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Up to one-third of patients with localized colorectal cancer (CRC) relapse 
after curative-intent resection, as conventional markers like carcinoembryonic 
antigen (CEA) and scheduled CT/MRI often fail to detect micro-metastatic 
disease early. Advanced imaging, particularly radiomics, and liquid biopsy with 
circulating tumor DNA (ctDNA) are emerging as complementary tools to 
address this challenge. Radiomics extracts high-throughput image features to 
quantify risk and track response, with reported AUCs often ranging from 0.70 
to 0.85. Concurrently, ctDNA has proven to be the strongest postoperative 
prognostic marker for recurrence in stage II-III CRC, providing surveillance lead 
times of 3–11 months over conventional methods. The landmark DYNAMIC 
trial demonstrated that ctDNA-guided adjuvant therapy safely reduced 
chemotherapy uses without compromising survival. By integrating ctDNA’s 
temporal “signal” with imaging’s spatial “localization,” clinicians can accelerate 
the detection of oligometastatic relapse, personalize surveillance, and refine 
treatment monitoring. This review synthesizes the evidence supporting this 
integrated approach, outlining the path toward a proactive, precision-based 
standard of care in postoperative CRC management, while also addressing the 
key challenges of standardization and clinical validation that must be overcome.
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 1 Introduction

Colorectal Cancer (CRC) represents a formidable global public health challenge. 
According to global cancer statistics, CRC is the third most diagnosed malignancy 
worldwide in both men (following lung and prostate) and women (following breast 
and lung) and remains a primary driver of cancer-related mortality (Simon, 2016; 
Zaki et al., 2022). Despite overall declines in cancer mortality, an alarming trend has 
emerged: the rapidly rising incidence of CRC in younger populations. Data indicate that 
CRC incidence among adults under 55 years of age is increasing by 1%–2% annually 
(Simon, 2016; O'Connell et al., 2004; Siegel et al., 2023). This epidemiological shift has had 
devastating consequences. Today, it has become the leading cause of cancer death within 
this age group (Bhandari et al., 2017).
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For localized CRC, curative-intent surgical resection remains 
the primary treatment modality. However, the intent of a “curative” 
resection is frequently subverted by postoperative recurrence, which 
poses a substantial threat to long-term patient survival. The risk of 
recurrence is significant and pervasive across stages. Even among 
the earliest Stage I patients, recurrence rates are reported between 
5.0% and 15.04%, indicating considerable heterogeneity even in 
early-stage disease (Nors et al., 2024; Gura and ya, 2019). For Stage 
II patients, the 5-year disease-free survival (DFS) is approximately 
81.9%, with 5-year cumulative recurrence rates between 9.3% and 
13% (Nors et al., 2024; Xiong et al., 2023; Böckelman et al., 2015). 
The prognosis is more severe for Stage III patients, where the 
5-year DFS drops to 73.5%, signifying that over a quarter of 
these patients will experience disease relapse (Nors et al., 2024; 
Böckelman et al., 2015; Chen et al., 2021). Given these stark 
disparities, timely, affordable, and reliable prognosis and survival 
prediction are essential for precision clinical oncology. Accurate 
predictions pave the way for personalized risk and prognostic 
stratification, empowering clinicians to make informed treatment 
decisions and manage patient care effectively.

This high rate of relapse illuminates a central dilemma 
in current clinical practice: postoperative recurrence is not a 
de novo disease, but rather the clinical manifestation of pre-
existing, occult micrometastatic disease that evades detection by 
conventional means—namely, Minimal Residual Disease (MRD) 
(Chakrabarti et al., 2022; Bork et al., 2014). The current gold 
standard for clinical risk stratification, the TNM staging system, 
relies predominantly on macroscopic assessment via conventional 
imaging (CT, MRI) and histopathology (Van Cutsem et al., 2016; 
García-Figueiras et al., 2018; Caruso et al., 2024). However, the high 
frequency of recurrence explicitly demonstrates the limitations of 
TNM staging in identifying patients harboring MRD; the resolution 
of these conventional tools is insufficient to detect disease burden at 
the microscopic level.

This limitation of TNM staging creates two critical clinical 
challenges: the “over-treatment” of patients who may already 
be cured by surgery alone (e.g., a subset of Stage II patients) 
(Habib et al., 2025), exposing them to the significant toxicities 
of adjuvant chemotherapy; and the “under-treatment” of 
patients harboring MRD who are otherwise classified as 
low-risk by conventional staging, providing a false sense 
of security (Yang et al., 2024). Consequently, a paradigm shift 
in clinical practice is urgently required. We transition beyond 
the current reliance on “anatomical detection” of macroscopic 
relapse and move toward the “molecular prediction” and “early 
functional detection” of occult disease. This mini review aims 
to explore this emerging paradigm: the integration of advanced 
imaging technologies and multi-omics (particularly liquid biopsies) 
to redefine CRC postoperative risk stratification and achieve truly 
individualized surveillance strategies. 

2 Advanced imaging for postoperative 
surveillance: the role of radiomics

Standard-of-care postoperative surveillance relies heavily on 
scheduled computed tomography (CT) of the chest, abdomen, and 
pelvis, with magnetic resonance imaging (MRI) often reserved 

for pelvic surveillance in rectal cancer or problem-solving. These 
modalities, when interpreted conventionally by radiologists, 
function as anatomical tools. They are designed to detect 
macroscopic structural changes--such as new masses, enlarging 
lymph nodes, or organomegaly. This approach is inherently reactive; 
it identifies recurrence only after a significant tumor burden has 
been established, often failing to detect the micro-metastatic disease 
responsible for relapse during the window of curability. 

2.1 Defining radiomics: mining the invisible

Radiomics involves the high-throughput extraction of large-
scale quantitative features—such as texture, shape, and gray-level 
histograms—from standard medical images (CT, MRI, PET) using 
automated algorithms. This process converts medical images into 
a high-dimensional, mineable data space (Avery et al., 2022). The 
core philosophy underlying this approach is Radiogenomics, which 
posits that imaging phenotypes serve as macroscopic surrogates for 
microscopic pathophysiological changes.

Evidence suggests that radiomic features can non-invasively 
reflect tumor heterogeneity and genotype. For instance, specific 
textural features, such as entropy, have been strongly correlated 
with KRAS mutation status and Microsatellite Instability (MSI) 
(Porto-Álvarez et al., 2023). Studies by Hu et al. and Fan et al. 
have demonstrated that radiomic signatures can effectively 
discriminate between MSI-High and Microsatellite Stable (MSS) 
tumors, achieving an Area Under the Curve (AUC) of up to 0.908 
(Li et al., 2024). This “virtual biopsy” capability enables pre-emptive 
risk stratification in the postoperative setting, overcoming the 
sampling bias inherent in traditional tissue biopsies (Ma et al., 2022). 

2.2 Prognostic performance in clinical 
scenarios

A substantial body of evidence indicates that radiomic models 
exhibit superior accuracy in predicting postoperative recurrence 
and treatment response, effectively addressing the limitations of 
traditional TNM staging in resolving complex risk stratification 
scenarios. 

2.2.1 Colon cancer and CT-based models: 
precision risk stratification

In colon cancer surveillance, CT-based radiomics is primarily 
leveraged to resolve the prognostic uncertainty—often termed the 
“grey zone”—regarding recurrence risk in Stage II and III patients. 
In a landmark study addressing the preoperative prediction of 
lymph node metastasis, Huang et al. (JCO 2016) developed a 
radiomics nomogram based on portal venous phase CT. This 
model achieved a concordance index (C-index) of 0.778 in the 
validation cohort, significantly outperforming clinical staging alone 
and demonstrating the capacity of radiomics to capture microscopic 
invasive characteristics (Huang et al., 2016). Addressing the clinical 
dilemma of adjuvant chemotherapy allocation in Stage II patients, 
constructed a “Rad-score” model that successfully stratified patients 
into distinct risk categories. When integrated with clinical factors, 
this model predicted recurrence with an AUC of 0.872, providing a 
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robust tool for identifying candidates who would genuinely benefit 
from adjuvant therapy (Fan et al., 2021). Furthermore, regarding the 
prediction of metachronous liver metastasis (MLM), developed a 
fusion model validated in a multicenter cohort. Achieving an AUC 
of 0.79, this model effectively identified primary tumors harboring 
a biological propensity for distant dissemination (Li et al., 2022). 
These advancements in CT-based radiomics for colon cancer have 
parallels in rectal cancer, where MRI-based radiomics plays a critical 
role in managing locally advanced disease. 

2.2.2 Rectal cancer and MRI-based models: 
surveillance of locally advanced disease

In Locally Advanced Rectal Cancer (LARC), radiomics based 
on multiparametric MRI (mpMRI) has emerged as a critical tool 
for predicting both the response to neoadjuvant chemoradiotherapy 
(nCRT) and long-term survival outcomes. The accurate prediction 
of Pathological Complete Response (pCR) is a prerequisite for 
organ-preservation strategies, such as “Watch and Wait.” Liu et al. 
extracted features from pre- and post-treatment MRI, achieving an 
exceptional AUC of 0.976 for pCR prediction. Similarly, reported 
that a radiomic classifier (AUC 0.93) significantly outperformed 
qualitative assessment by radiologists (Horvat et al., 2018). 
These findings were recently substantiated by a meta-analysis by 
Rai et al. (2025), which aggregated data from 35 studies to confirm 
a pooled AUC of 0.87 for MRI radiomics in predicting pCR, noting 
superior performance with MRI (AUC 0.90). Beyond response 
assessment, studies by Shin et al. (2022) have demonstrated that MRI 
radiomic signatures—particularly those derived from T2-weighted 
images—are independent predictors of disease-free survival (DFS), 
yielding C-indices between 0.77 and 0.82, which are superior to 
conventional clinical models. Moreover, emerging Deep Learning 
(DL) approaches have further elevated prognostic precision, with 
reported C-indices ranging from 0.82 to 0.94 (Shi et al., 2025). 

2.3 Delta radiomics

Traditional radiomics typically analyzes medical images 
from a single time point (such as a baseline CT scan before 
treatment), while Delta radiomics focuses on the longitudinal 
assessment of quantitative image features, and analyze changes 
between distinct time points to quantify the dynamic evolution 
of tumor phenotypes in response to therapeutic intervention. In the 
context of Locally Advanced Rectal Cancer (LARC), Boldrini et al. 
demonstrated that early longitudinal changes in specific textural 
features during radiotherapy could predict pathological complete 
response (pCR) with high accuracy (Boldrini et al., 2019). Extending 
this analysis to the peritumoral environment, Chiloiro et al. (2023) 
reported that incorporating delta features from the mesorectum 
significantly enhanced the prediction of 2-year DFS (AUC 
0.79), highlighting the critical prognostic relevance of the tumor 
microenvironment. Furthermore, in the setting of colorectal liver 
metastases, Giannini et al. (2022) established that Delta Radiomics 
outperforms standard RECIST criteria in evaluating chemotherapy 
response; their model achieved 93% accuracy in identifying non-
responding lesions—compared to only 67% for RECIST—thereby 
providing critical evidence to avoid the continuation of ineffective 
therapeutic regimens.

In summary, advanced imaging—particularly radiomics—provides 
the essential spatial and risk context for surveillance, with studies 
reporting AUCs of 0.70–0.85 for preoperative and prognostic tasks. 
These performances, however, are influenced by methodological 
variability across studies, highlighting the need for standardization. 
While radiomics is thus a validated tool for risk stratification, 
it remains a prognostic rather than a real-time molecular 
detector. To identify recurrence before structural changes occur, 
a complementary, fluid-based approach is therefore required. 

3 Multi-omics for molecular risk 
stratification in postoperative CRC 
surveillance

Postoperative surveillance of CRC faces persistent challenges 
due to the limitations of traditional TNM staging systems, 
which fail to recapitulate the profound molecular heterogeneity 
inherent to the disease. In such conditions, the “multi-omics” 
paradigm demonstrates unique value by integrating high-
dimensional data across genomics, epigenomics, transcriptomics, 
proteomics, and microbiomics. Such distinct integration 
deciphers the complex biological mechanisms driving recurrence, 
enabling a refinement of risk stratification that transcends 
anatomical staging (Ullah et al., 2022; Liu Y. et al., 2025; 
Wang et al., 2024; Liu J. et al., 2025). This is where multi-omics, 
and liquid biopsy in particular, enters the surveillance paradigm. 

3.1 Liquid biopsy and epigenetic synergies 
for MRD detection

The most transformative clinical application of this paradigm is 
the detection of Minimal Residual Disease (MRD) via liquid biopsy. 
Unlike static tissue biopsies, liquid biopsy serves as a dynamic tool for 
monitoring tumor burden through the analysis of circulating tumor 
DNA (ctDNA) (Vojjala et al., 2025). Recent evidence indicates that 
postoperative ctDNA status serves as a definitive predictor of outcome 
because ctDNA-positive patients face a significantly higher recurrence 
rate compared to their negative counterparts. Notably, this molecular 
detection often precedes radiographic evidence by several months 
(Potievskaya et al., 2025). This “window of opportunity” is a pivotal 
determinant for guiding adjuvant chemotherapy decisions, facilitating 
evidence-based treatment de-escalation for ctDNA-negative patients 
while justifying intensified regimens for high-risk, MRD-positive 
individuals (Zhang et al., 2025). 

However, single-analyte approaches remain the main obstacles 
to maximizing sensitivity. Consequently, combinatorial regimens 
necessitate optimization to enhance detection accuracy. For instance, 
genomic profiling is increasingly augmented by epigenomics through 
the analysis of methylated DNA markers (MDMs). Since aberrant 
DNA methylation is a key driver of CRC progression, MDMs serve 
as highly specific biomarkers (Zhu et al., 2023; Ogaard et al., 2024). 
Studies utilizing ultra-deep sequencing have illustrated that the 
combined analysis of ctDNA mutations and methylation patterns 
yields superior sensitivity compared to single-analyte strategies, a 
synergistic effect that is particularly valuable in high-risk cohorts, 
such as patients with colorectal peritoneal metastases, where a 
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postoperative “dual-negative” status correlates with significantly 
improved overall survival (Chen et al., 2025). 

However, the reported lead time and sensitivity of ctDNA are 
subject to pre-analytical and analytical variability, influenced by 
factors such as sequencing depth, panel design, and bioinformatic 
pipelines (Tao et al., 2024; Ogaard et al., 2022). Clinical 
implementation also faces challenges including cost, turnaround 
time, and the need to distinguish tumor-derived signals from 
clonal hematopoiesis (Ogaard et al., 2022; Huang et al., 2025). 
Acknowledging these variables is essential for interpreting study 
results and guiding the reliable integration of ctDNA into routine 
surveillance. 

3.2 Multidimensional profiling of the tumor 
microenvironment

Beyond the circulation, a broader spectrum of omics technologies 
provides complementary insights into the tumor microenvironment 
(TME). The gut microbiome has emerged as a robust independent 
prognostic indicator. Machine learning analyses have revealed that 
tissue bacterial community composition can outperform traditional 
transcriptomic markers in predicting overall survival (AUC 0.755 
vs. 0.702) (Yang et al., 2022), and specific dysbiotic patterns are 
consistently linked to recurrence (Liu B. et al., 2025). Parallel 
advancements in proteomics have identified functional markers 
such as CAVIN1 in aggressive mesenchymal subtypes (Martinez-
Val et al., 2025), while metabolomics and lipidomics have elucidated 
distinct lipid metabolic signatures that allow for precise survival 
stratification (Fu et al., 2024). Additionally, transcriptomic signatures 
based on relative expression ordering provide stable prognostic 
features for predicting chemotherapy response (Tong et al., 2016). 
The true power of these diverse omics layers, however, lies not in their 
isolation but in their integration, which allows for a more complete 
resolution of tumor heterogeneity. 

3.3 Multi-omics integration and resolution 
of tumor heterogeneity

The multi-omics paradigm is fully realized by synthesizing 
heterogeneous, multi-layered datasets into a high-resolution, 
functional portrait of the patient’s disease state—a process that 
demands advanced computational frameworks to manage its 
high-dimensional complexity (Mandala, 2025). This integrative 
strategy harnesses cross-platform synergy to construct robust 
prognostic models, exemplified by the Multi-omics Clustering 
and Machine Learning Scoring (MCMLS) model, which fuses 
transcriptomics, epigenomics, genomics, and microbiome data to 
significantly outperform established signatures derived from single-
omics data (Wang et al., 2025). To further refine this molecular 
landscape, incorporating single-cell and spatial transcriptomics 
elevates surveillance to the cellular level, effectively resolving 
tumor heterogeneity and immune evasion mechanisms that bulk 
sequencing often obscures (Wen et al., 2025; Luan et al., 2025).

In summary, multi-omics delivers a sensitive, functional 
portrait of dynamic disease biology. To translate this molecular 
‘signal’ into actionable clinical guidance, it must be paired with 

the spatial ‘localization’ capability of imaging—a synergy that 
defines the next frontier in precision surveillance. A comparative 
overview of advanced imaging, multi-omics, and integrated fusion 
paradigms for postoperative colorectal cancer surveillance is 
summarized in Table 1.

4 Precision surveillance through 
integrated advanced imaging and 
multi-omics

Postoperative surveillance for CRC is gradually moving into 
the limelight of research as it transitions from reactive monitoring 
toward a unified, predictive framework. Current standard-of-care 
protocols frequently generate a diagnostic blind spot because 
advanced imaging provides spatial context but lacks specificity for 
molecular recurrence, while multi-omics offers high sensitivity for 
residual disease yet remains spatially indeterminate. For instance, 
ctDNA sensitivity often remains limited compared to functional 
imaging in localizing low-volume tumor burden such as early 
peritoneal carcinomatosis (Dawood et al., 2023), whereas traditional 
anatomical imaging struggles to distinguish viable tumor foci 
from post-surgical scarring (Tao et al., 2024). The emerging 
surveillance paradigm necessitates the synergistic integration of 
these orthogonal data streams to construct a dynamic biological 
profile of the CRC patient. This emerging paradigm, which bridges 
molecular sensitivity with spatial localization, is schematically 
illustrated in Figure 1.

4.1 The sequential-trigger model for 
diagnostic optimization

Integrating these complementary data streams—imaging 
and multi-omics—into clinical workflow presents a practical 
challenge. The “sequential-trigger” model represents the most 
immediate clinical realization of this integration, designed to 
resolve ambiguity during routine follow-up. Indeterminate findings 
on postoperative CT scans occur frequently and traditionally 
necessitate a “watch-and-wait” approach that results in diagnostic 
delays (Ogaard et al., 2022). Integrating molecular biomarkers 
into this workflow fundamentally alters clinical decision-making. 
Evidence suggests that a positive multi-omics signal acts as a 
definitive trigger for reflex imaging using MRI or PET-CT to 
localize occult metastases (Reinert et al., 2022). This strategy 
represents a new breakthrough direction that not only targets 
recurrence more effectively but also potentially reduces unnecessary 
radiation exposure from equivocal scans by up to 40% (Krishnan 
and Mukherjee, 2025). 

4.2 Radiogenomics as a non-invasive 
biological surrogate

Moving beyond sequential applications, radiogenomics provides 
the biological rationale for continuous, non-invasive monitoring. 
This discipline posits that quantitative imaging phenotypes serve as 
macroscopic surrogates for multi-omics profiles. Research validates 
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TABLE 1  Comparative overview of advanced imaging, multi-omics, and integrated fusion paradigms.

Surveillance 
paradigm

Key modalities Biological focus Clinical 
advantages

Limitations Ref.

Advanced imaging

CT radiomics Tumor heterogeneity; 
Genotype prediction; 

Micro-metastasis

Adjuvant therapy 
Decision; Occult 

Metastasis Predicion

Acquisition variability; 
Anatomical Noise

Huang et al. (2016), 
Fan et al. (2021), 
Li et al. (2022)

MRI radiomics Tissue viability vs. 
fibrosis; Tumor 

Microenvironment

pCR Prediction; Survival 
Prediction

Standardization Horvat et al. (2018), 
Rai et al. (2025), 
Shin et al. (2022)

Multi-omics

Liquid biopsy MRD Detection and 
synergy: Dynamic tumor 
burden monitoring; 
epigenetic markers 
augment genomic 
specificity

Window of opportunity: 
Recurrence prediction 
preceding radiography; 
guidance for 
chemotherapy 
modulation; superior 
survival correlation

Spatially indeterminate: 
Lack of spatial resolution 
for localization; limited 
single-analyte sensitivity 
in low-volume disease

Vojjala et al. (2025), 
Potievskaya et al. (2025), 

Zhang et al. (2025), 
Zhu et al. (2023), 

Ogaard et al. (2024), 
Chen et al. (2025)

Other omics TME and functional 
profiling: Elucidation of 
TME dysbiosis, metabolic 
reprogramming, and 
functional protein 
markers

Independent prognosis: 
Superior prognostic 
accuracy over 
transcriptomics; precise 
metabolic risk 
stratification

Standardization gaps: 
High data 
dimensionality; lack of 
standardized sampling 
and analytical protocols

Yang et al. (2022), 
Liu et al. (2025c), 

Martinez-
Val et al. (2025), 
Fu et al. (2024), 

Tong et al. (2016)

Multi-omics integration Resolution of 
heterogeneity: Synthesis 
of multi-layered datasets; 
resolution of cellular 
heterogeneity and 
immune evasion 
mechanisms

Functional portrait: 
Comprehensive 
functional disease 
profiling; superior 
prognostic performance 
over single-omics 
signatures

Technical complexity: 
Prohibitive 
computational demands 
and sequencing costs 
limiting clinical 
accessibility

Mandala (2025), 
Wang et al. (2025), 
Wen et al. (2025), 
Luan et al. (2025)

Integrated fusion

Sequential-trigger model Diagnostic optimization: 
Utilization of sensitive 
molecular signals as 
triggers for specific reflex 
imaging

Efficiency and safety: 
Reduced diagnostic 
delays; minimization of 
unnecessary radiation; 
targeted localization of 
occult metastases

Sequential dependency: 
Efficacy strictly 
contingent upon initial 
molecular trigger 
sensitivity

Ogaard et al. (2022), 
Reinert et al. (2022), 

Krishnan and Mukherjee 
(2025)

Radiogenomics Virtual biopsy: 
Quantification of imaging 
phenotypes as 
macroscopic surrogates 
for genomic alterations

Non-Invasive 
monitoring: Continuous 
tracking of clonal 
evolution; assessment of 
chemotherapy response 
without tissue sampling

Data heterogeneity: 
Sensitivity to scanner 
batch effects; requirement 
for rigorous 
standardization for 
generalization

Elahi et al. (2025), 
Granata et al. (2023)

Deep fusion of imaging 
and Multi-omics

Morpho-Molecular 
Synergy: Deep learning 
synthesis of spatial and 
functional data into a 
Digital Twin for adaptive 
management

Precision and adaptation: 
Identification of high-risk 
MRD-negative subsets; 
facilitation of 
risk-stratified adaptive 
follow-up

Opacity and validation: 
Algorithmic opacity 
hindering clinical trust; 
lack of large-scale 
prospective validation

Loeffler et al. (2025), 
Tsai et al. (2023), 

Cicalini et al. (2024), 
Huang et al. (2023), 

Qiu et al. (2025), 
Xiong et al. (2025)

that radiomic textures can non-invasively predict key CRC driver 
mutations such as KRAS and BRAF, functioning as a “virtual 
biopsy” to track clonal evolution (Elahi et al., 2025). Crucially for 
longitudinal surveillance, “Delta-Radiomics” analyzes the temporal 
evolution of image features and has proven effective in monitoring 
responses to adjuvant chemotherapy (Granata et al., 2023). This 
establishes anatomical imaging as a dynamic repository of latent 
genomic information, justifying its computational fusion with fluid 
biomarkers. 

4.3 AI-driven deep fusion of imaging and 
multi-omics landscapes

The most advanced form of integration moves beyond sequential 
or correlative models toward a deep, AI-driven fusion, creating a 
system where each modality compensates for the other’s limitations 
The HIBRID model exemplifies this morpho-molecular synergy 
by fusing deep learning risk scores from histology with ctDNA 
status (Loeffler et al., 2025). The study illustrated that this model 
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FIGURE 1
From “Blind Spots” to “Holographic lnsight”: lntegrating Advanced lmaging and Multi-omics for Precision CRC Management.

identified a subgroup of MRD-negative patients who exhibited high-
risk morphological features and derived significant survival benefit 
from adjuvant chemotherapy, with 24-month disease-free survival 
improving from 69% to 84%. Similarly, deep learning frameworks 
like MOMA bridge tissue morphology with broad multi-omics 
aberrations to refine prognosis (Tsai et al., 2023).

Finally, this paradigm expands into metabolic and transcriptomic 
dimensions. Novel “radiometabolomics” frameworks combining MRI 
radiomics with untargeted metabolomics have demonstrated superior 
accuracy in predicting treatment responses for organ-preservation 
strategies (Cicalini et al., 2024). Furthermore, integrating PET 
imaging with proteomics has successfully elucidated mechanisms 
of glucose metabolic reprogramming in colorectal liver metastases 
(Huang et al., 2023; Qiu et al., 2025). Additionally, linking CT radiomics 
with long non-coding RNA signatures enables the continuous 
monitoring of molecular subtypes (Xiong et al., 2025). Collectively, 
these advancements shift postoperative surveillance from a static 
schedule to a dynamic, predictive strategy. By fusing spatial precision 
with molecular sensitivity, this paradigm constructs a “digital twin” of 
the patient’s disease status. 

5 Challenges and future directions

While the integration of advanced imaging and multi-omics offers 
a transformative blueprint for CRC surveillance, bridging the gap 
between computational proof-of-concept and clinical utility remains 
a formidable challenge. Realizing this new paradigm necessitates 
navigating a landscape of technical heterogeneity, algorithmic opacity, 
and the rigorous demands of prospective validation. 

5.1 Data heterogeneity and standardization 
protocols

The most significant technical impediment is data heterogeneity. 
Radiomic features are notoriously sensitive to batch effects 
caused by variations in scanner parameters, and multi-omics data 
similarly suffer from platform-specific variations. Consequently, 
AI models trained in single centers frequently fail to generalize 
externally as they learn institutional noise rather than true 
pathology (Cicalini et al., 2024; Huang et al., 2025). In the 
future, implementation strategies need to be optimized through 
harmonization protocols and adherence to universal standards 
like the Image Biomarker Standardisation Initiative (IBSI). 
This standardization is essential to ensure models represent 
reproducible clinical tools rather than localized experiments
(Huang et al., 2025). 

5.2 Algorithmic opacity and explainable 
artificial intelligence

Beyond technical stability, the “black box” nature of deep 
learning remains a main obstacle to transformation. In the high-
stakes context of surveillance, clinicians are hesitant to rely on 
opaque algorithmic outputs for decisions regarding toxic adjuvant 
therapy. Future research must pivot toward Explainable AI (XAI) to 
visualize the “decision path” by highlighting specific intratumoral 
textures or molecular pathways. This approach aims to transition 
from a “black box” to a transparent “glass box” to foster the 
confidence necessary for routine adoption (Tsai et al., 2023).

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1758385
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Yu and Tai 10.3389/fphys.2025.1758385

5.3 Prospective validation and adaptive 
management strategies

Furthermore, the current evidence base relies heavily on 
retrospective studies prone to selection bias. Validating clinical 
utility requires large-scale, multi-center prospective trials to 
ensure robustness across diverse populations (Huang et al., 2025). 
Establishing such collaborative networks is essential to overcome 
data silos. Ultimately, overcoming these barriers will evolve 
surveillance into an active and adaptive management loop. By 
integrating predictive models into a dynamic patient “Digital Twin,” 
clinicians can tailor follow-up intensity by safely de-escalating for 
concordant low-risk profiles while intensifying for discordant high-
risk signals (Loeffler et al., 2025). This strategy, by reshaping the 
surveillance landscape, will be an attractive strategy to break the 
bottlenecks in postoperative management and transform CRC care 
into a personalized, data-driven science. 

6 Conclusion

The transition from reactive anatomical monitoring to proactive 
molecular prediction represents a pivotal evolution in postoperative 
colorectal cancer surveillance. As highlighted in this review, 
traditional TNM staging and conventional imaging often fail to 
capture the biological complexity of Minimal Residual Disease 
(MRD), leading to missed opportunities for early intervention. 
The integration of advanced imaging and multi-omics offers a 
transformative solution to this challenge. Radiomics provides 
crucial spatial context and non-invasive risk stratification, 
while liquid biopsy—particularly ctDNA—delivers unparalleled 
sensitivity for detecting molecular recurrence with significant 
lead times.

By synergizing these orthogonal data streams, clinicians can 
overcome the diagnostic blind spots inherent to single-modality 
approaches, moving towards a “morpho-molecular” precision 
framework. However, the clinical realization of this paradigm 
requires rigorous efforts to address data heterogeneity, standardize 
acquisition protocols, and validate AI-driven models through large-
scale prospective trials. Ultimately, bridging these gaps will pave 
the way for dynamic, personalized surveillance strategies—akin to 

a patient “Digital Twin”—that optimize survival outcomes while 
minimizing unnecessary treatment toxicity.
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