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Background: wearable movement sensor technology shows promise for
objective assessment of Parkinson’s disease (PD) motor symptoms, but optimal
machine learning approaches and feature sets for accurate PD detection
remain unclear. This study provides a comprehensive evaluation of classification
algorithms, feature contributions, and optimization techniques for PD detection
using wearable movement sensor data.

Methods: We compared twelve diverse machine learning classifiers on motion
sensor data, conducted systematic feature ablation studies across statistical,
frequency-domain, dynamic, and complexity feature categories, optimized
Random Forest parameters using three meta-heuristic algorithms, which is
Particle Swarm Optimization (PSO), Improved Satin Swarm Algorithm (ISSA), and
Enhanced Whale Optimization Algorithm (EWOA), and performed SHAP value
analysis to identify the most influential features and their impact patterns.
Results: Random Forest demonstrated superior performance (86.7% accuracy)
among all classifiers. Statistical features contributed most significantly to
classification performance, while complexity, dynamic, and frequency domain
features provided complementary information. PSO-optimized Random Forest
achieved 87.65% accuracy, outperforming other optimization approaches. SHAP
analysis identified entropy-based measures and standard deviations as the
most influential features, with accelerometer-derived complexity measures
driving high-probability PD predictions and gyroscope-derived measurements
dominating low-probability outcomes.

Conclusion: Ensemble-based methods effectively capture the complex, non-
linear relationship between movement characteristics and PD diagnosis.
Comprehensive feature extraction frameworks incorporating multiple
movement dimensions significantly enhance detection accuracy. The
asymmetric feature influence patterns for positive versus negative predictions
align with clinical understanding of PD as a disorder characterized by altered
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movement complexity and variability. These findings provide a foundation for
developing accurate, interpretable wearable monitoring systems for Parkinson’s
disease detection and management.

feature extraction, machine learning, Parkinson's disease detection, SHAP analysis,
wearable movement sensors

1 Introduction

Parkinson’s disease is a chronic, progressive neurodegenerative
disorder that significantly affects motor and non-motor functions.
Motor symptoms, such as tremors, rigidity, and bradykinesia,
are the hallmark of the disease, while non-motor symptoms,
including cognitive impairments, autonomic dysfunction, and
sleep disturbances, further reduce the quality of life. Research
indicates that the global prevalence of Parkinson’s disease is 94 per
100,000 people, with a significant increase in incidence with age
(Khani et al., 2024). Early and accurate diagnosis is critical for
effective intervention and management, yet it remains challenging
due to the disease’s heterogeneous progression and the subtlety of
early-stage symptoms (Siderowf et al., 2023).

Traditional diagnostic approaches for PD rely on clinical
observations, patient-reported symptoms, and rating scales
such as the Unified Parkinson’s Disease Rating Scale (UPDRS)
(Guerra et al., 2023). While these tools provide valuable insights,
they are inherently subjective, prone to inter-rater variability, and
dependent on observable symptoms that often emerge in the
later stages of the disease. As a result, there is an urgent need for
objective, data-driven diagnostic methods that can identify PD at
earlier stages (Mei et al., 2021).

In recent years, wearable devices such as smartwatches
have emerged as promising tools for PD monitoring and
diagnosis (Sotirakis et al., 2023). Equipped with accelerometers,
gyroscopes, and other motion sensors, these devices capture
data
movements. By analyzing this data, it is possible to detect subtle

high-resolution time-series reflecting an  individual’s
motor impairments and other movement-related abnormalities
indicative of PD. The use of wearable devices offers several
advantages, including non-invasiveness, scalability, and the
ability to monitor individuals in real-world environments over
extended periods (Powers et al., 2021).

This study introduces a novel framework for PD detection using
wearable movement sensor data, emphasizing activity-robust feature
extraction, class imbalance handling, and explainable modeling.

The key contributions of this research are as follows:

1. Multi-dimensional Feature Extraction Framework: We
propose a comprehensive feature extraction strategy that
systematically statistical,

integrates frequency-domain,

dynamic, and complexity-based characteristics from

smartwatch sensor data. This unified framework uses
activity-agnostic features that do not depend on task-specific
biomechanical models, thereby offering potential robustness
across diverse movement contexts.

2. PSO-optimized Classification Architecture: We develop

a novel classification approach that leverages Particle
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Swarm Optimization for parameter tuning, automatically
identifying optimal hyperparameter configurations. This
optimization strategy significantly improves the models
discriminative power in distinguishing between PD patients
and healthy controls.

Interpretable Feature Analysis Framework: We incorporate
SHapley Additive exPlanations (SHAP) analysis to provide
transparent insights into feature importance and model
decision-making processes. This interpretability mechanism
helps identify the most significant movement characteristics
contributing to PD detection, enhancing the clinical relevance
and trustworthiness of our approach.

Validation: ~ We
comprehensive experimental evaluations, examining model

Systematic ~ Performance conduct
performance through multiple metrics including accuracy,
precision, recall, and Fl-score. The evaluation framework
provides robust validation of the proposed method’s

effectiveness in real-world PD detection scenarios.

This study addresses critical gaps in PD detection research by
proposing a method that generalizes across activities and offers
interpretable results. The ability to identify activity-robust features
ensures robustness in uncontrolled, real-world settings, making the
proposed framework suitable for scalable deployment in wearable-
based health monitoring systems. Furthermore, the integration of
SHAP analysis aligns with the increasing emphasis on explainable
artificial intelligence (XAI) in healthcare, providing clinicians with
actionable insights into the factors driving model decisions.

Through this study, we aim to contribute a robust, interpretable,
and activity-robust framework for PD detection, advancing the
capabilities of wearable-based diagnostic systems in clinical and
real-world applications.

2 Related work

Parkinson’s disease is typically diagnosed through clinical
evaluations involving neurological examinations and patient history
assessments. Tools like the UPDRS provide standardized metrics to
assess disease severity but are inherently subjective and depend on
the clinician’s expertise (Nair et al., 2021; Ramdhani et al., 2018).
Additionally, overlapping symptoms with other neurodegenerative
disorders complicate early diagnosis.

To overcome these challenges, researchers have explored
data-driven  approaches for automated PD  detection
(Ammous et al., 2024; Dhivyaa et al, 2024). Machine learning
algorithms have leveraged diverse data types, such as voice
recordings, handwriting samples, and motion sensor data, to
identify PD-related patterns (Islam et al., 2024; Kamran et al., 2021;
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Veetil et al, 2024). Studies using voice data have extracted
features like jitter, shimmer, and harmonics-to-noise ratio to
differentiate PD patients from healthy individuals with promising
accuracy (Akbarzadeh-T et al, 2021). Similarly, handwriting
analysis has investigated features such as tremor frequency and
pressure variations to detect motor impairments (Ngo et al., 2024;
Palsapure et al., 2024; Goel et al., 2020). While these approaches
show promise, they often require specific tasks for data collection,
limiting their generalizability to real-world applications.
Wearable

accelerometers,

devices equipped with sensors such as

gyroscopes, and heart rate monitors have
gained prominence in healthcare for enabling continuous, non-
invasive monitoring of physiological and behavioral data. These
devices offer significant potential for early disease detection and
management (Peng et al., 2023).

In the context of PD, wearable movement sensors have
been utilized to analyze motor symptoms by assessing gait
patterns, tremor frequencies, and activity levels. For instance,
These features were useful for distinguishing between subtypes
and monitoring disease progression. The findings suggest that
wearable movement sensors could aid early diagnosis and
personalized treatment by identifying subtype-specific gait
biomarkers (Zhang et al., 2024; Rovini et al., 2017). However,
these methods often rely on task-specific models that require
participants to perform predefined activities, such as walking or
writing, reducing their applicability in unconstrained environments
where individuals engage in diverse activities.

A critical limitation of wearable-based PD detection is the
dependence on task-specific features, such as stride length for
walking or tremor amplitude during handwriting. While effective
in controlled environments, these features lack generalizability to
real-world scenarios.

Recent studies have explored activity-robust feature extraction
for detecting PD using wearable movement sensors. A method was
developed that combines multilevel features from spectral, temporal,
and sensor domain data to assess motor fluctuations in PD patients
(Behnaz et al,, 2019). The impact of sensor types, sampling rates, and
feature sets on PD symptom detection accuracy was investigated,
with findings suggesting that simplified measurement characteristics
could maintain performance while reducing computational burden
(Shawen et al, 2020). Additionally, it was demonstrated that
gyroscope data slightly improved bradykinesia detection, while
tremor detection accuracy decreased with lower sampling rates
(Shawen et al., 2020). An optimized PD detection method using
dynamic kinematic features extracted from specific phases of
handwriting tasks was proposed, achieving high accuracy through
machine learning techniques (Shin et al., 2024). These studies
highlight the potential of activity-robust features and optimized
data collection strategies for robust PD detection using wearable
movement sensors.

XAI techniques are crucial for enhancing transparency
and trust in healthcare machine learning models. SHAP and
LIME are two prominent model-agnostic methods that provide
insights into model predictions (Arjunan, 2021; Inukonda and
Rajasekhara Reddy Tetala, 2024). These techniques help bridge
the gap between technical outputs and clinical applications,
addressing the “black-box” problem in AI (Inukonda and
Rajasekhara Reddy Tetala, 2024). XAI methods are particularly
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important in high-stakes medical fields like diagnostics and
treatment personalization, where interpretability is essential
for ethical

decision-making and  regulatory

(Arjunan, 2021). Studies have demonstrated the effectiveness of

compliance

SHAP and LIME in various healthcare applications, including
prediction and diabetic retinopathy diagnosis
(Shobeiri, 2024). By providing explanations for model decisions,

melanoma

XAI techniques enable clinicians to understand, trust, and
safely apply AI recommendations, ultimately improving clinical
workflows and patient outcomes (Arjunan, 2021; Inukonda and
Rajasekhara Reddy Tetala, 2024; Shobeiri, 2024).

3 Methodology

In this study, a comprehensive methodology is proposed
to detect Parkinson’s Disease from smartwatch sensor data,
utilizing time-series accelerometer and gyroscope readings. The
methodology consists of five primary steps: (1) data collection and
preprocessing, (2) feature extraction, (3) class balancing, and (4)
experimental design. These steps ensure that the model is both
accurate and robust for detecting PD-related motion patterns.

3.1 Dataset description

The Parkinson’s Disease Smartwatch Dataset is a publicly
available dataset from PhysioNet that contains motion sensor
recordings collected using a smartwatch worn by participants with
and without Parkinson’s disease (Varghese et al., 2024). It was
collected from 2018 to 2021 at the University Hospital Miinster,
Germany. The data collection involved 469 participants, generating
a total of 5,159 measurement steps. The data acquisition system
consisted of two Apple Watch Series 4 smartwatches worn on both
wrists and a smartphone running a custom application. During
the data collection process, participants performed 11 different
standardized movement tasks, each lasting between 10 and 20 s. The
smartwatches simultaneously recorded acceleration and rotation
signals throughout these tasks, which were specifically designed to
provoke subtle movement pathologies.

The dataset includes both sensor measurements and participant
information (Table 1). The sensor data comprises synchronized
acceleration and rotation signals from both smartwatches during
task execution. For privacy protection, all participants were assigned
random unique identifiers, and temporal data was normalized to
start from zero.

This comprehensive dataset provides a robust foundation
for developing and validating machine learning models aimed
at detecting and analyzing movement disorders through digital
biomarkers.

3.2 Data preprocessing

The data preprocessing stage consisted of two main components:
data cleaning and alignment, followed by label filtering. In the
first component, raw sensor data underwent cleaning procedures
to remove noise and artifacts. The subsequent label filtering process
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TABLE 1 Participant demographic and clinical characteristics.

Characteristic Healthy Parkinson'’s
controls disease
Age, years (mean + SD) 62.9 +12.5 65.4+9.6
Age range, years 40-90 42-85
BMI, kg/m2 (mean + 28.8£19.6 27.0£5.0
SD)

involved carefully selecting and validating the movement task labels,
ensuring only correctly labeled and complete movement sequences
were retained for the analysis.

3.2.1 Data cleaning and alignment

In the initial preprocessing step, the raw sensor data from
different subjects is aligned to ensure that all time-series sequences
have the same length. Sequences were aligned to the length of the
longest recording within each cross-validation fold by zero-padding
shorter sequences at the end or truncating the terminal portion
of longer ones. All preprocessing was performed strictly after
train/validation/test splitting to prevent data leakage. Zero-padding
or truncation was chosen because it is the standard approach for this
publicly available dataset, introduces only neutral values, and avoids
the artificial dynamics that interpolation or reflection padding can
induce in tremor- and bradykinesia-sensitive signals.

This ensures a consistent input format suitable for machine
learning models. Additionally, labels from a separate metadata file
are mapped to the corresponding time-series data.

Given the nature of wearable movement sensors, noise and
missing values can distort the time-series signals. Therefore,
forward-filling is used to impute missing values, preserving
the continuity of the signal, especially when data is sparse or
corrupted. After padding/truncation, sequences were segmented
into overlapping 5-s windows to preserve temporal dynamics and
mitigate artifacts.

3.2.2 Label filtering

Since the dataset includes multiple classes of conditions, the
analysis is focused on distinguishing between healthy individuals
and those diagnosed with Parkinson’s Disease. Therefore, labels are
filtered to only include “Healthy” and “Parkinson’s” conditions, and
the corresponding time-series samples are retained.

3.3 Feature extraction

A key design principle of the proposed framework is the use
of activity-agnostic features. Unlike many prior studies that extract
gait-specific, drawing-specific, or tapping-specific parameters, all
features employed here can be computed on any 5-s accelerometer
or gyroscope segment irrespective of the underlying motor task. This
deliberate choice aims to reduce task dependency at the feature level.

Feature extraction was performed on overlapping 5-s windows
extracted from the entire duration of each task recording. This
window length was selected because it captures multiple cycles
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of physiological tremor (four to eight Hz) while remaining
computationally efficient.

A 50% overlap (2.5-s stride) was used to preserve temporal
continuity and avoid boundary effects when computing frequency-
domain features, which is standard for physiological time-
series analysis.

Statistical, frequency-domain, dynamic, and complexity features
were combined because PD motor impairments manifest across
multiple temporal scales (steady-state, oscillatory, and transient),
and ensemble feature sets consistently outperform single-domain
approaches in biomedical classification tasks.

3.3.1 Statistical features
Statistical features provide insights into the central tendency and
dispersion of the data (Jalal et al., 2020). For both accelerometer and
gyroscope signals, the following statistical metrics are computed:
Mean (u,) and Standard Deviation (o,) (Equation 1):

1

where x; represents the sensor value at time i, y, is the mean, and o,
is the standard deviation. These features are computed for each axis
of both the accelerometer and gyroscope signals.

Maximum (max(x)) and Minimum (min(x)): These values
capture the extremities of the signal range.

3.3.2 Frequency-domain features

Frequency-domain analysis is essential for identifying
oscillatory patterns and periodic signals inherent in the motion data
(Dong et al., 2020). The Power Spectral Density (PSD) is estimated
for each sensor signal using the Welch method, which divides the
signal into overlapping segments and computes the average power
of the frequency components (Equation 2):
L
P(D =< Y IXOP @
i=1

where P(f) is the power at frequency f, and X(f) is the Fourier

transform of the signal segment.
From the PSD, we derive the Spectral Entropy, which measures
the complexity and randomness of the signal in the frequency

domain. Spectral entropy is calculated as Equation 3.

Hspec = _z P(D 10g2 P(f) (3)
f
This metric is particularly useful for detecting irregularities in
the movement patterns associated with Parkinson’s Disease.

3.3.3 Dynamic features

Dynamic features capture the temporal changes in sensor
signals, highlighting the rate of motion or variability over time
(Nakano and Chakraborty, 2023). We compute the Rate of Change
for each sensor signal as follows Equation 4:

N-1

1
_N—lz

i=

X1 — X

X

)

Iy

where r represents the rate of change in the sensor signal, and x;
denotes the value at time step i. This feature is computed for each
axis of both the accelerometer and gyroscope signals.
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3.3.4 Complexity features

To capture the inherent complexity and unpredictability of
motion, Shannon Entropy is computed for each sensor signal
(Peng et al, 2014). The entropy quantifies the uncertainty or
randomness of the signal’s distribution (Equation 5):

n

Hshannon = _Z p(xi)logz P(Xi)

i=1

(5)

where p(x;) is the probability distribution of the signal values, and
n is the number of bins in the histogram. Higher entropy values
generally correspond to more chaotic or irregular movements,
which may be indicative of PD-related motor symptoms.

The extracted features are concatenated into a unified feature
vector, representing a comprehensive profile of the sensor data for
each time-series sample.

3.4 Class balancing

Due to class imbalance at the window level, the Synthetic
(SMOTE)
exclusively to the training set of each cross-validation fold after

Minority Oversampling Technique was applied
splitting. This produced an approximately 1:1 balanced ratio in
training data only, while validation and test sets retained the original
distribution. SMOTE was selected over random oversampling
because it generates synthetic minority samples through nearest-
neighbor interpolation, preserving the local structure of PD
movement patterns in feature space. SMOTE works by generating
synthetic instances through interpolation of existing minority
class samples (Elreedy et al., 2023).

Mathematically, for a given minority class sample, SMOTE
generates new synthetic samples as Equation 6:

Xn

(6)

ew =Xt )\(Xn - Xi)

where x; is a sample from the minority class, x, is a randomly

n
selected neighbor of x;, and A is a random scalar factor. This
helps prevent overfitting and improves the generalization capability

of the model.

3.5 Experimental design

To establish an optimal framework for Parkinson’s disease
detection using wearable movement sensor data, we designed
an experimental pipeline that integrates an advanced feature
extraction method with PSO. In addition to evaluating multiple
baseline models, we specifically emphasize the role of PSO in
feature selection. Our approach leverages PSO to refine statistical,
frequency-domain, dynamic, and complexity-based features,
ensuring the most discriminative characteristics are selected for
classification. By optimizing feature subsets, PSO enhances model
interpretability, leading to improved classification performance. A
comparative analysis between the baseline models and our proposed
PSO-based feature selection approach provides insight into its
effectiveness in enhancing classification outcomes.
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3.5.1 Baseline selection

We evaluated twelve widely adopted supervised learning
algorithms spanning different algorithmic families:

Support Vector Machine (SVM): A margin-based discriminative
that finds
different classes.

classifier an optimal hyperplane to separate

XGBoost: A gradient boosting framework that optimizes
decision trees using an efficient boosting strategy.

LightGBM: A gradient boosting framework optimized for speed
and performance.

K-Nearest Neighbors (KNN): An instance-based learning
approach that classifies samples based on the majority class of their
nearest neighbors.

Logistic Regression: A statistical model that uses a logistic
function to model binary dependent variables.

Decision Tree: A tree-based classification method that partitions
the data space into hierarchical regions.

Naive Bayes: A probabilistic classifier based on Bayes’ theorem
with an assumption of independence among predictors.

Gradient Boosting Machine (GBM): An iterative boosting
method that combines weak learners to create a strong
predictive model.

Extreme Learning Machine (ELM): A neural network-based
approach that randomly assigns weights and biases to hidden
neurons and solves output weights analytically.

AdaBoost (Adaptive Boosting): An ensemble learning method
that iteratively adjusts the weights of weak classifiers to enhance
predictive accuracy.

Bagging: Bootstrap aggregating of base classifiers.

Random Forest: An ensemble of decision trees with

feature bagging.

3.5.2 Model architecture

The proposed Parkinson’s disease classification pipeline
consists of multiple stages, starting from raw data acquisition to
feature extraction, model training, and evaluation. The pipeline
integrates conventional machine learning techniques with advanced
optimization algorithms. Specifically, it employs PSO, ISSA, and
EWOA to fine-tune the hyperparameters of a Random Forest (RF)
classifier. The architecture is illustrated in Figure 1.

PSO is a population-based optimization algorithm inspired by
the social behavior of bird flocks and fish schools. The algorithm
maintains a swarm of particles, each representing a candidate
solution, which moves through the search space based on position
and velocity updates. The update rules for each particle are given as
Equations 7, 8:

(t)

(t+1) (t) (t)
vi U =wv e (p}’eSt -X; ) + c2r2<gbeSt -x ) (7)
Xi(t+1) _ Xi(t) N Vi(t+1) ®)
where:
x is the position of the i-th particle at iteration t.
vit) is its velocity.
p?eSt represents the best position found by particle i so far.
g%t is the global best position found by any particle.

w is the inertia weight controlling the influence of past velocities.
¢y, ¢, are acceleration coefficients for personal and global best
attraction.
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r;, I, are random numbers sampled from [0, 1].

The ISSA is an enhanced version of the traditional Satin Swarm
Algorithm, incorporating adaptive inertia weight and mutation
strategies to avoid premature convergence. The position update in
ISSA follows (Equation 9):

XOH) (t)

i =%

+a-rand- (xbest - xim) 9)
where:

xi(t) is the position of the i-th individual.

a is a control parameter.

rand is a random number between [0, 1].

Xpeqt 15 the best position found so far.

EWOA improves the standard Whale Optimization Algorithm
by incorporating chaotic mapping and nonlinear control parameter
adjustments. The position update rule is given by Equation 10:

xi(m) = xi(t) +D- e cos(2nL) (10)
where:
D is the distance between the search agent and the best solution.
b is a constant controlling the logarithmic spiral shape.
L is a random number in [-1, 1].

3.5.3 Model algorithm

The proposed integrated framework for Parkinson’s Disease
detection utilizing smartwatch sensor data is presented in
Algorithm 1. The framework encompasses four primary stages:
data preparation, label processing, feature extraction, and model
optimization. In the data preparation phase, the algorithm processes
raw time series data from smartwatch sensors, organizing it into
a structured format while preserving subject identification and
action type information. The label processing stage establishes
a mapping between subjects and their medical conditions,
specifically distinguishing between healthy controls (y = 0) and
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PD patients (y = 1). The feature extraction module implements
a comprehensive set of feature calculations, including statistical
metrics, frequency domain characteristics, dynamic movement
patterns, and complexity measures, as defined by Equations 1-5.
The final stage introduces a PSO-optimized classification approach,
where particle swarm optimization dynamically adjusts the model
parameters through velocity and position updates governed by
Equations 7, 8. This optimization process iteratively refines the
classification parameters to maximize diagnostic accuracy. The
algorithm incorporates data normalization and SMOTE-based class
balancing to ensure robust model performance, culminating in a
comprehensive evaluation using multiple performance metrics.

4 Results
4.1 Baseline model comparison

To establish a comprehensive benchmark for Parkinson’s disease
detection using wearable movement sensor data, we evaluated
twelve diverse machine learning classifiers spanning multiple
algorithmic families.

As illustrated in Figure 2, the Random Forest classifier
demonstrated superior performance across all evaluation metrics,
achieving 86.7% accuracy, 84% precision and 90% recall for the
healthy class (class 0), and 89% precision and 84% recall for
the Parkinson’s disease class (class 1). This balanced performance
across both classes is particularly valuable in clinical diagnostic
applications where both false positives and false negatives carry
significant implications.

To provide a more rigorous assessment of model stability,
we computed 95% bootstrap confidence intervals (n = 1000
resamples) and Brier scores for the top-performing models. The
baseline Random Forest achieved an accuracy of 87.44% (95% CI:
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Input:Raw time series data folder D_raw; Patient
labels folder D_label

Output:Model performance metrics and ablation
study results

1: [DATA PREPARATION]:

2: Initialize empty lists time series list,
metadata list

3: foreach file f in D_raw do

4: Read sensor data matrix xeRe(TxF),where T
is time steps and F is features

5: Extract subject_id and action_type
from filename

6: Append X to time_series_list

7 Append metadata to metadata_list

8: end for

9: [LABEL PROCESSING]:

10: Initialize empty dictionary labels_dict
11: foreach file f in D_label do

12: Read JSON data

13: Extract subject_id and

condition y_i € {0,1}

14: Add to labels_dict

15: end for

16: Merge labels with metadata

17: Filter data to include only Healthy (y = 0)

and Parkinson’'s (y = 1) cases

18: [FEATURE EXTRACTION]:

19: function ExtractFeatures(X):

20: Split x into x_acce]RA(FXB)and

21: if include_stats then

22 Calculate statistical features (mean,
std, max, min) using Equation 1

23: end if

24 if include_freq then

25: Calculate frequency domain features using
Equations 2, 3

26 end if

27 if include_dynamic then

28: Calculate dynamic features (rate of
change) using Equation 4

29: end if

30: if include_complexity then

31: Calculate complexity features
(entropy) using Equation 5

32: end if

33: Return concatenated feature vector
34: end function

35: [MODEL TRAINING AND EVALUATION]:

36: Initialize feature matrix FeR(Nxd)and
label vector

37: fori =1 to N do

38: F [i] = ExtractFeatures (X_1i)

39: y [1] = label_i

40: end for

47: Normalize F: F_norm = (F - p)/o
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42: Apply SMOTE: (F_balanced, y_balanced) =
SMOTE(F_norm, y) (Equation 6)

43: [PSO OPTIMIZATION]:

44: Initialize particle swarm P with random
positions and velocities

45: Set personal best position pbest and global
best position gbest

46: while notreaching maximum iterations do
47 foreach particle p in P do

48: Update velocity v using Equation 7
49: Update position x using Equation 8
50 Evaluate fitness using
classification accuracy

51: Update pbest and gbest if better
solution found

52: end for

53: end while

54: Train classifier 6 with optimal
parameters from PSO

55: Calculate metrics: accuracy, Precision,
Recall, F1-score

Algorithm 1. Parkinson’s Disease Detection from Smartwatch Data.

86.04%-88.80%), AUC of 0.9535 (95% CI: 0.9455-0.9610), F1-score
of 0.8743 (95% CI: 0.8603-0.8879), and Brier score of 0.1246.

The ensemble learning methods collectively exhibited strong
performance, with Bagging ranking second with 82% accuracy
and consistently robust metrics across both classes. Similarly,
boosting-based approaches including XGBoost (80% accuracy) and
LightGBM (75% accuracy) demonstrated competitive performance,
though with slightly lower balanced accuracy compared to
Random Forest.

Instance-based learning, represented by KNN, showed
interesting characteristics with high recall (93%) but comparatively
lower precision (69%) for the healthy class, indicating a tendency
toward false positive predictions. This imbalance was further
evidenced by the substantial disparity between precision and recall
for the Parkinson’s disease class (90% and 59% respectively).

Linear models demonstrated limited efficacy for this
classification task, with Logistic Regression achieving only 55%
accuracy, suggesting the relationship between the extracted features
and PD diagnosis is inherently non-linear. This observation aligns
with the complex, multidimensional nature of movement disorders
that typically involve intricate interdependencies between various
movement characteristics.

Notably, Extreme Learning Machine exhibited extreme
classification bias, with near-perfect recall (99%) but minimal
precision (50%) for the healthy class, and correspondingly poor
recall (2%) for the Parkinson’s disease class. This severe imbalance
resulted in the lowest overall accuracy (50%) among all evaluated
classifiers, highlighting the importance of balanced performance
metrics in clinical applications.

The performance variation across models underscores the
necessity of selecting algorithms capable of capturing the complex,
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non-linear relationships inherent in movement disorder detection.
The superior performance of tree-based ensemble methods,
particularly Random Forest, suggests their inductive bias aligns
well with the underlying patterns distinguishing Parkinson’s disease
from healthy movement characteristics.

4.2 Feature ablation study

To systematically evaluate the contribution of different feature
categories to the model’s discriminative capabilities, we conducted a
comprehensive ablation study. This analysis involved systematically
removing each feature category and assessing the impact on multiple
performance metrics, providing valuable insights into the relative
importance of different movement characteristics in Parkinson’s
disease detection.

4.2.1 Impact of feature categories on
classification performance

Figure 3 presents a detailed comparison of model performance
across various feature ablation scenarios, with metrics broken down
by class to provide granular insight into classification behavior.

The base Random Forest model incorporating all feature
categories achieved balanced and superior performance, with 86.7%
overall accuracy, 84% precision and 90% recall for the healthy class,
and 89% precision and 84% recall for the Parkinson’s disease class.

This balanced performance across both classes establishes a
robust benchmark for evaluating feature contribution.

The removal of statistical features produced the most substantial
performance degradation, with accuracy declining by 6 percentage
points to 81%. This significant impact manifested across all metrics,
with particularly pronounced effects on recall for the Parkinson’s
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disease class, which decreased from 84% to 76%. This substantial
deterioration underscores the critical importance of basic statistical
measures in capturing the fundamental movement alterations
characteristic of Parkinson’s disease, including amplitude reduction,
increased variability, and altered movement patterns.

Although removal of frequency-domain features caused only
a negligible accuracy drop (0.08 percentage points), they may still
capture subtle spectral patterns (e.g., tremor-related peaks) not
fully represented by time-domain features alone, thus providing
complementary clinical value in a multi-dimensional framework.

The ablation of dynamic features resulted in a moderate
performance reduction, with overall accuracy decreasing by 2
percentage points to 85%. This impact was consistent across all
metrics and both classes, reflecting the importance of rate-of-
change measures in characterizing the progressive and transitional
aspects of movement in Parkinsons disease. Dynamic features
likely capture critical bradykinesia (slowness of movement) and
hypokinesia (reduced amplitude) characteristics that are fundamental
to PD motor symptomatology.

Similarly, removing complexity features led to a 2 percentage
point reduction in accuracy and comparable decreases across other
metrics. This consistent impact highlights the value of entropy-
based measures in quantifying the regularity and predictability of
movement patterns, which are often disrupted in Parkinson’s disease
due to altered basal ganglia function. The comparable impact of
dynamic and complexity features suggests these categories capture
complementary aspects of movement disorders.

4.2.2 Feature category synergies and clinical
implications

The ablation results reveal important synergistic relationships
between feature categories. While statistical features demonstrated
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the highest individual contribution, the combination of statistical,
dynamic, and complexity features produced performance very close
to the complete feature set. This suggests potential redundancy
between some feature categories, particularly between frequency
domain and other feature types.

From a clinical perspective, these findings align with established
understanding of Parkinson’s disease motor symptoms. The primacy
of statistical features corresponds to the fundamental alterations
in movement amplitude, variability, and pattern that characterize
parkinsonian movement. The significant contribution of dynamic
features reflects the clinical importance of bradykinesia and
movement transitions in PD diagnosis, while the value of complexity
features aligns with the known disruption of movement smoothness
and regularity.

The relative contributions of different feature categories provide
valuable guidance for feature engineering in wearable-based PD
detection systems. The results suggest a prioritization framework
where statistical features form the foundation, supplemented
by dynamic and complexity measures, with frequency domain
features potentially serving as complementary information when
computational resources permit comprehensive feature extraction.

This ablation analysis also offers potential insights for clinical
assessment, highlighting the specific movement characteristics most
discriminative for PD detection. The identified feature importance
hierarchy could inform the development of targeted clinical
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assessments focusing on the most diagnostically valuable movement
parameters, potentially enhancing the sensitivity and specificity of
traditional observational evaluations.

4.3 Optimization results analysis

To further enhance the model’s performance, we investigated
three meta-heuristic optimization algorithms for Random Forest
parameter tuning.

4.3.1 Performance comparison of optimization
approaches

As shown in Table 2, PSO-RF demonstrated the most substantial
improvements, achieving an accuracy of 87.65% and an AUC score
0f 0.9496. This optimization resulted in balanced precision and recall
metrics across both classes, representing a meaningful enhancement
over the baseline performance.

The ROC curves in Figure 4 visualize this improvement, with
PSO-RF showing a slightly larger area under the curve compared to
other approaches.

EWOA-RF and ISSA-RF also showed robust performance
improvements, with accuracies of 87.40% and 87.32% respectively.
All optimized models maintained strong discriminative capability,
with AUC scores consistently above 0.94.
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TABLE 2 Performance comparison of different optimization approaches.

Accuracy Precision (0/1) Recall (0/1) F1-score (0/1)
Base RF 86.70% 0.9463 0.84/0.89 0.90/0.84 0.87/0.86
PSO-RF 87.65% 0.9496 0.87/0.89 0.89/0.87 0.88/0.88
EWOA-RF 87.40% 0.9446 0.86/0.89 0.89/0.86 0.88/0.87
ISSA-RF 87.32% 0.9460 0.86/0.89 0.89/0.86 0.87/0.87
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PSO, ISSA, and EWOA were applied solely for Random Forest
hyperparameter tuning and did not perform feature selection.

To further quantify the stability of these results, we performed
additional bootstrap resampling (n = 1000) on the held-out test set
(As shown in Table 3). The PSO-optimized model achieved 87.81%
accuracy (95% CI: 86.54%-89.13%), and the EWOA-optimized
model reached 87.90% accuracy (95% CI: 86.58%-89.17%) with the
best calibration (Brier score 0.1237). These independent bootstrap
estimates are highly consistent with the originally reported cross-
validation results (differences <0.3%), confirming the robustness of
the findings.

4.3.2 Hyperparameter configuration analysis

Table 4 summarizes the optimal hyperparameter configurations
identified by each optimization algorithm, revealing interesting
patterns in model architecture.

As evident from Table 4, PSO-RF identified an optimal
configuration with 200 estimators and a maximum depth of 29,
while utilizing a relatively small feature subset (max_features =
0.1). EWOA-RF and ISSA-RF converged to similar tree depths but
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with fewer estimators, suggesting multiple viable configurations for
achieving improved performance.

The consistency in these patterns across different optimization
algorithms, as shown in Table 4, reinforces the robustness
of these parameter ranges for PD detection. While the
performance differences between optimization approaches
were marginal (within 0.33 percentage points in accuracy),
the consistent improvement over the baseline model validates
the utility of meta-heuristic

optimization in enhancing

classification accuracy.

4.4 SHAP value analysis for feature
importance

4.4.1 Feature importance ranking and direction of
influence

To analyze the feature importance through SHAP values,
we present a comprehensive ranking of the most influential
features in Figure 5. The results reveal that entropy-based features
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TABLE 3 Ablation study comparing default and optimized random forest models.

Model Accuracy (95% Cl) F1-score (95% Cl) AUC (95% Cl) Brier score Accuracy (95% Cl)
Base RE 0.8744 (0.8604-0.8880) 0.8743 (0.8603-0.8879) 0.9535 (0.9455-0.9610) 0.1246 0.8744 (0.8604-0.8880)
PSO-RF 0.8781 (0.8654-0.8913) 0.8779 (0.8650-0.8912) 0.9522 (0.9443-0.9601) 0.1262 0.8781 (0.8654-0.8913)
EWOA-RF 0.8736 (0.8592-0.8876) 0.8734 (0.8588-0.8875) 0.9491 (0.9408-0.9571) 0.1278 0.8736 (0.8592-0.8876)
ISSA-RF 0.8790 (0.8658-0.8917) 0.8787 (0.8655-0.8917) 0.9538 (0.9459-0.9611) 0.1237 0.8790 (0.8658-0.8917)

TABLE 4 Optimal hyperparameter configurations.

Algorithm n_estimators max_depth min_samples_split min_samples_leaf max_features
200 2 1

PSO-RF 29 0.10
EWOA-RF 147 29 4 1 0.24
ISSA-RF 119 27 2 1 0.13
demonstrate the highest impact on model predictions, with Acc_
Entropy and Gyro_Entropy ranking as the top two most significant
Acc_Entropy

features (SHAP values of 0.023 and 0.021 respectively). Standard
deviation features, particularly Acc_Std_Y and Gyro_Std_X, also
show substantial influence on the model’s decision-making process.
The spectral entropy features (Gyro_Spectral Entropy and Acc_
Spectral_Entropy) exhibit moderate importance, indicating the
relevance of frequency domain characteristics in PD detection.
Basic statistical features such as maximum, minimum, and mean
values across different axes contribute relatively less to the model’s
predictions, with SHAP values ranging from 0.008 to 0.012. This
analysis suggests that complexity-based measures and variability
indicators are more discriminative for PD detection compared to
simple statistical metrics, providing valuable insights for future
feature engineering strategies in PD detection systems.

Figure 6 presents a detailed SHAP value distribution plot,
illustrating the impact and directionality of different features on
the model’s predictions. The plot reveals complex patterns in
feature contributions, with entropy-based features (Acc_Entropy
and Gyro_Entropy) showing the widest SHAP value distributions
(0.1 to 0.1), indicating their strong but varied influence on model
decisions. Notably, Gyro_Spectral_Entropy demonstrates a distinct
bimodal distribution with predominantly high feature values
(shown in pink) contributing positively to predictions. Standard
deviation features (Acc_Std_Y and Gyro_Std_X) exhibit more
concentrated distributions around their mean impacts, suggesting
more consistent contributions to the model’s output. The rate
of change and basic statistical features (minimum, maximum,
and mean values) show narrower SHAP value ranges, centered
closer to zero, indicating more moderate and stable contributions
to predictions. This visualization effectively captures both the
magnitude and direction of feature impacts, highlighting the non-
linear relationships between feature values and their contributions
to the model’s decision-making process. Note that statistical features
remain collectively critical as shown in the ablation study.
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FIGURE 5
Shap bar plot.

4.4.2 SHAP value distribution for low SHAP score
features

Figure 7 presents the SHAP value distribution for features with
relatively low impact scores (f(x) = 0.02). The visualization reveals
that Gyro_Std_Y (2.9807), Gyro_Max_Y (2.9338), and Gyro_Min_
Y (-2.3277) are the primary contributors within this category.
The horizontal axis represents base values ranging from 0.0 to
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0.5, with the impact direction indicated by color coding (pink for
higher contributions and blue for lower contributions). Notably,
Gyro_Std_Y demonstrates the strongest negative influence (-0.13)
among these features, followed by Gyro_Max_Y (-0.07) and Gyro_
Min_Y (-0.04). Additional features such as Acc_Min_Z (-2.462),
Acc_Std_X (1.779), Acc_Max_X (0.361), Acc_Std_Z (3.173), Acc_
Mean_Z (-1.322), and Acc_Max_Z (1.52) exhibit progressively
smaller negative impacts, all approximately contributing —0.02
to the model's prediction. The collective contribution of 25
other low-importance features accounts for a substantial negative
influence (-0.12), highlighting the cumulative significance of
minor contributors. This visualization effectively demonstrates how
multiple gyroscope and accelerometer measurements, despite their
individually modest contributions, collectively shape the model's
classification decisions through primarily negative influences on the
prediction probability.

4.4.3 SHAP value distribution for high SHAP score
features

Figure 8 illustrates the feature impact distribution for variables
with substantially higher SHAP scores (f(x) = 0.97). In contrast to the
low-impact features, these measurements demonstrate consistently
positive contributions to prediction probabilities. Acc_Std_Y
(1.368) and Acc_Entropy (1.036) emerge as the most influential
features in this category, each contributing +0.04 to the model’s
output. The next tier of influential features includes Gyro_Std_X
(0.939), Gyro_Spectral_Entropy (0.366), Gyro_Max_X (0.1), Gyro_
Max_Z (-0.62), and Gyro_Entropy (0.865), all contributing +0.03 to
the prediction. Gyro_Std_Y (-0.576) and Gyro_Std_Z (-0.49) show
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slightly lower impacts of +0.02 each. The aggregated impact of 25
additional features accounts for a substantial positive contribution
of +0.19. This distribution highlights how entropy-based measures
and standard deviations across multiple axes provide the strongest
positive contributions to the model’s predictions, reinforcing
their importance in distinguishing Parkinson’s disease movement
patterns from healthy controls. The base value scale ranges from
-0.4 to 1.0, with the expected value E [f(X)] = 0.499, illustrating
the model’s baseline prediction point before incorporating specific
feature contributions.

4.4.4 SHAP force plot for feature contributions to
low probability predictions

Figure 9 presents a detailed force plot quantifying feature
impacts on a prediction with low probability output (f(x) = 0.015).
The vertical dotted line at 0.0 represents the reference point,
with features pushing the prediction toward the right (higher
probability) or left (lower probability). Gyro_Std_Y (2.981) exerts
the strongest negative influence (-0.13), substantially driving the
prediction toward a lower probability output. Secondary negative
contributors include Gyro_Max_Y (2.934) with —0.07 impact and
Gyro_Min_Y (-2.328) with —0.04 impact. Several features exhibit
smaller negative contributions of approximately —0.02 to —0.03,
including Acc_Min_Z (-2.462), Acc_Std_X (1.779), Acc_Max_
X (0.361), Acc_Std_Z (3.173), Acc_Mean_Z (-1.322), and Acc_
Max_Z (1.52). The remaining 25 features collectively contribute
—0.12 to the prediction. The final expected value E [f(X)] = 0.499
compared to the significantly lower actual prediction f(x) = 0.015
demonstrates how these negative feature contributions collectively
drive the model toward a confident negative classification outcome.
This visualization effectively captures the hierarchical influence of
different movement characteristics in determining low-probability
predictions, with gyroscope-derived features playing particularly
prominent roles.

4.4.5 SHAP force plot for feature contributions to
high probability predictions

Figure 10 presents a force plot detailing feature contributions
toward a high-probability prediction (f(x) = 0.959). In this case, all
featured measurements demonstrate positive contributions, pushing
the prediction value substantially above the baseline expectation (E
[f(X)] = 0.499). Acc_Std_Y (1.368) and Acc_Entropy (1.036) emerge
as the most influential positive contributors, each adding +0.04
to the prediction. A cluster of features each contributing +0.03
includes Gyro_Std_X (0.939), Gyro_Spectral Entropy (0.366),
Gyro_Max_X (0.1), Gyro_Max_Z (-0.62), and Gyro_Entropy
(0.865). Two additional gyroscope measurements—Gyro_Std_Y
(—0.576) and Gyro_Std_Z (—0.49)—provide +0.02 contributions
each. The remaining 25 features collectively add a substantial +0.19
to the prediction value. High-probability PD predictions are driven
by a combination of increased accelerometer entropy/complexity
and altered gyroscope variability patterns, consistent with clinical
manifestations of bradykinesia and tremor/rigidity. The horizontal
axis spanning from 0.5 to 1.0 illustrates how these positive
feature impacts collectively shift the prediction from the baseline
expectation to a highly confident positive classification outcome
of 0.959, demonstrating the model’s ability to integrate multiple
movement characteristics into decisive diagnostic predictions.
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5 Discussion but extends current understanding by quantifying the performance
gap across a broader range of algorithms.

51 Signiﬁca nce of Random Forest's The superior performance of Random Forest (86.7% accuracy)

superior performance compared to linear models (55% for Logistic Regression) underscores

the inherently non-linear relationship between movement features

The comprehensive evaluation of twelve diverse machine  and Parkinson’s disease diagnosis. This non-linearity likely stems from

learning classifiers revealed consistent superiority of ensemble-  the complex interaction between multiple movement characteristics

based methods, with Random Forest demonstrating exceptional  that collectively define parkinsonian motor patterns. Random Forest’s

performance across all evaluation metrics. This finding aligns  ability to model complex decision boundaries through hierarchical

with previous research on movement disorder classification using  splitting and its inherent feature selection properties make it
wearable movement sensors (Bremm et al., 2024; Badawietal., 2018)  particularly well-suited for capturing these relationships.
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The pronounced performance disparity between tree-based
ensembles and instance-based methods like KNN highlights the
importance of algorithmic selection in clinical applications. While
KNN demonstrated high recall for healthy subjects (93%), its
substantially lower precision (69%) would translate to unacceptable
false positive rates in clinical settings. This imbalance illustrates
how performance metrics beyond accuracy, particularly class-
specific precision and recall, are critical considerations for diagnostic
applications where false positives and false negatives carry different
implications.

The extreme classification bias exhibited by the Extreme
Learning Machine (99% recall but only 50% precision for healthy
subjects) serves as a cautionary example of how certain algorithms
can achieve misleadingly high performance on single metrics
while failing fundamentally as diagnostic tools. This observation
reinforces the necessity of comprehensive evaluation frameworks
incorporating multiple performance dimensions for clinical
machine learning applications.

5.2 Feature category contributions and
clinical interpretations

The feature ablation study provided valuable insights into
the relative importance of different movement characteristics
in Parkinson’s disease detection. The substantial performance
degradation following removal of statistical features (6 percentage
point accuracy reduction) aligns with clinical understanding of PD
motor symptoms (Varadi, 2020).

The meaningful contribution of frequency domain features,
though numerically modest (0.08 percentage point accuracy
impact), suggests that spectral characteristics capture subtle

aspects of movement disorders that complement time-
domain measures (Nolazco-Flores et al., 2021).
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The moderate yet consistent impact of removing dynamic
and complexity features (2 percentage point accuracy reduction
each) indicates these categories capture important aspects of
PD movement patterns not fully represented in basic statistical
measures. Complexity features, particularly entropy-based
measures, likely quantify the reduced movement variability and
increased regularity characteristic of basal ganglia disorders
(Powell et al., 2014). Similarly, dynamic features capture the rate-of-
change aspects fundamental to bradykinesia assessment, a cardinal
feature of PD diagnosis (Shawen et al., 2020).

The synergistic relationship between feature categories, where
combinations produced performance exceeding the sum of
individual contributions, highlights the multidimensional nature
of movement disorders and the importance of comprehensive
feature extraction frameworks. This observation suggests that
effective PD detection systems should incorporate diverse feature
types rather than focusing exclusively on the highest-performing

individual category.

5.3 Optimization approach effectiveness
and practical implications

The comparative analysis of meta-heuristic optimization
algorithms revealed meaningful performance
through hyperparameter tuning, with PSO demonstrating the
greatest enhancement (accuracy increase from 86.70% to 87.65%).
This improvement, while numerically modest, represents a modestly

reduction in misclassification rate (from 13.30% to 12.35%,

improvements

approximately 7% relative reduction) with potential clinical
significance.

The consistent parameter patterns identified across optimization
algorithms (tree depths in the 27-29 range, relatively small feature
subsets) provide practical guidance for implementing Random
Forest classifiers in PD detection applications. The relatively small
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optimal value for max_features suggests that feature diversity rather
than quantity drives performance, aligning with the notion that
specific movement characteristics are particularly discriminative for
PD detection.

The optimization results also highlight the diminishing returns
on computational investment, with the performance difference
between optimization approaches (within 0.33 percentage points)
being smaller than the gap between optimized and baseline
models. This observation suggests that while optimization provides
meaningful benefits, the selection of an appropriate base algorithm
and feature set likely represents the more consequential design
decision for PD detection systems.

5.4 SHAP analysis and feature importance
implications

The SHAP value analysis revealed complexity-based measures,
particularly Acc_Entropy and Gyro_Entropy, as the most influential
individual features. This apparent difference can be explained
by the fact that the statistical category contains a large number
of moderately important features, which collectively contribute
more when removed entirely in ablation, whereas SHAP highlights
a few highly discriminative individual complexity features.
The two analyses are therefore complementary rather than
contradictory.

The prominence of entropy-based features in the SHAP analysis
aligns with neurophysiological understanding of Parkinson’s disease
as a disorder characterized by altered movement complexity due
to basal ganglia dysfunction (Afsar et al., 2016). The high ranking
of standard deviation features (Acc_Std_Y, Gyro_Std_X) further
supports clinical observations of altered movement variability in
PD patients.

The directional analysis of SHAP values revealed interesting
patterns in feature influence, with entropy and standard deviation
measures exhibiting both positive and negative contributions
depending on their values. This bidirectional influence suggests
these features capture nuanced aspects of movement that can
indicate either parkinsonian or healthy patterns depending
on context. Conversely, spectral features demonstrated more
consistently unidirectional impacts, suggesting they capture more
specific PD-related movement characteristics.

The SHAP force plots illustrating high and low probability
predictions revealed different feature hierarchies driving opposite
classification outcomes. High-probability PD predictions are driven
by a combination of increased accelerometer entropy/complexity
and altered gyroscope variability patterns, consistent with clinical
manifestations of bradykinesia and tremor/rigidity.

These findings have clear physiological grounding. Reduced
movement complexity and loss of automaticity—reflected by higher
Shannon and spectral entropy—are well-established consequences
of dopaminergic depletion and disrupted basal ganglia oscillatory
networks in PD (Afsar et al., 2016; Obeso et al., 2008). Increased
standard deviation of acceleration corresponds to the clinical
hallmarks of bradykinesia and rigidity, which manifest as greater
trial-to-trial variability and reduced movement smoothness.
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Similarly, gyroscope-derived entropy and variability capture the
irregular rotational components characteristic of resting and
postural tremor, as well as axial rigidity (Afsar et al., 2016). Thus, the
model’s reliance on entropy-based and variability measures directly
mirrors the core pathophysiological changes underlying the cardinal
motor signs of Parkinson’s disease.

6 Conclusion
6.1 Summary of key findings

This study conducted a comprehensive evaluation of machine
learning approaches for Parkinson’s disease detection using
wearable movement sensor data, yielding several important findings
with implications for both research and clinical applications.
Compared with many previous approaches that rely on task-
specific features, the present framework deliberately adopts
activity-agnostic descriptors derived directly from raw sensor
signals, providing a more generalizable foundation for real-
world deployment.

First, we demonstrated the superior performance of ensemble-
based methods, particularly Random Forest, for PD classification,
with substantial advantages over linear and instance-based
approaches. This performance gap highlights the complex, non-
linear nature of the relationship between movement characteristics
and PD diagnosis.

Second, our feature ablation analysis revealed the hierarchical
contributions of different feature categories, with statistical features
providing the foundation for effective classification, supplemented
by meaningful contributions from complexity, dynamic, and
frequency domain measures. This finding supports comprehensive
feature extraction approaches that capture multiple dimensions of
movement characteristics.

Third, meta-heuristic optimization techniques, particularly
PSO, demonstrated meaningful classification improvements
through hyperparameter tuning, with consistent patterns in
optimal parameter configurations across different optimization
algorithms. These patterns provide practical guidance for
implementing machine learning classifiers in PD detection
applications.

SHAP value identified
complexity measures and standard deviations as the most influential

Finally, analysis entropy-based
individual features, with asymmetric feature influence patterns for
high versus low probability predictions. This observation aligns
with clinical understanding of PD as a disorder characterized by
altered movement complexity and variability due to basal ganglia
dysfunction.

Several recent studies have used the same or similar PhysioNet
smartwatch dataset for binary PD detection with most relying
on task-specific features or deep-learning architectures trained
on individual motor tasks. The present framework achieves
comparable overall accuracy while deliberately employing
activity-agnostic, hand-crafted features and offering full SHAP-
based interpretability—two aspects that are rarely combined

in prior work on this benchmark.
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6.2 Limitations and future research
directions

Despite the comprehensive nature of this investigation, several
limitations merit acknowledgment and suggest directions for
future research.

First, the study relied on a single publicly available dataset
with moderate sample size, undocumented medication status,
and data collected only during standardized laboratory tasks.
Although the selected features are theoretically activity-agnostic,
their performance in completely unconstrained, free-living
daily activities has not yet been prospectively evaluated.
Medicatio and the absence of free-living activities may reduce
signal differences and limit real-world generalizability. Future
validation should include multiple independent cohorts with
documented medication states and, critically, continuous free-living
recordings.

Second, our feature extraction focused on established time
and frequency domain measures derived from gyroscope and
accelerometer data. Future work should explore advanced signal
processing techniques, including wavelet transforms, recurrence
quantification analysis, and deep learning-based feature extraction,
which may capture additional movement characteristics relevant to
PD detection.

Third, the dataset does not include a differential-diagnosis
control group (e.g., multiple system atrophy, progressive
supranuclear palsy, vascular parkinsonism, or essential tremor). In
routine neurological practice, distinguishing idiopathic Parkinson’s
disease from atypical parkinsonian syndromes and other mimicking
conditions represents the primary diagnostic challenge. The
specificity and clinical utility of the proposed framework in such
heterogeneous, real-world referral populations therefore remain to
be established. Future prospective studies should explicitly recruit
patients with diagnostic uncertainty and atypical parkinsonian
disorders to evaluate the model’s performance in true differential-
diagnostic scenarios.s might perform when differentiating PD from
clinically similar conditions that commonly lead to diagnostic
uncertainty.

Fourth, our analysis treated PD detection as a binary
classification problem, not accounting for disease severity,
subtypes, or
multiclass and regression approaches to predict disease stage,

progression. Future research should explore
distinguish PD subtypes, and track disease progression using
longitudinal data.

Finally, the clinical applicability of wearable-based PD
detection systems requires further investigation through prospective
studies in real-world settings, including evaluation of system
performance across different movement contexts, comparison with
clinical assessments, and integration with other biomarkers for
comprehensive PD characterization.

6.3 Implications for clinical applications
and wearable technology development

The findings of this study have several important implications
for the development and deployment of wearable-based PD
detection systems in clinical and home monitoring contexts. The
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superior performance of Random Forest classifiers, combined
with insights from feature importance analysis, provides a
foundation for developing accurate, interpretable diagnostic tools
that could support clinical decision-making and enable home-based
monitoring of disease progression.

The identification of specific feature categories and individual
measures with high discriminative value offers guidance for sensor
selection, placement, and data processing strategies in wearable
system development. The relative contributions of accelerometer
versus gyroscope-derived features suggest that comprehensive
movement assessment requires capturing both acceleration and
rotational movement characteristics.

The asymmetric feature influence patterns revealed by SHAP
analysis provide the basis for developing more interpretable
classification systems that could explain the specific movement
This
interpretability is crucial for clinical adoption and patient trust

characteristics contributing to diagnostic decisions.
in algorithm-based assessments.

From a clinical perspective, the dominance of accelerometer-
derived entropy and vertical variability aligns with bradykinesia
and rigidity, whereas gyroscope entropy reflects tremor and
rotational stiffness—together covering the three cardinal motor
features used in clinical rating scales (UPDRS-III). This convergence
between data-driven feature importance and classical neurological
examination supports the potential translational value of the
proposed framework.

Finally, the optimization results demonstrate the value of
systematic hyperparameter tuning in enhancing classification
performance, suggesting that practical implementations of wearable
PD detection systems should incorporate robust parameter
optimization as a standard development practice.

In conclusion, this comprehensive analysis of machine learning
approaches for Parkinson’s disease detection using wearable
movement sensors advances our understanding of both the
methodological considerations for effective classification and the
movement characteristics most indicative of parkinsonian motor
patterns. These insights provide a foundation for developing more
accurate, interpretable, and clinically useful wearable monitoring
systems that could transform the diagnosis and management of
Parkinson’s disease through objective, continuous assessment of
motor function.
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