased heart rate during 
gameplay, changes in oxygen consumption and energy expenditure 
during gameplay were not significant (Haupt et al., 2021). In 
addition, Nicholson et al. observed significant increases in EE and 
respiratory gas exchange variables during competitive gameplay 
in comparison with rest periods, accompanied by a marked 
increase in HR and a shortening of the R-R interval. However, 
neither time-domain nor frequency-domain HRV indices exhibited 
significant changes (Nicholson et al., 2024). Although these studies 
have provided certain data support for the characteristics of 
energy metabolism and autonomic nervous responses in e-sports, 
they still have several limitations: (1) Based on the duration of 
MOBA competitions, a match can be divided into three distinct 
phases: early game, mid game, and late game. Athletes demonstrate 
unique physiological and psychological responses across these 
phases, thereby inducing fluctuations in energy metabolism. 
Therefore, it is imperative to conduct phase-specific observations 
of energy metabolism data and summarize the corresponding 
energy supply patterns. Yet, existing studies treat the entire match 
as a homogeneous unit and have not addressed phase-specific 
differences in athletes’ energy metabolism; (2) Additionally, the 
energy expenditure (EE) of esports athletes is strongly associated 
with autonomic nervous system (ANS) regulation induced by 
the stress load endured during matches. Thus, it is essential to 
combine data on athletes’ autonomic nervous activity to gain an 
in-depth understanding of the causes of fluctuations in their energy 
metabolism.

This study takes elite Multiplayer Online Battle Arena (MOBA) 
e-sports athletes in League of Legends as subjects. A portable 
cardiopulmonary testing system and heart rate variability (HRV) 
monitoring equipment were employed to systematically gather 
energy metabolism data and HRV indices during the early-
game, mid-game, and late-game phases of real matches. The 
primary objective was to investigate the dynamic changes in 
energy metabolism characteristics and autonomic nervous system 
regulation among these athletes. 
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TABLE 1  Basic characteristics of the subjects (N = 20).

Variables Values (mean ± SD)

Age (years)
Height (cm)
Weight (kg)

24.35 ± 1.78
177.85 ± 5.79
73.30 ± 7.83

BMI (kg/m2) 23.25 ± 2.10

Gaming experience (years) 5.50 ± 1.95

Data are presented as mean ± SD. BMI, body mass index.

TABLE 2  Distribution of game ranks.

Rank tier Number

Platinum (IV-I)
Emerald (IV-I)

10
5

Diamond (IV-I)
Master
Grandmaster

2
2
1

Data are presented as frequency.

2 Methods

2.1 Subject selection

A total of 25 male subjects were recruited for this study. The 
inclusion criteria were as follows: (1)Being a player of the League 
of Legends game; (2)Having a rank no lower than Platinum in the 
game’s solo/duo queue system (Nicholson et al., 2024); (3)Being in 
good health, with no metabolic diseases or cardiovascular disorders 
(Nicholson et al., 2024). The exclusion criteria were as follows: (1) 
taking metabolism-influencing drugs or health supplements during 
the study period; (2) engaging in high-intensity exercise during the 
study period; and (3) failing to control diet and sleep in accordance 
with the experimental requirements. After screening, 20 subjects 
were ultimately enrolled. All participants were fully informed of 
the experimental procedures and potential adverse reactions, and 
provided written informed consent. The basic information of the 
subjects and their rank distribution are presented in Tables 1, 
2. Participants’ demographic characteristics and rank distribution 
are summarized in Tables 1, 2. All experimental procedures were 
performed in accordance with the Declaration of Helsinki. The 
study protocol and related ethical considerations were approved 
by the Ethics Committee of Wuhan Sports University (Approval 
No.: 2025143).

2.2 Experimental equipment

In this study, the MetaMax 3B portable cardiopulmonary 
function tester (manufactured by Cortex, Germany) was used for 
real-time collection of subjects’ energy metabolism parameters, and 
a chest-worn heart rate monitor (Polar H10) was paired with it for 
collecting HRV index data (Figure 1).

FIGURE 1
(A) Illustrates the MetaMax3B device and the collection diagram of 
metabolic gases; (B) Illustrates the Polar H10 heart rate strap and the 
monitoring diagram via Kubios software.

The cardiopulmonary function testing system uses an 
electrochemical sensor to monitor oxygen (O2) concentration and 
an infrared sensor to monitor carbon dioxide (CO2) concentration, 
with a sampling frequency of 10 Hz. The measurement accuracy is 
±0.02vol% for O2 and ±0.01vol% for CO2; the flow measurement 
range is 0–250 L/min, and the measurement error is controlled 
within±2%, which can meet the requirements of physiological data 
collection under different exercise intensity conditions.

During the measurement, participants wore a customized mask 
and a head-mounted sampling device, with exhaled air directed 
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to the main unit via a one-way valve system for analysis. Before 
the formal testing, a two-step calibration process was completed 
in compliance with the manufacturer’s operation manual: gas 
calibration (using a certified standard gas mixture) and volume 
calibration (via a 3-L standard syringe). Collected data were 
transmitted in real time to Cortex’s proprietary analysis software 
(MetaSoft Studio), enabling subsequent calculation and visual 
analysis of energy metabolism indices.

The heart rate monitor adopts electrocardiogram (ECG) 
technology, which measures heart rate by detecting the electrical 
activity generated during myocardial contraction. It is paired with 
the Kubios software (University of Eastern Finland) for HRV 
analysis. This software typically has a heart rate monitoring range of 
30–240 bpm and a sampling rate of 1000 Hz, and can detect multiple 
HRV indicators such as HR and R-R interval.

Before the test, 75% alcohol wipes were used to clean the skin 
in the wearing area (to remove sweat and oil); subjects with thick 
chest hair were required to shave the local chest hair to ensure close 
contact between the electrode pads and the skin. During the test, 
the heart rate monitor was worn 2–3 cm below the midline of the 
sternum, with the sensor module aligned directly in front of the 
heart and wrapped horizontally around the chest. The tightness of 
the chest strap was adjusted to a level where “1-2 fingers could 
be inserted without obvious pressure”. After wearing, the Kubios 
software was used to observe the ECG waveform until it stabilized; 
if the waveform was disordered, the wearing position needed to be 
adjusted or the skin re-cleaned until the signal became stable. 

2.3 Experimental protocol

To ensure the scientific validity and reproducibility of the 
experimental data, a series of pretest control conditions was 
established for the subjects (Figure 2). All subjects were required to 
meet the following requirements before the test: 

1. Fasting for at least 3 h;
2. No alcohol consumption within 24 h prior to the experiment;
3. No smoking within 2 h before the start of the experiment;
4. Avoiding intake of any caffeinated foods or beverages 

(including but not limited to coffee, tea, energy drinks, etc.) 
within 8 h before the start of the experiment;

5. Avoiding moderate-to-high intensity physical activity on the 
day before the test and ensuring a sleep duration of no 
less than 7 h.

Before conducting the game task, the resting metabolic rate 
(RMR) of the subjects was first measured. Subjects were instructed 
to wear the MetaMax 3B cardiopulmonary function tester and the 
Polar H10 heart rate monitor, then sit quietly on an ergonomically 
designed e-sports chair for 20 min in a resting state. During 
the measurement, all conversations and physical activities were 
prohibited to minimize the impact of external interference on 
metabolic data. The experimental environment was controlled in 
a closed laboratory with a constant temperature (22 °C–24 °C), 
low illumination, and quiet conditions to ensure minimal external 
stimulation.

Immediately after the resting metabolic test, the subjects began 
the game-phase task. All subjects used the same model of computer, 

monitor, keyboard-mouse set, and headphones, and loaded into 
a solo-queued ranked game. The starting point of the game test 
was defined as the moment when the game character finished 
loading and started moving on the Summoner’s Rift map. To 
further minimize the confounding effects of linguistic and social 
variables on physiological indices, verbal communication and in-
person interaction were prohibited during data collection; all 
communication was restricted to the game’s built-in signaling 
system (e.g., the “PIN” function). 

2.4 Game phase division

Based on the average pace of professional leagues (LPL, LCK, 
LEC, and LCS) and the timing of key events, (Oracle’s Elixir, 2024; 
Riot Games, 2024) combined with empirical studies by scholars 
such as Gaina (2018) and Zhang and Naidu (2024), this study 
divided League of Legends matches into three phases: early game 
(0–10 min), mid game (11–25 min), and late game (26 min to 
the end of the game) (Gaina, 2018; Zhang and Naidu, 2024). 
This division ensures the scientific validity and standardization of 
subsequent analyses. 

2.5 Indicator analysis

2.5.1 Analysis of energy metabolism indicators
Energy metabolism indicators were collected using the Cortex 

cardiopulmonary function testing system, including oxygen 
consumption (VO2),carbon dioxide production (VCO2),minute 
ventilation (VE),respiratory exchange ratio (RER),metabolic 
equivalents (METs),and energy expenditure (EE). To ensure data 
stability and the accuracy of analysis results, when measuring 
RMR, only the physiological indicator signals from the middle 10 
consecutive minutes were retained, while the data from the first 
5 min and last 5 min were excluded to avoid interference from 
adaptation and recovery processes. During the game task phase, 
data were divided and analyzed according to the early, mid, and 
late phases. To eliminate potential human interference factors (e.g., 
abnormal behaviors such as coughing or talking), data collected 
5 s before and after any abnormal behavior were regarded as 
contaminated data and excluded from subsequent analyses.

Indirect calorimetry formulas were used to convert 
existing energy metabolism indicator data into EE, with the 
formula as follows: 

EE (kcal/min ) = (3.941×VO2) + (1.106×VCO2)

Additionally, based on the existing VO2 and RER data, the 
proportion of energy supply systems in different game phases was 
roughly estimated using the following formulas (Peronnet and 
Massicotte, 1991):

Fat oxidation rate (g/min): Fat(g/min) = 1.695×VO2×(1−RER).
Carbohydrate oxidation rate (g/min): CHO (g/min) = 

4.585×VO2×RER−3.226×VO2
Fat energy supply (kcal/min): Fat(kcal/min) = Fat(g/min)×9.
Carbohydrate energy supply (kcal/min): CHO (kcal/min) = 

CHO (g/min)×4.
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FIGURE 2
(A) Experimental flowchart; (B) Experimental setup.

Proportion of fat aerobic energy supply: [Fat(kcal/min)/
(Fat(kcal/min)+CHO(kcal/min))]×100%

Proportion of carbohydrate aerobic energy supply:
[CHO(kcal/min)/(Fat(kcal/min)+CHO(kcal/min))]×100%
Proportion of anaerobic energy supply: 1-Proportion of 

fat aerobic energy supply-Proportion of carbohydrate aerobic 
energy supply. 

2.5.2 Analysis of HRV indicators
Heart rate of subjects in different game phases was measured 

using the Polar H10 heart rate monitor, and HRV indicators were 

analyzed using Kubios software (University of Eastern Finland), 
including HR, R-R interval (RR), Root mean square of successive 
differences (RMSSD), High-frequency power (HF), and LF/HF ratio 
(LF/HF). To ensure data stability and result accuracy, only the HR 
data from the middle 10 min were retained during the resting state 
test, while the data from the first 5 min and last 5 min were excluded 
to eliminate interference from adaptation and recovery. During the 
game task phase, data were collected and analyzed according to the 
early-game, mid-game, and late-game phases.

Fast Fourier Transform (FFT) was used for frequency-domain 
analysis, with frequency bands defined per international standards: 
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TABLE 3  Proportion of energy metabolism pathways across different game phases.

Energy metabolism pathways Early game (%) Mid game (%) Late game (%)

Anaerobic energy 13.3 ± 8.6 6.2 ± 8.4 7.6 ± 5.1

CHO oxidation 63.0 ± 7.4 63.6 ± 10.1 68.2 ± 11.7

Fat oxidation 23.7 ± 9.4 30.2 ± 10.1 24.2 ± 11.6

Data are presented as mean ± SD. CHO, carbohydrate oxidation.

TABLE 4  Post-hoc pairwise comparisons of energy metabolism pathway contributions.

Pathways Comparison P value 95% CI (lower, upper)

Anaerobic energy Early vs. Mid game
Early vs. Late game
Mid vs. Late game

0.007
< 0.001
0.803

0.030, 0.148
0.049, 0.142
−0.050, 0.063

CHO energy Early vs. Mid game
Early vs. Late game
Mid vs. Late game

0.808
0.014
0.007

−0.053, 0.042
0.057, 0.446
0.081, 0.433

Fat energy Early vs. Mid game
Early vs. Late game
Mid vs. Late game

0.004
0.012
0.001

−0.107, −0.024
0.026, 0.185
0.077, 0.266

CI: Confidence Interval. P-values indicate the statistical significance of pairwise comparisons.

TABLE 5  Comparative analysis of energy metabolism characteristics across different game phases.

Variables Resting Early game Mid game Late game

VO2 (L/min)
VCO2 (L/min)
VE (L/min)

0.34 (0.31–0.37)
0.31 (0.27–0.34)
10.67 (9.83–11.66)

0.37 (0.36–0.38)
∗∗∗

0.37 (0.33–0.38)
∗∗∗

12.88 (11.87–14.17)
∗∗∗

0.35 (0.34–0.37)
∗††

0.34 (0.31–0.35)
∗∗∗†††

12.44 (11.53–13.10)
∗∗∗††

0.36 (0.35–0.39)
0.34 (0.31–0.36)
12.47 (10.74–13.36)

∗

RER
METs
EE (Kcal/min)

0.89 (0.87–0.91)
1.34 (1.30–1.45)
1.70 (1.54–1.84)

0.97 (0.89–1.01)
∗∗∗

1.48 (1.36–1.57)
∗∗∗

1.84 (1.77–1.93)
∗∗∗

0.98 (0.88–0.97)
∗∗†

1.39 (1.32–1.5)
∗††

1.77 (1.68–1.85)
∗∗†††

0.95 (0.89–0.96)†

1.45 (1.31–1.53)
1.81 (1.68–1.91)

Data are presented as median (interquartile range, IQR). VO2: oxygen uptake; VCO2: Carbon dioxide production; VE: minute ventilation; EE: energy expenditure; METs: Metabolic 
equivalents. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 significantly different from Resting. †P < 0.05, ††P < 0.01, †††P < 0.001 significantly different from Early Game.

HF: 0.15–0.40 Hz; LF: 0.04–0.15 Hz. To reduce the impact of 
the extremely skewed distribution of HRV power units (ms2) on 
analysis, the mean values of HF and LF power were subjected to 
natural logarithm transformation (ln). This step was intended to 
enhance data distribution normality and the reliability of subsequent 
statistical analyses. 

2.6 Statistical analysis

All statistical analyses were performed using SPSS 27.0 software. 
Data are presented as mean ± standard deviation for normally 
distributed variables, and median (interquartile range, IQR) for 
non-normally distributed variables. Accordingly, all demographic 
information was expressed as means, standard deviations and 

frequencies. Similarly, data regarding the proportional contribution 
of energy metabolism were presented as mean ± standard deviation. 
The physiology data was assessed for normality, where it was 
shown to be non-parametric. The data were then presented as 
medians and 25th and 75th percent interquartile ranges. The 
Wilcoxon signed-rank test was employed to examine differences 
in these indices across the three distinct game phases. In addition, 
a one-way repeated measures analysis of variance (ANOVA) was 
conducted to examine the proportional contribution of different 
energy metabolism pathways across the three game phases. Effect 
sizes were determined using partial eta squared η2). When a 
significant main effect was observed, post hoc pairwise comparisons 
were performed to identify specific differences between phases. 
Statistical significance was set at P < 0.05, with levels denoted as P < 
0.001, P < 0.01, and P < 0.05 to ensure the accuracy of the results.
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FIGURE 3
Changes in energy metabolism characteristics during the early-game phase. Data are presented as the median and interquartile range. VO2 (A), VCO2

(B), VE (C), RER (D), METs (E), and EE (F). ∗indicates a significant difference compared with the resting condition.

TABLE 6  Comparative analysis of HRV across different game phases.

Variables Resting Early game Mid game Late game

HR (bpm)
RR (ms)
RMSSD (ms)

71.0 (65.1–78.7)
846 (763–924)
5.65 (3.98–8.93)

80.1 (75.8–84.8)
∗∗∗

751 (713–798)
∗∗∗

8.60 (5.93–10.68)
∗∗

78.4 (73.5–83.3)
∗∗∗

769 (723–818)
∗∗∗

8.05 (5.58–10.63)
∗

77.8 (73.5–85.8)
780 (709–816)
9.60 (7.70–10.20)

HF(ms2)
LF/HF

138 (123–154)
3.14 (1.81–4.00)

133 (123–156)
1.88 (1.44–4.26)

138 (128–156)
3.67 (2.14–4.68)†

131 (124–157)
2.48 (1.40–4.29)

Data are presented as median (interquartile range, IQR). HR: heart rate; RR: R-R interval; RMSSD: Root mean square of successive RR, interval differences; HF: High-Frequency Power; LF/HF: 
Ratio of low-frequency to high-frequency power. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001 significantly different from Resting. †P < 0.05, ††P < 0.01, †††P < 0.001 significantly different from 
Early Game.

3 Results

3.1 Study on the proportion of different 
energy metabolism pathways across 
different game phases

The analysis of variance (ANOVA) revealed that there were 
distinct phase-dependent effects on the energy metabolism 
pathways (see Tables 3, 4). The anaerobic energy supply 
demonstrated an early-phase predominance, followed by significant 
attenuation in subsequent stages (F = 9.690, p = 0.001, η2 = 0.492). 
In contrast, the oxidation of carbohydrates exhibited a delayed 
activation pattern, characterised by a specific surge during the late 

phase (F = 8.109, p = 0.001, η2 = 0.323). Notably, the oxidation of fat 
followed a non-linear, inverted-U trajectory, displaying a transient 
mid-game peak before declining (F = 11.723, p < 0.001, η2 = 0.408). 

3.2 Study on the characteristics of energy 
metabolism and HRV in E-sports athletes 
during the early game phase

During the early phase of the game, there was a marked increase 
in energy metabolism indices in comparison to resting levels (see 
Table 5; Figure 3). Specifically, significant increases were observed 
in EE (Z = −3.733, P < 0.001), VO2 (Z = −3.733, P < 0.001), VCO2
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FIGURE 4
Changes in heart rate variability characteristics during the early-game phase. Data are presented as the median and interquartile range. HR (A), R-R 
interval (B), RMSSD (C), HF (D), and LF/HF (E). ∗indicates a significant difference compared with the resting condition.

(Z = −3.883, P < 0.001), VE (Z = −3.920, P < 0.001), RER (Z = −3.659, 
P < 0.001), and METs (Z = −3.733, P <  0.001).

A comparison of the HRV (see Table 6; Figure 4) revealed 
a significant increase in heart rate (Z = −3.584, P < 0.001). 
Concurrently, the R-R interval demonstrated a significant decrease 
(Z = −3.584, P < 0.001). Furthermore, RMSSD demonstrated a 
substantial increase (Z = −3.118, P < 0.01). Despite the downward 
trends observed in both HF and the LF/HF ratio, these fluctuations 
did not attain statistical significance. 

3.3 Study on the characteristics of energy 
metabolism and HRV in E-sports athletes 
during the mid-game phase

During the mid-game phase, all energy metabolism indices 
exhibited a significant decline from the values observed in the early 
game phase, yet remained substantially elevated above resting levels 
(see Table 5; Figure 5). VO2 decreased from the early-game value 
(Z = −3.136, P < 0.01), yet remained above the resting value (Z = 
−2.501, P < 0.05). In a similar manner, the level of VCO2 was found 
to be lower than in the early game phase (Z = −3.453, P < 0.001), yet 
remained higher than at rest (Z = −3.808, P < 0.001). VE exhibited a 
similar trend, decreasing from the early game phase (Z = −2.949, P < 
0.01) while remaining higher than the resting state (Z = −3.920, P < 
0.001). RER decreased relative to the early game phase (Z = −2.427, 
P < 0.05), yet remained higher than resting values (Z = −2.725, P < 

0.01). METs decreased from the commencement of the game (Z = 
−3.173, P < 0.01), yet remained above resting values (Z = −2.576, 
P < 0.05). Finally, EE decreased in comparison with the early game 
(Z = −3.360, P < 0.001), while remaining higher than resting values 
(Z = −2.912, P <  0.01).

During the mid-game phase, heart rate variability indices 
showed significant changes compared to the early game phase and 
the rest phase (see Table 6; Figure 6). HR decreased from the early 
game phase, but remained higher than during rest (Z = −3.435, P < 
0.001). The R-R interval showed no change from the early game 
phase, but remained shorter than during rest (Z = −3.621, P < 0.001). 
RMSSD decreased from both the early game phase and the rest phase 
(Z = −2.523, P < 0.05). For the frequency-domain indices, there was 
no difference in HF from rest, while the LF/HF ratio increased from 
the early game phase (Z = −2.118, P < 0.05), showing an upward 
trend versus rest. 

3.4 Study on the characteristics of energy 
metabolism and HRV in E-Sports athletes 
during the late game phase

During the late game phase, the energy metabolism indices 
displayed a variety of trends in comparison to the other phases (see 
Table 5; Figure 7). VO2 and VCO2 were elevated above rest, but 
decreased from the early game phase (both non-significant). VE 
remained significantly higher than at rest (Z = −2.118, P < 0.05), 
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FIGURE 5
Changes in energy metabolism characteristics during the mid-game phase. Data are presented as the median and interquartile range. VO2 (A), VCO2

(B), VE (C), RER (D), METs (E), and EE (F). ∗indicates a significant difference compared with the resting condition, and †indicates a significant difference 
compared with the early-game phase.

with no difference compared to the early or mid-game phases. RER 
increased above rest, but decreased significantly from the early game 
phase (Z = −2.118, P < 0.05). METs and EE remained above rest 
values but below mid-game values, though these differences were 
not significant.

During the late-game phase, HRV indices exhibited sustained 
alterations (see Table 6; Figure 8). HR decreased compared to the 
early-game phase but remained elevated relative to the resting state 
(p > 0.05). The R-R interval was longer than in the early- and mid-
game phases, but remained shorter than at rest (non-significant). 
RMSSD increased above rest, though this was not significant. For 
the frequency-domain indices, HF reached its lowest level across all 
phases and the LF/HF ratio decreased from the mid-game phase, 
though neither of these changes was statistically significant. 

4 Discussion

The core characteristics of MOBA E-sports, namely, high 
strategic complexity, intensive operational demands, and phased 
cognitive load, pose sustained physiological challenges to the neuro-
cognitive-metabolic systems. Growing evidence argues against 
classifying e-sports as sedentary activities, supported by studies 
demonstrating significant alterations in energy metabolism and 
heart rate variability during high-level competitive play. This 
suggests that e-sports should be regarded as having distinct 
physiological exercise relevance (Jenny et al., 2016; DiFrancisco-
Donoghue et al., 2019). 

4.1 Changes in energy metabolism and 
stress load characteristics of E-Sports 
athletes during the early-game phase

The early-game phase, defined by critical tactical preparation 
and acute cognitive demands, triggers rapid, high-intensity 
activation of both metabolic and stress-response systems. Far 
from reflecting a passive sedentary state, this phase exhibits 
a distinct physiological profile governed by the “cognitive 
stress-glycogenolysis” pathway. The observed predominance 
of carbohydrate oxidation (RER about 1.0) suggests that high 
cognitive load upregulates CNS-mediated glycogen phosphorylase 
activity to meet neuronal energy requirements (Mul et al., 2015). 
The subsequent increase in energy expenditure surpasses that 
observed during conventional mental activities (Fairclough 
and Houston, 2003) and amateur gameplay (Kocak, 2021). 
Collectively, these findings challenge the classification of e-
sports as a sedentary activity. Notably, this magnitude of energy 
expenditure supports Hoshikawa and Yamamoto’s (1997) hypothesis 
that complex cognitive activities can independently modulate 
energy metabolism via autonomic pathways.

It is noteworthy that the magnitude of energy expenditure 
in these elite athletes corresponds with the distinction 
between elite and amateur physiological responses as 
outlined by Nicholson et al. (2024). The elevated EE observed 
here is likely indicative of the “cognitive automation” that has 
been developed through long-term training. In contrast to amateur 
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FIGURE 6
Changes in heart rate variability characteristics during the mid-game phase. Data are presented as the median and interquartile range. HR (A), R-R 
interval (B), RMSSD (C), HF (D), and LF/HF (E). ∗indicates a significant difference compared with the resting condition, and †indicates a significant 
difference compared with the early-game phase.

players, elite athletes have conditioned responses to key information, 
which minimises cognitive resource waste and enables efficient 
allocation of metabolic substrates to high-level decision-making 
and motor precision. This finding indicates that the metabolic cost 
of e-sports is not a mere stress response, but rather a functional 
adaptation to high-performance cognitive processing.

Regarding autonomic regulation, the early-game phase was 
characterised by sympathetic-parasympathetic coactivation, 
as demonstrated by the concomitant elevation in heart rate 
and maintenance of vagal tone. This finding aligns with 
the “autonomic coordinated activation” theory described in 
sports psychology to describe competitive preparation stages 
(Laborde et al., 2017; Haupt et al., 2021). As proposed by 
Thayer et al. (2012), this bidirectional adjustment serves an adaptive 
function: sympathetic activation enhances cerebral perfusion and 
alertness, while retained parasympathetic modulation mitigates 
hyperarousal, thereby stabilising cognitive function for tactical 
execution (Thayer et al., 2012). 

4.2 Changes in energy metabolism and 
stress load characteristics of E-sports 
athletes during the mid-game phase

The mid-game phase was characterised by frequent 
confrontations and high operational intensity, leading to a 
“metabolic plateau” (Lyons et al., 2011). This phase was marked 

by a significant elevation in energy expenditure above resting 
levels, despite a moderate decline from the early-game peak levels. 
This sustained elevation is indicative of the match’s persistent 
cognitive-motor demands. Consistent with the principles of 
substrate regulation under stable intensity outlined by Li (2013), 
carbohydrate oxidation served as the primary energy source to 
ensure cognitive efficiency. Notably, the observed upregulation of fat 
oxidation reflects an adaptive strategy. Specifically, the body flexibly 
modulates secondary substrates to preserve glycogen reserves while 
maintaining metabolic homeostasis. This shift underscores the 
metabolic flexibility of elite esports athletes in balancing immediate 
neural energy needs with endurance requirements.

With respect to autonomic function, this phase is characterised 
by a transition from acute reactivity to “strategic endurance”, 
a pattern that is consistent with the “parasympathetic drift” 
theory (Lehrer and Eddie, 2013). Specifically, renewed sympathetic 
dominance nderpins the enhanced vigilance essential for resource 
competition, while partial recovery of vagal tone acts as a protective 
buffer against physiological exhaustion. In contrast to the rapid-
response physiological profile characteristic of the early-game 
phase, this functional adaptation enables the regulatory system to 
prioritise sustained cognitive performance over immediate reaction 
(Prinsloo et al., 2014; Shaffer et al., 2014).

A comparison of these results with previous findings reveals 
that physiological responses to esports vary substantially with 
game characteristics and player expertise. Studies on amateur 
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FIGURE 7
Changes in energy metabolism characteristics during the late-game phase. Data are presented as the median and interquartile range. VO2 (A), VCO2
(B), VE (C), RER (D), METs (E), and EE (F). ∗indicates a significant difference compared with the resting condition, and †indicates a significant difference 
compared with the early-game phase.

players typically report the occurrence of “hemodynamic-metabolic 
decoupling”, a phenomenon in which cardiovascular stress (e.g., 
elevated heart rate) occurs in the absence of proportional metabolic 
activation (Haupt et al., 2021; Zimmer et al., 2022).

The primary physiological mechanism driving HR elevation 
during physical exertion is to increase cardiac output and deliver 
oxygen to tissues with high metabolic demand (Guyton and 
Hall, 2006; Duncker and Bache, 2008). Consequently, the coupled 
response observed in our elite cohort suggests that tachycardia 
is not solely a consequence of sympathoadrenal stress, but rather 
serves a functional homeostatic role in meeting actual metabolic 
costs (Carter and Goldstein, 2015). This interpretation is consistent 
with the findings of Nicholson et al., who also reported that 
high-level esports competition imposes measurable metabolic 
loads significantly above resting values (Nicholson et al., 2024). 
Consequently, while recreational gaming has been shown to induce 
stress-driven increases in heart rate independent of metabolism, 
elite competition appears to elicit a complex, coordinated activation 
of the cardiovascular and respiratory systems (Amann and 
Calbet, 2008). 

4.3 Changes in energy metabolism and 
stress load characteristics of E-sports 
athletes during the late-game phase

The late-game phase, marked by the final consolidation 
of the win-loss trajectory and high-frequency motor actions, 

resulted in a modest rebound in energy metabolism. Despite the 
absence of statistically significant increases in VO2, VCO2, and 
energy expenditure relative to the mid-game period, the sustained 
predominance of carbohydrate oxidation (RER > 0.9) highlights 
an adaptive prioritization of energy substrates. This substrate shift 
is hypothesised to facilitate the rapid ATP turnover required for 
tasks requiring high levels of operational accuracy and attentional 
focus, such as base defence and final team fights, where peak 
neuronal efficiency is necessary (Peronnet and Massicotte, 1991). 
This pattern is consistent with the findings of Nicholson et al. (2024), 
which indicates that the critical nature of the late game imposes 
a renewed load on energy metabolism to support high-stakes 
cognitive output. (Nicholson et al., 2024).

Regarding autonomic regulation, the late game exhibited 
a distinctive pattern of physiological divergence. While the 
decline in heart rate and rebound in RMSSD signaled the 
re-initiation of parasympathetic modulation, the continued 
suppression of HF power indicates a residual sympathetic 
constraint. This phenomenon, characterised by the mismatch 
between vagal reactivation and persistent sympathetic tone, 
aligns with the concept of ‘cognitive fatigue-related autonomic 
inhibition (Dantzer et al., 2008; Lim et al., 2010). The hypothesis 
is that the cumulative cognitive load induces a “regulatory 
latency”, where the body’s homeostatic drive to recover is 
partially inhibited by lingering neural fatigue. This interpretation 
is corroborated by Machado et al. (2022), who observed 
similar desynchronisation between HRV and heart rate in 
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FIGURE 8
Changes in heart rate variability characteristics during the late-game phase. Data are presented as the median and interquartile range. HR (A), R-R 
interval (B), RMSSD (C), HF (D), and LF/HF (E). ∗indicates a significant difference compared with the resting condition, and †indicates a significant 
difference compared with the early-game phase.

esports athletes (Machado et al., 2022), mirroring the compromised 
recovery profiles seen in high-stakes professions such as aviation 
and surgery.

Notably, the solo queue mode used in this study may have 
exerted a certain impact on the late-game stress load. Poulus 
et al. pointed out that factors such as teammate collaboration 
pressure and on-site audience atmosphere in team competitions 
significantly increase athletes’ psychological stress levels, leading 
to a higher LF/HF ratio in HRV and faster fatigue accumulation 
(Poulus et al., 2022). In the present study, the late-game LF/HF 
ratio was lower than that reported by Poulus et al. (2022) in their 
research on team-based competitions, suggesting that the stress 
load in solo-mode esports may be lower than that in actual team 
competitive scenarios. This limitation should be mitigated in future 
studies by incorporating team-based competitive paradigms into 
experimental designs. 

4.4 Limitations

Although this study initially revealed significant changes in 
the energy metabolism and HRV profiles of esports athletes 
across different game phases, it still has certain limitations: (1) 
The study lacked female participants, potentially limiting the 
external generalizability of the findings; (2) It focused exclusively 
on League of Legends, without exploring how variations in game 
rhythms across other MOBA titles influence energy metabolism 

indices; (3) Solo queue matches were utilized as the measurement 
paradigm, rather than 5v5 team matches or in-person tournaments. 
Previous studies have shown that team-based competitions 
and on-site tournaments induce greater stress responses than 
solo matches (Poulus et al., 2022). 

5 Conclusion

By analyzing the energy metabolism characteristics and HRV 
changes of E-sports athletes across different game phases, this 
study revealed the dynamic variations in physiological load and 
the underlying neural regulatory mechanisms during esports 
competition. The results showed that, during the early game phase, 
energy metabolism was dominated by carbohydrate oxidation, 
with anaerobic energy supply and fat oxidation contributing 
minimally. EE, VO2, and VCO2 all increased significantly; HR 
increased and the RMSSD value rose. These findings indicate 
that the activation of the sympathetic nervous system dominated 
the physiological responses in this phase. During the mid-game 
phase, energy metabolism tended to stabilize, and carbohydrate 
oxidation remained dominant. EE decreased, while HRV reflected 
the re-balancing of the sympathetic and parasympathetic nervous 
systems. This suggests that the neural regulatory system began to 
adapt to sustained cognitive load. During the late-game phase, 
EE exhibited a modest rebound yet manifested minimal overall 
variability. Alterations in heart rate and root mean square of
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successive differences reflected enhanced parasympathetic nervous 
system activity, which, however, did not revert to the resting state. 
This indicates that the body manifested a moderate degree of 
neural fatigue.

This study provides a physiological basis for the training 
and health management of E-sports athletes: Early-phase training 
should focus on enhancing energy mobilization capacity and 
tolerance to high-intensity cognitive loads; During the mid- and 
late-game phases, HRV monitoring may serve to evaluate neural 
regulatory status and fatigue accumulation, thereby facilitating the 
development of personalized training adaptation strategies; In the 
late-game phase, neural recovery intervention measures such as 
HRV biofeedback training can be incorporated to improve athletes’ 
fatigue resistance and competitive performance.
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