

OPEN ACCESS

EDITED AND REVIEWED BY
Jill Johnson,
Aston University, United Kingdom

*CORRESPONDENCE

Aranyak Chakravarty,

☑ aranyak.chakravarty@jadavpuruniversity.in

RECEIVED 11 November 2025 REVISED 11 November 2025 ACCEPTED 17 November 2025 PUBLISHED 24 November 2025

CITATION

Chakravarty A, Basu S, Panchagnula MV and Patankar NA (2025) Editorial: Translating biomechanics of the human airways for classification, diagnosis and treatment of pulmonary diseases. Front. Physiol. 16:1743792. doi: 10.3389/fphys.2025.1743792

COPYRIGHT

© 2025 Chakravarty, Basu, Panchagnula and Patankar. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Editorial: Translating biomechanics of the human airways for classification, diagnosis and treatment of pulmonary diseases

Aranyak Chakravarty^{1,2*}, Saikat Basu³, Mahesh V. Panchagnula² and Neelesh A. Patankar⁴

¹School of Nuclear Studies and Application, Jadavpur University, Kolkata, India, ²Department of Applied Mechanics and Bio-medical Engineering, Indian Institute of Technology Madras, Chennai, India, ³Department of Mechanical Engineering, South Dakota State University, Brookings, SD, United States, ⁴Department of Mechanical Engineering, Northwestern University, Evanston, IL, United States

KEYWORDS

airway biomechanics, airway mucus, aerosol deposition, asthma, COPD, virtual disease landscape, aerosolisation, lung infections

Editorial on the Research Topic

Translating biomechanics of the human airways for classification, diagnosis and treatment of pulmonary diseases

Pulmonary diseases remain a global health challenge, with chronic obstructive pulmonary disease (COPD), asthma, pneumonia, tuberculosis, and lung cancer accounting for millions of deaths annually. The COVID-19 pandemic further underscored the critical need for mechanistic understanding of respiratory function and pathophysiology. While clinical insights have advanced substantially, the biomechanics of the human airways offer an underexplored yet promising route to early diagnosis and effective therapy. Airway biomechanics operates at multiple scales-ranging from the microscale mechanics of mucus and cilia to the macroscale deformation of the bronchial tree during respiration. Translating these multiscale phenomena into diagnostic or therapeutic insights requires cross-disciplinary collaboration between physiologists, engineers, and clinicians. This Research Topic brings together recent advances that bridge the gap between fundamental biomechanics of the human airways and clinical translation of biomechanical knowledge through computations and experimental studies. The articles in this Research Topic discuss novel treatment strategies for COPD and asthma, pulmonary drug delivery and ventilation strategies, inter-personal morphological variability, mucociliary clearance, infection progression and aerosol formation within the respiratory tract.

Treatment strategies for COPD and asthmatic patients is a critical issue faced by pulmonologists across the world. The article by Li et al. sheds light on how deeper insights into pathogenesis and phenotyping of COPD may be obtained using a combination of single-photon emission computed tomography (SPECT) and quantitative computed tomography (qCT)-derived biomarkers. These insights can be utilised to develop new avenues for evaluating COPD progression and devising appropriate therapeutic responses. A different interventional approach was adopted by Abu Shaphe et al. They investigated

Chakravarty et al. 10.3389/fphys.2025.1743792

how treadmill exercise responses, guided by the 6-min walk test, vary among individuals with differing COPD severity. Their findings suggest that personalising treadmill exercise protocols according to COPD severity levels and walk test results can reveal important functional limitations and help tailor rehabilitation strategies for improved outcomes in COPD management. The study by Zhong et al. show that $\rm Fe_2O_3$ nanoparticles – when used in optimal concentration – can potentially disrupt the microstructure of airway mucosal fluid significantly lowering the viscoelastic nature of the mucosal fluid and facilitating easier mucus clearance from airways. Tests using mucus from asthmatic patients confirm these findings suggesting that $\rm Fe_2O_3$ nanoparticles could act as expectorants, potentially outperforming conventional mucolytics by virtue of their biocompatibility and availability.

Pulmonary drug delivery presents a plausible route for achieving efficient systemic drug delivery (West, 2012). However, despite the clinical relevance, its efficiency remains suboptimal owing to significant deposition of inhaled aerosolised drug dose in the upper respiratory tract (Bessler and Sznitman, 2024). Compensation through larger doses is often prescribed although undesirable side effects or even systemic exposure is possible (De Boer et al., 2017). Various novel strategies are, thus, being investigated for overcoming this drawback (Dua et al., 2020; Chakravarty et al., 2022; Kole et al., 2023). Bessler et al. reports on a relatively less investigated strategy - leveraging the inherent electrostatic charge present on inhaled aerosols. Their study - using an in vitro airway-on-chip platform mimicking small bronchial geometries - reveal that electrostatic forces substantially alter deposition patterns in constricted airways: for submicron particles, there is enhanced proximal airway deposition due to electrostatic-diffusive effects, while larger particles show extended deposition footprints beyond what gravity alone would allow. These results suggest electrostatic attraction could be strategically used to improve the targeting of inhaled therapeutics in obstructive lung diseases like asthma and COPD.

The pulmonary drug delivery systems also warrant personalisation for achieving desired therapeutic efficacy due to inter-patient variability in lung morphology. Direct quantification of such variability is, however, not possible beyond the seventh lung generation owing to technological limitations, despite recent advances in imaging and diagnostic techniques. The article by Karthiga Devi et al. discusses a novel non-invasive method to estimate morphology of the distal lung by measuring radioaerosol deposition patterns in healthy individuals utilizing gamma scintigraphy. The results demonstrate that aerosol deposition, particularly in the distal airways, serves as a sensitive marker of morphological variability, suggesting this approach could be developed into a walk-in lab test to personalize diagnosis and optimize pulmonary drug delivery.

A different aspect of personalised respiratory care is highlighted in Vijay Anand et al. They presented a mechanistic compartmental model designed to investigate how airway secretion accumulation and its removal affect respiratory dynamics in ICU patients on mechanical ventilation. The study identifies characteristic changes in ventilator waveforms due to secretion buildup—such as reduced inspiratory flow and longer exhalation—and introduces a model-informed secretion index for continuous bedside monitoring. These findings can be utilised to improve personalized respiratory care and secretion management for mechanically ventilated patients.

Another key contribution to this Research Topic (Chakravarty et al.) discusses the development of a versatile physics-based, 1D reduced-order computational model encompassing varied and complex bio-physical phenomena involving airflow, gas exchange, particle/aerosol transport and deposition, mucus transport and pathogen infection progression within the human airways. The model has been utilised for identifying routes of improving drug delivery to the acinar region of the lung (Chakravarty et al., 2022). A different application of this model (Chakravarty et al., 2023) led to the hypothesis of re-aerosolisation of nasopharyngeal mucosa (RNM) as a plausible route of COVID-19 infection spread to the acinar region of the lung (Morawska et al., 2022), while reinforcing the utility of vaccination in preventing fatal infections

The hypothesis of RNM is being investigated through computations and experiments by various groups (Pairetti et al., 2021; Anzai et al., 2022; Kant et al. 2023; Saha et al., 2024; Li et al., 2025). One such group (Ilegbusi et al.) studied the formation and transport of mucus droplets during cough across CT-derived upper airway geometries. Increases in mucus thickness and viscosity-characteristic of respiratory diseases-is observed to substantially affect the number and size of exhaled droplets, with thicker mucus yielding more and larger droplets, while more viscous mucus results in fewer but larger droplets. Similar findings were reported by Saha et al. (2024). A more generic case of the same mechanism involving inhaled lower airway transmission of pathogen-laden microdroplets fragmented from the upper airway mucosa has been recently explored in a different study (Basu, 2025), through full-scale computational simulation of the intra-airway inhalation physics within CT-based anatomical domains. The simulated patterns of advective transport were validated against reduced-order analytical estimates (tracking the impact of dominant vortex cores in the laryngotracheal space on downwind bronchial transport) and published experimental results (Miguel, 2017). The mechanism has been hypothesized (Basu, 2025; Chakravarty et al., 2023) as a key factor for brisk onset of secondary deep lung infections, following the emergence of symptoms in the upper respiratory tract. These findings show that the distribution of exhaled cough droplets can act as a sensitive, noninvasive biomarker for classifying pulmonary diseases, underlining the diagnostic potential of droplet dynamics and mucosal properties in respiratory health assessment.

To summarise, the article Research Topic on the Research Topic highlights the potential of airway biomechanics to be used for defining clinically-relevant metrics called physiomarkers and develop diagnostic tools. For example, the reduced-order model (Chakravarty et al.) introduces several dimensionless parameters for defining lung physiology which can be used to construct a virtual disease landscape (VDL) -- essentially a mapping of different disease groups and normal function in a hyperspace of dimensionless parameters controlling lung function. These parameters defining the VDL can help obtain mechanistic insights into pathologies and hence used as physiomarkers for disease classification and diagnosis. The VDL - coupled with machine learning techniques - could be developed into a powerful diagnostic tool for disease trajectory prediction, optimize therapeutic interventions, and ultimately improve patient outcomes.

Chakravarty et al. 10.3389/fphys.2025.1743792

Author contributions

AC: Conceptualization, Writing – original draft. SB: Conceptualization, Writing – review and editing. MP: Conceptualization, Writing – review and editing. NP: Conceptualization, Writing – original draft.

Funding

The authors declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

Anzai, H., Shindo, Y., Kohata, Y., Hasegawa, M., Takana, H., Matsunaga, T., et al. (2022). Coupled discrete phase model and eulerian wall film model for numerical simulation of respiratory droplet generation during coughing. *Sci. Rep.* 12, 14849. doi:10.1038/s41598-022-18788-3

Basu, S. (2025). On the mechanics of inhaled bronchial transmission of pathogenic microdroplets generated from the upper respiratory tract, with implications for downwind infection onset. *PLoS One* 20 (10), e0335962. doi:10.1371/journal.pone.0335962

Bessler, R., and Sznitman, J. (2024). The potential of leveraging electrostatics for improved inhaled drug delivery to the lungs. *Front. Med. Eng.* 1, 1298251. doi:10.3389/fmede.2023.1298251

Chakravarty, A., Panchagnula, M. V., Mohan, A., and Patankar, N. A. (2022). Pulmonary drug delivery and retention: a computational study to identify plausible parameters based on a coupled airway-mucus flow model. *PLoS Computational Biology* 18 (6), e1010143. doi:10.1371/journal.pcbi.1010143

Chakravarty, A., Panchagnula, M. V., and Patankar, N. A. (2023). Inhalation of virus-loaded droplets as a clinically plausible pathway to deep lung infection. *Front. Physiology* 14, 1073165. doi:10.3389/fphys.2023.1073165

De Boer, A. H., Hagedoorn, P., Hoppentocht, M., Buttini, F., Grasmeijer, F., and Frijlink, H. W. (2017). Dry powder inhalation: past, present and future. *Expert Opinion Drug Delivery* 14 (4), 499–512. doi:10.1080/17425247.2016.1224846

Dua, K., Hansbro, P. M., Wadhwa, R., Haghi, M., Pont, L. G., and Williams, K. A. (2020). Targeting chronic inflammatory lung diseases using advanced drug delivery systems. Academic Press.

Generative AI statement

The authors declare that no Generative AI was used in the creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Kant, P., Pairetti, C., Saade, Y., Popinet, S., Zaleski, S., and Lohse, D. (2023). Bag-mediated film atomization in a cough machine. *Phys. Rev. Fluids* 8, 074802. doi:10.1103/physrevfluids.8.074802

Kole, E., Jadhav, K., Shirsath, N., Dudhe, P., Verma, R. K., Chatterjee, A., et al. (2023). Nanotherapeutics for pulmonary drug delivery: an emerging approach to overcome respiratory diseases. *J. Drug Delivery Science Technology* 81, 104261. doi:10.1016/j.jddst.2023.104261

Li, M., Saade, Y., Zaleski, S., Sen, U., Kant, P., and Lohse, D. (2025). Viscoelasticity reduces the droplet size in mucosalivary film fragmentation during intense respiratory events. *Phys. Review Fluids* 10 (8), 084001. doi:10.1103/zlgy-36dk

Miguel, A. F. (2017). Penetration of inhaled aerosols in the bronchial tree. *Med. Eng. and Phys.* 44, 25–31. doi:10.1016/j.medengphy.2017.03.004

Morawska, L., Buonanno, G., Mikszewski, A., and Stabile, L. (2022). The physics of respiratory particle generation, fate in the air, and inhalation. *Nat. Rev. Phys.* 4, 723–734. doi:10.1038/s42254-022-00506-7

Pairetti, C., Villiers, R., and Zaleski, S. (2021). On shear layer atomization within closed channels: numerical simulations of a cough-replicating experiment. *Comput. Fluids* 231, 105125. doi:10.1016/j.compfluid.2021.105125

Saha, S., Manna, M. K., Chakravarty, A., Sarkar, S., Mukhopadhyay, A., and Sen, S. (2024). Insights into the fluid dynamics of bioaerosol formation in a model respiratory tract. *Biomicrofluidics* 18, 054106. doi:10.1063/5.0219332

West, J. B. (2012). Respiratory physiology: the essentials. Lippincott Williams and Wilkins.