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End-to-end non-invasive ECG 
signal generation from PPG 
signal: a self-supervised learning 
approach

Murat Yalcin* and Marc Erich Latoschik

Human-Computer Interaction (HCI) Group, University of Würzburg, Würzburg, Germany

Electrocardiogram (ECG) signals are frequently utilized for detecting important 
cardiac events, such as variations in ECG intervals, as well as for monitoring 
essential physiological metrics, including heart rate (HR) and heart rate variability 
(HRV). However, the accurate measurement of ECG traditionally requires a 
clinical environment, thereby limiting its feasibility for continuous, everyday 
monitoring. In contrast, Photoplethysmography (PPG) offers a non-invasive, 
cost-effective optical method for capturing cardiac data in daily settings and 
is increasingly utilized in various clinical and commercial wearable devices. 
However, PPG measurements are significantly less detailed than those of 
ECG. In this study, we propose a novel approach to synthesize ECG signals 
from PPG signals, facilitating the generation of robust ECG waveforms using 
a simple, unobtrusive wearable setup. Our approach utilizes a Transformer-
based Generative Adversarial Network model, designed to accurately capture 
ECG signal patterns and enhance generalization capabilities. Additionally, we 
incorporate self-supervised learning techniques to enable the model to learn 
diverse ECG patterns through specific tasks. Model performance is evaluated 
using various metrics, including heart rate calculation and root mean squared 
error (RMSE) on two different datasets. The comprehensive performance 
analysis demonstrates that our model exhibits superior efficacy in generating 
accurate ECG signals (with reducing 83.9% and 72.4% of the heart rate 
calculation error on MIMIC III and Who is Alyx? datasets, respectively), suggesting 
its potential application in the healthcare domain to enhance heart rate 
prediction and overall cardiac monitoring. As an empirical proof of concept, we 
also present an Atrial Fibrillation (AF) detection task, showcasing the practical 
utility of the generated ECG signals for cardiac diagnostic applications. To 
encourage replicability and reuse in future ECG generation studies, we have 
made both the dataset and the code publicly available.
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1 Introduction

Cardiovascular diseases (CVDs) represent the leading cause 
of mortality worldwide, accounting for 32% of all global deaths1 
(WHO, 2019). In 2021, out of 20.5 million deaths attributed to 
CVDs, approximately 80% occurred in low- and middle-income 
countries (Cesare et al., 2024). A primary factor contributing to 
this high mortality rate is the inadequate provision of primary 
healthcare and the limited availability of accessible, on-demand 
health monitoring systems. The electrocardiogram (ECG) is 
recognized as a critical tool for continuous health monitoring 
and is vital for identifying individuals at elevated risk of future 
cardiovascular events or mortality. Regular ECG monitoring has 
demonstrated effectiveness in the early detection of CVDs (Rosiek 
and Leksowski, 2016).

The ECG measures the heart’s electrical activity and provides 
essential insights into cardiovascular health. While the 12-lead ECG 
is considered the clinical gold standard, even simpler alternatives, 
such as Holter ECG, are often cumbersome and impractical for 
continuous monitoring. The process of attaching multiple electrodes 
can cause discomfort, and signal quality may degrade over time 
due to variations in skin-electrode impedance. Although significant 
research has focused on developing wearable devices that facilitate 
continuous ECG monitoring suitable for daily use, these efforts have 
largely been unsuccessful.

Photoplethysmogram (PPG), an optical technique used to 
detect volumetric changes in blood within peripheral circulation, 
is commonly integrated into wearable devices like smartwatches. 
PPG holds potential for generating ECG-like representations and 
provides valuable cardiovascular insights. With advancements 
in wearable and mobile devices, such as smartwatches and 
smartphones, PPG has become the industry standard for 
continuous heart rate (HR) monitoring, valued for its simplicity, 
user-friendliness, and cost-effectiveness (Park et al., 2022; 
Castaneda et al., 2018). However, PPG has several limitations, 
including inaccuracies in HR estimation and susceptibility to 
external factors such as skin tone, skin type variability, motion 
artifacts, and signal interference (Bent et al., 2020). Motion 
artifacts, in particular, can significantly distort PPG signals, making 
it challenging to capture precise cardiovascular information. 
Constructing a dataset that includes PPG/ECG data with motion 
artifacts could be beneficial for developing more robust algorithms. 
In this context, Virtual Reality (VR) games offer a promising 
alternative for simulating such conditions and addressing this 
challenge (Halbig and Latoschik, 2021).

Since PPG does not measure the electrical activity of the heart 
but rather the mechanical response (blood volume changes) to the 
heart’s pumping action, it cannot capture detailed electrical events 
except the systolic peak (due to arterial blood volume increase) 
and the dicrotic notch (related to the closure of the aortic valve). 
Compared to PPG, the ECG waveform encompasses critical details 
about cardiac activity; for instance, the P wave represents atrial 
depolarization, the R wave representing ventricular depolarization 
(Feher, 2012), and a prolonged PR interval may indicate a delay in 

1 https://www.who.int/news-room/fact-sheets/detail/cardiovascular-

diseases-(cvds)

conduction through the atrioventricular node, characteristic of a 
first-degree heart block, which points to potential dysfunction in the 
heart’s electrical conduction system (Mammen et al., 2004).

Given these considerations, a significant gap exists between 
the demand for continuous wearable ECG monitoring and the 
detailed information it delivers, and the available non-invasive, 
mobile, and cost-effective solutions. While PPG lacks the distinct 
waves of the ECG, its waveform still contains periodic components 
and cardiac cycle. This inherent relationship between PPG and 
ECG signals does allow for PPG-to-ECG translation using suitable 
methods, particularly leveraging advanced machine learning and 
signal processing techniques Banerjee et al. (2014); Zhu et al. (2021). 
The widespread adoption of wearable devices that continuously 
collect PPG signals has resulted in the availability of large-scale 
data, motivating the utilization of the cardiovascular relationship 
between PPG and ECG to generate ECG waveforms from PPG 
measurements using deep learning (DL) models (Tang et al., 2022). 
This approach has the potential to enable low-cost ECG screening for 
continuous and long-term monitoring, merging the comprehensive 
clinical insights provided by ECG signals with the accessibility of 
PPG data. To this end, we propose an end-to-end Transformer-
based Generative Adversarial Network (GAN) model to generate 
ECG signals from PPG inputs.

Additionally, enhancing the representation learning process 
and improving knowledge retention is essential for effective PPG-
to-ECG translation. By integrating self-supervised learning, our 
model learns robust and transferable representations of ECG signals 
through auxiliary tasks such as contrastive learning and masked 
signal modeling. Self-supervised learning also mitigates catastrophic 
forgetting—a common and critical issue in GAN training where 
the model abruptly loses previously acquired knowledge when 
learning new information (Thanh-Tung and Tran, 2020). To address 
this, we design auxiliary tasks specifically for the discriminator 
to help capture the intrinsic structure of ECG signals, thereby 
enhancing the model’s ability to generalize across different datasets 
and tasks. This ensures robust feature retention and transfer, 
ultimately improving the quality and reliability of the generated 
ECG signals (Chen et al., 2019).

In this study, our contributions are summarized as follows:

• We collected PPG and ECG data using consumer-grade 
wearable sensors while participants engaged in a VR game. 
To simulate real-life conditions as closely as possible, data 
collection was conducted in an unstructured environment, 
allowing for unrestricted movement and realistic actions. The 
resulting dataset, named Who is Alyx? (Rack et al., 2023), has 
been made publicly available.

• We introduced a novel Transformer-based GAN model to 
accurately synthesize ECG waveforms from PPG signals. For 
the first time, we implemented ECG generation on the Who 
is Alyx?. Our model demonstrated superior performance on 
both the MIMIC III benchmark dataset and the Who is Alyx? 
dataset, compared to state-of-the-art methods in the literature, 
as evaluated by various metrics. Additionally, we explored 
the impact of different signal lengths on the quality of ECG 
synthesis and examined distributional similarities between 
real and generated ECG signals.

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2026.1694995
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Yalcin and Latoschik 10.3389/fphys.2026.1694995

• We were the first to leverage a self-supervised framework for 
ECG signal generation through multi-task ECG representation 
learning. In this context, we utilized well-known three different 
paired PPG-ECG datasets for pre-training to investigate the 
effect of the self-supervised approach on ECG synthesis.

• To evaluate the generalization capability of the proposed 
model, we employed a leave-one-subject-out (LOSO) cross-
validation strategy. This approach enabled us to assess 
the model’s performance on previously unseen participants, 
thereby addressing to prevent potential validation concerns. 
Furthermore, to promote replicability and facilitate future 
research in the field of ECG generation, we have shared original 
dataset (Who is Alyx? (Rack et al., 2023)) and have made our 
code publicly available.2

• To demonstrate the practical utility of the generated ECG 
data, we conducted an Atrial Fibrillation (AF) detection 
study using two deep learning classifiers on a dedicated 
dataset. We provided a detailed analysis of the contribution 
of generated ECG data to the classification task, including a 
comprehensive evaluation of baseline variability in both real 
and generated ECG data.

The remainder of this paper is organized as follows. Section 2 
reviews the existing literature on PPG-to-ECG generation methods. 
The experimental design and datasets are described in Section 3. 
Section 4 introduces the proposed Transformer-based GAN 
architecture. The data preprocessing pipeline, self-supervised 
pre-training strategy, fine-tuning procedure, hyperparameter 
optimization, and overall implementation details for the PPG-
to-ECG generation framework are presented in Section 5. The 
evaluation metrics are defined in Section 6, while quantitative and 
qualitative results are reported in Section 7. A practical application 
of the proposed model for AF detection is presented in Section 8. 
Finally, Sections 9, 10 provide a discussion of the findings and 
concluding remarks, respectively. 

2 Related work

Previous studies have explored the relationship between PPG 
and ECG signals, highlighting that certain characteristics of 
heartbeats, including key parameters of an ECG such as heart 
rate, heart rate variability, etc., are also reflected in PPG signals 
(Weinschenk et al., 2016; Banerjee et al., 2014), though not with the 
same precision as direct ECG measurements.

Research on ECG generation is relatively limited. Some early 
studies have been discussed the concept of generating ECG signals 
with a strong focus on understanding and modeling ECG waveform 
morphologies (Sayadi et al., 2010; McSharry et al., 2003). Typically, 
statistical modeling is employed to generate synthetic ECG signals 
on a beat-by-beat basis, often using RR intervals, where individual 
beats are sequentially assembled based on specific beat information 
(Maheshwari et al., 2014; Craven et al., 2017).

Recent approaches for reconstructing ECG signals from 
PPG have explored various signal processing techniques. 

2 https://github.com/m1237/self-supervised-ppg-to-ecg.

(Zhu et al., 2021). proposed a method utilizing discrete cosine 
transform (DCT), where PPG onsets were aligned with ECG R-
peaks, followed by de-trending, cycle segmentation, and linear 
interpolation to standardize segment lengths. A linear regression 
model was then trained to map DCT coefficients of PPG to those 
of ECG. Despite its structured design, this approach suffered from 
limited generalizability to unseen subjects, inadequately modeled 
the inherent non-linearities between PPG and ECG, and lacked 
comparative evaluation in terms of heart rate estimation accuracy. 
Alternatively, (Tian et al., 2023), introduced a cross-domain 
joint dictionary learning framework, employing a correlation 
matrix to translate PPG to ECG. While promising, their method 
exhibited poor performance in subject-independent settings and 
was particularly vulnerable to motion artifacts in distorted PPG 
recordings. More recently, (Shome et al., 2024), proposed a Region-
Disentangled Diffusion Model for reconstructing ECG signals 
from PPG, highlighting diffusion-based generative modeling as 
a potential direction for improving translation fidelity. Moreover, 
such approaches typically depend on extensive pre-processing and 
handcrafted features, potentially introducing biases and limiting 
adaptability. For instance, (Belhasin et al., 2025), introduced 
artificial noise injection on clinically acquired datasets to mimic 
and mitigate motion artifacts.

Several studies in the literature have employed machine 
learning-based methods to address ECG generation tasks, 
with recent trends favoring deep learning-based methods. 
For instance, (Banerjee et al., 2014), deployed Support Vector 
Machine (SVM) that trained multiple classifiers using features 
extracted from the time and frequency domains to estimate 
ECG intervals (PR, QRS, QT, and RR intervals) from selected
features of PPG.

More recent contributions including (Tang et al., 2022; 
Abdelgaber et al., 2023; Guo et al., 2024) proposed bidirectional 
LSTM-based models for generating ECG waveforms from PPG, 
often requiring R-peak detection or beat-based segmentation. 
(Tang et al., 2022).’s generated ECG signal windows of varying 
lengths, which were then stitched together to form the final ECG 
segments. Although capable of constructing long ECG signals, 
this method compromised performance measures and used a 
dataset collected in a clinical setting without motion artifacts, 
raising concerns about its applicability to real-world scenarios 
involving ECG reconstruction. Additionally, (Vo et al., 2024), 
introduced an attention-based deep state-space model for PPG-
to-ECG generation, demonstrating its utility through downstream 
AF detection. Building upon the insights from prior studies, there 
is a need for an end-to-end deep learning approach that captures 
the non-linear relationship between PPG and ECG signals without 
relying on manual feature engineering. Training on datasets with 
real-world motion and artifacts is essential to reflect practical 
conditions. Additionally, the model should be evaluated on unseen 
subjects using metrics like heart rate estimation to assess the fidelity 
of the generated ECG. 

2.1 Generating ECG using GAN models

GANs (Goodfellow et al., 2014) have demonstrated significant 
potential in the medical domain, including applications such as 
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medical image synthesis, noise reduction, tumor detection, and 
lesion segmentation (Lan et al., 2020), highlighting the growing 
importance of GANs in medical data analysis. There have been 
studies using GAN models for bio-signal data augmentation 
including ECG signals in the medical and healthcare domains 
(Zhou et al., 2021; Yalcin et al., 2024; Delaney et al., 2019). 
Specifically, in the realm of ECG data augmentation, GANs are 
employed to generate realistic synthetic ECG signals, thereby 
mitigating the challenge of limited data availability and enhancing 
the training of machine learning models for tasks like arrhythmia 
detection and other cardiac-related diagnostics (Rahman et al., 2023; 
Berger et al., 2023). For example, (Zhu et al., 2019), described a 
synthetic ECG signal generation model using a bidirectional LSTM-
CNN-based GAN architecture that generated ECG from Gaussian 
noise which is input for the generator, achieving 0.257 mV RMSE 
and 0.728 Fréchet Distance (FD) values. (Golany et al., 2020). 
used a deep convolutional GAN (DCGAN) model to synthesize 
ECG signals, aiming to enhance ECG heartbeat classification 
performance.

With specific case of inputting the GAN model with PPG to 
generate ECG is very limited. (Sarkar and Etemad, 2020). deployed 
an attentive CycleGAN architecture with a dual discriminator to 
synthesize ECG signals from PPG, achieving an RMSE of 0.364 mV. 
However, their model struggled with low-quality outputs for highly 
noisy PPG signals. Also, their GAN model was encountered the 
challenge of overcoming unstable training resulted in occasional but 
critical random oscillations. (Vo et al., 2021). utilized a Wasserstein 
GAN with PPG inputs for ECG synthesis on MIMIC II dataset 
(Saeed et al., 2002). They did not validate their model with noisy 
PPG signals where the source of noise is from real-life activities. 
We discuss similar works in Section 9, with a detailed comparison 
presented in Table 8.

The Transformer architecture, characterized by its exclusive use 
of self-attention mechanisms, has revolutionized machine learning 
by eliminating the need for recurrent layers (Vaswani et al., 2017). 
Its success across diverse domains such as emotion recognition 
(Yalcin and Latoschik, 2024), language translation, etc., highlights 
its potential applicability to time-series signal processing 
tasks. In the areas of arrhythmia and anomaly detection, 
several studies have achieved state-of-the-art results employing 
both supervised and unsupervised methods with various 
Transformer-based models (Hu et al., 2022; Shah et al., 2024;
Alamr and Artoli, 2023).

Notably, (Lan, 2023), explored a Transformer-only architecture 
(without GAN) for patch-based PPG-to-ECG translation. However, 
their evaluation was confined to clinically acquired datasets, 
leaving the model’s robustness under real-world, motion-
intensive conditions unexamined. Moreover, the patch-based 
design requires specialized architectural choices and numerous 
hyperparameters, increasing the overall complexity of the 
generation pipeline. Despite some successful studies has shown 
great result with GAN and transformer combination, no prior 
study has attempted to integrate a Transformer model within a 
GAN framework for PPG-to-ECG signal generation and makes that 
task unexplored. Consequently, the impact of the Transformer’s 
generalization capability on this specific task has yet to be
thoroughly investigated. 

2.2 Self-supervised learning approaches

Recent advancements in machine learning and deep learning 
have highlighted the effectiveness of self-supervised models in 
acquiring generalized and robust representations. Self-supervised 
learning is a machine learning approach in which models are trained 
using automatically generated pseudo-labels rather than manually 
annotated ones. This approach has been successfully applied across 
a wide range of fields, including computer vision (Chen et al., 2019; 
Kocabas et al., 2019; Wang et al., 2019), speech processing 
(Tagliasacchi et al., 2019), and natural language processing (Wu 
and Weld, 2010). As implementation on ECG signals, two 
noticeable studies can be shown. For the first one, (Vazquez-
Rodriguez et al., 2022), utilized self-supervised learning to address 
the challenges posed by the limited size of emotionally labeled 
datasets in classification tasks. Secondly and similarly, (Sarkar and 
Etemad, 2022), applied self-supervised learning to ECG signals 
for emotion recognition, demonstrating a significant performance 
improvement compared to fully-supervised training.

In the context of GAN models, there are limited studies 
incorporating self-supervised learning. For example, (Chen et al.,
2019), introduced a GAN model that integrates adversarial and self-
supervised learning for natural image synthesis, aiming to bridge the 
gap between unconditional and conditional models. This approach 
mitigated the problem of catastrophic forgetting, resulting in stable 
training and optimized representations. Additionally, it was shown 
that a small amount of data could be used to fine-tune the model 
after self-supervised learning. 

3 Conceptual overview

Despite aforementioned advancements, the application of self-
supervised learning specifically for ECG signal generation has not 
been extensively explored, particularly in the context of PPG-ECG 
paired generation. This paper addresses this gap by developing a 
robust Generative Adversarial Network (GAN) model to generate 
ECG signals from PPG inputs, supported by self-supervised learning 
techniques. Our goal is to achieve high-performance metrics, 
especially on datasets characterized by high noise levels and motion 
artifacts. To this end, we propose a Transformer-based GAN 
model designed to overcome these challenges and improve the 
reliability and accuracy of ECG synthesis from PPG data. VR 
technology has shown to be able to evoke a large variety of 
interesting and important psychological and physiological responses 
(Halbig and Latoschik, 2021), including stress, anxiety, and fear 
(Yalcin and Latoschik, 2024). Accordingly, it is now an accepted 
alternative method applied in psycho therapy, e.g., in the treatment 
of specific anxiety disorders or PTSS, etc. (Andersen et al., 2023). 
VR environments can be used to create high levels of immersion, 
i.e., sensorimotor contingencies comparable to experiences in the 
real physical world, including a rich variety of full body motions 
and interaction. Hence, VR provides excellent possibilities to 
evoke and measure physiological data even with lab-bound devices 
while allowing quite large degrees of freedom. This immersive 
engagement results in more diverse and dynamic ECG waveforms, 
reflecting the emotional and physical state of the user (Halbig and 
Latoschik, 2021).
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FIGURE 1
First two columns shows the screenshots of the VR game (Half Life-Alyx) that participants played during data collection. Last column shows an 
equipped participant and the respective sensors used during the experiments in detail.

The combination of emotional (stress, fear, anxiety, etc.) 
and physical stimuli in VR gaming offers a unique opportunity 
to explore ECG generation solutions that account for these 
multifaceted effects. Unlike sedentary activities, VR gaming often 
involves frequent physical movements, such as turning, crouching, 
and reaching. These movements introduce additional variability, 
including motion artifacts in both ECG and PPG signals, which 
are often measured using wearable devices. These movement-
induced artifacts pose significant challenges for ECG generation, 
as they can distort the signal quality, making it more difficult
to process. 

3.1 VR game and measurement design

For this study, we selected “Half Life-Alyx” (Valve Corporation,
2020), a VR prequel to the renowned series by Valve Corporation. 
Although not explicitly a horror game, it integrates unsettling 
elements, particularly in a VR context. The game’s detailed 
graphics, meticulously designed environments, suspenseful 
pacing, and encounters with terrifying creatures such as head-
crabs contribute to a pervasive sense of fear. The sophisticated 
sound design, incorporating ambient noises and environmental 
hazards, further heightens the player’s sense of vulnerability,
stress, and fear.

To capture the participants’ physiological signals during 
their VR game experience, we employed three different devices. 
Recognizing the advantages of wearable sensors in terms of cost, 
ease of use, and portability, we selected the Polar H10 (Polar Electro 
Oy, Finland), an electrode-based chest strap, and the Empatica E4 
(Empatica Inc., United States), a medical-grade wristband. Both 
devices transmit data to a computer via Bluetooth communication. 
Additionally, we used the HTC Vive Pro as the headset (HMD) to 
collect eye-tracking data during the gameplay. These sensors are 
straightforward to deploy and can be utilized in various scenarios 
with minimal setup effort. Screenshots of the Half Life-Alyx game 
and images of a participant equipped with the sensory devices 
are shown in Figure 1.

3.2 Ethical consideration

The study was approved by the Research Ethics Committee 
of the Institute for Human-Computer Media (MCM) of human 
sciences of the University of Würzburg at 30th May of 2022 
and was conducted in accordance with the local legislation and 
institutional requirements. The participants were recruited through 
the participant recruitment system of our faculty and gave their full 
consent to publish and process the collected and anonymized data. 
Every participant was fully informed about the intents and purposes 
and the procedure of the data acquisition. 

3.3 Data collection

The study involved 34 participants (14 female, 20 male), 
aged between 21 and 33 years, with a mean age of 25.3 years. 
Only two participants had prior experience playing the selected 
game. Participants were equipped with the sensory devices, 
and connections were established between the sensors and the 
measurement engine (Yalcin et al., 2022), a custom software 
developed as part of the VIA-VR project (von Mammen et al., 2019), 
primarily using Python. Data streaming was initiated 
simultaneously for all sensors. Initially, we collected 3 min of 
baseline data while participants freely moved around with the 
sensors and selected the desired game chapter from the game 
menu. Throughout the study, an instructor was present to monitor 
participants in both the real and virtual environments, ensuring 
uninterrupted gameplay. All participants began their first session 
in “Chapter 1″ of the game and continued playing without further 
instructions. Each session lasted approximately 45 min, regardless 
of the participant’s progress within the game. The procedure was 
repeated for a second session on a different day, with participants 
starting from “Chapter 3.”

We collected ECG data from the Polar H10 at a sampling rate 
of 130 Hz and PPG data from the Empatica at 64 Hz. Although 
the dataset also includes other physiological and movement-related 
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data, such as Acceleration (ACC), Electrodermal Activity (EDA), 
and Peripheral Body Temperature (TEMP), as detailed in the 
“Who is Alyx?” study (Rack et al., 2023), this study specifically 
concentrated on utilizing the ECG and PPG data for further 
analysis. The “Who is Alyx?” dataset is publicly available via GitHub 
repository: https://github.com/cschell/who-is-alyx. The dataset is 
intended for research purposes only. 

3.4 MIMIC III and MIMIC PERform AF 
datasets

In addition to our Who is Alyx? dataset, we employed the 
MIMIC III matched waveform database (Johnson et al., 2016; 
Moody et al., 2020) to evaluate the generalization capability and 
benchmark performance of our model on a widely recognized 
dataset. MIMIC III contains multiple physiological signals 
recorded from intensive care unit (ICU) patients and serves as an 
extended and enhanced version of the earlier MIMIC II database 
(Saeed et al., 2002). Each record is 5 min long, with simultaneous 
ECG and PPG signals sampled at 125 Hz. For this study, we 
randomly selected 100 records from different subjects using lead 
II ECG and PPG signals, aligning with the sample size commonly 
used in related works (Zhu et al., 2021; Tang et al., 2022).

For the Atrial Fibrillation (AF) detection analysis, we 
additionally utilized the publicly available annotated MIMIC 
PERform AF dataset (Charlton et al., 2022; Bashar et al., 2019). 
This dataset consists of 20-min waveform recordings from 35 ICU 
patients, comprising 19 patients with AF and 16 patients in normal 
sinus rhythm (non-AF). The dataset is a curated subset of the 
MIMIC III matched waveform database and provides high-quality 
annotations suitable for evaluating arrhythmia detection models. 

4 Transformer-based GAN model

Since our ECG generation model is based on the GAN 
architecture, we begin with a brief overview of its functioning. A 
Generative Adversarial Network (GAN) (Goodfellow et al., 2014) 
comprises two components: a generator (G) and a discriminator 
(D). The generator synthesizes data, while the discriminator 
distinguishes between real and generated samples. In our context, 
the generator learns to map PPG signals to ECG data. Its goal is 
to deceive the discriminator into classifying synthetic data as real. 
Through iterative training, guided by a loss function that captures 
the discriminator’s accuracy, the generator improves, and its output 
distribution gradually aligns with that of real data.

The generator Gθg
 operates as a directed latent variable z model 

that deterministically generates samples x from the latent space 
(z ∼ pz) with optimization (minimize) of θg, generator parameters. 
Given that the discriminator Dθd

 aims to classify samples as real 
(x) or fake with optimization (maximize) of θd, discriminator 
parameters, the adversarial game between the generator (G) and the 
discriminator (D) can be formalized through an objective function, 
V(D,G), which frames the interaction as a classification problem. 
Here, the expected values of the variables drawn from distributions 
are denoted as 𝔼, real x samples drawn from real data distribution 
denoted as (x ∼ pdata) and latent z samples drawn from latent noise 

distribution, often a Gaussian distribution denoted as (z ∼ pz). The 
general form of the objective function (Goodfellow et al., 2014) is 
expressed in Equation 1:

minθg
maxθd

V (D,G) = [𝔼x∼pdata
logDθd
(x) +𝔼z∼pz

log(1−Dθd
(Gθg
(z)))]

(1)

During the training process, GANs often encounter a prevalent 
issue known as mode collapse, wherein the generator network 
persistently produces identical outputs. This limitation significantly 
reduces the diversity of the generated data and diminishes the 
generator’s ability to accurately capture the complex distribution of 
real-world data. In the following section, we introduce our approach 
to addressing this problem. 

4.1 Wasserstein loss with gradient penalty

To address the mode collapse problem, we employed the 
Wasserstein GAN (WGAN) loss function (Arjovsky et al., 2017), 
which minimizes the Wasserstein (Earth Mover’s) distance between 
real and generated data distributions. This approach offers improved 
gradient flow and robustness to hyperparameter variations 
compared to traditional GAN loss.

In our approach, the discriminator, also referred to as the 
“critic” in WGAN models, D, is trained to differentiate between 
real and synthetic ECG signals, while the generator neural network 
G is trained to generate ECG signals from PPG signals, with the 
objective of making the generated ECGs indistinguishable by the 
discriminator. Let’s denote individual segments (time windows) as 
p and the corresponding ground-truth ECG segments as e. For 
the mapping function GE:P→ E, and discriminators DE, with ECG 
signals e drawn from the data generating distribution ECGdata(e) and 
signals p drawn from the input prior PPGdata(p), the generator G and 
the discriminator D jointly optimize the following non-artificial LG
(generator) and LD (discriminator) loss functions, as formulated in 
Equations 2, 3 respectively: 

LG = −𝔼p∼PPPG
[D (G (p))] (2)

LD = −𝔼e∼PECG
[D (e)] +𝔼p∼PPPG

[D (G (p))] (3)

To maintain the 1-Lipschitz continuity constraint required for 
WGANs (Gulrajani et al., 2017), which is essential for the proper 
functioning of the discriminator (Arjovsky et al., 2017), a gradient 
penalty is applied between the real and synthetic data distributions 
(Gulrajani et al., 2017). We followed this strategy and included 
this penalty term to ensure that the gradients of the discriminator 
with respect to its inputs do not exceed a norm of 1, thereby 
promoting stable training. The gradient penalty term, denoted as 
LGP, is defined in Equation 4. Here, the gradient operator is denoted 
as ∇. 

LGP = λ𝔼x̂∼Px̂
[(‖∇x̂D (x̂)‖2 − 1)2] (4)

Here, x̂ is an interpolated sample between real and generated 
data points, computed in Equation 5: 

x̂ = ϵe+ (1− ϵ)G (p) (5)
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where ϵ is a random number sampled from the uniform 
distribution U(0,1), and λ is the scaled factor of gradient penalty 
coefficient. The effect of the gradient penalty coefficient was analyzed 
during hyperparameter optimization (see Section 5.4.1; Figure 5). 
Incorporating the gradient penalty, the complete loss for the 
discriminator can be written in Equation 6:

LD = −𝔼e∼PECG
[D (e)] +𝔼p∼PPPG

[D (G (p))] + λ𝔼x̂∼Px̂
[(‖∇x̂D (x̂)‖2 − 1)2]

(6)

Finally, our adversarial Wasserstein objective function 
LWGAN
(D,G) for the mapping GE:P→ E is Equation 7: 

min
G(p)

max
D(e)

LWGAN
(LD,LG) (7)

 

4.2 ECG generator architecture

Generating ECG signals from PPG poses challenges 
in modeling both local waveform morphology and long-
range temporal dependencies. To address these, we 
explored various GAN architectures. Traditional models 
like DCGAN (Radford et al., 2016), relying solely on 
convolutional layers, fail to capture sequence-wide dependencies, 
while SeqGAN (Yu et al., 2016), though tailored for sequence 
generation, is computationally intensive and unsuitable for 
high-resolution ECG synthesis.

In contrast, Transformer models have shown strong 
performance in both classification (Vazquez-Rodriguez et al., 2022) 
and generative tasks (Gong et al., 2022), owing to their self-
attention mechanism, which effectively captures both local and 
global dependencies. Given these strengths, we adopted a hybrid 
architecture combining convolutional layers for local temporal 
feature extraction with a Transformer module to model sequential 
dependencies, enabling the generation of high-fidelity ECG signals.

For the generator architecture of our GAN model, we integrated 
a UNet (Ronneberger et al., 2015) with a custom-built from-
scratch Transformer model (Vaswani et al., 2017), utilizing this 
combination as the backbone generator of our GAN framework. The 
overall architecture of the ECG generator, comprising three primary 
branches, is illustrated in Figure 2.

4.2.1 Convolutional encoder
The generator adopts a UNet-inspired encoder–decoder 

architecture based on 1-D convolutions. Convolutional networks 
offer superior parallelization and faster computation compared 
to recurrent models, while achieving comparable or better 
performance (Elbayad et al., 2018). The input consists of PPG 
segments ranging from 4 to 160 s (e.g., 520 samples for 4 s), with the 
output being ECG segments of matching length. The architecture 
compresses the input via downsampling to a bottleneck layer and 
reconstructs it through upsampling using transposed convolutions. 

4.2.2 Transformer encoder
Following the CNN encoder, a Transformer encoder was 

employed to further capture feature information using causal self-
attention, which is crucial for modeling long-range dependencies. 

Initially, the feature map channels were expanded from 8 to 16 via a 
convolution layer. Given that the Transformer processes information 
in a token-to-token manner, the two-dimensional feature maps with 
a PPG segment were flattened into a sequence of tokens. A learned 
positional embedding (Vaswani et al., 2017; Karimi et al., 2021) 
was then added to the sequence. This step is crucial because, 
without positional information, the Transformer’s attention 
mechanism would be insensitive to sequence order due to its 
inherent arrangement invariance. After incorporating the positional 
encoding then fed into the Transformer encoder.

The Transformer encoder consists of alternating layers of multi-
head self-attention blocks and multi-layer perceptron (MLP) blocks. 
Layer normalization (LN) (Ba et al., 2016) is applied before each 
block, and residual connections are added after each block. The MLP 
block consists of a two-layer fully connected feed-forward network 
incorporating Dropout (Srivastava et al., 2014) and the Gaussian 
Error Linear Unit (GELU) activation function (Hendrycks and 
Gimpel, 2016). After processing through the Transformer encoder, 
the feature maps are reshaped and compressed to align with the input 
dimensions of the convolutional decoder. 

4.2.3 Convolutional decoder
The convolutional decoder employs transposed convolutions, 

also known as fractionally-strided convolutions, to progressively 
increase the sequence length until the final layer, which utilizes the 
Tanh activation function. Both the encoder and decoder consist of 
L = 4 layers. To ensure the preservation of information across down-
sampled layers, skip connections are employed to link the output of 
layer i in the encoder with the output of layer L = i in the decoder. 

4.3 Transformer discriminator

The discriminator of our GAN model consist of Transformer 
architecture. The general architecture of the discriminator is 
illustrated with dashed rectangles in Figure 3.

To process ECG data using our Transformer discriminator 
model, the data were encoded into s feature vectors, where each 
vector represents a data sample with d dimensions. This encoding 
yielded a set of features F = { f1,…, fs}, where fi ∈ ℝ

d. Adopting 
the BERT methodology (Devlin et al., 2019), the output of the 
Transformer includes an embedding of the classification token 
(eCLS), alongside other signal representations. Through the attention 
mechanisms of the Transformer, eCLS aggregates information from 
the entire input signal as well as its contextualized representations. 
To incorporate the actual sequence order, positional information 
is added to each input fed into the Transformer. Specifically, 
the positional embeddings are summed with the features F′ to 
form Z = {CLS+ pe0, f1 + pe1,…, fs + pes}, where pei ∈ ℝd denotes 
the positional embedding for time-step i. After normalizing 
Z (Ba et al., 2016), the Transformer encoder generates contextualized 
representations E using h attention heads and l layers, formulated 
as Transformerh×l(Z) = C = {eCLS,e1,…,es}. These representations C
are then used for classifying the ECG data as real or synthetic.

The input encoder is composed of three layers of 1D 
Convolutional Neural Networks (CNN) with ReLU activation 
functions (Xu et al., 2015). Layer normalization (Ba et al., 2016) 
is applied to the first layer and at the encoder’s output. The kernel 
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FIGURE 2
The overall ECG generator architecture model which consist of three branches: 1- The convolutional encoder (left-side) which receives different time 
length of PPG signal as input extracts spatial features. 2- The Transformer encoder is concatenated between convolution encoder-decoder with causal 
self-attention for long-range dependency modeling (bottom-side). 3- The convolutional decoder (right-side) up-samples feature maps and outputs 
the ECG signal with corresponding length. The grey arrows (middle-side) shows skip connections between the corresponding layers of the 
convolutional encoder-decoder. The feature maps from the encoder are concatenated with the upsampled feature maps in the decoder. This allows 
the network to combine high-resolution features from early layers with the high-level abstract features learned in deeper layers.

sizes for the layers are set to (65, 33, 17), with corresponding 
channel numbers of (64, 128, 256), and a stride of 1 for all layers. 
The Transformer’s signal encoder is empirically configured with a 
model dimension dmodel = 256, 2 layers, and 2 attention heads, and a 
Fully Connected Network (FCN) size of dmodel × 2 = 512. The FCN 
employed for predicting masked values consists of a single linear 
layer of size dmodel/2 = 128, followed by a ReLU activation function. 
An additional linear layer projects the output vector to a single value, 
corresponding to the predicted value of a masked point. 

5 Learning contextualized 
representation

Motivated by the critical challenge of catastrophic forgetting 
in discriminators (Thanh-Tung and Tran, 2020), our objective 
is to enhance the discriminator’s ability to learn meaningful 
representations independently of the generator’s current 
performance. To address this issue, we employed recent 
advancements in self-supervised learning techniques for 
representation learning (Sarkar and Etemad, 2022). To further 
extend the generalization capabilities of our models, we utilized 
self-supervised learning by pre-training on multiple unlabeled ECG 
datasets. These pretext tasks were designed to learn robust feature 

representations, which were subsequently fine-tuned for the ECG 
signal generation process. 

5.1 Self-supervised ECG representation 
learning

Although various signal transformations have been applied 
across different types of data (Saeed et al., 2019), for ECG data, 
we adopted the signal transformations proposed by (Sarkar and 
Etemad, 2022) and were the first to implement these transformations 
in our study for the purpose of ECG generation with GAN model. 
As part of our pretext tasks, we implemented six distinct signal 
transformation recognition tasks, as outlined below: 

5.1.1 Noise addition
Gaussian noise N(t) with zero mean and standard deviation 
√ENavg

 is added to the ECG signal Es(t), yielding Es(t) +N(t). The 
noise power ENavg

 is derived from the signal power EEavg
 and a 

specified Signal-to-Noise Ratio α, using ENavg
= 10(EEavg−α)/10. 

5.1.2 Scaling
The ECG signal is scaled by a constant factor b > 0, yielding b ⋅

Es(t). This operation adjusts the signal amplitude uniformly. 
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FIGURE 3
The overall scheme illustrates the implementation of self-supervised learning with the discriminator (shown in a dashed rectangle) and its subsequent 
use as a frozen network for fine-tuning our GAN model: 1- Top-side depicts the general steps of the self-supervised learning process (downstream 
task) using the discriminator. Transformed signals, generated from three datasets, are input into the discriminator to train it across six different tasks. 2- 
Down-side illustrates the partially frozen discriminator architecture, which is employed during the fine-tuning stage to distinguish between real and 
generated ECG signals.

5.1.3 Temporal Inversion
This operation reverses the signal in time, transforming Es(t)

into E′s (t), where the time indices are flipped from t = 1,…,N to t =
N,…,1.

Although temporal inversion does not occur in real monitoring 
conditions, it remains a valuable self-supervised pretext task because 
it forces the model to reason about the directional structure of 
physiological waveforms. Reversing the signal disrupts its causal and 
morphological progression such as the systolic–diastolic sequence 
in PPG or the P–QRS–T order in ECG without altering its overall 
distribution, enabling the encoder to learn representations that 
are sensitive to true temporal dependencies rather than superficial 
signal features. In self-supervised learning, the goal is not to 
replicate realistic perturbations but to design surrogate tasks 
that elicit robust temporal feature learning. Temporal inversion 
has been widely adopted in time-series self supervised learning 
for this reason ((Zhang et al., 2023; Sarkar and Etemad, 2022)), 
providing a strong discriminative signal that helps the model 
internalize physiological timing relationships and ultimately 
supports more accurate ECG generation from PPG in the 
downstream GAN stage. Permutation: The signal is segmented 

into m parts {si(t)}, which are randomly reordered to form a new 
sequence Esp

(t), disrupting temporal order while preserving local
signal structure. 

5.1.4 Negation
This transformation inverts the ECG signal Es(t) by multiplying 

it by −1, yielding −Es(t), which vertically flips the waveform and 
reverses signal polarity. It simulates polarity reversal, which may 
occur due to inverted sensor placement, such as with the Polar 
H10 device. 

5.1.5 Time-Warping
This technique alters the ECG signal Es(t) by stretching 

or compressing segments along the time axis using an 
interpolation-based function F(Es(t),k), where k denotes the 
stretch factor and 1/k the compression factor. The signal is 
divided into m windows {si(t)}, with randomly selected segments 
stretched and others compressed to preserve overall signal 
dynamics. The final signal T(t) is normalized in length via 
clipping or zero-padding, depending on whether m is even
or odd. 
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5.1.6 Transformation parameters
To ensure diverse signal transformations while preserving 

core ECG characteristics, we varied transformation parameters 
across broad ranges. For noise addition, signal-to-noise ratios 
(SNR) ranged from 2 to 45. Scaling factors ranged from 0.1 
to 10. Permutation and time-warping used 2 to 40 segments, 
with time-warping stretch factors between 1.05 and 4. Temporal 
inversion and negation, which lack tunable parameters, were
also included.

We should point out that these ranges were selected to 
generate a spectrum of signals—from near-original to substantially 
altered—capturing variations in heartbeat periodicity and waveform 
morphology (P-wave, QRS complex, T-wave). This enables the 
model to learn robust, generalizable spatio-temporal features 
without labeled data. Two sample signals from two different 
participants with these transformations are shown in Figure 4.

5.2 Datasets for pre-training

In addition to our original dataset and the MIMIC III dataset, 
we utilized three widely recognized PPG-ECG paired datasets to 
pre-train our proposed model: BIDMC (Pimentel et al., 2017), 
CAPNO (Karlen et al., 2013), and WESAD (Schmidt et al., 2018). 
These datasets were combined to support a multi-corpus pre-
training strategy, enabling the model to learn from a diverse 
range of data encompassing variations in activity (e.g., working, 
walking, resting) and age (e.g., 29 children, 81 adults). The 
resulting dataset comprises 110 participants with a balanced
gender distribution. 

5.2.2 BIDMC
Contains 8-min recordings from 53 adult ICU patients (mean 

age: 64.81 years; 32 females, 21 males), sampled at 125 Hz. Only ECG 
lead II was used. 

5.2.2 CAPNO
Includes 8-min recordings from 42 participants (29 children, 

median age 8.7; 13 adults, median age 52.4), with single-lead ECG 
and PPG sampled at 300 Hz. 

5.2.3 WESAD
Comprises data from 15 participants (mean age: 27.5), recorded 

during various activities. ECG was sampled at 700 Hz and PPG at 
64 Hz, with session durations exceeding 1 hour. 

5.3 Data pre-processing

Firstly, ECG and PPG data were synchronized/aligned. The 
alignment process here means the systolic peak of the PPG beat 
is exactly aligned with the R peak of the ECG beat. After this, 
given that the aforementioned datasets were collected at different 
sampling frequencies, the initial step involved re-sampling both 
ECG and PPG signals to a uniform sampling rate of 130 Hz using 
cubic spline interpolation technique. This approach was chosen 
to preserve at least the sampling rate of the ECG signal in our
original dataset.

Raw ECG and PPG signals inherently contain various types 
and levels of noise, including power line interference, baseline 
wandering, and motion artifacts. In our study, motion artifacts 
were particularly prevalent, as participants frequently moved while 
engaging in VR gameplay. While it is essential to suppress noise 
components, it is equally critical to preserve the physiological signal 
content, particularly the energy distribution associated with ECG 
morphology and the slow heart rate related components in PPG. 
Therefore, appropriate band-pass filtering ranges were selected to 
retain diagnostically relevant information while removing unwanted 
noise. Specifically, ECG signals were filtered using a band-pass finite 
impulse response (FIR) filter with a passband of 0.5–45 Hz, ensuring 
preservation of P–QRS–T morphology and suppression of both 
baseline wander and high-frequency interference. Similarly, PPG 
signals were filtered with a band-pass Butterworth filter between 
0.5–8 Hz to maintain morphological integrity related to cardiac 
pulsatility and slower hemodynamic variations. Additionally, a 
median non-linear filter was applied to both signals for removing 
motion artifacts and spikes, thereby producing smoother signals 
suitable for feeding to the GAN model. Subsequently, the filtered 
ECG and PPG signals were segmented into different segment 
windows (4, 8, 16, 32, 64, 96, 128, 160s), resulting in 130× n samples 
per window, with a 20% overlap between consecutive windows 
to ensure comprehensive peak detection. Finally, person-specific 
min-max normalization was performed on both the ECG and PPG 
segments, standardizing the data within the range of (−1, 1). After 
generation step, inverting min-max was applied to acquire signal 
with original scale. 

5.4 Model training and fine-tuning

The model training task consist of two steps: 1- Multi-task self-
supervised pre-training with aforementioned three datasets, 2- Full 
GAN model training and discriminator fine-tuning for Who is Alyx? 
and MIMIC III datasets, separately. To find the best hyperparameters 
for the model, we conducted a grid search covering 13,824 different 
model configurations per step for total training of models per 
dataset. The hyperparameters that led to the best classification results 
are shown in Table 1.

5.4.1 Multi-task self-supervised pre-training
Our initial goal is to train the discriminator using the three 

aforementioned datasets from the literature, primarily aiming to 
learn robust features for generalization through a self-supervised 
approach. Following the pre-processing steps, for self-supervised 
signal transformation training, we randomly shuffled these three 
datasets, ensuring that the alignment between PPG and ECG pairs 
remained intact. The resulting segments were used for pretext tasks. 
Each segment was utilized to generate the six signal transformations 
described earlier.

To facilitate this training as downstream task for the 
discriminator, we appended two fully connected layers to the end of 
the discriminator as task-specific layers. Both layers were set to a size 
of 128 and were followed by a Relu activation layer (Xu et al., 2015). 
We deliberately kept the fully connected layers simple and relatively 
shallow to effectively assess the capability of the self-supervised 
approach in learning robust and generalized ECG representations 
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FIGURE 4
Transformed two samples of ECG signals from two participants for pretext tasks of self-supervised learning. Noise addition, scaling, temporal inversion, 
permutation, negation and time-warping were implemented to each signals, separately.

for the discriminator. This multi-task network was then trained 
on the six different signal transformation tasks with automatically 
generated pseudo-labels. The network was trained for 90 epochs 
with a batch size of 128 using the Adam optimizer (Kingma 
and Ba, 2014). 10-fold-cross validation was adopted to check the 
optimization performance on the training. To address the mode 
collapse issue and strengthen the model instability during training, 
we searched best performing gradient penalty scaling factor. Figure 5 
shows how λ effects the model stability during training.

Subsequently, the weights of the discriminator’s transformer 
were frozen for use in the fine-tuning process. 

5.4.2 Training with original dataset and 
discriminator fine-tuning

Next, we trained our full GAN model, including both 
the discriminator and generator. Before initiating the training 
process of the model, the frozen weights from the discriminator’s 
Transformer were transferred for the GAN training with generator, 
as illustrated as ‘transfer learning ’ in Figure 3. For the fine-
tuning, fully connected layers with sizes of 512 and 256 (from 
128 to 512 sized different combinations, see Table 1) with Relu 
activation layers (Xu et al., 2015) were added to the discriminator. 
This setup enabled the model to learn the general representations of 
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TABLE 1  The variables and their values that were used in the grid search to optimize the model’s hyperparameters and best performing values for the 
self-supervised pre-training and the discriminator fine-tuning for original (Who is Alyx?) and MIMIC III datasets.

Hyperparameters Values Self-supervised pre-training Discriminator fine-tuning

Who is Alyx? MIMIC III

Exponential decay β1, β2 0.5, 0.9, 1, 3 3, 1 0.5, 0.9 0.9, 1

Gradient Penalty Scale Factor (λ) 4, 6, 30, 50 30 6 30

Fully Connected Layer 128, 256, 512 128, 128 512, 256 512, 256

Learning Rate 0.001, 0.002, 0.005 0.001 0.002 0.001

Dropout 0.2, 0.4, 0.5, 0.7 0.5, 0.4 0.4, 0.2 0.5, 0.2

Batch Size 64, 128 128 128 128

FIGURE 5
The impact of the gradient penalty coefficient (factor) λ as hyperparameter on the training of the discriminator on original dataset. It addresses the 
mode collapse issue and strengthen the model stability during training. It clearly demonstrate that the absence of the gradient penalty (λ = 0) leads to 
notable instability in the training process, underscoring the importance of this parameter in ensuring robust and reliable model performance.

the ECG patterns from the original dataset to effectively distinguish 
between real and generated (synthetic) segments. Each MIMIC 
III and Who is Alyx? dataset, along with the three previously 
mentioned datasets, was incorporated into the training phase of 
the GAN model.

To ensure reliable performance evaluation, we employed a leave-
one-subject-out (LOSO) cross-validation strategy. Specifically, we 
performed 34-fold cross-validation by splitting the subjects from our 
original dataset into 34 groups, with each participant assigned to 
one group. For each iteration, the model was trained on 33 subjects 
and with other three datasets and tested on the remaining subject, 
allowing us to systematically evaluate the generalization capability of 
the model on participants that were never seen during training. Prior 
to each testing session, we randomly selected 10% of the training set 

as a validation set to ensure optimal model performance on the test 
set. This process also applied to MIMIC III dataset. Additionally, a 
time window analysis was conducted by segmenting the data into 4, 
8, 16, 32, 64, 96, 128 and 160-s intervals (windows) to explore the 
temporal significance of deep features on the learning capacity of 
the models.

In total, data from 242 participants—comprising approximately 
125 h of ECG-PPG segment pairs (55 h from Who is Alyx?, 8.25 h 
from MIMIC III, and 62 h from the pre-training datasets)—were 
utilized in the training process, yielding around 238k time-aligned 
segments. The model was trained using the Adam optimizer with the 
hyper-parameters listed in Table 1. Training was carried out over 90 
epochs, with early stopping applied to prevent overfitting and ensure 
optimal performance.
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Additionally, we also aimed to investigate the model’s capacity 
and the impact of excluding the self-supervised learning technique. 
In this scenario, the entire model, including the discriminator, was 
trained from-scratch using the same parameters as before, without 
freezing any layers during the training process. The training was 
conducted on a machine equipped with an Intel Core i9-13900K 
CPU, 128 GB of memory, and a NVIDIA RTX 4090 GPU. All models 
were implemented using the PyTorch 1.10 deep learning library. 

6 Evaluation

Following the training phase, we evaluated the model’s 
performance using well-known metrics for ECG generation (Sarkar 
and Etemad, 2020; Vo et al., 2021), ensuring a fair comparison with 
related works: 

6.1 Fréchet Distance (FD)

FD quantifies the spatial and sequential similarity between the 
real and generated ECGs. A lower FD value, closer to zero, indicates 
a higher similarity between the real ECG and its synthesis. FD 
is defined as: 

FD =min
Q
(max

i∈Q
(d(yECGi,yrECGi)))

where Q = [1,m] and d(∗) represents the Euclidean distance 
between corresponding points on the ECG and synthesis curves. 

6.2 Root mean squared error (RMSE)

The Root Mean Squared Error (RMSE) measures the 
discrepancy between the observed values of an ECG signal and its 
reconstructed values by aggregating the squared differences between 
them. It is conventionally quantified with millivolts (mV) for ECG 
signals. A smaller RMSE value, closer to zero, indicates a more 
accurate reconstruction. RMSE is defined as: 

RMSE = √ 1
N

N

∑
i=1
(yECGi − yrECGi)

2

 

6.3 Pearson’s correlation coefficient (ρ)

Pearson’s correlation coefficient (ρ) is used to assess the degree 
of linear relationship between an original ECG signal and its 
reconstructed counterpart. The coefficient ρ ranges from −1 to 1, 
where the absolute value indicates the strength of the correlation, 
and the sign indicates the direction (positive or negative) of the 
relationship. Closer to 1 indicates a strong positive correlation 
between signals. The correlation coefficient is computed as follows: 

ρ =
(yECG − ̄yECG)

T (yrECG − ̄yrECG)
‖yECG − ̄yECG‖2‖yrECG − ̄yrECG‖2

yECG and yrECG denote the original and generated ECG, 
respectively, and ‖ ⋅ ‖2 is the Euclidean norm. 

6.4 Mean Absolute Error for Heart Rate 
(MAEHR)

Heart rate (HR) is computed from the R-R interval as 

HR (bpm) = 60
R−RInterval (seconds)

MAEHR (in BPM) is calculated between the estimated HR 
from a given ECG or PPG signal (HRQ) and the ground-truth HR 
(HRGT) as follows: 

MAEHR (Q) =
1
N

N

∑
i=1
|HRGT,i −HRQ,i|,

where N represents the number of segments for which HR 
measurements were obtained. To evaluate the performance of our 
model, we measure MAEHR(E′), where E′ is the ECG generated by 
the model. These MAE values are compared to MAEHR(P), where 
P represents the input PPG signals. This comparison allows us 
to assess the model’s performance in generating ECG signals that 
closely match the ground-truth, in this case real ECG, HR values. 
As expected, MAEHR(E′) value should be lower than MAEHR(P)
value, ideally approaching to zero. We utilized two widely recognized 
algorithms for peak detection from ECG (Hamilton, 2002) and PPG 
(Elgendi et al., 2013) signals for heart rate calculation. Using those 
two algorithms is a consistent criteria to evaluate the MAE metric 
since they have been used in similar works (Tang et al., 2022; Sarkar 
and Etemad, 2020). 

7 Results

In this section, we present quantitative and qualitative results of 
our proposed Transformer-based GAN model for ECG generation. 
The impact of the self-supervised approach and different segment 
lengths is evaluated using mean values of RMSE (mV), ρ, FD, and 
MAEHR metrics under LOSO approach for both MIMIC III and 
original (Who is Alyx?) datasets, as shown in Table 2, 3, respectively.

We also evaluated the model’s performance in the absence of 
self-supervised learning. As shown in Table 2, 3, the self-supervised 
approach yielded significantly better results across all evaluated 
metrics, underscoring its effectiveness in the training process. 
Additionally, a time window analysis was performed by segmenting 
the data into 4, 8, 16, 32, 64, 96, 128 and 160-s intervals to investigate 
the temporal influence of deep features on the models’ learning 
capacity. To assess the impact of different window sizes on our 
approach, we measured MAEHR(E′) values across the same window 
lengths used as input for the model. As shown in Table 3, all metrics 
significantly improved as the window length increased up to 64 s 
for Who is Alyx?. A strong correlation between the generated ECG 
signal and the ground-truth was observed, with an RMSE of 0.22 mV 
and a ρ value of 0.907 for the 64-s window. As shown in Table 2, 
we acquired the best result with 96-s windows for the MIMIC III 
with an RMSE of 0.168 mV and a ρ value of 0.952. However, a 
slight degradation in metric values was observed starting from the 
96-s from Who is Alyx? and 128 s from MIMIC III, with further 
declines until 160-s windows. This indicates the model’s difficulty in 
effectively capturing time-series patterns for accurate reconstruction 
over longer intervals.
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TABLE 2  Our proposed PPG-to-ECG generation model was evaluated on the MIMIC III dataset as benchmark dataset. Performance was assessed across 
varying window lengths, with and without self-supervised learning, using LOSO mean values (and their standard deviations) of RMSE (mV), FD, ρ, 
MAEHR(E′), and MAEHR(P).

Segment length (s) Method RMSE (mV) FD ρ MAEHR(E′) MAEHR(P)

4
w/o Self-Supervised 0.389± 0.017 0.691± 0.020 0.756± 0.013 2.37± 0.11

7.23± 0.21
Self-Supervised 0.364± 0.015 0.642± 0.018 0.858± 0.010 2.16± 0.09

8
w/o Self-Supervised 0.352± 0.014 0.651± 0.018 0.801± 0.012 2.12± 0.10

6.78± 0.20
Self-Supervised 0.326± 0.013 0.612± 0.017 0.874± 0.009 1.94± 0.08

16
w/o Self-Supervised 0.232± 0.011 0.442± 0.015 0.808± 0.011 1.93± 0.09

6.23± 0.18
Self-Supervised 0.197± 0.010 0.421± 0.014 0.894± 0.008 1.69± 0.07

32
w/o Self-Supervised 0.198± 0.009 0.431± 0.014 0.875± 0.010 1.58± 0.08

6.01± 0.18
Self-Supervised 0.185± 0.008 0.409± 0.012 0.927± 0.008 1.14± 0.06

64
w/o Self-Supervised 0.181± 0.008 0.405± 0.013 0.911± 0.009 1.28± 0.07

5.87± 0.17
Self-Supervised 0.175± 0.008 0.386± 0.012 0.940± 0.007 1.08± 0.06

96
w/o Self-Supervised 0.172± 0.007 0.387± 0.012 0.941± 0.008 1.09± 0.06

5.45± 0.16
Self-Supervised 0.168± 0.007 0.368± 0.011 0.952± 0.007 0.88± 0.05

128
w/o Self-Supervised 0.186± 0.008 0.455± 0.014 0.895± 0.009 1.45± 0.07

5.67± 0.18
Self-Supervised 0.187± 0.008 0.422± 0.013 0.928± 0.008 1.15± 0.06

160
w/o Self-Supervised 0.298± 0.012 0.517± 0.016 0.863± 0.010 1.67± 0.08

5.82± 0.19
Self-Supervised 0.242± 0.011 0.442± 0.014 0.906± 0.009 1.38± 0.07

Overall, MIMIC III consistently yielded lower MAEHR and 
higher correlation values compared to Who is Alyx?, which 
is attributed to the controlled clinical environment of MIMIC 
III, in contrast to the motion-rich, real-world settings captured 
in the Who is Alyx? dataset—an expected and informative
distinction.

As qualitative results, Figures 6, 7 display several samples 
of ECG signals generated by our best performed model for 
Who is Alyx?, illustrating the model’s ability to reconstruct 
the shape of the original ECG signals from corresponding 64-
second-segments of PPG inputs. Figure 8 shows the samples 
generated ECG signals on MIMIC III with 96-second-segments
of PPG inputs.

7.1 Distributional comparison between 
generated and real ECG

While our proposed model demonstrates strong performance in 
generating ECG from PPG, it is also important to examine potential 
distributional differences between the generated and real ECG 
data. To this end, we utilized our Transformer-based discriminator 
to extract high-dimensional feature embeddings, following 
techniques commonly used for ECG feature representation (Singh 

and Krishnan, 2023). Specifically, we removed the final fully 
connected layer and obtained a 512-dimensional embedding from 
the preceding fully connected layer, effectively repurposing the 
discriminator as an autoencoder-like feature extractor capable of 
capturing meaningful sequential representations. For this analysis, 
we randomly generated 200 ECG samples from the test set for each 
dataset using their respective best-performing hyperparameters and 
segment lengths. Each real and generated ECG sample produced 
a 512-dimensional embedding during a forward pass through the 
discriminator.

To visualize and assess distributional similarities or 
divergences between the real and generated data, we applied t-
distributed Stochastic Neighbor Embedding (t-SNE), a nonlinear 
dimensionality reduction technique that projects high-dimensional 
data into a low-dimensional (2D or 3D) space while preserving 
local neighborhood structure. We present the resulting 2D t-
SNE scatter plots in Figure 9. The perplexity and learning rate 
parameters of t-SNE were set to 50 and 600, respectively, for
both datasets.

Furthermore, to quantitatively evaluate the similarity between 
the distributions of real and generated ECGs, we computed 
two complementary two-sample statistical divergence measures: 
Maximum Mean Discrepancy (MMD2) (Gretton et al., 2012) 
and Energy Distance (ED2) (Székely and Rizzo, 2013), using the 
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TABLE 3  We present PPG-to-ECG generation results using our Transformer-based GAN model on Who is Alyx? dataset. LOSO mean values (and their 
standard deviations) are reported with and without self-supervised learning, evaluated using RMSE, FD, ρ, MAEHR(E

′), and MAEHR(P) across various 
window lengths.

Segment length (s) Method RMSE (mV) FD ρ MAEHR(E′) MAEHR(P)

4
w/o Self-Supervised 0.541± 0.027 0.904± 0.031 0.661± 0.020 7.12± 0.42

12.56± 0.45
Self-Supervised 0.478± 0.024 0.782± 0.029 0.786± 0.018 7.03± 0.39

8
w/o Self-Supervised 0.507± 0.025 0.729± 0.028 0.772± 0.019 5.68± 0.36

11.34± 0.42
Self-Supervised 0.437± 0.022 0.667± 0.027 0.842± 0.017 4.83± 0.33

16
w/o Self-Supervised 0.412± 0.023 0.673± 0.026 0.788± 0.018 5.12± 0.34

10.43± 0.40
Self-Supervised 0.344± 0.021 0.606± 0.025 0.852± 0.016 3.41± 0.30

32
w/o Self-Supervised 0.319± 0.022 0.589± 0.025 0.798± 0.018 4.89± 0.33

10.21± 0.39
Self-Supervised 0.280± 0.020 0.534± 0.024 0.874± 0.015 2.95± 0.28

64
w/o Self-Supervised 0.273± 0.020 0.552± 0.024 0.843± 0.017 3.74± 0.31

10.27± 0.38
Self-Supervised 0.220± 0.018 0.493± 0.022 0.907± 0.015 2.84± 0.26

96
w/o Self-Supervised 0.316± 0.023 0.623± 0.027 0.829± 0.018 4.01± 0.33

10.33± 0.39
Self-Supervised 0.252± 0.021 0.586± 0.025 0.854± 0.017 3.03± 0.27

128
w/o Self-Supervised 0.323± 0.023 0.648± 0.028 0.793± 0.019 4.24± 0.34

10.39± 0.40
Self-Supervised 0.267± 0.022 0.591± 0.026 0.839± 0.017 3.13± 0.28

160
w/o Self-Supervised 0.351± 0.025 0.682± 0.029 0.778± 0.020 4.55± 0.36

10.42± 0.41
Self-Supervised 0.300± 0.023 0.654± 0.028 0.831± 0.018 3.34± 0.29

learned feature embeddings. Both metrics provide non-parametric 
assessments of distributional differences by measuring discrepancies 
in pairwise distances between samples. In addition, we performed 
hypothesis testing under the null hypothesis (H0) that the real 
and generated samples originate from the same distribution, 
using a significance level of 0.05. The resulting MMD2, ED2, and 
permutation-based p-values for each dataset are reported in Table 4.

Ideally, both MMD2 and ED2 values should approach zero, 
indicating minimal divergence and substantial overlap between 
the two distributions in feature space. The obtained scores indeed 
suggest that the average pairwise distances between the real and 
generated feature sets are highly similar. The permutation p-values 
( > 0.05) further indicate insufficient statistical evidence to reject 
H0, implying that the distributions are indistinguishable under 
these tests.

Notably, the divergence scores for the Who is Alyx? dataset 
are slightly higher than those for MIMIC III, reflecting the greater 
presence of motion artifacts and noise, which can partially obscure 
the extraction of stable ECG-specific features. This observation 
aligns with the t-SNE visualizations in Figure 9: while the 
MIMIC III feature embeddings for real and generated ECGs 
exhibit strong overlap, the Who is Alyx? feature embeddings 
display minor cluster separation, indicating subtle distributional 

differences. These results are consistent with the observed 
morphological similarity between real and generated ECG signals, 
while also highlighting the inherent challenges posed by motion-
distorted data. 

8 Practical implementation: AF 
detection with deep learning

To demonstrate the practical utility of the proposed model 
and assess whether the generated ECG signals behave similarly 
to real ECG in downstream clinical tasks, we performed 
an Atrial Fibrillation (AF) detection experiment using the 
MIMIC PERform AF dataset. AF is typically characterized in 
ECG recordings by the absence of P-waves, irregular baseline 
fluctuations between QRS complexes, and increased beat-to-
beat variability. Given the adequacy of both dataset size and 
segment duration, we implemented two widely adopted deep 
learning architectures, Bidirectional LSTM (Bid-LSTM) and 
a hybrid CNN + LSTM model which have shown strong 
performance across numerous sequence classification tasks in 
the literature. These models were trained to classify each ECG 
segment as either AF or non-AF (normal sinus rhythm). To 
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FIGURE 6
We present four distinct ECG samples (with different colors) generated by our proposed best performed Transformer-based GAN model on Who is 
Alyx? dataset. These four samples illustrate cases with minimal motion distortion, providing a clear representation and demonstrating the robust 
generation capability of the model for ECG signals. For each PPG sample (green color), corresponding real ECG (blue color), generated ECG (yellow 
color) and overlayed (original and generated) ECG signal (blue + yellow color) samples are displayed, respectively.

ensure fair optimization and robust performance, we conducted 
a grid search to identify the best-performing hyperparameters 
for each architecture, using the same parameter search space
defined in Table 1. 

8.1 Bid-LSTM model

Bid-LSTM model consists of five layers: two LSTM layers 
with 128 hidden units each, a dropout layer with a dropout 
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FIGURE 7
We present four distinct ECG samples (with different colors) generated by our proposed best performed Transformer-based GAN model on Who is 
Alyx? dataset. These four samples specifically highlight cases with motion artifacts, demonstrating the model’s performance under challenging 
conditions involving signal distortion. For each PPG sample (green color), corresponding real ECG (blue color), generated ECG (yellow color) and 
overlayed (original and generated) ECG signal (blue + yellow color) samples are displayed, respectively.

probability of 0.5, and two fully connected layers with 256 
units. The input to the first LSTM layer is a tensor of shape 
(batch size, time window, features). Each LSTM layer outputs a 

tensor of shape (batch size, LSTM hidden size), corresponding 
to the final hidden states after processing the full temporal 
sequence. Following the dropout operation, the resulting 
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FIGURE 8
We present four distinct ECG samples (with different colors) generated by our proposed best performed Transformer-based GAN model on MIMIC III 
dataset. Comparing to Who is Alyx? dataset, MIMIC III has less motion artefacts and emotional changes. For each PPG sample (green color), 
corresponding real ECG (blue color), generated ECG (yellow color) and overlayed (original and generated) ECG signal (blue + yellow color) samples are 
displayed, respectively.

representation is passed through the two fully connected 
layers, each utilizing a ReLU activation function (Nair and 
Hinton, 2010). Unlike a standard unidirectional LSTM, the 

Bid-LSTM architecture concatenates the hidden states from 
both forward and backward temporal passes. This bidirectional 
processing enables the network to capture dependencies 
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FIGURE 9
Two-dimensional t-SNE projections of learned feature embeddings for 200 real and 200 generated ECG samples for MIMIC III (left) and Who is Alyx 
(right) datasets.

TABLE 4  Two-sample squared Maximum Mean Discrepancy (MMD2) and 
squared Energy Distance (ED2) values, along with permutation test 
p-values for the null hypothesis (H0).

Dataset MMD2 p-value ED2 p-value

MIMIC III 0.011± 0.002 0.84 0.032± 0.005 0.73

Who is Alyx? 0.015± 0.004 0.78 0.043± 0.011 0.69

from both past and future time steps, thereby improving its 
ability to learn discriminative temporal features relevant for
AF classification. 

8.2 CNN + LSTM model

The hybrid CNN–LSTM architecture comprises ten layers: 
two 1D convolutional layers (Conv1D), two max-pooling layers, 
a dropout layer, followed by the same five layers used in the 
Bid-LSTM model (two LSTMs, one dropout layer, and two fully-
connected layers). The input to the first Conv1D layer has the 
shape (batch size, time window, features). Both Conv1D layers 
use a kernel size of 4, ReLU activation, and a number of filters 
equal to the input dimensionality expected by the subsequent 
LSTM layers. Each Conv1D layer is followed by max pooling 
with a pool size of 2 and a stride of 2, reducing the temporal 
dimension while preserving salient local temporal features. 
After the second pooling layer, the output tensor has the form 
(batch size, reduced time window, LSTM input size), making 
it directly compatible with the LSTM layers. The subsequent 
LSTM and fully connected layers mirror the configuration 
used in the Bid-LSTM model, enabling the hybrid network to 

leverage both local convolutional feature extraction and long-range
temporal modeling. 

8.3 Data generation and training

As a preliminary step, we fine-tuned the discriminator of 
our proposed model, as described in Section 5.4.2, using ECG 
data from 7 participants (4 AF, 3 non-AF) to capture AF-specific 
morphological patterns. For the AF detection task, the dataset 
was partitioned into training and testing sets at approximately a 
0.68/0.32 ratio, resulting in 19 participants (10 AF, 9 non-AF) 
for training and 9 participants (5 AF, 4 non-AF) for testing. 
After applying min–max normalization, 30-s segments were used 
as inputs for each classifier. Using the PPG data of all 28 
train + test participants, we generated corresponding ECG data 
with our proposed PPG-to-ECG model to create both training 
and testing sets for evaluation. The testing participants were 
deliberately selected to differ from those in the training set to assess 
subject-independent generalization performance. Additionally, 10% 
of the training data was randomly allocated as a validation 
set for hyperparameter optimization. The Bid-LSTM model was 
trained for 70 epochs and the CNN + LSTM model for 110 
epochs, both with a batch size of 128 and the Adam optimizer
(Kingma and Ba, 2014). 

8.4 Evaluation and results

8.4.1 Data mixing for training
To examine the contribution of generated ECG data in the 

AF detection task, we systematically varied the proportion of 
generated data used during training. We first trained the classifiers 
using only real ECG data (100%) as a baseline. Subsequently, 
generated ECG samples were incorporated in increments of 25% 
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TABLE 5  AF detection performance (accuracy, precision, recall/sensitivity, and F1-score) of the CNN + LSTM and Bid-LSTM models across varying 
proportions of real and generated ECG data used in the training set.

Train set partition 
(%)

Model Accuracy Precision Recall F1-score

Real Gen

100 0
CNN + LSTM 0.922 0.916 0.946 0.931

Bid-LSTM 0.951 0.949 0.967 0.957

75 25
CNN + LSTM 0.908 0.913 0.915 0.903

Bid-LSTM 0.938 0.941 0.923 0.928

50 50
CNN + LSTM 0.884 0.879 0.892 0.889

Bid-LSTM 0.913 0.921 0.902 0.921

25 75
CNN + LSTM 0.862 0.854 0.872 0.867

Bid-LSTM 0.908 0.913 0.898 0.913

0 100
CNN + LSTM 0.858 0.863 0.868 0.861

Bid-LSTM 0.892 0.901 0.897 0.899

TABLE 6  AF detection performance (accuracy, precision, recall, and 
F1-score) of the CNN + LSTM and Bid-LSTM models evaluated 
exclusively on the generated ECG test set.

Model Accuracy Precision Recall F1-score

CNN + LSTM 0.864 0.849 0.887 0.868

Bid-LSTM 0.906 0.882 0.933 0.907

while maintaining a constant total training set size. Performance 
was assessed using accuracy, precision, recall (sensitivity), and F1-
score on the real test set. The results summarizing the models’ 
learning behavior across different mixing ratios are presented
in Table 5.

8.4.2 Testing with generated test data
To evaluate whether the generated ECG signals can function 

as reliable surrogates for real ECG in practical deployment 
scenarios, we trained the AF classifiers exclusively on real ECG 
data and tested them on the generated ECG data generated 
for the test participants. This mirrors the real-world use 
case where a PPG-to-ECG model would supply the ECG 
input for downstream diagnostic algorithms. The resulting 
performance metrics are reported in Table 6. Confusion matrices 
for the best-performing training configuration are shown
in Figure 10.

8.4.3 Performance summary
Across all training and testing conditions, the Bid-LSTM 

model consistently outperformed the CNN + LSTM model. Its 
bidirectional structure, which processes information from both past 

and future temporal states, provided a clear advantage in capturing 
the sequential dependencies characteristic of AF rhythms, an ability 
that the CNN + LSTM architecture struggled to match.

Using only real ECG for both training and testing, the Bid-LSTM 
achieved the best performance with 95.1% accuracy and 95.7% F1-
score, closely aligning with the results reported in (John et al., 2025) 
(95.9% accuracy). As the proportion of generated ECG data 
increased, accuracy declined by approximately 5.9%, which was 
expected due to the accumulating deviation from real data 
morphology. Nonetheless, training with only generated ECG data 
still yielded an accuracy of 89.2%, demonstrating strong diagnostic 
utility. Importantly, when evaluating solely on generated test ECG 
signals, the classifier exhibited good performance with 90.6% 
accuracy using Bid-LSTM, comparable to testing on real ECG, 
indicating that the generated data produced by our model retain 
the salient AF-related patterns necessary for reliable automated 
diagnosis. These results provide compelling empirical evidence that 
PPG-derived ECG from our model can serve as a viable input for 
downstream cardiovascular disease detection applications. 

8.5 Measurement of baseline fluctuations

Baseline fluctuations in ECG signals play a crucial role in 
clinical diagnosis, particularly for conditions such as arrhythmias, 
ischemia, and conduction abnormalities. Therefore, it is essential 
to evaluate how closely the generated ECG baseline follows 
the real ECG baseline. To investigate this, we conducted two 
complementary analyses: 

8.5.1 Baseline evaluation via QRS removal
We first applied the Pan–Tompkins QRS detection algorithm 

(Pan and Tompkins, 1985) to identify and remove the QRS 
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FIGURE 10
Confusion matrices illustrating AF detection performance on the generated ECG test set for the CNN + LSTM and Bid-LSTM models.

TABLE 7  Baseline analysis of real and generated ECG signals from the test set of the MIMIC PERform AF Dataset. The first three columns present 
baseline comparisons using mean RMSE, FD, and ρ metrics. The final column reports the difference in band-limited (0.05–9 Hz) total spectral power 
(mV2) between real and generated ECGs.

MIMIC PERform AF dataset RMSE (mV) FD ρ Total band power (mV2)

Non-AF ECG 0.174± 0.024 0.365± 0.073 0.949± 0.121 0.014± 0.004

AF ECG 0.187± 0.054 0.387± 0.091 0.921± 0.153 0.018± 0.006

complexes from both real and generated ECG signals, isolating 
the baseline components (including P- and T-wave regions). 
The remaining non-QRS samples were linearly interpolated to 
obtain a continuous approximation of the underlying baseline 
morphology. This approach also allowed us to assess the generative 
model independently of heart-rate-related metrics, which are 
primarily determined by the QRS complex. Subsequently, we 
computed RMSE (mV), FD, and ρ between the real and generated 
baseline data for all test samples, with results summarized 
in Table 7. To provide qualitative insight, baseline fluctuation 
patterns from one AF and one non-AF participant are visualized
in Figure 11.

8.5.2 Spectral analysis of baseline dynamics
To further evaluate whether the generated ECG preserves the 

frequency characteristics of baseline fluctuations, we performed 
power spectral density (PSD) analysis using the Welch periodogram 
method (Welch, 1967). The analysis focused on the 0.05–9 Hz range, 
which encompasses two diagnostically relevant bands: (i) 0.05–1 Hz, 
associated with baseline wandering and slow morphological 
variations, and (ii) 3–9 Hz, where atrial fibrillation–related 
fibrillatory activity and the absence of organized P-waves are 
typically observed (Bollmann et al., 1998). Band-limited total 
spectral power was computed for real and generated ECGs in both 
AF and non-AF classes, and the results are reported in Table 7. 
PSD comparisons for two representative participants (one AF, one 
non-AF) are shown in Figure 11.

Overall, both quantitative and qualitative results demonstrate 
that the generated ECGs closely follow the baseline dynamics of 
real ECGs across AF and non-AF conditions. These dynamics 
are maintained consistently in both the time and frequency 

domains. While AF reconstruction shows slightly lower similarity 
scores, likely due to the highly variable and patient-specific 
morphology of AF baseline characteristics, the deviations 
remain within an acceptable range. Importantly, the fidelity 
of the generated baseline was sufficient to yield strong AF 
detection performance, supporting the practical viability of the
generated data. 

9 Discussion

We have demonstrated that the utilization of PPG signals 
from unobtrusive wearable devices as a simple setup, combined 
with appropriate GAN model and a supportive self-supervised 
learning, yields excellent results in synthesis ECG signals. Our 
proposed approach involves the use of a Transformer-based GAN 
model in conjunction with self-supervised signal transformation 
technique, achieving 0.22 mV RMSE value and 0.907 Pearson 
correlation coefficient (ρ) value (see Table 3) on Who is Alyx?. 
Also, our study shows that the ECG generated by our Transformer-
based GAN model provides more reliable heart rate measurements 
compared to the original input PPG, reducing the error from 
10.27 BPM (measured from the PPG) to 2.84 BPM (measured 
from the generated ECG) with 72.4% for 64-s window segments. 
Furthermore, we utilized MIMIC III dataset as baseline an achieved 
of 0.168 mV RMSE and 0.952 ρ value and %83.9 error reduction 
on this dataset. This outperforms previous works employing 
PPG data as input for ECG synthesis, including complex signal 
processing approaches and machine/deep learning techniques
on this dataset. 
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FIGURE 11
Qualitative comparison of real and generated ECG signals for two participants (AF and non-AF) from the MIMIC PERform AF Dataset. Top row: 
Representative 30-s segments of AF and non-AF ECG signals. Middle row: Baseline fluctuation profiles of real and generated ECGs from the full 
20-min recordings, shown with mean values and standard deviations. Bottom row: Power spectral density (PSD) plots for AF and non-AF ECG signals, 
highlighting the 0.05–9 Hz frequency band relevant for baseline characterization and AF detection.

9.1 Comparison with similar works from 
literature

A comparison with recent state-of-the-art studies that are most 
similar to our PPG-to-ECG generation work, particularly those 
employing GAN or deep learning models, is presented in Table 8. 
(Zhu et al., 2021). used DCT approach to acquire the relationship 
between PPG-ECG pairs. However, their approach demonstrated 
limited generalization to previously unseen participants and 
required extensive signal transformation and segmentation steps, 
rendering it unsuitable for end-to-end deployment. In terms of 
dataset diversity, the data used in (Zhu et al., 2021; Tian et al., 2023) 
were acquired in controlled clinical settings and lack motion artifacts 
or variability from daily-life activities. As such, the robustness 
and applicability of their models to real-world scenarios involving 
movement and noise remain uncertain. (Sarkar and Etemad, 2020). 
proposed CycleGAN-based solution for ECG generation. However, 
their model exhibited poor performance on the cases of involving 
noisy and motion artifacts. Furthermore, they reported lower 
MAEHR(P) values (9.74) in their study compared to ours. This 
is also a strong indication that our dataset contains substantial 
motion artifacts, which distorts PPG signals, thereby increasing the 
difficulty of accurate heart rate calculation. Also, they reported 70% 
error reduction and we outperformed their result with 83.9% on 
similar clinical dataset. Additionally, works such as (Vo et al., 2021; 
Zhu et al., 2021; Tang et al., 2022) partitioned their datasets 

into training and testing sets without separating participants. This 
practice raises concerns in machine learning research, as evaluating 
a model’s performance on unseen participants is crucial for assessing 
generalization. Consequently, their reported results may not reliably 
reflect the model’s capability in real-world deployment or across new 
individuals.

A review of recent studies (2023–2024) on PPG-to-ECG 
signal generation indicates meaningful progress (Table 8); 
however, several critical limitations remain, particularly concerning 
subject-independent generalization, robustness to motion-induced 
artifacts, and reliance on highly curated or heavily preprocessed 
datasets. For example, (Shome et al., 2024), proposed the Region-
Disentangled Diffusion Model, a diffusion-based U-Net architecture 
that reconstructs ECG segments using region-specific noise 
injection. Although this method achieved RMSE values of 0.22 
on MIMIC and 0.24 on BIDMC, the framework depends on 
carefully controlled noise injection across predefined waveform 
segments. Moreover, the substantial performance drop in AF 
detection (accuracy of only 0.65) using the generated ECG suggests 
diminished reliability under conditions involving uncontrolled 
motion artifacts. Similarly, (Vo et al., 2024), introduced an attention-
based deep state-space model for PPG-to-ECG translation. 
Despite its conceptual strengths, the approach requires explicit 
peak detection and noise-injection procedures, raising concerns 
about its viability as a fully end-to-end system in realistic 
environments. Furthermore, the relatively low ρ values reported 
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TABLE 8  Comparative summary of state-of-the-art ECG signal generation studies that utilize PPG as direct input, specifically to their GAN or deep 
learning models. Our results are presented alongside these studies for reference. The abbreviation “NR” indicates that the corresponding metric was 
not reported.

Work Setup Dataset Segment 
length (s)

Methods RMSE (mV) ρ

Sarkar and Etemad 
(2020)

Various PPG-ECG 
Setup

DALIA, BIDMC, 
CAPNO, WESAD

4 CycleGAN-based 0.396 NR

Zhu et al. (2021) Medical PPG-ECG, 
Empatica

MIMIC III, 
Self-collected

24 beats DCT 0.599, 0.447 0.790, 0.895

Tang et al. (2022) Medical PPG-ECG 
Setup

MIMIC III 48 Bil-LSTM 0.403 0.904

Vo et al. (2021) Medical PPG-ECG 
Setup

MIMIC II 3 Wasserstein GAN 0.238 0.835

Tian et al. (2023) Medical PPG-ECG 
Setup

MIMIC III 3 Dictionary Learning 0.39 0.88

Lan (2023) Medical PPG-ECG 
Setup

BIDMC 4 Patch-based 
Transformer

0.29 NR

Abdelgaber et al. (2023) Medical PPG-ECG 
Setup

MIMIC II 1 beat LSTM-based 
Autoencoder

0.35 0.923

Guo et al. (2024) Medical PPG-ECG 
Setup

MIMIC III 3 UNet-BidLSTM 0.077 0.861

Shome et al. (2024) Various PPG-ECG 
Setup

BIDMC, MIMIC III 4 Diffusion Model 
(UNet)

0.24, 0.22 NR

Vo et al. (2024) Medical PPG-ECG 
Setup

MIMIC III 4 State-Space Attention 0.076 0.847

Belhasin et al. (2025) Medical PPG-ECG 
Setup

MIMIC III 8 UA-P2E 0.222 NR

Our work Polar H10, Empatica Who is Alyx?, MIMIC 
III

64 Self-Supervised 
Transf-GAN

0.22, 0.168 0.907, 0.952

indicate suboptimal waveform reconstruction fidelity, a key metric 
for evaluating generation success.

Transformer-based approaches have also recently emerged. For 
instance, (Lan, 2023), employed a shifted patch-based attention 
mechanism enhanced with multimodal digital biomarkers. While 
innovative, this design requires manually engineered patch 
structures and multiple signal modalities, substantially increasing 
computational complexity and limiting applicability in wearable or 
real-time deployment scenarios. Likewise, (Belhasin et al., 2025), 
proposed a diffusion model incorporating uncertainty-aware 
classification, but their reliance on noise-injected clinical datasets 
limits exposure to real-world motion artifacts, constraining validity.

Conventional deep learning frameworks have also shown 
limitations. (Abdelgaber et al., 2023). developed a convolutional 
LSTM-based autoencoder that achieved an RMSE of 0.35 mV 
and 0.923 ρ on MIMIC II. However, the model required 
extensive preprocessing pipelines—including peak detection, 
beat segmentation, augmentation, and beat stitching—creating 
additional failure points under noise and complicating end-to-end 
deployment. Similarly, (Guo et al., 2024), utilized a U-Net–BiLSTM 
architecture with strong local reconstruction metrics (e.g., RMSE 

0.077 mV, ρ 0.861), yet the evaluation was limited to short 3-
s windows and still depended on R-peak detection, restricting 
long-duration applicability and generalization under motion.

In contrast, our transformer-based GAN solution overcomes 
these limitations through a combination of self-supervised pre-
training and fine-tuning, enabling robust subject-independent 
performance even on datasets rich in motion artifacts. Compared 
to other models such as CycleGAN (Zhu et al., 2017) and 
LSTM-based architectures, our Transformer-based GAN approach 
achieved lower RMSE and higher fidelity in synthesizing ECG 
signals. The leave-one-subject-out (LOSO) validation strategy 
further validated our model’s robustness, demonstrating improved 
performance across different datasets and subject-specific variances. 
Moreover, none of these previous studies have attempted
the following:

• To implement self-supervised method to overcome lower 
generalization capability issue for ECG generation including 
fine-tuning for smaller datasets.

• To implement the solution on a dataset including high level of 
motion artifacts.
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In our work, we mainly pioneered to address these issues, hence 
improved the generation performance. 

9.2 Remarks on results

The integration of the Transformer model into our GAN 
framework led to superior performance, primarily due to its 
attention mechanism, which effectively captures long-range 
dependencies in sequential data. This capability enhanced the 
model’s ability to focus on relevant signal components, thereby 
improving the quality of the generated ECG signals. Additionally, 
our original dataset employed in this study played a crucial role 
in this improvement. Its substantial size provided the necessary 
data diversity to learn intricate features and adequately train the 
model, which is essential for achieving robust signal generation in 
data-hungry deep learning approaches.

Among the various window lengths tested, 64-s and 96-
s segment lengths provided the best balance between model 
complexity and synthesis accuracy. This window length captured 
sufficient cardiac cycle information, optimizing the model’s learning 
capacity without overfitting. Additionally, longer segments would 
require more complex models, which are harder to train with limited 
data. Shorter segments are faster to process, allowing for more 
training epochs and smaller learning rates.

The results indicate that our method accurately captures 
the physiological relationship between PPG and ECG signals, 
as evidenced by lower RMSE and higher Pearson correlation 
coefficients compared to previous studies. Specifically, the use 
of Transformer-based GAN architecture with incorporating 
self-supervised learning significantly improved ECG signal 
reconstruction quality and allowed our model to achieve better 
generalization and performance. The self-supervised approach 
facilitated robust feature extraction, improving the synthesis 
accuracy, particularly in scenarios involving varying segment 
lengths and motion artifacts.

We deliberately presented both relatively straightforward and 
challenging scenarios for ECG generation in Figures 6–8. Figures 6, 8 
demonstrate the superior performance of ECG signal generation 
from minimally distorted (low-noise) PPG signals both from Who 
is Alyx? and MIMIC III datasets. The MIMIC III dataset, collected 
within an intensive care unit (ICU) setting, where patients typically 
remain at rest with limited physical or emotional activity, exhibits 
stable signal morphology and reduced motion artifacts. As a result, 
ECG generation from PPG on this dataset is inherently less complex, 
which is reflected in the elevated metric scores observed. In 
contrast, the Who is Alyx? includes real-world variability, motion an 
emotional fluctuations, making ECG generation more challenging, 
thereby demonstrating the robustness and generalizability of our 
model across diverse conditions.

Wristband-based measurements often introduce substantial 
motion artifacts due to their usage during daily activities, making 
them generally more susceptible to noise compared to chest straps, 
which offer greater positional stability. Despite the heavy distortion 
caused by motion artifacts in the PPG signals, as shown in Figure 7, 
our model exhibits remarkable efficacy in generating ECG signals 
while preserving temporal variations. Notably, key ECG amplitude 
features such as the R-peaks, P-waves, and T-waves are accurately 

reconstructed, even when the PPG signal’s peaks and troughs are 
affected by motion artifacts. Moreover, although motion artifacts 
obscure true beat-to-beat intervals in PPG signals, leading to 
irregular or inconsistent heartbeat timings, the model effectively 
preserves and reflects heart rate variability.

Having demonstrated AF detection as a practical application 
achieving 89.2% accuracy when trained with generated ECG data 
and 90.6% accuracy when evaluated on generated test data, we 
note that these results may vary depending on several factors, 
including dataset size, demographic characteristics, the presence 
of motion artifacts, and the choice of machine learning models. 
We utilized the MIMIC PERform AF dataset; however, larger and 
more diverse datasets are likely to further improve performance. 
Similar considerations also apply to the baseline fluctuation analysis, 
where increased data diversity and scale may yield more robust 
and generalizable findings. Synthesizing ECG from PPG signals is 
advantageous for the healthcare sector, particularly for applications 
in wearable technology and long-term health monitoring. It 
provides a cost-effective, non-invasive alternative for continuous 
cardiac monitoring, facilitating early detection of cardiovascular 
conditions. The widespread availability of PPG sensors in wearable 
devices underscores the practical utility of our approach in real-
world health monitoring scenarios. 

9.3 Limitations

Training GAN models in a stable manner poses inherent 
challenges due to issues such as mode collapse and catastrophic 
forgetting. To address these challenges, we incorporated a gradient 
penalty term (with Wasserstein loss, see Figure 5) and leveraged 
self-supervised learning, respectively, which also aimed to enhance 
the generalization capability of the models. However, integrating a 
combination of Transformer and LSTM models within the GAN 
architecture could potentially result in more stable training and 
might further improve performance outcomes.

Our model struggled in scenarios involving extreme motion 
artifacts, which introduced noise that the current architecture could 
not adequately filter. This suggests a need for more advanced 
noise-handling techniques or the incorporation of additional 
data modalities. Future iterations of this model could benefit 
from integrating accelerometer (ACC) data, which might improve 
performance by providing context on motion-related noise. ACC 
data could help differentiate between physiological signal variations 
due to motion and genuine cardiac events, thus enhancing the 
fidelity of the generated ECG.

Participant demographic factors such as age, gender, ethnicity, 
and health status significantly influence both PPG and ECG 
signals and thus affect the model’s generalization capability. For 
example, differences in skin tone can impact the accuracy of PPG 
measurements, while age-related changes in heart rate variability 
(HRV) could alter ECG patterns. Participants with specific cardiac 
conditions, such as comorbidities or rare cardiac anomalies, and 
those influenced by geographic and lifestyle factors (e.g., physical 
activity levels, diet, stress) may exhibit variations in cardiac signals. 
A lack of diversity in these factors could result in biased models that 
fail to generalize effectively across broader populations.
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Furthermore, variability among wearable devices in terms of 
sensor quality, resolution, and sampling frequency can affect the 
fidelity of PPG and derived ECG signals. For instance, lower-
resolution sensors may miss subtle waveform details, reducing 
the quality of model inputs. The placement of wearable devices 
on different anatomical locations (e.g., wrist, finger, ear) and 
environmental factors such as motion artifacts, ambient light, 
and temperature can also introduce noise or alter PPG signal 
morphology. Lastly, the absence of standardized calibration 
protocols across devices could result in discrepancies in collected 
data, further limiting the model’s generalization capability. 

10 Conclusion

We demonstrated that our Transformer-based ECG generation 
model showed superior performance by reducing the heart rate error 
83.9% and 0.168 mV RMSE on MIMIC III, 72.4% and 0.22 mV RMSE 
on Who is Alyx? with help of self-supervised learning. In addition to its 
relevance for the AI community, our proposed solution holds promise 
for broader applications in the healthcare and wearable technology 
sectors, particularly in the realm of continuous health monitoring. 
Through our practical AF detection experiment, we further provided 
compelling proof-of-concept evidence that the generated ECG signals 
carry clinically meaningful information. Cardiac activity monitoring is 
a crucial component of continuous health monitoring systems, which 
may facilitate the early diagnosis of cardiovascular diseases. This early 
detection could, in turn, prompt preventative actions that help mitigate 
serious cardiac conditions. However, as previously mentioned, there 
lacks a universally applicable solution for everyday continuous ECG 
monitoring. Our study addresses this deficiency by employing PPG 
signals, which can be readily obtained from nearly all commercially 
available wearable devices. We incorporate these signals into our newly 
developed Transformer-based GAN framework to accurately capture 
and generate ECG signals, reflecting users’ cardiac information. This 
integration aims to bridge the gap in current continuous cardiac 
monitoring technologies. This model is expected to be used in wearable 
devices as an effective alternative for a low-cost, long-term health or 
fitness monitoring application. 

10.1 Future work

Future work will focus on enhancing model robustness, 
particularly against motion artifacts, by incorporating ACC data. 
For example, in the Who is Alyx? dataset, ACC data was collected 
alongside ECG capture from Polar H10 chest strap. Integrating this 
data which provides insights into chest movements and breathing-
induced motion, may improve ECG generation by providing 
contextual information for artifact mitigation. Beyond heart rate 
estimation, the proposed model has potential applications in cardiac 
health monitoring, including arrhythmia detection, cardiovascular 
disease diagnosis, and conditions such as atrial fibrillation and 
ischemia. We also plan to extend its use to new domains, such 
as emotion recognition (e.g., stress, fear), where generated ECG 
may offer superior performance over PPG-based methods in 
wearable systems.
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