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Up to one-third of patients with localized colorectal cancer (CRC) relapse
after curative-intent resection, as conventional markers like carcinoembryonic
antigen (CEA) and scheduled CT/MRI often fail to detect micro-metastatic
disease early. Advanced imaging, particularly radiomics, and liquid biopsy with
circulating tumor DNA (ctDNA) are emerging as complementary tools to
address this challenge. Radiomics extracts high-throughput image features to
quantify risk and track response, with reported AUCs often ranging from 0.70
to 0.85. Concurrently, ctDNA has proven to be the strongest postoperative
prognostic marker for recurrence in stage Il-1ll CRC, providing surveillance lead
times of 3—-11 months over conventional methods. The landmark DYNAMIC
trial demonstrated that ctDNA-guided adjuvant therapy safely reduced
chemotherapy uses without compromising survival. By integrating ctDNA's
temporal “signal” with imaging’s spatial “localization,” clinicians can accelerate
the detection of oligometastatic relapse, personalize surveillance, and refine
treatment monitoring. This review synthesizes the evidence supporting this
integrated approach, outlining the path toward a proactive, precision-based
standard of care in postoperative CRC management, while also addressing the
key challenges of standardization and clinical validation that must be overcome.

colorectal cancer, minimal residual disease (MRD), multi-omics, postoperative
surveillance, radiomics

1 Introduction

Colorectal Cancer (CRC) represents a formidable global public health challenge.
According to global cancer statistics, CRC is the third most diagnosed malignancy
worldwide in both men (following lung and prostate) and women (following breast
and lung) and remains a primary driver of cancer-related mortality (Simon, 2016;
Zaki et al., 2022). Despite overall declines in cancer mortality, an alarming trend has
emerged: the rapidly rising incidence of CRC in younger populations. Data indicate that
CRC incidence among adults under 55 years of age is increasing by 1%-2% annually
(Simon, 2016; O'Connell et al., 2004; Siegel et al., 2023). This epidemiological shift has had
devastating consequences. Today, it has become the leading cause of cancer death within
this age group (Bhandari et al., 2017).
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For localized CRC, curative-intent surgical resection remains
the primary treatment modality. However, the intent of a “curative”
resection is frequently subverted by postoperative recurrence, which
poses a substantial threat to long-term patient survival. The risk of
recurrence is significant and pervasive across stages. Even among
the earliest Stage I patients, recurrence rates are reported between
5.0% and 15.04%, indicating considerable heterogeneity even in
early-stage disease (Nors et al., 2024; Gura and ya, 2019). For Stage
II patients, the 5-year disease-free survival (DFS) is approximately
81.9%, with 5-year cumulative recurrence rates between 9.3% and
13% (Nors et al., 2024; Xiong et al., 2023; Bockelman et al., 2015).
The prognosis is more severe for Stage III patients, where the
5-year DFS drops to 73.5%, signifying that over a quarter of
these patients will experience disease relapse (Nors et al., 2024;
Bockelman et al.,, 2015; Chen et al., 2021). Given these stark
disparities, timely, affordable, and reliable prognosis and survival
prediction are essential for precision clinical oncology. Accurate
predictions pave the way for personalized risk and prognostic
stratification, empowering clinicians to make informed treatment
decisions and manage patient care effectively.

This high rate of relapse illuminates a central dilemma
in current clinical practice: postoperative recurrence is not a
de novo disease, but rather the clinical manifestation of pre-
existing, occult micrometastatic disease that evades detection by
conventional means—namely, Minimal Residual Disease (MRD)
(Chakrabarti et al., 2022; Bork et al., 2014). The current gold
standard for clinical risk stratification, the TNM staging system,
relies predominantly on macroscopic assessment via conventional
imaging (CT, MRI) and histopathology (Van Cutsem et al., 2016;
Garcfa-Figueiras et al., 2018; Caruso et al., 2024). However, the high
frequency of recurrence explicitly demonstrates the limitations of
TNM staging in identifying patients harboring MRD; the resolution
of these conventional tools is insufficient to detect disease burden at
the microscopic level.

This limitation of TNM staging creates two critical clinical
challenges: the “over-treatment” of patients who may already
be cured by surgery alone (e.g., a subset of Stage II patients)
(Habib et al., 2025), exposing them to the significant toxicities
and the of
patients harboring MRD who are otherwise classified as

of adjuvant chemotherapy; “under-treatment”
low-risk by conventional staging, providing a false sense
of security (Yang et al, 2024). Consequently, a paradigm shift
in clinical practice is urgently required. We transition beyond
the current reliance on “anatomical detection” of macroscopic
relapse and move toward the “molecular prediction” and “early
functional detection” of occult disease. This mini review aims
to explore this emerging paradigm: the integration of advanced
imaging technologies and multi-omics (particularly liquid biopsies)
to redefine CRC postoperative risk stratification and achieve truly
individualized surveillance strategies.

2 Advanced imaging for postoperative
surveillance: the role of radiomics

Standard-of-care postoperative surveillance relies heavily on
scheduled computed tomography (CT) of the chest, abdomen, and
pelvis, with magnetic resonance imaging (MRI) often reserved
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for pelvic surveillance in rectal cancer or problem-solving. These
modalities, when interpreted conventionally by radiologists,
function as anatomical tools. They are designed to detect
macroscopic structural changes--such as new masses, enlarging
lymph nodes, or organomegaly. This approach is inherently reactive;
it identifies recurrence only after a significant tumor burden has
been established, often failing to detect the micro-metastatic disease
responsible for relapse during the window of curability.

2.1 Defining radiomics: mining the invisible

Radiomics involves the high-throughput extraction of large-
scale quantitative features—such as texture, shape, and gray-level
histograms—from standard medical images (CT, MRI, PET) using
automated algorithms. This process converts medical images into
a high-dimensional, mineable data space (Avery et al., 2022). The
core philosophy underlying this approach is Radiogenomics, which
posits that imaging phenotypes serve as macroscopic surrogates for
microscopic pathophysiological changes.

Evidence suggests that radiomic features can non-invasively
reflect tumor heterogeneity and genotype. For instance, specific
textural features, such as entropy, have been strongly correlated
with KRAS mutation status and Microsatellite Instability (MSI)
(Porto-Alvarez et al, 2023). Studies by Hu etal. and Fan etal.
have demonstrated that radiomic signatures can effectively
discriminate between MSI-High and Microsatellite Stable (MSS)
tumors, achieving an Area Under the Curve (AUC) of up to 0.908
(Lietal., 2024). This “virtual biopsy” capability enables pre-emptive
risk stratification in the postoperative setting, overcoming the
sampling bias inherent in traditional tissue biopsies (Ma et al., 2022).

2.2 Prognostic performance in clinical
scenarios

A substantial body of evidence indicates that radiomic models
exhibit superior accuracy in predicting postoperative recurrence
and treatment response, effectively addressing the limitations of
traditional TNM staging in resolving complex risk stratification
scenarios.

2.2.1 Colon cancer and CT-based models:
precision risk stratification

In colon cancer surveillance, CT-based radiomics is primarily
leveraged to resolve the prognostic uncertainty—often termed the
“grey zone”—regarding recurrence risk in Stage II and III patients.
In a landmark study addressing the preoperative prediction of
lymph node metastasis, Huang etal. (JCO 2016) developed a
radiomics nomogram based on portal venous phase CT. This
model achieved a concordance index (C-index) of 0.778 in the
validation cohort, significantly outperforming clinical staging alone
and demonstrating the capacity of radiomics to capture microscopic
invasive characteristics (Huang et al., 2016). Addressing the clinical
dilemma of adjuvant chemotherapy allocation in Stage II patients,
constructed a “Rad-score” model that successfully stratified patients
into distinct risk categories. When integrated with clinical factors,
this model predicted recurrence with an AUC of 0.872, providing a
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robust tool for identifying candidates who would genuinely benefit
from adjuvant therapy (Fan et al., 2021). Furthermore, regarding the
prediction of metachronous liver metastasis (MLM), developed a
fusion model validated in a multicenter cohort. Achieving an AUC
of 0.79, this model effectively identified primary tumors harboring
a biological propensity for distant dissemination (Li et al., 2022).
These advancements in CT-based radiomics for colon cancer have
parallels in rectal cancer, where MRI-based radiomics plays a critical
role in managing locally advanced disease.

2.2.2 Rectal cancer and MRI-based models:
surveillance of locally advanced disease

In Locally Advanced Rectal Cancer (LARC), radiomics based
on multiparametric MRI (mpMRI) has emerged as a critical tool
for predicting both the response to neoadjuvant chemoradiotherapy
(nCRT) and long-term survival outcomes. The accurate prediction
of Pathological Complete Response (pCR) is a prerequisite for
organ-preservation strategies, such as “Watch and Wait” Liu et al.
extracted features from pre- and post-treatment MRI, achieving an
exceptional AUC of 0.976 for pCR prediction. Similarly, reported
that a radiomic classifier (AUC 0.93) significantly outperformed
qualitative assessment by radiologists (Horvat et al., 2018).
These findings were recently substantiated by a meta-analysis by
Rai et al. (2025), which aggregated data from 35 studies to confirm
apooled AUC of 0.87 for MRI radiomics in predicting pCR, noting
superior performance with MRI (AUC 0.90). Beyond response
assessment, studies by Shin et al. (2022) have demonstrated that MRI
radiomic signatures—particularly those derived from T2-weighted
images—are independent predictors of disease-free survival (DFS),
yielding C-indices between 0.77 and 0.82, which are superior to
conventional clinical models. Moreover, emerging Deep Learning
(DL) approaches have further elevated prognostic precision, with
reported C-indices ranging from 0.82 to 0.94 (Shi et al., 2025).

2.3 Delta radiomics

Traditional radiomics typically analyzes medical images
from a single time point (such as a baseline CT scan before
treatment), while Delta radiomics focuses on the longitudinal
assessment of quantitative image features, and analyze changes
between distinct time points to quantify the dynamic evolution
of tumor phenotypes in response to therapeutic intervention. In the
context of Locally Advanced Rectal Cancer (LARC), Boldrini et al.
demonstrated that early longitudinal changes in specific textural
features during radiotherapy could predict pathological complete
response (pCR) with high accuracy (Boldrini et al., 2019). Extending
this analysis to the peritumoral environment, Chiloiro et al. (2023)
reported that incorporating delta features from the mesorectum
significantly enhanced the prediction of 2-year DFS (AUC
0.79), highlighting the critical prognostic relevance of the tumor
microenvironment. Furthermore, in the setting of colorectal liver
metastases, Giannini et al. (2022) established that Delta Radiomics
outperforms standard RECIST criteria in evaluating chemotherapy
response; their model achieved 93% accuracy in identifying non-
responding lesions—compared to only 67% for RECIST—thereby
providing critical evidence to avoid the continuation of ineffective
therapeutic regimens.
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In summary, advanced imaging—particularly radiomics—provides

the essential spatial and risk context for surveillance, with studies
reporting AUCs of 0.70-0.85 for preoperative and prognostic tasks.
These performances, however, are influenced by methodological
variability across studies, highlighting the need for standardization.
While radiomics is thus a validated tool for risk stratification,
it remains a prognostic rather than a real-time molecular
detector. To identify recurrence before structural changes occur,
a complementary, fluid-based approach is therefore required.

3 Multi-omics for molecular risk
stratification in postoperative CRC
surveillance

Postoperative surveillance of CRC faces persistent challenges
due to the limitations of traditional TNM staging systems,
which fail to recapitulate the profound molecular heterogeneity
inherent to the disease. In such conditions, the “multi-omics”
paradigm demonstrates unique value by integrating high-
dimensional data across genomics, epigenomics, transcriptomics,
Such  distinct
deciphers the complex biological mechanisms driving recurrence,

proteomics, and microbiomics. integration
enabling a refinement of risk stratification that transcends
anatomical staging (Ullah et al, 2022; LiuY. et al, 2025;
Wang et al., 2024; Liu J. et al., 2025). This is where multi-omics,

and liquid biopsy in particular, enters the surveillance paradigm.

3.1 Liquid biopsy and epigenetic synergies
for MRD detection

The most transformative clinical application of this paradigm is
the detection of Minimal Residual Disease (MRD) via liquid biopsy.
Unlike static tissue biopsies, liquid biopsy serves as a dynamic tool for
monitoring tumor burden through the analysis of circulating tumor
DNA (ctDNA) (Vojjala et al., 2025). Recent evidence indicates that
postoperative ctDNA status serves as a definitive predictor of outcome
because ctDNA-positive patients face a significantly higher recurrence
rate compared to their negative counterparts. Notably, this molecular
detection often precedes radiographic evidence by several months
(Potievskaya et al., 2025). This “window of opportunity” is a pivotal
determinant for guiding adjuvant chemotherapy decisions, facilitating
evidence-based treatment de-escalation for ctDNA-negative patients
while justifying intensified regimens for high-risk, MRD-positive
individuals (Zhang et al., 2025).

However, single-analyte approaches remain the main obstacles
to maximizing sensitivity. Consequently, combinatorial regimens
necessitate optimization to enhance detection accuracy. For instance,
genomic profiling is increasingly augmented by epigenomics through
the analysis of methylated DNA markers (MDMs). Since aberrant
DNA methylation is a key driver of CRC progression, MDMs serve
as highly specific biomarkers (Zhu et al., 2023; Ogaard et al., 2024).
Studies utilizing ultra-deep sequencing have illustrated that the
combined analysis of ctDNA mutations and methylation patterns
yields superior sensitivity compared to single-analyte strategies, a
synergistic effect that is particularly valuable in high-risk cohorts,
such as patients with colorectal peritoneal metastases, where a
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postoperative “dual-negative” status correlates with significantly
improved overall survival (Chen et al., 2025).

However, the reported lead time and sensitivity of ctDNA are
subject to pre-analytical and analytical variability, influenced by
factors such as sequencing depth, panel design, and bioinformatic
pipelines (Tao et al, 2024; Ogaard et al, 2022). Clinical
implementation also faces challenges including cost, turnaround
time, and the need to distinguish tumor-derived signals from
clonal hematopoiesis (Ogaard et al, 2022; Huang et al., 2025).
Acknowledging these variables is essential for interpreting study
results and guiding the reliable integration of ctDNA into routine
surveillance.

3.2 Multidimensional profiling of the tumor
microenvironment

Beyond the circulation, a broader spectrum of omics technologies
provides complementary insights into the tumor microenvironment
(TME). The gut microbiome has emerged as a robust independent
prognostic indicator. Machine learning analyses have revealed that
tissue bacterial community composition can outperform traditional
transcriptomic markers in predicting overall survival (AUC 0.755
vs. 0.702) (Yang et al, 2022), and specific dysbiotic patterns are
consistently linked to recurrence (LiuB. et al, 2025). Parallel
advancements in proteomics have identified functional markers
such as CAVIN1 in aggressive mesenchymal subtypes (Martinez-
Val et al., 2025), while metabolomics and lipidomics have elucidated
distinct lipid metabolic signatures that allow for precise survival
stratification (Fu et al., 2024). Additionally, transcriptomic signatures
based on relative expression ordering provide stable prognostic
features for predicting chemotherapy response (Tong et al., 2016).
The true power of these diverse omics layers, however, lies not in their
isolation but in their integration, which allows for a more complete
resolution of tumor heterogeneity.

3.3 Multi-omics integration and resolution
of tumor heterogeneity

The multi-omics paradigm is fully realized by synthesizing
heterogeneous, multi-layered datasets into a high-resolution,
functional portrait of the patients disease state—a process that
demands advanced computational frameworks to manage its
high-dimensional complexity (Mandala, 2025). This integrative
strategy harnesses cross-platform synergy to construct robust
prognostic models, exemplified by the Multi-omics Clustering
and Machine Learning Scoring (MCMLS) model, which fuses
transcriptomics, epigenomics, genomics, and microbiome data to
significantly outperform established signatures derived from single-
omics data (Wang et al.,, 2025). To further refine this molecular
landscape, incorporating single-cell and spatial transcriptomics
elevates surveillance to the cellular level, effectively resolving
tumor heterogeneity and immune evasion mechanisms that bulk
sequencing often obscures (Wen et al., 2025; Luan et al., 2025).

In summary, multi-omics delivers a sensitive, functional
portrait of dynamic disease biology. To translate this molecular
‘signal’ into actionable clinical guidance, it must be paired with
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the spatial ‘Tlocalization’ capability of imaging—a synergy that
defines the next frontier in precision surveillance. A comparative
overview of advanced imaging, multi-omics, and integrated fusion
paradigms for postoperative colorectal cancer surveillance is
summarized in Table 1.

4 Precision surveillance through
integrated advanced imaging and
multi-omics

Postoperative surveillance for CRC is gradually moving into
the limelight of research as it transitions from reactive monitoring
toward a unified, predictive framework. Current standard-of-care
protocols frequently generate a diagnostic blind spot because
advanced imaging provides spatial context but lacks specificity for
molecular recurrence, while multi-omics offers high sensitivity for
residual disease yet remains spatially indeterminate. For instance,
ctDNA sensitivity often remains limited compared to functional
imaging in localizing low-volume tumor burden such as early
peritoneal carcinomatosis (Dawood et al., 2023), whereas traditional
anatomical imaging struggles to distinguish viable tumor foci
from post-surgical scarring (Tao et al, 2024). The emerging
surveillance paradigm necessitates the synergistic integration of
these orthogonal data streams to construct a dynamic biological
profile of the CRC patient. This emerging paradigm, which bridges
molecular sensitivity with spatial localization, is schematically
illustrated in Figure 1.

4.1 The sequential-trigger model for
diagnostic optimization

Integrating these complementary data streams—imaging
and multi-omics—into clinical workflow presents a practical
challenge. The “sequential-trigger” model represents the most
immediate clinical realization of this integration, designed to
resolve ambiguity during routine follow-up. Indeterminate findings
on postoperative CT scans occur frequently and traditionally
necessitate a “watch-and-wait” approach that results in diagnostic
delays (Ogaard et al, 2022). Integrating molecular biomarkers
into this workflow fundamentally alters clinical decision-making.
Evidence suggests that a positive multi-omics signal acts as a
definitive trigger for reflex imaging using MRI or PET-CT to
localize occult metastases (Reinert et al., 2022). This strategy
represents a new breakthrough direction that not only targets
recurrence more effectively but also potentially reduces unnecessary
radiation exposure from equivocal scans by up to 40% (Krishnan
and Mukherjee, 2025).

4.2 Radiogenomics as a non-invasive
biological surrogate

Moving beyond sequential applications, radiogenomics provides
the biological rationale for continuous, non-invasive monitoring.
This discipline posits that quantitative imaging phenotypes serve as
macroscopic surrogates for multi-omics profiles. Research validates

frontiersin.org


https://doi.org/10.3389/fphys.2025.1758385
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Yu and Tai

TABLE 1 Comparative overview of advanced imaging, multi-omics, and integrated fusion paradigms.

Surveillance
paradigm

Key modalities

Biological focus

Clinical
advantages

10.3389/fphys.2025.1758385

Limitations

Advanced imaging

CT radiomics

Tumor heterogeneity;
Genotype prediction;
Micro-metastasis

Adjuvant therapy
Decision; Occult
Metastasis Predicion

Acquisition variability;
Anatomical Noise

Huang et al. (2016),
Fan et al. (2021),
Li et al. (2022)

Multi-omics

MRI radiomics Tissue viability vs. PCR Prediction; Survival Standardization Horvat et al. (2018),
fibrosis; Tumor Prediction Rai et al. (2025),
Microenvironment Shin et al. (2022)
Liquid biopsy MRD Detection and Window of opportunity: Spatially indeterminate: Vojjala et al. (2025),
synergy: Dynamic tumor | Recurrence prediction Lack of spatial resolution Potievskaya et al. (2025),
burden monitoring; preceding radiography; for localization; limited Zhang et al. (2025),
epigenetic markers guidance for single-analyte sensitivity Zhu et al. (2023),
augment genomic chemotherapy in low-volume disease Ogaard et al. (2024),
specificity modulation; superior Chen et al. (2025)
survival correlation
Other omics TME and functional Independent prognosis: Standardization gaps: Yang et al. (2022),

profiling: Elucidation of
TME dysbiosis, metabolic
reprogramming, and
functional protein
markers

Superior prognostic
accuracy over
transcriptomics; precise
metabolic risk
stratification

High data
dimensionality; lack of
standardized sampling
and analytical protocols

Liu et al. (2025¢),
Martinez-
Val et al. (2025),
Fu et al. (2024),
Tong et al. (2016)

Multi-omics integration

Resolution of
heterogeneity: Synthesis
of multi-layered datasets;
resolution of cellular

Functional portrait:
Comprehensive
functional disease
profiling; superior

Technical complexity:
Prohibitive
computational demands
and sequencing costs

Mandala (2025),
Wang et al. (2025),
Wen et al. (2025),
Luan et al. (2025)

Integrated fusion

heterogeneity and prognostic performance limiting clinical
immune evasion over single-omics accessibility
mechanisms signatures

Sequential-trigger model = Diagnostic optimization: Efficiency and safety: Sequential dependency: Ogaard et al. (2022),
Utilization of sensitive Reduced diagnostic Efficacy strictly Reinert et al. (2022),
molecular signals as delays; minimization of contingent upon initial Krishnan and Mukherjee
triggers for specific reflex | unnecessary radiation; molecular trigger (2025)
imaging targeted localization of sensitivity

occult metastases
Radiogenomics Virtual biopsy: Non-Invasive Data heterogeneity: Elahi et al. (2025),

Quantification of imaging | monitoring: Continuous Sensitivity to scanner Granata et al. (2023)
phenotypes as tracking of clonal batch effects; requirement

macroscopic surrogates
for genomic alterations

evolution; assessment of
chemotherapy response

for rigorous
standardization for

without tissue sampling generalization
Deep fusion of imaging | Morpho-Molecular Precision and adaptation: | Opacity and validation: Loeffler et al. (2025),
and Multi-omics Synergy: Deep learning Identification of high-risk | Algorithmic opacity Tsai et al. (2023),

synthesis of spatial and
functional data into a
Digital Twin for adaptive
management

MRD-negative subsets;
facilitation of
risk-stratified adaptive
follow-up

hindering clinical trust;
lack of large-scale
prospective validation

Cicalini et al. (2024),
Huang et al. (2023),
Qiu et al. (2025),
Xiong et al. (2025)

that radiomic textures can non-invasively predict key CRC driver

mutations such as KRAS and BRAF, functioning as a “virtual
biopsy” to track clonal evolution (Elahi et al., 2025). Crucially for
longitudinal surveillance, “Delta-Radiomics” analyzes the temporal

evolution of image features and has proven effective in monitoring

responses to adjuvant chemotherapy (Granata et al.,, 2023). This

establishes anatomical imaging as a dynamic repository of latent

genomic information, justifying its computational fusion with fluid

biomarkers.
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4.3 Al-driven deep fusion of imaging and
multi-omics landscapes

The most advanced form of integration moves beyond sequential
or correlative models toward a deep, Al-driven fusion, creating a

system where each modality compensates for the other’s limitations

The HIBRID model exemplifies this morpho-molecular synergy

by fusing deep learning risk scores from histology with ctDNA
status (Loeffler et al., 2025). The study illustrated that this model
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identified a subgroup of MRD-negative patients who exhibited high-
risk morphological features and derived significant survival benefit
from adjuvant chemotherapy, with 24-month disease-free survival
improving from 69% to 84%. Similarly, deep learning frameworks
like MOMA bridge tissue morphology with broad multi-omics
aberrations to refine prognosis (Tsai et al., 2023).

Finally, this paradigm expands into metabolic and transcriptomic
dimensions. Novel “radiometabolomics” frameworks combining MRI
radiomics with untargeted metabolomics have demonstrated superior
accuracy in predicting treatment responses for organ-preservation
strategies (Cicalini et al, 2024). Furthermore, integrating PET
imaging with proteomics has successfully elucidated mechanisms
of glucose metabolic reprogramming in colorectal liver metastases
(Huangetal., 2023; Qiuetal.,2025). Additionally, linking CT radiomics
with long non-coding RNA signatures enables the continuous
monitoring of molecular subtypes (Xiong et al., 2025). Collectively,
these advancements shift postoperative surveillance from a static
schedule to a dynamic, predictive strategy. By fusing spatial precision
with molecular sensitivity, this paradigm constructs a “digital twin” of
the patient’s disease status.

5 Challenges and future directions

While the integration of advanced imaging and multi-omics offers
a transformative blueprint for CRC surveillance, bridging the gap
between computational proof-of-concept and clinical utility remains
a formidable challenge. Realizing this new paradigm necessitates
navigating a landscape of technical heterogeneity, algorithmic opacity,
and the rigorous demands of prospective validation.
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5.1 Data heterogeneity and standardization
protocols

The most significant technical impediment is data heterogeneity.
Radiomic features are notoriously sensitive to batch effects
caused by variations in scanner parameters, and multi-omics data
similarly suffer from platform-specific variations. Consequently,
AI models trained in single centers frequently fail to generalize
externally as they learn institutional noise rather than true
pathology (Cicalini et al., 2024; Huang et al, 2025). In the
future, implementation strategies need to be optimized through
harmonization protocols and adherence to universal standards
like the Image Biomarker Standardisation Initiative (IBSI).
This standardization is essential to ensure models represent
reproducible clinical tools rather than localized experiments
(Huang et al., 2025).

5.2 Algorithmic opacity and explainable
artificial intelligence

Beyond technical stability, the “black box” nature of deep
learning remains a main obstacle to transformation. In the high-
stakes context of surveillance, clinicians are hesitant to rely on
opaque algorithmic outputs for decisions regarding toxic adjuvant
therapy. Future research must pivot toward Explainable AI (XAI) to
visualize the “decision path” by highlighting specific intratumoral
textures or molecular pathways. This approach aims to transition
from a “black box” to a transparent “glass box” to foster the
confidence necessary for routine adoption (Tsai et al., 2023).
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5.3 Prospective validation and adaptive
management strategies

Furthermore, the current evidence base relies heavily on
retrospective studies prone to selection bias. Validating clinical
utility requires large-scale, multi-center prospective trials to
ensure robustness across diverse populations (Huang et al., 2025).
Establishing such collaborative networks is essential to overcome
data silos. Ultimately, overcoming these barriers will evolve
surveillance into an active and adaptive management loop. By
integrating predictive models into a dynamic patient “Digital Twin,”
clinicians can tailor follow-up intensity by safely de-escalating for
concordant low-risk profiles while intensifying for discordant high-
risk signals (Loeffler et al., 2025). This strategy, by reshaping the
surveillance landscape, will be an attractive strategy to break the
bottlenecks in postoperative management and transform CRC care
into a personalized, data-driven science.

6 Conclusion

The transition from reactive anatomical monitoring to proactive
molecular prediction represents a pivotal evolution in postoperative
colorectal cancer surveillance. As highlighted in this review,
traditional TNM staging and conventional imaging often fail to
capture the biological complexity of Minimal Residual Disease
(MRD), leading to missed opportunities for early intervention.
The integration of advanced imaging and multi-omics offers a
transformative solution to this challenge. Radiomics provides
crucial spatial context and non-invasive risk stratification,
while liquid biopsy—particularly ctDNA—delivers unparalleled
sensitivity for detecting molecular recurrence with significant
lead times.

By synergizing these orthogonal data streams, clinicians can
overcome the diagnostic blind spots inherent to single-modality
approaches, moving towards a “morpho-molecular” precision
framework. However, the clinical realization of this paradigm
requires rigorous efforts to address data heterogeneity, standardize
acquisition protocols, and validate AI-driven models through large-
scale prospective trials. Ultimately, bridging these gaps will pave
the way for dynamic, personalized surveillance strategies—akin to
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