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End-to-end non-invasive ECG
signal generation from PPG
signal: a self-supervised learning
approach

Murat Yalcin* and Marc Erich Latoschik

Human-Computer Interaction (HCI) Group, University of Warzburg, Warzburg, Germany

Electrocardiogram (ECG) signals are frequently utilized for detecting important
cardiac events, such as variations in ECG intervals, as well as for monitoring
essential physiological metrics, including heart rate (HR) and heart rate variability
(HRV). However, the accurate measurement of ECG traditionally requires a
clinical environment, thereby limiting its feasibility for continuous, everyday
monitoring. In contrast, Photoplethysmography (PPG) offers a non-invasive,
cost-effective optical method for capturing cardiac data in daily settings and
is increasingly utilized in various clinical and commercial wearable devices.
However, PPG measurements are significantly less detailed than those of
ECG. In this study, we propose a novel approach to synthesize ECG signals
from PPG signals, facilitating the generation of robust ECG waveforms using
a simple, unobtrusive wearable setup. Our approach utilizes a Transformer-
based Generative Adversarial Network model, designed to accurately capture
ECG signal patterns and enhance generalization capabilities. Additionally, we
incorporate self-supervised learning techniques to enable the model to learn
diverse ECG patterns through specific tasks. Model performance is evaluated
using various metrics, including heart rate calculation and root mean squared
error (RMSE) on two different datasets. The comprehensive performance
analysis demonstrates that our model exhibits superior efficacy in generating
accurate ECG signals (with reducing 83.9% and 724% of the heart rate
calculation error on MIMIC lll and Who is Alyx? datasets, respectively), suggesting
its potential application in the healthcare domain to enhance heart rate
prediction and overall cardiac monitoring. As an empirical proof of concept, we
also present an Atrial Fibrillation (AF) detection task, showcasing the practical
utility of the generated ECG signals for cardiac diagnostic applications. To
encourage replicability and reuse in future ECG generation studies, we have
made both the dataset and the code publicly available.

deep learning, electrocardiogram, generative adversarial network, healthcare,
photoplethysmogram, physiological signals, self-supervised learning, signal processing
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1 Introduction

Cardiovascular diseases (CVDs) represent the leading cause
of mortality worldwide, accounting for 32% of all global deaths!
(WHO, 2019). In 2021, out of 20.5 million deaths attributed to
CVDs, approximately 80% occurred in low- and middle-income
countries (Cesare et al., 2024). A primary factor contributing to
this high mortality rate is the inadequate provision of primary
healthcare and the limited availability of accessible, on-demand
health monitoring systems. The electrocardiogram (ECG) is
recognized as a critical tool for continuous health monitoring
and is vital for identifying individuals at elevated risk of future
cardiovascular events or mortality. Regular ECG monitoring has
demonstrated effectiveness in the early detection of CVDs (Rosiek
and Leksowski, 2016).

The ECG measures the heart’s electrical activity and provides
essential insights into cardiovascular health. While the 12-lead ECG
is considered the clinical gold standard, even simpler alternatives,
such as Holter ECG, are often cumbersome and impractical for
continuous monitoring. The process of attaching multiple electrodes
can cause discomfort, and signal quality may degrade over time
due to variations in skin-electrode impedance. Although significant
research has focused on developing wearable devices that facilitate
continuous ECG monitoring suitable for daily use, these efforts have
largely been unsuccessful.

Photoplethysmogram (PPG), an optical technique used to
detect volumetric changes in blood within peripheral circulation,
is commonly integrated into wearable devices like smartwatches.
PPG holds potential for generating ECG-like representations and
provides valuable cardiovascular insights. With advancements
in wearable and mobile devices, such as smartwatches and
smartphones, PPG has become the industry standard for
continuous heart rate (HR) monitoring, valued for its simplicity,
(Park et al, 2022
Castaneda et al., 2018). However, PPG has several limitations,

user-friendliness, and cost-effectiveness
including inaccuracies in HR estimation and susceptibility to
external factors such as skin tone, skin type variability, motion
artifacts, and signal interference (Bent et al., 2020). Motion
artifacts, in particular, can significantly distort PPG signals, making
it challenging to capture precise cardiovascular information.
Constructing a dataset that includes PPG/ECG data with motion
artifacts could be beneficial for developing more robust algorithms.
In this context, Virtual Reality (VR) games offer a promising
alternative for simulating such conditions and addressing this
challenge (Halbig and Latoschik, 2021).

Since PPG does not measure the electrical activity of the heart
but rather the mechanical response (blood volume changes) to the
heart’s pumping action, it cannot capture detailed electrical events
except the systolic peak (due to arterial blood volume increase)
and the dicrotic notch (related to the closure of the aortic valve).
Compared to PPG, the ECG waveform encompasses critical details
about cardiac activity; for instance, the P wave represents atrial
depolarization, the R wave representing ventricular depolarization
(Feher, 2012), and a prolonged PR interval may indicate a delay in

1 https://www.who.int/news-room/fact-sheets/detail/cardiovascular-

diseases-(cvds)
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conduction through the atrioventricular node, characteristic of a
first-degree heart block, which points to potential dysfunction in the
heart’s electrical conduction system (Mammen et al., 2004).

Given these considerations, a significant gap exists between
the demand for continuous wearable ECG monitoring and the
detailed information it delivers, and the available non-invasive,
mobile, and cost-effective solutions. While PPG lacks the distinct
waves of the ECG, its waveform still contains periodic components
and cardiac cycle. This inherent relationship between PPG and
ECG signals does allow for PPG-to-ECG translation using suitable
methods, particularly leveraging advanced machine learning and
signal processing techniques Banerjee et al. (2014); Zhu et al. (2021).
The widespread adoption of wearable devices that continuously
collect PPG signals has resulted in the availability of large-scale
data, motivating the utilization of the cardiovascular relationship
between PPG and ECG to generate ECG waveforms from PPG
measurements using deep learning (DL) models (Tang et al., 2022).
This approach has the potential to enable low-cost ECG screening for
continuous and long-term monitoring, merging the comprehensive
clinical insights provided by ECG signals with the accessibility of
PPG data. To this end, we propose an end-to-end Transformer-
based Generative Adversarial Network (GAN) model to generate
ECG signals from PPG inputs.

Additionally, enhancing the representation learning process
and improving knowledge retention is essential for effective PPG-
to-ECG translation. By integrating self-supervised learning, our
model learns robust and transferable representations of ECG signals
through auxiliary tasks such as contrastive learning and masked
signal modeling. Self-supervised learning also mitigates catastrophic
forgetting—a common and critical issue in GAN training where
the model abruptly loses previously acquired knowledge when
learning new information (Thanh-Tung and Tran, 2020). To address
this, we design auxiliary tasks specifically for the discriminator
to help capture the intrinsic structure of ECG signals, thereby
enhancing the model’s ability to generalize across different datasets
and tasks. This ensures robust feature retention and transfer,
ultimately improving the quality and reliability of the generated
ECG signals (Chen et al., 2019).

In this study, our contributions are summarized as follows:

o We collected PPG and ECG data using consumer-grade
wearable sensors while participants engaged in a VR game.
To simulate real-life conditions as closely as possible, data
collection was conducted in an unstructured environment,
allowing for unrestricted movement and realistic actions. The
resulting dataset, named Who is Alyx? (Rack et al., 2023), has
been made publicly available.

o We introduced a novel Transformer-based GAN model to
accurately synthesize ECG waveforms from PPG signals. For
the first time, we implemented ECG generation on the Who
is Alyx?. Our model demonstrated superior performance on
both the MIMIC III benchmark dataset and the Who is Alyx?
dataset, compared to state-of-the-art methods in the literature,
as evaluated by various metrics. Additionally, we explored
the impact of different signal lengths on the quality of ECG
synthesis and examined distributional similarities between
real and generated ECG signals.
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o We were the first to leverage a self-supervised framework for
ECG signal generation through multi-task ECG representation
learning. In this context, we utilized well-known three different
paired PPG-ECG datasets for pre-training to investigate the
effect of the self-supervised approach on ECG synthesis.

o To evaluate the generalization capability of the proposed
model, we employed a leave-one-subject-out (LOSO) cross-
validation strategy. This approach enabled us to assess
the model’s performance on previously unseen participants,
thereby addressing to prevent potential validation concerns.
Furthermore, to promote replicability and facilitate future
research in the field of ECG generation, we have shared original
dataset (Who is Alyx? (Rack et al., 2023)) and have made our
code publicly available.?

o To demonstrate the practical utility of the generated ECG
data, we conducted an Atrial Fibrillation (AF) detection
study using two deep learning classifiers on a dedicated
dataset. We provided a detailed analysis of the contribution
of generated ECG data to the classification task, including a
comprehensive evaluation of baseline variability in both real
and generated ECG data.

The remainder of this paper is organized as follows. Section 2
reviews the existing literature on PPG-to-ECG generation methods.
The experimental design and datasets are described in Section 3.
Section 4 introduces the proposed Transformer-based GAN
architecture. The data preprocessing pipeline, self-supervised
pre-training strategy, fine-tuning procedure, hyperparameter
optimization, and overall implementation details for the PPG-
to-ECG generation framework are presented in Section 5. The
evaluation metrics are defined in Section 6, while quantitative and
qualitative results are reported in Section 7. A practical application
of the proposed model for AF detection is presented in Section 8.
Finally, Sections 9, 10 provide a discussion of the findings and
concluding remarks, respectively.

2 Related work

Previous studies have explored the relationship between PPG
and ECG signals, highlighting that certain characteristics of
heartbeats, including key parameters of an ECG such as heart
rate, heart rate variability, etc., are also reflected in PPG signals
(Weinschenk et al., 2016; Banerjee et al., 2014), though not with the
same precision as direct ECG measurements.

Research on ECG generation is relatively limited. Some early
studies have been discussed the concept of generating ECG signals
with a strong focus on understanding and modeling ECG waveform
morphologies (Sayadi et al., 2010; McSharry et al., 2003). Typically,
statistical modeling is employed to generate synthetic ECG signals
on a beat-by-beat basis, often using RR intervals, where individual
beats are sequentially assembled based on specific beat information
(Maheshwari et al., 2014; Craven et al., 2017).

Recent approaches for reconstructing ECG signals from

PPG have explored various signal processing techniques.

2 https://github.com/m1237/self-supervised-ppg-to-ecg.
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(Zhu et al., 2021). proposed a method utilizing discrete cosine
transform (DCT), where PPG onsets were aligned with ECG R-
peaks, followed by de-trending, cycle segmentation, and linear
interpolation to standardize segment lengths. A linear regression
model was then trained to map DCT coefficients of PPG to those
of ECG. Despite its structured design, this approach suffered from
limited generalizability to unseen subjects, inadequately modeled
the inherent non-linearities between PPG and ECG, and lacked
comparative evaluation in terms of heart rate estimation accuracy.
Alternatively, (Tian et al, 2023), introduced a cross-domain
joint dictionary learning framework, employing a correlation
matrix to translate PPG to ECG. While promising, their method
exhibited poor performance in subject-independent settings and
was particularly vulnerable to motion artifacts in distorted PPG
recordings. More recently, (Shome et al., 2024), proposed a Region-
Disentangled Diffusion Model for reconstructing ECG signals
from PPG, highlighting diffusion-based generative modeling as
a potential direction for improving translation fidelity. Moreover,
such approaches typically depend on extensive pre-processing and
handcrafted features, potentially introducing biases and limiting
adaptability. For instance, (Belhasin et al, 2025), introduced
artificial noise injection on clinically acquired datasets to mimic
and mitigate motion artifacts.

Several studies in the literature have employed machine
learning-based methods to address ECG generation tasks,
with recent trends favoring deep learning-based methods.
For instance, (Banerjee et al, 2014), deployed Support Vector
Machine (SVM) that trained multiple classifiers using features
extracted from the time and frequency domains to estimate
ECG intervals (PR, QRS, QT, and RR intervals) from selected
features of PPG.

More recent contributions including (Tang et al., 2022;
Abdelgaber et al., 2023; Guo et al., 2024) proposed bidirectional
LSTM-based models for generating ECG waveforms from PPG,
often requiring R-peak detection or beat-based segmentation.
(Tang et al., 2022)’s generated ECG signal windows of varying
lengths, which were then stitched together to form the final ECG
segments. Although capable of constructing long ECG signals,
this method compromised performance measures and used a
dataset collected in a clinical setting without motion artifacts,
raising concerns about its applicability to real-world scenarios
involving ECG reconstruction. Additionally, (Vo et al, 2024),
introduced an attention-based deep state-space model for PPG-
to-ECG generation, demonstrating its utility through downstream
AF detection. Building upon the insights from prior studies, there
is a need for an end-to-end deep learning approach that captures
the non-linear relationship between PPG and ECG signals without
relying on manual feature engineering. Training on datasets with
real-world motion and artifacts is essential to reflect practical
conditions. Additionally, the model should be evaluated on unseen
subjects using metrics like heart rate estimation to assess the fidelity
of the generated ECG.

2.1 Generating ECG using GAN models

GANs (Goodfellow et al., 2014) have demonstrated significant
potential in the medical domain, including applications such as
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medical image synthesis, noise reduction, tumor detection, and
lesion segmentation (Lan et al., 2020), highlighting the growing
importance of GANs in medical data analysis. There have been
studies using GAN models for bio-signal data augmentation
including ECG signals in the medical and healthcare domains
(Zhou et al, 2021; Yalcin et al, 2024; Delaney et al, 2019).
Specifically, in the realm of ECG data augmentation, GANs are
employed to generate realistic synthetic ECG signals, thereby
mitigating the challenge of limited data availability and enhancing
the training of machine learning models for tasks like arrhythmia
detection and other cardiac-related diagnostics (Rahman et al., 2023;
Berger et al., 2023). For example, (Zhu et al., 2019), described a
synthetic ECG signal generation model using a bidirectional LSTM-
CNN-based GAN architecture that generated ECG from Gaussian
noise which is input for the generator, achieving 0.257 mV RMSE
and 0.728 Fréchet Distance (FD) values. (Golany et al., 2020).
used a deep convolutional GAN (DCGAN) model to synthesize
ECG signals, aiming to enhance ECG heartbeat classification
performance.

With specific case of inputting the GAN model with PPG to
generate ECG is very limited. (Sarkar and Etemad, 2020). deployed
an attentive CycleGAN architecture with a dual discriminator to
synthesize ECG signals from PPG, achieving an RMSE of 0.364 mV.
However, their model struggled with low-quality outputs for highly
noisy PPG signals. Also, their GAN model was encountered the
challenge of overcoming unstable training resulted in occasional but
critical random oscillations. (Vo et al., 2021). utilized a Wasserstein
GAN with PPG inputs for ECG synthesis on MIMIC II dataset
(Saeed et al.,, 2002). They did not validate their model with noisy
PPG signals where the source of noise is from real-life activities.
We discuss similar works in Section 9, with a detailed comparison
presented in Table 8.

The Transformer architecture, characterized by its exclusive use
of self-attention mechanisms, has revolutionized machine learning
by eliminating the need for recurrent layers (Vaswani et al., 2017).
Its success across diverse domains such as emotion recognition
(Yalcin and Latoschik, 2024), language translation, etc., highlights
its potential applicability to time-series signal processing
tasks. In the areas of arrhythmia and anomaly detection,
several studies have achieved state-of-the-art results employing
both supervised and unsupervised methods with various
Transformer-based models (Hu et al., 2022; Shah et al., 2024;
Alamr and Artoli, 2023).

Notably, (Lan, 2023), explored a Transformer-only architecture
(without GAN) for patch-based PPG-to-ECG translation. However,
their evaluation was confined to clinically acquired datasets,
leaving the models robustness under real-world, motion-
intensive conditions unexamined. Moreover, the patch-based
design requires specialized architectural choices and numerous
hyperparameters, increasing the overall complexity of the
generation pipeline. Despite some successful studies has shown
great result with GAN and transformer combination, no prior
study has attempted to integrate a Transformer model within a
GAN framework for PPG-to-ECG signal generation and makes that
task unexplored. Consequently, the impact of the Transformer’s
generalization capability on this specific task has yet to be
thoroughly investigated.
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2.2 Self-supervised learning approaches

Recent advancements in machine learning and deep learning
have highlighted the effectiveness of self-supervised models in
acquiring generalized and robust representations. Self-supervised
learning is a machine learning approach in which models are trained
using automatically generated pseudo-labels rather than manually
annotated ones. This approach has been successfully applied across
a wide range of fields, including computer vision (Chen et al., 2019;
Kocabas et al., 2019; Wang et al., 2019), speech processing
(Tagliasacchi et al.,, 2019), and natural language processing (Wu
and Weld, 2010). As implementation on ECG signals, two
noticeable studies can be shown. For the first one, (Vazquez-
Rodriguez et al., 2022), utilized self-supervised learning to address
the challenges posed by the limited size of emotionally labeled
datasets in classification tasks. Secondly and similarly, (Sarkar and
Etemad, 2022), applied self-supervised learning to ECG signals
for emotion recognition, demonstrating a significant performance
improvement compared to fully-supervised training.

In the context of GAN models, there are limited studies
incorporating self-supervised learning. For example, (Chen et al.,
2019), introduced a GAN model that integrates adversarial and self-
supervised learning for natural image synthesis, aiming to bridge the
gap between unconditional and conditional models. This approach
mitigated the problem of catastrophic forgetting, resulting in stable
training and optimized representations. Additionally, it was shown
that a small amount of data could be used to fine-tune the model
after self-supervised learning.

3 Conceptual overview

Despite aforementioned advancements, the application of self-
supervised learning specifically for ECG signal generation has not
been extensively explored, particularly in the context of PPG-ECG
paired generation. This paper addresses this gap by developing a
robust Generative Adversarial Network (GAN) model to generate
ECG signals from PPG inputs, supported by self-supervised learning
techniques. Our goal is to achieve high-performance metrics,
especially on datasets characterized by high noise levels and motion
artifacts. To this end, we propose a Transformer-based GAN
model designed to overcome these challenges and improve the
reliability and accuracy of ECG synthesis from PPG data. VR
technology has shown to be able to evoke a large variety of
interesting and important psychological and physiological responses
(Halbig and Latoschik, 2021), including stress, anxiety, and fear
(Yalcin and Latoschik, 2024). Accordingly, it is now an accepted
alternative method applied in psycho therapy, e.g., in the treatment
of specific anxiety disorders or PTSS, etc. (Andersen et al., 2023).
VR environments can be used to create high levels of immersion,
i.e., sensorimotor contingencies comparable to experiences in the
real physical world, including a rich variety of full body motions
and interaction. Hence, VR provides excellent possibilities to
evoke and measure physiological data even with lab-bound devices
while allowing quite large degrees of freedom. This immersive
engagement results in more diverse and dynamic ECG waveforms,
reflecting the emotional and physical state of the user (Halbig and
Latoschik, 2021).
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FIGURE 1

First two columns shows the screenshots of the VR game (Half Life-Alyx) that participants played during data collection. Last column shows an
equipped participant and the respective sensors used during the experiments in detail

The combination of emotional (stress, fear, anxiety, etc.)
and physical stimuli in VR gaming offers a unique opportunity
to explore ECG generation solutions that account for these
multifaceted effects. Unlike sedentary activities, VR gaming often
involves frequent physical movements, such as turning, crouching,
and reaching. These movements introduce additional variability,
including motion artifacts in both ECG and PPG signals, which
are often measured using wearable devices. These movement-
induced artifacts pose significant challenges for ECG generation,
as they can distort the signal quality, making it more difficult
to process.

3.1 VR game and measurement design

For this study, we selected “Half Life-Alyx” (Valve Corporation,
2020), a VR prequel to the renowned series by Valve Corporation.
Although not explicitly a horror game, it integrates unsettling
elements, particularly in a VR context. The game’s detailed
graphics, meticulously designed environments, suspenseful
pacing, and encounters with terrifying creatures such as head-
crabs contribute to a pervasive sense of fear. The sophisticated
sound design, incorporating ambient noises and environmental
hazards, further heightens the player’s sense of vulnerability,
stress, and fear.

To capture the participants’ physiological signals during
their VR game experience, we employed three different devices.
Recognizing the advantages of wearable sensors in terms of cost,
ease of use, and portability, we selected the Polar H10 (Polar Electro
Oy, Finland), an electrode-based chest strap, and the Empatica E4
(Empatica Inc., United States), a medical-grade wristband. Both
devices transmit data to a computer via Bluetooth communication.
Additionally, we used the HTC Vive Pro as the headset (HMD) to
collect eye-tracking data during the gameplay. These sensors are
straightforward to deploy and can be utilized in various scenarios
with minimal setup effort. Screenshots of the Half Life-Alyx game
and images of a participant equipped with the sensory devices
are shown in Figure 1.
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3.2 Ethical consideration

The study was approved by the Research Ethics Committee
of the Institute for Human-Computer Media (MCM) of human
sciences of the University of Wiirzburg at 30th May of 2022
and was conducted in accordance with the local legislation and
institutional requirements. The participants were recruited through
the participant recruitment system of our faculty and gave their full
consent to publish and process the collected and anonymized data.
Every participant was fully informed about the intents and purposes
and the procedure of the data acquisition.

3.3 Data collection

The study involved 34 participants (14 female, 20 male),
aged between 21 and 33 years, with a mean age of 25.3 years.
Only two participants had prior experience playing the selected
game. Participants were equipped with the sensory devices,
and connections were established between the sensors and the
measurement engine (Yalcin et al, 2022), a custom software
developed as part of the VIA-VR project (von Mammen et al., 2019),
Data
simultaneously for all sensors. Initially, we collected 3 min of

primarily using Python. streaming was initiated
baseline data while participants freely moved around with the
sensors and selected the desired game chapter from the game
menu. Throughout the study, an instructor was present to monitor
participants in both the real and virtual environments, ensuring
uninterrupted gameplay. All participants began their first session
in “Chapter 1" of the game and continued playing without further
instructions. Each session lasted approximately 45 min, regardless
of the participant’s progress within the game. The procedure was
repeated for a second session on a different day, with participants
starting from “Chapter 3

We collected ECG data from the Polar H10 at a sampling rate
of 130 Hz and PPG data from the Empatica at 64 Hz. Although

the dataset also includes other physiological and movement-related
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data, such as Acceleration (ACC), Electrodermal Activity (EDA),
and Peripheral Body Temperature (TEMP), as detailed in the
“Who is Alyx?” study (Rack et al., 2023), this study specifically
concentrated on utilizing the ECG and PPG data for further
analysis. The “Who is Alyx?” dataset is publicly available via GitHub
repository: https://github.com/cschell/who-is-alyx. The dataset is
intended for research purposes only.

3.4 MIMIC lll and MIMIC PERform AF
datasets

In addition to our Who is Alyx? dataset, we employed the
MIMIC III matched waveform database (Johnson et al., 2016;
Moody et al.,, 2020) to evaluate the generalization capability and
benchmark performance of our model on a widely recognized
dataset. MIMIC III contains multiple physiological signals
recorded from intensive care unit (ICU) patients and serves as an
extended and enhanced version of the earlier MIMIC II database
(Saeed et al., 2002). Each record is 5 min long, with simultaneous
ECG and PPG signals sampled at 125 Hz. For this study, we
randomly selected 100 records from different subjects using lead
IT ECG and PPG signals, aligning with the sample size commonly
used in related works (Zhu et al., 2021; Tang et al., 2022).

For the Atrial Fibrillation (AF) detection analysis, we
additionally utilized the publicly available annotated MIMIC
PERform AF dataset (Charlton et al., 2022; Bashar et al., 2019).
This dataset consists of 20-min waveform recordings from 35 ICU
patients, comprising 19 patients with AF and 16 patients in normal
sinus rhythm (non-AF). The dataset is a curated subset of the
MIMIC III matched waveform database and provides high-quality
annotations suitable for evaluating arrhythmia detection models.

4 Transformer-based GAN model

Since our ECG generation model is based on the GAN
architecture, we begin with a brief overview of its functioning. A
Generative Adversarial Network (GAN) (Goodfellow et al., 2014)
comprises two components: a generator (G) and a discriminator
(D). The generator synthesizes data, while the discriminator
distinguishes between real and generated samples. In our context,
the generator learns to map PPG signals to ECG data. Its goal is
to deceive the discriminator into classifying synthetic data as real.
Through iterative training, guided by a loss function that captures
the discriminator’s accuracy, the generator improves, and its output
distribution gradually aligns with that of real data.

The generator Geg operates as a directed latent variable z model
that deterministically generates samples x from the latent space
(z ~ p,) with optimization (minimize) of 0,, generator parameters.
Given that the discriminator Dy, aims to classify samples as real
(x) or fake with optimization (maximize) of 0, discriminator
parameters, the adversarial game between the generator (G) and the
discriminator (D) can be formalized through an objective function,
V(D, G), which frames the interaction as a classification problem.
Here, the expected values of the variables drawn from distributions
are denoted as [, real x samples drawn from real data distribution
denoted as (x ~ p,,,,) and latent z samples drawn from latent noise
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distribution, often a Gaussian distribution denoted as (z ~ p,). The
general form of the objective function (Goodfellow et al., 2014) is
expressed in Equation 1:

mingg maxg, V(D,G) = []Ex"‘Pdum logDg, (x) +E,_, log(l —Dg, (Ggg (z)))]
1

During the training process, GANs often encounter a prevalent
issue known as mode collapse, wherein the generator network
persistently produces identical outputs. This limitation significantly
reduces the diversity of the generated data and diminishes the
generator’s ability to accurately capture the complex distribution of
real-world data. In the following section, we introduce our approach
to addressing this problem.

4.1 Wasserstein loss with gradient penalty

To address the mode collapse problem, we employed the
Wasserstein GAN (WGAN) loss function (Arjovsky et al., 2017),
which minimizes the Wasserstein (Earth Mover’s) distance between
real and generated data distributions. This approach offers improved
gradient flow and robustness to hyperparameter variations
compared to traditional GAN loss.

In our approach, the discriminator, also referred to as the
“critic” in WGAN models, D, is trained to differentiate between
real and synthetic ECG signals, while the generator neural network
G is trained to generate ECG signals from PPG signals, with the
objective of making the generated ECGs indistinguishable by the
discriminator. Let’s denote individual segments (time windows) as
p and the corresponding ground-truth ECG segments as e. For
the mapping function Gg:P — E, and discriminators Dy, with ECG
signals e drawn from the data generating distribution ECG,,,(e) and
signals p drawn from the input prior PPG ,,,(p), the generator G and
the discriminator D jointly optimize the following non-artificial £
(generator) and £, (discriminator) loss functions, as formulated in
Equations 2, 3 respectively:

Lg=-E,p,, [D(G(p))] )

Lp=-E,p_[D@]+E, ., [DGp))] 3)

To maintain the 1-Lipschitz continuity constraint required for
WGANSs (Gulrajani et al., 2017), which is essential for the proper
functioning of the discriminator (Arjovsky et al., 2017), a gradient
penalty is applied between the real and synthetic data distributions
(Gulrajani et al., 2017). We followed this strategy and included
this penalty term to ensure that the gradients of the discriminator
with respect to its inputs do not exceed a norm of 1, thereby
promoting stable training. The gradient penalty term, denoted as
Lp is defined in Equation 4. Here, the gradient operator is denoted
as V.

Lp =AEz p, [(“V&D @1, - 1)2] @

Here, X is an interpolated sample between real and generated
data points, computed in Equation 5:

=ce+(1-9G(p) (5)
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where ¢ is a random number sampled from the uniform
distribution U(0,1), and A is the scaled factor of gradient penalty
coeflicient. The effect of the gradient penalty coefficient was analyzed
during hyperparameter optimization (see Section 5.4.1; Figure 5).
Incorporating the gradient penalty, the complete loss for the
discriminator can be written in Equation 6:

Lp=-E,p . [DE]+E, p, [DGP)]+AE;p [(IV:D@)],-1)°]

(6)
Finally, our adversarial Wasserstein objective function
Lyy,,.(D>G) for the mapping G:P — E is Equation 7:
minmax £ Lp,L 7
G(p) D(e) Wauy (1oL ) @
4.2 ECG generator architecture
Generating ECG signals from PPG poses challenges

in modeling both local waveform morphology and long-

range temporal dependencies. To address these, we
explored various GAN architectures. Traditional models
like DCGAN (Radford et al, 2016), relying solely on

convolutional layers, fail to capture sequence-wide dependencies,
while SeqGAN (Yu et al, 2016), though tailored for sequence
generation, is computationally intensive and unsuitable for
high-resolution ECG synthesis.

In contrast, Transformer models have shown strong
performance in both classification (Vazquez-Rodriguez et al., 2022)
and generative tasks (Gong et al., 2022), owing to their self-
attention mechanism, which effectively captures both local and
global dependencies. Given these strengths, we adopted a hybrid
architecture combining convolutional layers for local temporal
feature extraction with a Transformer module to model sequential
dependencies, enabling the generation of high-fidelity ECG signals.

For the generator architecture of our GAN model, we integrated
a UNet (Ronneberger et al, 2015) with a custom-built from-
scratch Transformer model (Vaswani et al.,, 2017), utilizing this
combination as the backbone generator of our GAN framework. The
overall architecture of the ECG generator, comprising three primary

branches, is illustrated in Figure 2.

4.2.1 Convolutional encoder

The generator adopts a UNet-inspired encoder-decoder
architecture based on 1-D convolutions. Convolutional networks
offer superior parallelization and faster computation compared
to recurrent models, while achieving comparable or better
performance (Elbayad et al., 2018). The input consists of PPG
segments ranging from 4 to 160 s (e.g., 520 samples for 4 s), with the
output being ECG segments of matching length. The architecture
compresses the input via downsampling to a bottleneck layer and
reconstructs it through upsampling using transposed convolutions.

4.2.2 Transformer encoder

Following the CNN encoder, a Transformer encoder was
employed to further capture feature information using causal self-
attention, which is crucial for modeling long-range dependencies.
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Initially, the feature map channels were expanded from 8 to 16 via a
convolution layer. Given that the Transformer processes information
in a token-to-token manner, the two-dimensional feature maps with
a PPG segment were flattened into a sequence of tokens. A learned
positional embedding (Vaswani et al., 2017; Karimi et al., 2021)
was then added to the sequence. This step is crucial because,
without positional information, the Transformer’s attention
mechanism would be insensitive to sequence order due to its
inherent arrangement invariance. After incorporating the positional
encoding then fed into the Transformer encoder.

The Transformer encoder consists of alternating layers of multi-
head self-attention blocks and multi-layer perceptron (MLP) blocks.
Layer normalization (LN) (Ba et al.,, 2016) is applied before each
block, and residual connections are added after each block. The MLP
block consists of a two-layer fully connected feed-forward network
incorporating Dropout (Srivastava et al., 2014) and the Gaussian
Error Linear Unit (GELU) activation function (Hendrycks and
Gimpel, 2016). After processing through the Transformer encoder,
the feature maps are reshaped and compressed to align with the input
dimensions of the convolutional decoder.

4.2.3 Convolutional decoder

The convolutional decoder employs transposed convolutions,
also known as fractionally-strided convolutions, to progressively
increase the sequence length until the final layer, which utilizes the
Tanh activation function. Both the encoder and decoder consist of
L = 4layers. To ensure the preservation of information across down-
sampled layers, skip connections are employed to link the output of
layer i in the encoder with the output of layer L = i in the decoder.

4.3 Transformer discriminator

The discriminator of our GAN model consist of Transformer
architecture. The general architecture of the discriminator is
illustrated with dashed rectangles in Figure 3.

To process ECG data using our Transformer discriminator
model, the data were encoded into s feature vectors, where each
vector represents a data sample with d dimensions. This encoding
yielded a set of features F={f,..., f.}, where f, ¢ R%. Adopting
the BERT methodology (Devlin et al., 2019), the output of the
Transformer includes an embedding of the classification token
(ecrs)> alongside other signal representations. Through the attention
mechanisms of the Transformer, e ¢ aggregates information from
the entire input signal as well as its contextualized representations.
To incorporate the actual sequence order, positional information
is added to each input fed into the Transformer. Specifically,
the positional embeddings are summed with the features F' to
form Z = {CLS +pey, f, + pey,..., f, + pes, where pe; € RY denotes
the positional embedding for time-step i. After normalizing
Z (Baetal., 2016), the Transformer encoder generates contextualized
representations E using h attention heads and [ layers, formulated
as Transformer;,;(Z) = C = {ecrg, €55 ..., €,}. These representations C
are then used for classifying the ECG data as real or synthetic.

The input encoder is composed of three layers of 1D
Convolutional Neural Networks (CNN) with ReLU activation
functions (Xu et al.,, 2015). Layer normalization (Ba et al., 2016)
is applied to the first layer and at the encoder’s output. The kernel
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The overall ECG generator architecture model which consist of three branches: 1- The convolutional encoder (left-side) which receives different time
length of PPG signal as input extracts spatial features. 2- The Transformer encoder is concatenated between convolution encoder-decoder with causal
self-attention for long-range dependency modeling (bottom-side). 3- The convolutional decoder (right-side) up-samples feature maps and outputs
the ECG signal with corresponding length. The grey arrows (middle-side) shows skip connections between the corresponding layers of the
convolutional encoder-decoder. The feature maps from the encoder are concatenated with the upsampled feature maps in the decoder. This allows
the network to combine high-resolution features from early layers with the high-level abstract features learned in deeper layers.
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sizes for the layers are set to (65, 33, 17), with corresponding
channel numbers of (64, 128, 256), and a stride of 1 for all layers.
The Transformer’s signal encoder is empirically configured with a
model dimension d, 4 = 256, 2 layers, and 2 attention heads, and a
Fully Connected Network (FCN) size of d, 4. % 2 = 512. The FCN
employed for predicting masked values consists of a single linear
layer of size d, 4.1/2 = 128, followed by a ReLU activation function.
An additional linear layer projects the output vector to a single value,

‘mode

corresponding to the predicted value of a masked point.

5 Learning contextualized
representation

Motivated by the critical challenge of catastrophic forgetting
in discriminators (Thanh-Tung and Tran, 2020), our objective
is to enhance the discriminator’s ability to learn meaningful
representations independently of the generator’s
performance. To address this issue, we employed recent
techniques

current

advancements in self-supervised learning for
representation learning (Sarkar and Etemad, 2022). To further
extend the generalization capabilities of our models, we utilized
self-supervised learning by pre-training on multiple unlabeled ECG

datasets. These pretext tasks were designed to learn robust feature
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representations, which were subsequently fine-tuned for the ECG
signal generation process.

5.1 Self-supervised ECG representation
learning

Although various signal transformations have been applied
across different types of data (Saeed et al.,, 2019), for ECG data,
we adopted the signal transformations proposed by (Sarkar and
Etemad, 2022) and were the first to implement these transformations
in our study for the purpose of ECG generation with GAN model.
As part of our pretext tasks, we implemented six distinct signal
transformation recognition tasks, as outlined below:

5.1.1 Noise addition

Gaussian noise N(f) with zero mean and standard deviation
\/ITavg is added to the ECG signal E(f), yielding E (¢) + N(t). The
noise power ENavg is derived from the signal power E; and a

specified Signal-to-Noise Ratio &, using BN, = 10Frme ™10,

5.1.2 Scaling
The ECG signal is scaled by a constant factor b > 0, yielding b-
E(t). This operation adjusts the signal amplitude uniformly.
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FIGURE 3
The overall scheme illustrates the implementation of self-supervised learning with the discriminator (shown in a dashed rectangle) and its subsequent
use as a frozen network for fine-tuning our GAN model: 1- Top-side depicts the general steps of the self-supervised learning process (downstream
task) using the discriminator. Transformed signals, generated from three datasets, are input into the discriminator to train it across six different tasks. 2-
Down-side illustrates the partially frozen discriminator architecture, which is employed during the fine-tuning stage to distinguish between real and
generated ECG signals.

5.1.3 Temporal Inversion

This operation reverses the signal in time, transforming E (¢)
into E.(t), where the time indices are flipped fromt=1,...,Ntot=
N, ..., 1

Although temporal inversion does not occur in real monitoring
conditions, it remains a valuable self-supervised pretext task because
it forces the model to reason about the directional structure of
physiological waveforms. Reversing the signal disrupts its causal and
morphological progression such as the systolic-diastolic sequence
in PPG or the P-QRS-T order in ECG without altering its overall
distribution, enabling the encoder to learn representations that
are sensitive to true temporal dependencies rather than superficial
signal features. In self-supervised learning, the goal is not to
replicate realistic perturbations but to design surrogate tasks
that elicit robust temporal feature learning. Temporal inversion
has been widely adopted in time-series self supervised learning
for this reason ((Zhang et al., 2023; Sarkar and Etemad, 2022)),
providing a strong discriminative signal that helps the model
internalize physiological timing relationships and ultimately
supports more accurate ECG generation from PPG in the
downstream GAN stage. Permutation: The signal is segmented

Frontiers in Physiology

into m parts {s;(f)}, which are randomly reordered to form a new
sequence Esp(t), disrupting temporal order while preserving local
signal structure.

5.1.4 Negation

This transformation inverts the ECG signal E(t) by multiplying
it by -1, yielding —E(¢), which vertically flips the waveform and
reverses signal polarity. It simulates polarity reversal, which may
occur due to inverted sensor placement, such as with the Polar
H10 device.

5.1.5 Time-Warping

This technique alters the ECG signal E/(f) by stretching
or compressing segments along the time axis using an
interpolation-based function F(E(t),k), where k denotes the
stretch factor and 1/k the compression factor. The signal is
divided into m windows {s;(t)}, with randomly selected segments
stretched and others compressed to preserve overall signal
dynamics. The final signal T(f) is normalized in length via
clipping or zero-padding, depending on whether m is even
or odd.
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5.1.6 Transformation parameters

To ensure diverse signal transformations while preserving
core ECG characteristics, we varied transformation parameters
across broad ranges. For noise addition, signal-to-noise ratios
(SNR) ranged from 2 to 45. Scaling factors ranged from 0.1
to 10. Permutation and time-warping used 2 to 40 segments,
with time-warping stretch factors between 1.05 and 4. Temporal
inversion and negation, which lack tunable parameters, were
also included.

We should point out that these ranges were selected to
generate a spectrum of signals—from near-original to substantially
altered—capturing variations in heartbeat periodicity and waveform
morphology (P-wave, QRS complex, T-wave). This enables the
model to learn robust, generalizable spatio-temporal features
without labeled data. Two sample signals from two different
participants with these transformations are shown in Figure 4.

5.2 Datasets for pre-training

In addition to our original dataset and the MIMIC III dataset,
we utilized three widely recognized PPG-ECG paired datasets to
pre-train our proposed model: BIDMC (Pimentel et al., 2017),
CAPNO (Karlen et al., 2013), and WESAD (Schmidt et al., 2018).
These datasets were combined to support a multi-corpus pre-
training strategy, enabling the model to learn from a diverse
range of data encompassing variations in activity (e.g., working,
walking, resting) and age (e.g., 29 children, 81 adults). The
resulting dataset comprises 110 participants with a balanced
gender distribution.

5.2.2 BIDMC

Contains 8-min recordings from 53 adult ICU patients (mean
age: 64.81 years; 32 females, 21 males), sampled at 125 Hz. Only ECG
lead II was used.

5.2.2 CAPNO

Includes 8-min recordings from 42 participants (29 children,
median age 8.7; 13 adults, median age 52.4), with single-lead ECG
and PPG sampled at 300 Hz.

5.2.3 WESAD

Comprises data from 15 participants (mean age: 27.5), recorded
during various activities. ECG was sampled at 700 Hz and PPG at
64 Hz, with session durations exceeding 1 hour.

5.3 Data pre-processing

Firstly, ECG and PPG data were synchronized/aligned. The
alignment process here means the systolic peak of the PPG beat
is exactly aligned with the R peak of the ECG beat. After this,
given that the aforementioned datasets were collected at different
sampling frequencies, the initial step involved re-sampling both
ECG and PPG signals to a uniform sampling rate of 130 Hz using
cubic spline interpolation technique. This approach was chosen
to preserve at least the sampling rate of the ECG signal in our
original dataset.
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Raw ECG and PPG signals inherently contain various types
and levels of noise, including power line interference, baseline
wandering, and motion artifacts. In our study, motion artifacts
were particularly prevalent, as participants frequently moved while
engaging in VR gameplay. While it is essential to suppress noise
components, it is equally critical to preserve the physiological signal
content, particularly the energy distribution associated with ECG
morphology and the slow heart rate related components in PPG.
Therefore, appropriate band-pass filtering ranges were selected to
retain diagnostically relevant information while removing unwanted
noise. Specifically, ECG signals were filtered using a band-pass finite
impulse response (FIR) filter with a passband of 0.5-45 Hz, ensuring
preservation of P-QRS-T morphology and suppression of both
baseline wander and high-frequency interference. Similarly, PPG
signals were filtered with a band-pass Butterworth filter between
0.5-8 Hz to maintain morphological integrity related to cardiac
pulsatility and slower hemodynamic variations. Additionally, a
median non-linear filter was applied to both signals for removing
motion artifacts and spikes, thereby producing smoother signals
suitable for feeding to the GAN model. Subsequently, the filtered
ECG and PPG signals were segmented into different segment
windows (4, 8, 16, 32, 64, 96, 128, 160s), resulting in 130 X n samples
per window, with a 20% overlap between consecutive windows
to ensure comprehensive peak detection. Finally, person-specific
min-max normalization was performed on both the ECG and PPG
segments, standardizing the data within the range of (-1, 1). After
generation step, inverting min-max was applied to acquire signal
with original scale.

5.4 Model training and fine-tuning

The model training task consist of two steps: 1- Multi-task self-
supervised pre-training with aforementioned three datasets, 2- Full
GAN model training and discriminator fine-tuning for Who is Alyx?
and MIMIC II datasets, separately. To find the best hyperparameters
for the model, we conducted a grid search covering 13,824 different
model configurations per step for total training of models per
dataset. The hyperparameters that led to the best classification results
are shown in Table 1.

5.4.1 Multi-task self-supervised pre-training

Our initial goal is to train the discriminator using the three
aforementioned datasets from the literature, primarily aiming to
learn robust features for generalization through a self-supervised
approach. Following the pre-processing steps, for self-supervised
signal transformation training, we randomly shuffled these three
datasets, ensuring that the alignment between PPG and ECG pairs
remained intact. The resulting segments were used for pretext tasks.
Each segment was utilized to generate the six signal transformations
described earlier.

To facilitate this training as downstream task for the
discriminator, we appended two fully connected layers to the end of
the discriminator as task-specific layers. Both layers were set to a size
of 128 and were followed by a Relu activation layer (Xu et al., 2015).
We deliberately kept the fully connected layers simple and relatively
shallow to effectively assess the capability of the self-supervised
approach in learning robust and generalized ECG representations
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FIGURE 4
Transformed two samples of ECG signals from two participants for pretext tasks of self-supervised learning. Noise addition, scaling, temporal inversion,
permutation, negation and time-warping were implemented to each signals, separately.

for the discriminator. This multi-task network was then trained
on the six different signal transformation tasks with automatically
generated pseudo-labels. The network was trained for 90 epochs
with a batch size of 128 using the Adam optimizer (Kingma
and Ba, 2014). 10-fold-cross validation was adopted to check the
optimization performance on the training. To address the mode
collapse issue and strengthen the model instability during training,
we searched best performing gradient penalty scaling factor. Figure 5
shows how A effects the model stability during training.

Subsequently, the weights of the discriminator’s transformer
were frozen for use in the fine-tuning process.
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5.4.2 Training with original dataset and
discriminator fine-tuning

Next, we trained our full GAN model, including both
the discriminator and generator. Before initiating the training
process of the model, the frozen weights from the discriminator’s
Transformer were transferred for the GAN training with generator,
as illustrated as ‘transfer learning’ in Figure 3. For the fine-
tuning, fully connected layers with sizes of 512 and 256 (from
128 to 512 sized different combinations, see Table 1) with Relu
activation layers (Xu et al., 2015) were added to the discriminator.
This setup enabled the model to learn the general representations of
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TABLE 1 The variables and their values that were used in the grid search to optimize the model’'s hyperparameters and best performing values for the
self-supervised pre-training and the discriminator fine-tuning for original (Who is Alyx?) and MIMIC Ill datasets.

Hyperparameters Self-supervised pre-training Discriminator fine-tuning
Who is Alyx? MIMIC 111
Exponential decay §,, 3, 0.5,09,1,3 3,1 0.5,0.9 0.9,1
Gradient Penalty Scale Factor (1) 4,6, 30, 50 30 6 30
Fully Connected Layer 128, 256, 512 128,128 512,256 512,256
Learning Rate 0.001, 0.002, 0.005 0.001 0.002 0.001
Dropout 0.2,0.4,0.5,0.7 0.5,0.4 04,0.2 0.5,0.2
Batch Size 64,128 128 128 128
0
N
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FIGURE 5
The impact of the gradient penalty coefficient (factor) A as hyperparameter on the training of the discriminator on original dataset. It addresses the
mode collapse issue and strengthen the model stability during training. It clearly demonstrate that the absence of the gradient penalty (A = 0) leads to
notable instability in the training process, underscoring the importance of this parameter in ensuring robust and reliable model performance.

the ECG patterns from the original dataset to effectively distinguish
between real and generated (synthetic) segments. Each MIMIC
III and Who is Alyx? dataset, along with the three previously
mentioned datasets, was incorporated into the training phase of
the GAN model.

To ensure reliable performance evaluation, we employed a leave-
one-subject-out (LOSO) cross-validation strategy. Specifically, we
performed 34-fold cross-validation by splitting the subjects from our
original dataset into 34 groups, with each participant assigned to
one group. For each iteration, the model was trained on 33 subjects
and with other three datasets and tested on the remaining subject,
allowing us to systematically evaluate the generalization capability of
the model on participants that were never seen during training. Prior
to each testing session, we randomly selected 10% of the training set
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as a validation set to ensure optimal model performance on the test
set. This process also applied to MIMIC III dataset. Additionally, a
time window analysis was conducted by segmenting the data into 4,
8, 16, 32, 64, 96, 128 and 160-s intervals (windows) to explore the
temporal significance of deep features on the learning capacity of
the models.

In total, data from 242 participants—comprising approximately
125 h of ECG-PPG segment pairs (55 h from Who is Alyx?, 8.25h
from MIMIC III, and 62 h from the pre-training datasets)—were
utilized in the training process, yielding around 238k time-aligned
segments. The model was trained using the Adam optimizer with the
hyper-parameters listed in Table 1. Training was carried out over 90
epochs, with early stopping applied to prevent overfitting and ensure
optimal performance.
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Additionally, we also aimed to investigate the model’s capacity
and the impact of excluding the self-supervised learning technique.
In this scenario, the entire model, including the discriminator, was
trained from-scratch using the same parameters as before, without
freezing any layers during the training process. The training was
conducted on a machine equipped with an Intel Core i9-13900K
CPU, 128 GB of memory, and a NVIDIA RTX 4090 GPU. All models
were implemented using the PyTorch 1.10 deep learning library.

6 Evaluation

Following the training phase, we evaluated the models
performance using well-known metrics for ECG generation (Sarkar
and Etemad, 2020; Vo et al., 2021), ensuring a fair comparison with
related works:

6.1 Fréchet Distance (FD)

FD quantifies the spatial and sequential similarity between the
real and generated ECGs. A lower FD value, closer to zero, indicates
a higher similarity between the real ECG and its synthesis. FD
is defined as:

FD= mén (rg%x(d(yECGi’yrECGi)))

where Q= [1,m] and d(x) represents the Euclidean distance
between corresponding points on the ECG and synthesis curves.

6.2 Root mean squared error (RMSE)

The Root Mean Squared Error (RMSE) measures the
discrepancy between the observed values of an ECG signal and its
reconstructed values by aggregating the squared differences between
them. It is conventionally quantified with millivolts (mV) for ECG
signals. A smaller RMSE value, closer to zero, indicates a more
accurate reconstruction. RMSE is defined as:

N
1
RMSE = \jﬁ Z ()’ECGi _yrECGi)Z
i=1

6.3 Pearson’s correlation coefficient (p)

Pearsons correlation coefficient (p) is used to assess the degree
of linear relationship between an original ECG signal and its
reconstructed counterpart. The coefficient p ranges from -1 to 1,
where the absolute value indicates the strength of the correlation,
and the sign indicates the direction (positive or negative) of the
relationship. Closer to 1 indicates a strong positive correlation
between signals. The correlation coefficient is computed as follows:

~ Ureg Frca)' Oece = Freca)

ece = Pecal2lViece = Precsl2

Yecg and y-; denote the original and generated ECG,
respectively, and | - |, is the Euclidean norm.

Frontiers in Physiology

13

10.3389/fphys.2026.1694995

6.4 Mean Absolute Error for Heart Rate
(MAER)

Heart rate (HR) is computed from the R-R interval as

60

HR (b =
(bpm) R — RlInterval (seconds)

MAEy, (in BPM) is calculated between the estimated HR
from a given ECG or PPG signal (HR,) and the ground-truth HR
(HRgy) as follows:

N
1
MAEwR (Q) = N Y [HRGy; —HRg I,
=

where N represents the number of segments for which HR
measurements were obtained. To evaluate the performance of our
model, we measure MAE(E"), where E' is the ECG generated by
the model. These MAE values are compared to MAE (P), where
P represents the input PPG signals. This comparison allows us
to assess the model’s performance in generating ECG signals that
closely match the ground-truth, in this case real ECG, HR values.
As expected, MAEz(E') value should be lower than MAE(P)
value, ideally approaching to zero. We utilized two widely recognized
algorithms for peak detection from ECG (Hamilton, 2002) and PPG
(Elgendi et al., 2013) signals for heart rate calculation. Using those
two algorithms is a consistent criteria to evaluate the MAE metric
since they have been used in similar works (Tang et al., 2022; Sarkar
and Etemad, 2020).

7 Results

In this section, we present quantitative and qualitative results of
our proposed Transformer-based GAN model for ECG generation.
The impact of the self-supervised approach and different segment
lengths is evaluated using mean values of RMSE (mV), p, FD, and
MAEyR metrics under LOSO approach for both MIMIC III and
original (Who is Alyx?) datasets, as shown in Table 2, 3, respectively.

We also evaluated the model’s performance in the absence of
self-supervised learning. As shown in Table 2, 3, the self-supervised
approach yielded significantly better results across all evaluated
metrics, underscoring its effectiveness in the training process.
Additionally, a time window analysis was performed by segmenting
the data into 4, 8, 16, 32, 64, 96, 128 and 160-s intervals to investigate
the temporal influence of deep features on the models’ learning
capacity. To assess the impact of different window sizes on our
approach, we measured MAE, (E') values across the same window
lengths used as input for the model. As shown in Table 3, all metrics
significantly improved as the window length increased up to 64 s
for Who is Alyx?. A strong correlation between the generated ECG
signal and the ground-truth was observed, with an RMSE 0f0.22 mV
and a p value of 0.907 for the 64-s window. As shown in Table 2,
we acquired the best result with 96-s windows for the MIMIC III
with an RMSE of 0.168 mV and a p value of 0.952. However, a
slight degradation in metric values was observed starting from the
96-s from Who is Alyx? and 128 s from MIMIC III, with further
declines until 160-s windows. This indicates the model’s difficulty in
effectively capturing time-series patterns for accurate reconstruction
over longer intervals.
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TABLE 2 Our proposed PPG-to-ECG generation model was evaluated on the MIMIC Ill dataset as benchmark dataset. Performance was assessed across
varying window lengths, with and without self-supervised learning, using LOSO mean values (and their standard deviations) of RMSE (mV), FD, p,

MAE,p(E"), and MAEg(P).

Segment length (s) Method RMSE (mV) FD ‘ p MAE,r(E") ‘ MAEr(P)

w/o Self-Supervised 0.389+0.017 0.691£0.020 0.756 +£0.013 2.37+0.11

4 7.23+£0.21
Self-Supervised 0.364 +0.015 0.642+0.018 0.858 +0.010 2.16+0.09
w/o Self-Supervised 0.352+0.014 0.651£0.018 0.801+£0.012 2.12+0.10

8 6.78+£0.20
Self-Supervised 0.326 +0.013 0.612+0.017 0.874 +0.009 1.94+0.08
w/o Self-Supervised 0.232+0.011 0.442+£0.015 0.808 £0.011 1.93+0.09

16 6.23+0.18
Self-Supervised 0.197 £0.010 0.421+0.014 0.894 +0.008 1.69+0.07
w/o Self-Supervised 0.198 +£0.009 0.431+0.014 0.875+0.010 1.58 +0.08

32 6.01+0.18
Self-Supervised 0.185+0.008 0.409+0.012 0.927 £0.008 1.14 £ 0.06
w/o Self-Supervised 0.181 +0.008 0.405+0.013 0.911+0.009 1.28 +0.07

64 5.87+0.17
Self-Supervised 0.175+0.008 0.386£0.012 0.940 +0.007 1.08 +0.06
w/o Self-Supervised 0.172 +0.007 0.387 +0.012 0.941 +0.008 1.09+0.06

96 5.45+0.16
Self-Supervised 0.168 £0.007 0.368 £0.011 0.952+0.007 0.88 £0.05
w/o Self-Supervised 0.186 +0.008 0.455+0.014 0.895 +0.009 1.45+0.07

128 5.67+0.18
Self-Supervised 0.187 +£0.008 0.422+0.013 0.928 +£0.008 1.15+0.06
w/o Self-Supervised 0.298 £0.012 0.517+£0.016 0.863+0.010 1.67+0.08

160 5.82+0.19
Self-Supervised 0.242+0.011 0.442+0.014 0.906 +0.009 1.38 +0.07

Overall, MIMIC III consistently yielded lower MAE,; and
higher correlation values compared to Who is Alyx? which
is attributed to the controlled clinical environment of MIMIC
III, in contrast to the motion-rich, real-world settings captured
in the Who is Alyx? dataset—an expected and informative
distinction.

As qualitative results, Figures 6, 7 display several samples
of ECG signals generated by our best performed model for
Who is Alyx?, illustrating the model’s ability to reconstruct
the shape of the original ECG signals from corresponding 64-
second-segments of PPG inputs. Figure 8 shows the samples
generated ECG signals on MIMIC IIT with 96-second-segments
of PPG inputs.

7.1 Distributional comparison between
generated and real ECG

While our proposed model demonstrates strong performance in
generating ECG from PPG, it is also important to examine potential
distributional differences between the generated and real ECG
data. To this end, we utilized our Transformer-based discriminator
to extract high-dimensional feature embeddings, following
techniques commonly used for ECG feature representation (Singh
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and Krishnan, 2023). Specifically, we removed the final fully
connected layer and obtained a 512-dimensional embedding from
the preceding fully connected layer, effectively repurposing the
discriminator as an autoencoder-like feature extractor capable of
capturing meaningful sequential representations. For this analysis,
we randomly generated 200 ECG samples from the test set for each
dataset using their respective best-performing hyperparameters and
segment lengths. Each real and generated ECG sample produced
a 512-dimensional embedding during a forward pass through the
discriminator.

To visualize and assess distributional similarities or
divergences between the real and generated data, we applied t-
distributed Stochastic Neighbor Embedding (t-SNE), a nonlinear
dimensionality reduction technique that projects high-dimensional
data into a low-dimensional (2D or 3D) space while preserving
local neighborhood structure. We present the resulting 2D t-
SNE scatter plots in Figure 9. The perplexity and learning rate
parameters of t-SNE were set to 50 and 600, respectively, for
both datasets.

Furthermore, to quantitatively evaluate the similarity between
the distributions of real and generated ECGs, we computed
two complementary two-sample statistical divergence measures:
Maximum Mean Discrepancy (MMD?) (Gretton et al., 2012)

and Energy Distance (ED?) (Székely and Rizzo, 2013), using the
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TABLE 3 We present PPG-to-ECG generation results using our Transformer-based GAN model on Who is Alyx? dataset. LOSO mean values (and their
standard deviations) are reported with and without self-supervised learning, evaluated using RMSE, FD, p, MAE,z(E’'), and MAE(P) across various

window lengths.

Segment length (s) Method RMSE (mV) FD ‘ p MAEr(E") ‘ MAEr(P)

w/o Self-Supervised 0.541 +0.027 0.904 +0.031 0.661 +0.020 7.12+0.42

4 1256+ 0.45
Self-Supervised 0.478+0.024 0.782+0.029 0.786 £0.018 7.03£0.39
w/o Self-Supervised 0.507 £0.025 0.729 +0.028 0.772+0.019 5.68+0.36

8 11.34+0.42
Self-Supervised 0.437 +0.022 0.667 +0.027 0.842£0.017 4.83+0.33
w/o Self-Supervised 0.412+0.023 0.673 +0.026 0.788 +0.018 5.12+0.34

16 10.43 +0.40
Self-Supervised 0.344 +0.021 0.606 +0.025 0.852+0.016 3.41£0.30
w/o Self-Supervised 0.319+0.022 0.589+0.025 0.798 £0.018 4.89+0.33

32 10.21£0.39
Self-Supervised 0.280 +0.020 0.534+0.024 0.874+0.015 2.95+0.28
w/o Self-Supervised 0.273+0.020 0.552+0.024 0.843+0.017 3.74+0.31

64 10.27£0.38
Self-Supervised 0.220+0.018 0.493 +0.022 0.907 +0.015 2.84+0.26
w/o Self-Supervised 0316 +0.023 0.623 +0.027 0.829£0.018 4.01£0.33

96 10.33+0.39
Self-Supervised 0.252+0.021 0.586 +0.025 0.854+0.017 3.03£0.27
w/o Self-Supervised 0.323+0.023 0.648 +0.028 0.793 £0.019 4.2420.34

128 1039+ 0.40
Self-Supervised 0.267 +0.022 0.591 +0.026 0.839 +0.017 3.13+0.28
w/o Self-Supervised 0.351+0.025 0.682+0.029 0.778 +0.020 4.55+0.36

160 10.42+0.41
Self-Supervised 0.300+0.023 0.654 +0.028 0.831+0.018 3.34+0.29

learned feature embeddings. Both metrics provide non-parametric  differences. These results are consistent with the observed

assessments of distributional differences by measuring discrepancies
in pairwise distances between samples. In addition, we performed
hypothesis testing under the null hypothesis (H,) that the real
and generated samples originate from the same distribution,
using a significance level of 0.05. The resulting MMD?, ED?, and
permutation-based p-values for each dataset are reported in Table 4.

Ideally, both MMD? and ED? values should approach zero,
indicating minimal divergence and substantial overlap between
the two distributions in feature space. The obtained scores indeed
suggest that the average pairwise distances between the real and
generated feature sets are highly similar. The permutation p-values
(>0.05) further indicate insufficient statistical evidence to reject
H,, implying that the distributions are indistinguishable under
these tests.

Notably, the divergence scores for the Who is Alyx? dataset
are slightly higher than those for MIMIC III, reflecting the greater
presence of motion artifacts and noise, which can partially obscure
the extraction of stable ECG-specific features. This observation
aligns with the t-SNE visualizations in Figure 9: while the
MIMIC I feature embeddings for real and generated ECGs
exhibit strong overlap, the Who is Alyx? feature embeddings
display minor cluster separation, indicating subtle distributional
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morphological similarity between real and generated ECG signals,
while also highlighting the inherent challenges posed by motion-
distorted data.

8 Practical implementation: AF
detection with deep learning

To demonstrate the practical utility of the proposed model
and assess whether the generated ECG signals behave similarly
to real ECG in downstream clinical tasks, we performed
an Atrial Fibrillation (AF) detection experiment using the
MIMIC PERform AF dataset. AF is typically characterized in
ECG recordings by the absence of P-waves, irregular baseline
fluctuations between QRS complexes, and increased beat-to-
beat variability. Given the adequacy of both dataset size and
segment duration, we implemented two widely adopted deep
learning architectures, Bidirectional LSTM (Bid-LSTM) and
a hybrid CNN + LSTM model which have shown strong
performance across numerous sequence classification tasks in
the literature. These models were trained to classify each ECG
segment as either AF or non-AF (normal sinus rhythm). To
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FIGURE 6
We present four distinct ECG samples (with different colors) generated by our proposed best performed Transformer-based GAN model on Who is
Alyx? dataset. These four samples illustrate cases with minimal motion distortion, providing a clear representation and demonstrating the robust
generation capability of the model for ECG signals. For each PPG sample (green color), corresponding real ECG (blue color), generated ECG (yellow
color) and overlayed (original and generated) ECG signal (blue + yellow color) samples are displayed, respectively.

ensure fair optimization and robust performance, we conducted

a grid search to identify the best-performing hyperparameters

for each architecture, using the same parameter search space

defined in Table 1.
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8.1 Bid-LSTM model

Bid-LSTM model consists of five layers: two LSTM layers
with 128 hidden units each, a dropout layer with a dropout
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FIGURE 7
We present four distinct ECG samples (with different colors) generated by our proposed best performed Transformer-based GAN model on Who is
Alyx? dataset. These four samples specifically highlight cases with motion artifacts, demonstrating the model's performance under challenging
conditions involving signal distortion. For each PPG sample (green color), corresponding real ECG (blue color), generated ECG (yellow color) and
overlayed (original and generated) ECG signal (blue + yellow color) samples are displayed, respectively.

probability of 0.5, and two fully connected layers with 256  tensor of shape (batch size, LSTM hidden size), corresponding
units. The input to the first LSTM layer is a tensor of shape  to the final hidden states after processing the full temporal
(batch size, time window, features). Each LSTM layer outputs a  sequence. Following the dropout operation, the resulting
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FIGURE 8
We present four distinct ECG samples (with different colors) generated by our proposed best performed Transformer-based GAN model on MIMIC |
dataset. Comparing to Who is Alyx? dataset, MIMIC Il has less motion artefacts and emotional changes. For each PPG sample (green color),
corresponding real ECG (blue color), generated ECG (yellow color) and overlayed (original and generated) ECG signal (blue + yellow color) samples are
displayed, respectively.

representation is passed through the two fully connected
layers, each utilizing a ReLU activation function (Nair and
Hinton, 2010). Unlike a standard unidirectional LSTM, the
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processing enables

Bid-LSTM architecture concatenates the hidden states from
both forward and backward temporal passes. This bidirectional
the network to capture dependencies
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FIGURE 9
Two-dimensional t-SNE projections of learned feature embeddings for 200 real and 200 generated ECG samples for MIMIC IlI (left) and Who is Alyx
(right) datasets.

TABLE 4 Two-sample squared Maximum Mean Discrepancy (MMD?) and
squared Energy Distance (ED?) values, along with permutation test
p-values for the null hypothesis (Hy).

Dataset MMD? | p-value ‘ ED? p-value
MIMICTII | 0.011+0.002 0.84 0.032+0.005 0.73
Who'is Alyx? | 0.015+0.004 0.78 0.043+0.011 0.69

from both past and future time steps, thereby improving its
ability to learn discriminative temporal features relevant for
AF classification.

8.2 CNN + LSTM model

The hybrid CNN-LSTM architecture comprises ten layers:
two 1D convolutional layers (ConvlD), two max-pooling layers,
a dropout layer, followed by the same five layers used in the
Bid-LSTM model (two LSTMs, one dropout layer, and two fully-
connected layers). The input to the first ConvlD layer has the
shape (batch size, time window, features). Both ConvlD layers
use a kernel size of 4, ReLU activation, and a number of filters
equal to the input dimensionality expected by the subsequent
LSTM layers. Each ConvlD layer is followed by max pooling
with a pool size of 2 and a stride of 2, reducing the temporal
dimension while preserving salient local temporal features.
After the second pooling layer, the output tensor has the form
(batch size, reduced time window, LSTM input size), making
it directly compatible with the LSTM layers. The subsequent
LSTM and fully connected layers mirror the configuration
used in the Bid-LSTM model, enabling the hybrid network to

Frontiers in Physiology

19

leverage both local convolutional feature extraction and long-range
temporal modeling.

8.3 Data generation and training

As a preliminary step, we fine-tuned the discriminator of
our proposed model, as described in Section 5.4.2, using ECG
data from 7 participants (4 AE, 3 non-AF) to capture AF-specific
morphological patterns. For the AF detection task, the dataset
was partitioned into training and testing sets at approximately a
0.68/0.32 ratio, resulting in 19 participants (10 AF, 9 non-AF)
for training and 9 participants (5 AFE, 4 non-AF) for testing.
After applying min-max normalization, 30-s segments were used
as inputs for each classifier. Using the PPG data of all 28
train + test participants, we generated corresponding ECG data
with our proposed PPG-to-ECG model to create both training
and testing sets for evaluation. The testing participants were
deliberately selected to differ from those in the training set to assess
subject-independent generalization performance. Additionally, 10%
of the training data was randomly allocated as a validation
set for hyperparameter optimization. The Bid-LSTM model was
trained for 70 epochs and the CNN + LSTM model for 110
epochs, both with a batch size of 128 and the Adam optimizer
(Kingma and Ba, 2014).

8.4 Evaluation and results

8.4.1 Data mixing for training

To examine the contribution of generated ECG data in the
AF detection task, we systematically varied the proportion of
generated data used during training. We first trained the classifiers
using only real ECG data (100%) as a baseline. Subsequently,
generated ECG samples were incorporated in increments of 25%
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TABLE 5 AF detection performance (accuracy, precision, recall/sensitivity, and F1-score) of the CNN + LSTM and Bid-LSTM models across varying
proportions of real and generated ECG data used in the training set.

Train set partition Accuracy Precision Recall Fl-score
(%)

CNN + LSTM 0.922 0916 0.946 0.931

100 0
Bid-LSTM 0.951 0.949 0.967 0.957
CNN + LSTM 0.908 0.913 0915 0.903

75 25
Bid-LSTM 0.938 0.941 0.923 0.928
CNN + LSTM 0.884 0.879 0.892 0.889

50 50
Bid-LSTM 0913 0.921 0.902 0.921
CNN + LSTM 0.862 0.854 0.872 0.867

25 75
Bid-LSTM 0.908 0913 0.898 0913
CNN + LSTM 0.858 0.863 0.868 0.861

0 100
Bid-LSTM 0.892 0.901 0.897 0.899

TABLE 6 AF detection performance (accuracy, precision, recall, and
F1-score) of the CNN + LSTM and Bid-LSTM models evaluated
exclusively on the generated ECG test set.

Model Accuracy Precision Recall Fl-score
CNN + LSTM 0.864 0.849 0.887 0.868
Bid-LSTM 0.906 0.882 0.933 0.907

while maintaining a constant total training set size. Performance
was assessed using accuracy, precision, recall (sensitivity), and F1-
score on the real test set. The results summarizing the models’
learning behavior across different mixing ratios are presented
in Table 5.

8.4.2 Testing with generated test data

To evaluate whether the generated ECG signals can function
as reliable surrogates for real ECG in practical deployment
scenarios, we trained the AF classifiers exclusively on real ECG
data and tested them on the generated ECG data generated
for the test participants. This mirrors the real-world use
case where a PPG-to-ECG model would supply the ECG
input for downstream diagnostic algorithms. The resulting
performance metrics are reported in Table 6. Confusion matrices
for the best-performing training configuration are shown
in Figure 10.

8.4.3 Performance summary

Across all training and testing conditions, the Bid-LSTM
model consistently outperformed the CNN + LSTM model. Its
bidirectional structure, which processes information from both past
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and future temporal states, provided a clear advantage in capturing
the sequential dependencies characteristic of AF rhythms, an ability
that the CNN + LSTM architecture struggled to match.

Using only real ECG for both training and testing, the Bid-LSTM
achieved the best performance with 95.1% accuracy and 95.7% F1-
score, closely aligning with the results reported in (John et al., 2025)
(95.9% accuracy). As the proportion of generated ECG data
increased, accuracy declined by approximately 5.9%, which was
expected due to the accumulating deviation from real data
morphology. Nonetheless, training with only generated ECG data
still yielded an accuracy of 89.2%, demonstrating strong diagnostic
utility. Importantly, when evaluating solely on generated test ECG
signals, the classifier exhibited good performance with 90.6%
accuracy using Bid-LSTM, comparable to testing on real ECG,
indicating that the generated data produced by our model retain
the salient AF-related patterns necessary for reliable automated
diagnosis. These results provide compelling empirical evidence that
PPG-derived ECG from our model can serve as a viable input for
downstream cardiovascular disease detection applications.

8.5 Measurement of baseline fluctuations

Baseline fluctuations in ECG signals play a crucial role in
clinical diagnosis, particularly for conditions such as arrhythmias,
ischemia, and conduction abnormalities. Therefore, it is essential
to evaluate how closely the generated ECG baseline follows
the real ECG baseline. To investigate this, we conducted two
complementary analyses:

8.5.1 Baseline evaluation via QRS removal
We first applied the Pan-Tompkins QRS detection algorithm
(Pan and Tompkins, 1985) to identify and remove the QRS
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FIGURE 10

Confusion matrices illustrating AF detection performance on the generated ECG test set for the CNN + LSTM and Bid-LSTM models.
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TABLE 7 Baseline analysis of real and generated ECG signals from the test set of the MIMIC PERform AF Dataset. The first three columns present
baseline comparisons using mean RMSE, FD, and p metrics. The final column reports the difference in band-limited (0.05-9 Hz) total spectral power

(mV?) between real and generated ECGs.

MIMIC PERform AF dataset RMSE (mV) FD P Total band power (mV?)
Non-AF ECG 0.174+0.024 0.365+0.073 0.949 +0.121 0.014+0.004
AF ECG 0.187 +0.054 0.387 +0.091 0.921+0.153 0.018 +0.006

complexes from both real and generated ECG signals, isolating
the baseline components (including P- and T-wave regions).
The remaining non-QRS samples were linearly interpolated to
obtain a continuous approximation of the underlying baseline
morphology. This approach also allowed us to assess the generative
model independently of heart-rate-related metrics, which are
primarily determined by the QRS complex. Subsequently, we
computed RMSE (mV), FD, and p between the real and generated
baseline data for all test samples, with results summarized
in Table 7. To provide qualitative insight, baseline fluctuation
patterns from one AF and one non-AF participant are visualized
in Figure 11.

8.5.2 Spectral analysis of baseline dynamics

To further evaluate whether the generated ECG preserves the
frequency characteristics of baseline fluctuations, we performed
power spectral density (PSD) analysis using the Welch periodogram
method (Welch, 1967). The analysis focused on the 0.05-9 Hz range,
which encompasses two diagnostically relevant bands: (i) 0.05-1 Hz,
associated with baseline wandering and slow morphological
variations, (i) 3-9 Hz,
fibrillatory activity and the absence of organized P-waves are
typically observed (Bollmann et al., 1998). Band-limited total
spectral power was computed for real and generated ECGs in both
AF and non-AF classes, and the results are reported in Table 7.

and where atrial fibrillation-related

PSD comparisons for two representative participants (one AF, one
non-AF) are shown in Figure 11.

Overall, both quantitative and qualitative results demonstrate
that the generated ECGs closely follow the baseline dynamics of
real ECGs across AF and non-AF conditions. These dynamics
are maintained consistently in both the time and frequency
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domains. While AF reconstruction shows slightly lower similarity
scores, likely due to the highly variable and patient-specific
morphology of AF baseline characteristics, the deviations
remain within an acceptable range. Importantly, the fidelity
of the generated baseline was sufficient to yield strong AF
detection performance, supporting the practical viability of the
generated data.

9 Discussion

We have demonstrated that the utilization of PPG signals
from unobtrusive wearable devices as a simple setup, combined
with appropriate GAN model and a supportive self-supervised
learning, yields excellent results in synthesis ECG signals. Our
proposed approach involves the use of a Transformer-based GAN
model in conjunction with self-supervised signal transformation
technique, achieving 0.22mV RMSE value and 0.907 Pearson
correlation coefficient (p) value (see Table 3) on Who is Alyx?.
Also, our study shows that the ECG generated by our Transformer-
based GAN model provides more reliable heart rate measurements
compared to the original input PPG, reducing the error from
10.27 BPM (measured from the PPG) to 2.84 BPM (measured
from the generated ECG) with 72.4% for 64-s window segments.
Furthermore, we utilized MIMIC III dataset as baseline an achieved
of 0.168 mV RMSE and 0.952 p value and %83.9 error reduction
on this dataset. This outperforms previous works employing
PPG data as input for ECG synthesis, including complex signal
processing approaches and machine/deep learning techniques
on this dataset.
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Qualitative comparison of real and generated ECG signals for two participants (AF and non-AF) from the MIMIC PERform AF Dataset. Top row:
Representative 30-s segments of AF and non-AF ECG signals. Middle row: Baseline fluctuation profiles of real and generated ECGs from the full
20-min recordings, shown with mean values and standard deviations. Bottom row: Power spectral density (PSD) plots for AF and non-AF ECG signals,
highlighting the 0.05-9 Hz frequency band relevant for baseline characterization and AF detection.

9.1 Comparison with similar works from
literature

A comparison with recent state-of-the-art studies that are most
similar to our PPG-to-ECG generation work, particularly those
employing GAN or deep learning models, is presented in Table 8.
(Zhu et al., 2021). used DCT approach to acquire the relationship
between PPG-ECG pairs. However, their approach demonstrated
limited generalization to previously unseen participants and
required extensive signal transformation and segmentation steps,
rendering it unsuitable for end-to-end deployment. In terms of
dataset diversity, the data used in (Zhu et al., 2021; Tian et al., 2023)
were acquired in controlled clinical settings and lack motion artifacts
or variability from daily-life activities. As such, the robustness
and applicability of their models to real-world scenarios involving
movement and noise remain uncertain. (Sarkar and Etemad, 2020).
proposed CycleGAN-based solution for ECG generation. However,
their model exhibited poor performance on the cases of involving
noisy and motion artifacts. Furthermore, they reported lower
MAER(P) values (9.74) in their study compared to ours. This
is also a strong indication that our dataset contains substantial
motion artifacts, which distorts PPG signals, thereby increasing the
difficulty of accurate heart rate calculation. Also, they reported 70%
error reduction and we outperformed their result with 83.9% on
similar clinical dataset. Additionally, works such as (Vo et al., 2021;
Zhu et al, 2021; Tang et al, 2022) partitioned their datasets
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into training and testing sets without separating participants. This
practice raises concerns in machine learning research, as evaluating
amodel’s performance on unseen participants is crucial for assessing
generalization. Consequently, their reported results may not reliably
reflect the model’s capability in real-world deployment or across new
individuals.

A review of recent studies (2023-2024) on PPG-to-ECG
signal generation indicates meaningful progress (Table 8);
however, several critical limitations remain, particularly concerning
subject-independent generalization, robustness to motion-induced
artifacts, and reliance on highly curated or heavily preprocessed
datasets. For example, (Shome et al., 2024), proposed the Region-
Disentangled Diffusion Model, a diffusion-based U-Net architecture
that reconstructs ECG segments using region-specific noise
injection. Although this method achieved RMSE values of 0.22
on MIMIC and 0.24 on BIDMC, the framework depends on
carefully controlled noise injection across predefined waveform
segments. Moreover, the substantial performance drop in AF
detection (accuracy of only 0.65) using the generated ECG suggests
diminished reliability under conditions involving uncontrolled
motion artifacts. Similarly, (Vo et al., 2024), introduced an attention-
based deep state-space model for PPG-to-ECG translation.
Despite its conceptual strengths, the approach requires explicit
peak detection and noise-injection procedures, raising concerns
about its viability as a fully end-to-end system in realistic
environments. Furthermore, the relatively low p values reported
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TABLE 8 Comparative summary of state-of-the-art ECG signal generation studies that utilize PPG as direct input, specifically to their GAN or deep
learning models. Our results are presented alongside these studies for reference. The abbreviation “NR" indicates that the corresponding metric was
not reported.

Dataset Segment Methods RMSE (mV)
length (s)

Sarkar and Etemad Various PPG-ECG DALIA, BIDMC, 4 CycleGAN-based 0.396 NR

(2020) Setup CAPNO, WESAD

Zhu et al. (2021) Medical PPG-ECG, MIMIC III, 24 beats DCT 0.599, 0.447 0.790, 0.895

Empatica Self-collected

Tang et al. (2022) Medical PPG-ECG MIMIC IIT 48 Bil-LSTM 0.403 0.904
Setup

Vo et al. (2021) Medical PPG-ECG MIMIC IT 3 Wasserstein GAN 0.238 0.835
Setup

Tian et al. (2023) Medical PPG-ECG MIMIC III 3 Dictionary Learning 0.39 0.88
Setup

Lan (2023) Medical PPG-ECG BIDMC 4 Patch-based 0.29 NR
Setup Transformer

Abdelgaber etal. (2023) Medical PPG-ECG MIMIC II 1 beat LSTM-based 0.35 0.923
Setup Autoencoder

Guo et al. (2024) Medical PPG-ECG MIMIC III 3 UNet-BidLSTM 0.077 0.861
Setup

Shome et al. (2024) Various PPG-ECG BIDMC, MIMIC III 4 Diffusion Model 0.24,0.22 NR
Setup (UNet)

Vo et al. (2024) Medical PPG-ECG MIMIC III 4 State-Space Attention 0.076 0.847
Setup

Belhasin et al. (2025) Medical PPG-ECG MIMIC III 8 UA-P2E 0.222 NR
Setup

Our work Polar H10, Empatica Who is Alyx?, MIMIC 64 Self-Supervised 0.22,0.168 0.907, 0.952

111 Transf-GAN

indicate suboptimal waveform reconstruction fidelity, a key metric
for evaluating generation success.

Transformer-based approaches have also recently emerged. For
instance, (Lan, 2023), employed a shifted patch-based attention
mechanism enhanced with multimodal digital biomarkers. While
innovative, this design requires manually engineered patch
structures and multiple signal modalities, substantially increasing
computational complexity and limiting applicability in wearable or
real-time deployment scenarios. Likewise, (Belhasin et al., 2025),
proposed a diffusion model incorporating uncertainty-aware
classification, but their reliance on noise-injected clinical datasets
limits exposure to real-world motion artifacts, constraining validity.

Conventional deep learning frameworks have also shown
limitations. (Abdelgaber et al., 2023). developed a convolutional
LSTM-based autoencoder that achieved an RMSE of 0.35 mV
and 0923 p on MIMIC II. However, the model required
extensive preprocessing pipelines—including peak detection,
beat segmentation, augmentation, and beat stitching—creating
additional failure points under noise and complicating end-to-end
deployment. Similarly, (Guo et al., 2024), utilized a U-Net-BiLSTM
architecture with strong local reconstruction metrics (e.g., RMSE
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0.077 mV, p 0.861), yet the evaluation was limited to short 3-
s windows and still depended on R-peak detection, restricting
long-duration applicability and generalization under motion.

In contrast, our transformer-based GAN solution overcomes
these limitations through a combination of self-supervised pre-
training and fine-tuning, enabling robust subject-independent
performance even on datasets rich in motion artifacts. Compared
to other models such as CycleGAN (Zhu et al., 2017) and
LSTM-based architectures, our Transformer-based GAN approach
achieved lower RMSE and higher fidelity in synthesizing ECG
signals. The leave-one-subject-out (LOSO) validation strategy
further validated our model’s robustness, demonstrating improved
performance across different datasets and subject-specific variances.
Moreover, none of these previous studies have attempted
the following:

o To implement self-supervised method to overcome lower
generalization capability issue for ECG generation including
fine-tuning for smaller datasets.

« To implement the solution on a dataset including high level of
motion artifacts.
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In our work, we mainly pioneered to address these issues, hence
improved the generation performance.

9.2 Remarks on results

The integration of the Transformer model into our GAN
framework led to superior performance, primarily due to its
attention mechanism, which effectively captures long-range
dependencies in sequential data. This capability enhanced the
model’s ability to focus on relevant signal components, thereby
improving the quality of the generated ECG signals. Additionally,
our original dataset employed in this study played a crucial role
in this improvement. Its substantial size provided the necessary
data diversity to learn intricate features and adequately train the
model, which is essential for achieving robust signal generation in
data-hungry deep learning approaches.

Among the various window lengths tested, 64-s and 96-
s segment lengths provided the best balance between model
complexity and synthesis accuracy. This window length captured
sufficient cardiac cycle information, optimizing the model’s learning
capacity without overfitting. Additionally, longer segments would
require more complex models, which are harder to train with limited
data. Shorter segments are faster to process, allowing for more
training epochs and smaller learning rates.

The results indicate that our method accurately captures
the physiological relationship between PPG and ECG signals,
as evidenced by lower RMSE and higher Pearson correlation
coefficients compared to previous studies. Specifically, the use
of Transformer-based GAN architecture with incorporating
self-supervised learning significantly improved ECG signal
reconstruction quality and allowed our model to achieve better
generalization and performance. The self-supervised approach
facilitated robust feature extraction, improving the synthesis
accuracy, particularly in scenarios involving varying segment
lengths and motion artifacts.

We deliberately presented both relatively straightforward and
challenging scenarios for ECG generation in Figures 6-8. Figures 6, 8
demonstrate the superior performance of ECG signal generation
from minimally distorted (low-noise) PPG signals both from Who
is Alyx? and MIMIC III datasets. The MIMIC III dataset, collected
within an intensive care unit (ICU) setting, where patients typically
remain at rest with limited physical or emotional activity, exhibits
stable signal morphology and reduced motion artifacts. As a result,
ECG generation from PPG on this dataset is inherently less complex,
which is reflected in the elevated metric scores observed. In
contrast, the Who is Alyx? includes real-world variability, motion an
emotional fluctuations, making ECG generation more challenging,
thereby demonstrating the robustness and generalizability of our
model across diverse conditions.

Wristband-based measurements often introduce substantial
motion artifacts due to their usage during daily activities, making
them generally more susceptible to noise compared to chest straps,
which offer greater positional stability. Despite the heavy distortion
caused by motion artifacts in the PPG signals, as shown in Figure 7,
our model exhibits remarkable efficacy in generating ECG signals
while preserving temporal variations. Notably, key ECG amplitude
features such as the R-peaks, P-waves, and T-waves are accurately
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reconstructed, even when the PPG signal’s peaks and troughs are
affected by motion artifacts. Moreover, although motion artifacts
obscure true beat-to-beat intervals in PPG signals, leading to
irregular or inconsistent heartbeat timings, the model effectively
preserves and reflects heart rate variability.

Having demonstrated AF detection as a practical application
achieving 89.2% accuracy when trained with generated ECG data
and 90.6% accuracy when evaluated on generated test data, we
note that these results may vary depending on several factors,
including dataset size, demographic characteristics, the presence
of motion artifacts, and the choice of machine learning models.
We utilized the MIMIC PERform AF dataset; however, larger and
more diverse datasets are likely to further improve performance.
Similar considerations also apply to the baseline fluctuation analysis,
where increased data diversity and scale may yield more robust
and generalizable findings. Synthesizing ECG from PPG signals is
advantageous for the healthcare sector, particularly for applications
in wearable technology and long-term health monitoring. It
provides a cost-effective, non-invasive alternative for continuous
cardiac monitoring, facilitating early detection of cardiovascular
conditions. The widespread availability of PPG sensors in wearable
devices underscores the practical utility of our approach in real-
world health monitoring scenarios.

9.3 Limitations

Training GAN models in a stable manner poses inherent
challenges due to issues such as mode collapse and catastrophic
forgetting. To address these challenges, we incorporated a gradient
penalty term (with Wasserstein loss, see Figure 5) and leveraged
self-supervised learning, respectively, which also aimed to enhance
the generalization capability of the models. However, integrating a
combination of Transformer and LSTM models within the GAN
architecture could potentially result in more stable training and
might further improve performance outcomes.

Our model struggled in scenarios involving extreme motion
artifacts, which introduced noise that the current architecture could
not adequately filter. This suggests a need for more advanced
noise-handling techniques or the incorporation of additional
data modalities. Future iterations of this model could benefit
from integrating accelerometer (ACC) data, which might improve
performance by providing context on motion-related noise. ACC
data could help differentiate between physiological signal variations
due to motion and genuine cardiac events, thus enhancing the
fidelity of the generated ECG.

Participant demographic factors such as age, gender, ethnicity,
and health status significantly influence both PPG and ECG
signals and thus affect the model’s generalization capability. For
example, differences in skin tone can impact the accuracy of PPG
measurements, while age-related changes in heart rate variability
(HRV) could alter ECG patterns. Participants with specific cardiac
conditions, such as comorbidities or rare cardiac anomalies, and
those influenced by geographic and lifestyle factors (e.g., physical
activity levels, diet, stress) may exhibit variations in cardiac signals.
A lack of diversity in these factors could result in biased models that
fail to generalize effectively across broader populations.
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Furthermore, variability among wearable devices in terms of
sensor quality, resolution, and sampling frequency can affect the
fidelity of PPG and derived ECG signals. For instance, lower-
resolution sensors may miss subtle waveform details, reducing
the quality of model inputs. The placement of wearable devices
on different anatomical locations (e.g., wrist, finger, ear) and
environmental factors such as motion artifacts, ambient light,
and temperature can also introduce noise or alter PPG signal
morphology. Lastly, the absence of standardized calibration
protocols across devices could result in discrepancies in collected
data, further limiting the model’s generalization capability.

10 Conclusion

We demonstrated that our Transformer-based ECG generation
model showed superior performance by reducing the heart rate error
83.9% and 0.168 mV RMSE on MIMICIII, 72.4% and 0.22 mV RMSE
on Whois Alyx? with help of self-supervised learning. In addition to its
relevance for the AT community, our proposed solution holds promise
for broader applications in the healthcare and wearable technology
sectors, particularly in the realm of continuous health monitoring.
Through our practical AF detection experiment, we further provided
compelling proof-of-concept evidence that the generated ECG signals
carry clinically meaningful information. Cardiac activity monitoring is
a crucial component of continuous health monitoring systems, which
may facilitate the early diagnosis of cardiovascular diseases. This early
detection could, in turn, prompt preventative actions that help mitigate
serious cardiac conditions. However, as previously mentioned, there
lacks a universally applicable solution for everyday continuous ECG
monitoring. Our study addresses this deficiency by employing PPG
signals, which can be readily obtained from nearly all commercially
available wearable devices. We incorporate these signals into our newly
developed Transformer-based GAN framework to accurately capture
and generate ECG signals, reflecting users’ cardiac information. This
integration aims to bridge the gap in current continuous cardiac
monitoring technologies. This model is expected to be used in wearable
devices as an effective alternative for a low-cost, long-term health or
fitness monitoring application.

10.1 Future work

Future work will focus on enhancing model robustness,
particularly against motion artifacts, by incorporating ACC data.
For example, in the Who is Alyx? dataset, ACC data was collected
alongside ECG capture from Polar H10 chest strap. Integrating this
data which provides insights into chest movements and breathing-
induced motion, may improve ECG generation by providing
contextual information for artifact mitigation. Beyond heart rate
estimation, the proposed model has potential applications in cardiac
health monitoring, including arrhythmia detection, cardiovascular
disease diagnosis, and conditions such as atrial fibrillation and
ischemia. We also plan to extend its use to new domains, such
as emotion recognition (e.g., stress, fear), where generated ECG
may offer superior performance over PPG-based methods in
wearable systems.
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