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Background: wearable movement sensor technology shows promise for 
objective assessment of Parkinson’s disease (PD) motor symptoms, but optimal 
machine learning approaches and feature sets for accurate PD detection 
remain unclear. This study provides a comprehensive evaluation of classification 
algorithms, feature contributions, and optimization techniques for PD detection 
using wearable movement sensor data.
Methods: We compared twelve diverse machine learning classifiers on motion 
sensor data, conducted systematic feature ablation studies across statistical, 
frequency-domain, dynamic, and complexity feature categories, optimized 
Random Forest parameters using three meta-heuristic algorithms, which is 
Particle Swarm Optimization (PSO), Improved Satin Swarm Algorithm (ISSA), and 
Enhanced Whale Optimization Algorithm (EWOA), and performed SHAP value 
analysis to identify the most influential features and their impact patterns.
Results: Random Forest demonstrated superior performance (86.7% accuracy) 
among all classifiers. Statistical features contributed most significantly to 
classification performance, while complexity, dynamic, and frequency domain 
features provided complementary information. PSO-optimized Random Forest 
achieved 87.65% accuracy, outperforming other optimization approaches. SHAP 
analysis identified entropy-based measures and standard deviations as the 
most influential features, with accelerometer-derived complexity measures 
driving high-probability PD predictions and gyroscope-derived measurements 
dominating low-probability outcomes.
Conclusion: Ensemble-based methods effectively capture the complex, non-
linear relationship between movement characteristics and PD diagnosis. 
Comprehensive feature extraction frameworks incorporating multiple 
movement dimensions significantly enhance detection accuracy. The 
asymmetric feature influence patterns for positive versus negative predictions 
align with clinical understanding of PD as a disorder characterized by altered
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movement complexity and variability. These findings provide a foundation for 
developing accurate, interpretable wearable monitoring systems for Parkinson’s 
disease detection and management.

KEYWORDS

feature extraction, machine learning, Parkinson’s disease detection, SHAP analysis, 
wearable movement sensors 

1 Introduction

Parkinson’s disease is a chronic, progressive neurodegenerative 
disorder that significantly affects motor and non-motor functions. 
Motor symptoms, such as tremors, rigidity, and bradykinesia, 
are the hallmark of the disease, while non-motor symptoms, 
including cognitive impairments, autonomic dysfunction, and 
sleep disturbances, further reduce the quality of life. Research 
indicates that the global prevalence of Parkinson’s disease is 94 per 
100,000 people, with a significant increase in incidence with age 
(Khani et al., 2024). Early and accurate diagnosis is critical for 
effective intervention and management, yet it remains challenging 
due to the disease’s heterogeneous progression and the subtlety of 
early-stage symptoms (Siderowf et al., 2023).

Traditional diagnostic approaches for PD rely on clinical 
observations, patient-reported symptoms, and rating scales 
such as the Unified Parkinson’s Disease Rating Scale (UPDRS) 
(Guerra et al., 2023). While these tools provide valuable insights, 
they are inherently subjective, prone to inter-rater variability, and 
dependent on observable symptoms that often emerge in the 
later stages of the disease. As a result, there is an urgent need for 
objective, data-driven diagnostic methods that can identify PD at 
earlier stages (Mei et al., 2021).

In recent years, wearable devices such as smartwatches 
have emerged as promising tools for PD monitoring and 
diagnosis (Sotirakis et al., 2023). Equipped with accelerometers, 
gyroscopes, and other motion sensors, these devices capture 
high-resolution time-series data reflecting an individual’s 
movements. By analyzing this data, it is possible to detect subtle 
motor impairments and other movement-related abnormalities 
indicative of PD. The use of wearable devices offers several 
advantages, including non-invasiveness, scalability, and the 
ability to monitor individuals in real-world environments over 
extended periods (Powers et al., 2021).

This study introduces a novel framework for PD detection using 
wearable movement sensor data, emphasizing activity-robust feature 
extraction, class imbalance handling, and explainable modeling.

The key contributions of this research are as follows: 

1. Multi-dimensional Feature Extraction Framework: We 
propose a comprehensive feature extraction strategy that 
systematically integrates statistical, frequency-domain, 
dynamic, and complexity-based characteristics from 
smartwatch sensor data. This unified framework uses 
activity-agnostic features that do not depend on task-specific 
biomechanical models, thereby offering potential robustness 
across diverse movement contexts.

2. PSO-optimized Classification Architecture: We develop 
a novel classification approach that leverages Particle 

Swarm Optimization for parameter tuning, automatically 
identifying optimal hyperparameter configurations. This 
optimization strategy significantly improves the model’s 
discriminative power in distinguishing between PD patients 
and healthy controls.

3. Interpretable Feature Analysis Framework: We incorporate 
SHapley Additive exPlanations (SHAP) analysis to provide 
transparent insights into feature importance and model 
decision-making processes. This interpretability mechanism 
helps identify the most significant movement characteristics 
contributing to PD detection, enhancing the clinical relevance 
and trustworthiness of our approach.

4. Systematic Performance Validation: We conduct 
comprehensive experimental evaluations, examining model 
performance through multiple metrics including accuracy, 
precision, recall, and F1-score. The evaluation framework 
provides robust validation of the proposed method’s 
effectiveness in real-world PD detection scenarios.

This study addresses critical gaps in PD detection research by 
proposing a method that generalizes across activities and offers 
interpretable results. The ability to identify activity-robust features 
ensures robustness in uncontrolled, real-world settings, making the 
proposed framework suitable for scalable deployment in wearable-
based health monitoring systems. Furthermore, the integration of 
SHAP analysis aligns with the increasing emphasis on explainable 
artificial intelligence (XAI) in healthcare, providing clinicians with 
actionable insights into the factors driving model decisions.

Through this study, we aim to contribute a robust, interpretable, 
and activity-robust framework for PD detection, advancing the 
capabilities of wearable-based diagnostic systems in clinical and 
real-world applications. 

2 Related work

Parkinson’s disease is typically diagnosed through clinical 
evaluations involving neurological examinations and patient history 
assessments. Tools like the UPDRS provide standardized metrics to 
assess disease severity but are inherently subjective and depend on 
the clinician’s expertise (Nair et al., 2021; Ramdhani et al., 2018). 
Additionally, overlapping symptoms with other neurodegenerative 
disorders complicate early diagnosis.

To overcome these challenges, researchers have explored 
data-driven approaches for automated PD detection 
(Ammous et al., 2024; Dhivyaa et al., 2024). Machine learning 
algorithms have leveraged diverse data types, such as voice 
recordings, handwriting samples, and motion sensor data, to 
identify PD-related patterns (Islam et al., 2024; Kamran et al., 2021; 
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Veetil et al., 2024). Studies using voice data have extracted 
features like jitter, shimmer, and harmonics-to-noise ratio to 
differentiate PD patients from healthy individuals with promising 
accuracy (Akbarzadeh-T et al., 2021). Similarly, handwriting 
analysis has investigated features such as tremor frequency and 
pressure variations to detect motor impairments (Ngo et al., 2024; 
Palsapure et al., 2024; Goel et al., 2020). While these approaches 
show promise, they often require specific tasks for data collection, 
limiting their generalizability to real-world applications.

Wearable devices equipped with sensors such as 
accelerometers, gyroscopes, and heart rate monitors have 
gained prominence in healthcare for enabling continuous, non-
invasive monitoring of physiological and behavioral data. These 
devices offer significant potential for early disease detection and 
management (Peng et al., 2023).

In the context of PD, wearable movement sensors have 
been utilized to analyze motor symptoms by assessing gait 
patterns, tremor frequencies, and activity levels. For instance, 
These features were useful for distinguishing between subtypes 
and monitoring disease progression. The findings suggest that 
wearable movement sensors could aid early diagnosis and 
personalized treatment by identifying subtype-specific gait 
biomarkers (Zhang et al., 2024; Rovini et al., 2017). However, 
these methods often rely on task-specific models that require 
participants to perform predefined activities, such as walking or 
writing, reducing their applicability in unconstrained environments 
where individuals engage in diverse activities.

A critical limitation of wearable-based PD detection is the 
dependence on task-specific features, such as stride length for 
walking or tremor amplitude during handwriting. While effective 
in controlled environments, these features lack generalizability to 
real-world scenarios.

Recent studies have explored activity-robust feature extraction 
for detecting PD using wearable movement sensors. A method was 
developed that combines multilevel features from spectral, temporal, 
and sensor domain data to assess motor fluctuations in PD patients 
(Behnaz et al., 2019). The impact of sensor types, sampling rates, and 
feature sets on PD symptom detection accuracy was investigated, 
with findings suggesting that simplified measurement characteristics 
could maintain performance while reducing computational burden 
(Shawen et al., 2020). Additionally, it was demonstrated that 
gyroscope data slightly improved bradykinesia detection, while 
tremor detection accuracy decreased with lower sampling rates 
(Shawen et al., 2020). An optimized PD detection method using 
dynamic kinematic features extracted from specific phases of 
handwriting tasks was proposed, achieving high accuracy through 
machine learning techniques (Shin et al., 2024). These studies 
highlight the potential of activity-robust features and optimized 
data collection strategies for robust PD detection using wearable 
movement sensors.

XAI techniques are crucial for enhancing transparency 
and trust in healthcare machine learning models. SHAP and 
LIME are two prominent model-agnostic methods that provide 
insights into model predictions (Arjunan, 2021; Inukonda and 
Rajasekhara Reddy Tetala, 2024). These techniques help bridge 
the gap between technical outputs and clinical applications, 
addressing the “black-box” problem in AI (Inukonda and 
Rajasekhara Reddy Tetala, 2024). XAI methods are particularly 

important in high-stakes medical fields like diagnostics and 
treatment personalization, where interpretability is essential 
for ethical decision-making and regulatory compliance 
(Arjunan, 2021). Studies have demonstrated the effectiveness of 
SHAP and LIME in various healthcare applications, including 
melanoma prediction and diabetic retinopathy diagnosis 
(Shobeiri, 2024). By providing explanations for model decisions, 
XAI techniques enable clinicians to understand, trust, and 
safely apply AI recommendations, ultimately improving clinical 
workflows and patient outcomes (Arjunan, 2021; Inukonda and 
Rajasekhara Reddy Tetala, 2024; Shobeiri, 2024). 

3 Methodology

In this study, a comprehensive methodology is proposed 
to detect Parkinson’s Disease from smartwatch sensor data, 
utilizing time-series accelerometer and gyroscope readings. The 
methodology consists of five primary steps: (1) data collection and 
preprocessing, (2) feature extraction, (3) class balancing, and (4) 
experimental design. These steps ensure that the model is both 
accurate and robust for detecting PD-related motion patterns. 

3.1 Dataset description

The Parkinson’s Disease Smartwatch Dataset is a publicly 
available dataset from PhysioNet that contains motion sensor 
recordings collected using a smartwatch worn by participants with 
and without Parkinson’s disease (Varghese et al., 2024). It was 
collected from 2018 to 2021 at the University Hospital Münster, 
Germany. The data collection involved 469 participants, generating 
a total of 5,159 measurement steps. The data acquisition system 
consisted of two Apple Watch Series 4 smartwatches worn on both 
wrists and a smartphone running a custom application. During 
the data collection process, participants performed 11 different 
standardized movement tasks, each lasting between 10 and 20 s. The 
smartwatches simultaneously recorded acceleration and rotation 
signals throughout these tasks, which were specifically designed to 
provoke subtle movement pathologies.

The dataset includes both sensor measurements and participant 
information (Table 1). The sensor data comprises synchronized 
acceleration and rotation signals from both smartwatches during 
task execution. For privacy protection, all participants were assigned 
random unique identifiers, and temporal data was normalized to 
start from zero.

This comprehensive dataset provides a robust foundation 
for developing and validating machine learning models aimed 
at detecting and analyzing movement disorders through digital 
biomarkers. 

3.2 Data preprocessing

The data preprocessing stage consisted of two main components: 
data cleaning and alignment, followed by label filtering. In the 
first component, raw sensor data underwent cleaning procedures 
to remove noise and artifacts. The subsequent label filtering process 
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TABLE 1  Participant demographic and clinical characteristics.

Characteristic Healthy 
controls

Parkinson’s 
disease

Age, years (mean ± SD) 62.9 ± 12.5 65.4 ± 9.6

Age range, years 40–90 42–85

BMI, kg/m2 (mean ± 
SD)

28.8 ± 19.6 27.0 ± 5.0

involved carefully selecting and validating the movement task labels, 
ensuring only correctly labeled and complete movement sequences 
were retained for the analysis. 

3.2.1 Data cleaning and alignment
In the initial preprocessing step, the raw sensor data from 

different subjects is aligned to ensure that all time-series sequences 
have the same length. Sequences were aligned to the length of the 
longest recording within each cross-validation fold by zero-padding 
shorter sequences at the end or truncating the terminal portion 
of longer ones. All preprocessing was performed strictly after 
train/validation/test splitting to prevent data leakage. Zero-padding 
or truncation was chosen because it is the standard approach for this 
publicly available dataset, introduces only neutral values, and avoids 
the artificial dynamics that interpolation or reflection padding can 
induce in tremor- and bradykinesia-sensitive signals.

This ensures a consistent input format suitable for machine 
learning models. Additionally, labels from a separate metadata file 
are mapped to the corresponding time-series data.

Given the nature of wearable movement sensors, noise and 
missing values can distort the time-series signals. Therefore, 
forward-filling is used to impute missing values, preserving 
the continuity of the signal, especially when data is sparse or 
corrupted. After padding/truncation, sequences were segmented 
into overlapping 5-s windows to preserve temporal dynamics and 
mitigate artifacts. 

3.2.2 Label filtering
Since the dataset includes multiple classes of conditions, the 

analysis is focused on distinguishing between healthy individuals 
and those diagnosed with Parkinson’s Disease. Therefore, labels are 
filtered to only include “Healthy” and “Parkinson’s” conditions, and 
the corresponding time-series samples are retained. 

3.3 Feature extraction

A key design principle of the proposed framework is the use 
of activity-agnostic features. Unlike many prior studies that extract 
gait-specific, drawing-specific, or tapping-specific parameters, all 
features employed here can be computed on any 5-s accelerometer 
or gyroscope segment irrespective of the underlying motor task. This 
deliberate choice aims to reduce task dependency at the feature level.

Feature extraction was performed on overlapping 5-s windows 
extracted from the entire duration of each task recording. This 
window length was selected because it captures multiple cycles 

of physiological tremor (four to eight Hz) while remaining 
computationally efficient.

A 50% overlap (2.5-s stride) was used to preserve temporal 
continuity and avoid boundary effects when computing frequency-
domain features, which is standard for physiological time-
series analysis.

Statistical, frequency-domain, dynamic, and complexity features 
were combined because PD motor impairments manifest across 
multiple temporal scales (steady-state, oscillatory, and transient), 
and ensemble feature sets consistently outperform single-domain 
approaches in biomedical classification tasks. 

3.3.1 Statistical features
Statistical features provide insights into the central tendency and 

dispersion of the data (Jalal et al., 2020). For both accelerometer and 
gyroscope signals, the following statistical metrics are computed:

Mean (μx) and Standard Deviation (σx) (Equation 1):

μx =
1
N

N

∑
i=1

xi, σx = √
1
N

N

∑
i=1
(xi − μx)

2 (1)

where xi represents the sensor value at time i, μx is the mean, and σx
is the standard deviation. These features are computed for each axis 
of both the accelerometer and gyroscope signals.

Maximum (max(x)) and Minimum (min(x)): These values 
capture the extremities of the signal range. 

3.3.2 Frequency-domain features
Frequency-domain analysis is essential for identifying 

oscillatory patterns and periodic signals inherent in the motion data 
(Dong et al., 2020). The Power Spectral Density (PSD) is estimated 
for each sensor signal using the Welch method, which divides the 
signal into overlapping segments and computes the average power 
of the frequency components (Equation 2):

P(f) = 1
N

N

∑
i=1
|X(f)|2 (2)

where P(f) is the power at frequency f, and X(f) is the Fourier 
transform of the signal segment.

From the PSD, we derive the Spectral Entropy, which measures 
the complexity and randomness of the signal in the frequency 
domain. Spectral entropy is calculated as Equation 3.

Hspec = −∑
f

P(f) log2 P(f) (3)

This metric is particularly useful for detecting irregularities in 
the movement patterns associated with Parkinson’s Disease. 

3.3.3 Dynamic features
Dynamic features capture the temporal changes in sensor 

signals, highlighting the rate of motion or variability over time 
(Nakano and Chakraborty, 2023). We compute the Rate of Change 
for each sensor signal as follows Equation 4:

rX =
1

N− 1

N−1

∑
i=1
|

xi+1 − xi

xi
| (4)

where rX  represents the rate of change in the sensor signal, and xi
denotes the value at time step i. This feature is computed for each 
axis of both the accelerometer and gyroscope signals. 
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3.3.4 Complexity features
To capture the inherent complexity and unpredictability of 

motion, Shannon Entropy is computed for each sensor signal 
(Peng et al., 2014). The entropy quantifies the uncertainty or 
randomness of the signal’s distribution (Equation 5):

Hshannon = −
n

∑
i=1

p(xi) log2 p(xi) (5)

where p(xi) is the probability distribution of the signal values, and 
n is the number of bins in the histogram. Higher entropy values 
generally correspond to more chaotic or irregular movements, 
which may be indicative of PD-related motor symptoms.

The extracted features are concatenated into a unified feature 
vector, representing a comprehensive profile of the sensor data for 
each time-series sample. 

3.4 Class balancing

Due to class imbalance at the window level, the Synthetic 
Minority Oversampling Technique (SMOTE) was applied 
exclusively to the training set of each cross-validation fold after 
splitting. This produced an approximately 1:1 balanced ratio in 
training data only, while validation and test sets retained the original 
distribution. SMOTE was selected over random oversampling 
because it generates synthetic minority samples through nearest-
neighbor interpolation, preserving the local structure of PD 
movement patterns in feature space. SMOTE works by generating 
synthetic instances through interpolation of existing minority 
class samples (Elreedy et al., 2023).

Mathematically, for a given minority class sample, SMOTE 
generates new synthetic samples as Equation 6:

xnew = xi + λ(xn − xi) (6)

where xi is a sample from the minority class, xn is a randomly 
selected neighbor of xi, and λ is a random scalar factor. This 
helps prevent overfitting and improves the generalization capability 
of the model. 

3.5 Experimental design

To establish an optimal framework for Parkinson’s disease 
detection using wearable movement sensor data, we designed 
an experimental pipeline that integrates an advanced feature 
extraction method with PSO. In addition to evaluating multiple 
baseline models, we specifically emphasize the role of PSO in 
feature selection. Our approach leverages PSO to refine statistical, 
frequency-domain, dynamic, and complexity-based features, 
ensuring the most discriminative characteristics are selected for 
classification. By optimizing feature subsets, PSO enhances model 
interpretability, leading to improved classification performance. A 
comparative analysis between the baseline models and our proposed 
PSO-based feature selection approach provides insight into its 
effectiveness in enhancing classification outcomes. 

3.5.1 Baseline selection
We evaluated twelve widely adopted supervised learning 

algorithms spanning different algorithmic families:
Support Vector Machine (SVM): A margin-based discriminative 

classifier that finds an optimal hyperplane to separate 
different classes.

XGBoost: A gradient boosting framework that optimizes 
decision trees using an efficient boosting strategy.

LightGBM: A gradient boosting framework optimized for speed 
and performance.

K-Nearest Neighbors (KNN): An instance-based learning 
approach that classifies samples based on the majority class of their 
nearest neighbors.

Logistic Regression: A statistical model that uses a logistic 
function to model binary dependent variables.

Decision Tree: A tree-based classification method that partitions 
the data space into hierarchical regions.

Naive Bayes: A probabilistic classifier based on Bayes’ theorem 
with an assumption of independence among predictors.

Gradient Boosting Machine (GBM): An iterative boosting 
method that combines weak learners to create a strong 
predictive model.

Extreme Learning Machine (ELM): A neural network-based 
approach that randomly assigns weights and biases to hidden 
neurons and solves output weights analytically.

AdaBoost (Adaptive Boosting): An ensemble learning method 
that iteratively adjusts the weights of weak classifiers to enhance 
predictive accuracy.

Bagging: Bootstrap aggregating of base classifiers.
Random Forest: An ensemble of decision trees with 

feature bagging. 

3.5.2 Model architecture
The proposed Parkinson’s disease classification pipeline 

consists of multiple stages, starting from raw data acquisition to 
feature extraction, model training, and evaluation. The pipeline 
integrates conventional machine learning techniques with advanced 
optimization algorithms. Specifically, it employs PSO, ISSA, and 
EWOA to fine-tune the hyperparameters of a Random Forest (RF) 
classifier. The architecture is illustrated in Figure 1.

PSO is a population-based optimization algorithm inspired by 
the social behavior of bird flocks and fish schools. The algorithm 
maintains a swarm of particles, each representing a candidate 
solution, which moves through the search space based on position 
and velocity updates. The update rules for each particle are given as 
Equations 7, 8:

v(t+1)i = wv(t)i + c1r1(p
best
i − x(t)i ) + c2r2(gbest − x(t)i ) (7)

x(t+1)i = x(t)i + v(t+1)i (8)

where:
x(t)i  is the position of the i-th particle at iteration t.
v(t)i  is its velocity.
pbest

i  represents the best position found by particle i so far.
gbest is the global best position found by any particle.
w is the inertia weight controlling the influence of past velocities.
c1, c2 are acceleration coefficients for personal and global best 

attraction.
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FIGURE 1
Model architecture.

r1, r2 are random numbers sampled from [0, 1].
The ISSA is an enhanced version of the traditional Satin Swarm 

Algorithm, incorporating adaptive inertia weight and mutation 
strategies to avoid premature convergence. The position update in 
ISSA follows (Equation 9):

x(t+1)i = x(t)i + α · rand · (xbest − x(t)i ) (9)

where:
x(t)i  is the position of the i-th individual.
α is a control parameter.
rand is a random number between [0, 1].
xbest is the best position found so far.
EWOA improves the standard Whale Optimization Algorithm 

by incorporating chaotic mapping and nonlinear control parameter 
adjustments. The position update rule is given by Equation 10:

x(t+1)i = x(t)i +D · ebL · cos (2πL) (10)

where:
D is the distance between the search agent and the best solution.
b is a constant controlling the logarithmic spiral shape.
L is a random number in [-1, 1]. 

3.5.3 Model algorithm
The proposed integrated framework for Parkinson’s Disease 

detection utilizing smartwatch sensor data is presented in 
Algorithm 1. The framework encompasses four primary stages: 
data preparation, label processing, feature extraction, and model 
optimization. In the data preparation phase, the algorithm processes 
raw time series data from smartwatch sensors, organizing it into 
a structured format while preserving subject identification and 
action type information. The label processing stage establishes 
a mapping between subjects and their medical conditions, 
specifically distinguishing between healthy controls (y = 0) and 

PD patients (y = 1). The feature extraction module implements 
a comprehensive set of feature calculations, including statistical 
metrics, frequency domain characteristics, dynamic movement 
patterns, and complexity measures, as defined by Equations 1–5. 
The final stage introduces a PSO-optimized classification approach, 
where particle swarm optimization dynamically adjusts the model 
parameters through velocity and position updates governed by 
Equations 7, 8. This optimization process iteratively refines the 
classification parameters to maximize diagnostic accuracy. The 
algorithm incorporates data normalization and SMOTE-based class 
balancing to ensure robust model performance, culminating in a 
comprehensive evaluation using multiple performance metrics.

4 Results

4.1 Baseline model comparison

To establish a comprehensive benchmark for Parkinson’s disease 
detection using wearable movement sensor data, we evaluated 
twelve diverse machine learning classifiers spanning multiple 
algorithmic families.

As illustrated in Figure 2, the Random Forest classifier 
demonstrated superior performance across all evaluation metrics, 
achieving 86.7% accuracy, 84% precision and 90% recall for the 
healthy class (class 0), and 89% precision and 84% recall for 
the Parkinson’s disease class (class 1). This balanced performance 
across both classes is particularly valuable in clinical diagnostic 
applications where both false positives and false negatives carry 
significant implications.

To provide a more rigorous assessment of model stability, 
we computed 95% bootstrap confidence intervals (n = 1000 
resamples) and Brier scores for the top-performing models. The 
baseline Random Forest achieved an accuracy of 87.44% (95% CI: 
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Input:Raw time series data folder D_raw; Patient 

labels folder D_label
Output:Model performance metrics and ablation 

study results
1: [DATA PREPARATION]:

2: Initialize empty lists time series list, 

metadata list
3: foreach file f in D_raw do
4: Read sensor data matrix x ∈ ℝ ∈ (T×F),where T 

is time steps and F is features
5: Extract subject_id and action_type 

from filename
6: Append X to time_series_list

7: Append metadata to metadata_list

8: end for
9: [LABEL PROCESSING]:

10: Initialize empty dictionary labels_dict

11: foreach file f in D_label do
12: Read JSON data
13: Extract subject_id and 

condition y_i ∈ {0,1}
14: Add to labels_dict

15: end for
16: Merge labels with metadata
17: Filter data to include only Healthy (y = 0) 

and Parkinson’s (y = 1) cases
18: [FEATURE EXTRACTION]:

19: function ExtractFeatures(X):

20: Split x into x_acc ∈ ℝ
^
(T×3)and

21: if include_stats then
22: Calculate statistical features (mean, 

std, max, min) using Equation 1
23: end if
24: if include_freq then
25: Calculate frequency domain features using 

Equations 2, 3
26: end if
27: if include_dynamic then
28: Calculate dynamic features (rate of 

change) using Equation 4
29: end if
30: if include_complexity then
31: Calculate complexity features 

(entropy) using Equation 5
32: end if
33: Return concatenated feature vector
34: end function
35: [MODEL TRAINING AND EVALUATION]:

36: Initialize feature matrix F ∈ ℝ(N×d)and 

label vector
37: fori = 1 to N do
38: F [i] = ExtractFeatures (X_i)
39: y [i] = label_i
40: end for
41: Normalize F: F_norm = (F - μ)/σ

.

42: Apply SMOTE: (F_balanced, y_balanced) = 

SMOTE(F_norm, y) (Equation 6)
43: [PSO OPTIMIZATION]:

44: Initialize particle swarm P with random 

positions and velocities

45: Set personal best position pbest and global 

best position gbest
46: while notreaching maximum iterations do
47: foreach particle p in P do
48: Update velocity v using Equation 7
49: Update position x using Equation 8
50: Evaluate fitness using 

classification accuracy
51: Update pbest and gbest if better 

solution found
52: end for
53: end while
54: Train classifier θ with optimal 

parameters from PSO
55: Calculate metrics: accuracy, Precision, 

Recall, F1-score

Algorithm 1. Parkinson’s Disease Detection from Smartwatch Data.

86.04%–88.80%), AUC of 0.9535 (95% CI: 0.9455–0.9610), F1-score 
of 0.8743 (95% CI: 0.8603–0.8879), and Brier score of 0.1246.

The ensemble learning methods collectively exhibited strong 
performance, with Bagging ranking second with 82% accuracy 
and consistently robust metrics across both classes. Similarly, 
boosting-based approaches including XGBoost (80% accuracy) and 
LightGBM (75% accuracy) demonstrated competitive performance, 
though with slightly lower balanced accuracy compared to 
Random Forest.

Instance-based learning, represented by KNN, showed 
interesting characteristics with high recall (93%) but comparatively 
lower precision (69%) for the healthy class, indicating a tendency 
toward false positive predictions. This imbalance was further 
evidenced by the substantial disparity between precision and recall 
for the Parkinson’s disease class (90% and 59% respectively).

Linear models demonstrated limited efficacy for this 
classification task, with Logistic Regression achieving only 55% 
accuracy, suggesting the relationship between the extracted features 
and PD diagnosis is inherently non-linear. This observation aligns 
with the complex, multidimensional nature of movement disorders 
that typically involve intricate interdependencies between various 
movement characteristics.

Notably, Extreme Learning Machine exhibited extreme 
classification bias, with near-perfect recall (99%) but minimal 
precision (50%) for the healthy class, and correspondingly poor 
recall (2%) for the Parkinson’s disease class. This severe imbalance 
resulted in the lowest overall accuracy (50%) among all evaluated 
classifiers, highlighting the importance of balanced performance 
metrics in clinical applications.

The performance variation across models underscores the 
necessity of selecting algorithms capable of capturing the complex, 
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FIGURE 2
Model performance heatmap.

non-linear relationships inherent in movement disorder detection. 
The superior performance of tree-based ensemble methods, 
particularly Random Forest, suggests their inductive bias aligns 
well with the underlying patterns distinguishing Parkinson’s disease 
from healthy movement characteristics. 

4.2 Feature ablation study

To systematically evaluate the contribution of different feature 
categories to the model’s discriminative capabilities, we conducted a 
comprehensive ablation study. This analysis involved systematically 
removing each feature category and assessing the impact on multiple 
performance metrics, providing valuable insights into the relative 
importance of different movement characteristics in Parkinson’s 
disease detection. 

4.2.1 Impact of feature categories on 
classification performance

Figure 3 presents a detailed comparison of model performance 
across various feature ablation scenarios, with metrics broken down 
by class to provide granular insight into classification behavior.

The base Random Forest model incorporating all feature 
categories achieved balanced and superior performance, with 86.7% 
overall accuracy, 84% precision and 90% recall for the healthy class, 
and 89% precision and 84% recall for the Parkinson’s disease class.

This balanced performance across both classes establishes a 
robust benchmark for evaluating feature contribution.

The removal of statistical features produced the most substantial 
performance degradation, with accuracy declining by 6 percentage 
points to 81%. This significant impact manifested across all metrics, 
with particularly pronounced effects on recall for the Parkinson’s 

disease class, which decreased from 84% to 76%. This substantial 
deterioration underscores the critical importance of basic statistical 
measures in capturing the fundamental movement alterations 
characteristic of Parkinson’s disease, including amplitude reduction, 
increased variability, and altered movement patterns.

Although removal of frequency-domain features caused only 
a negligible accuracy drop (0.08 percentage points), they may still 
capture subtle spectral patterns (e.g., tremor-related peaks) not 
fully represented by time-domain features alone, thus providing 
complementary clinical value in a multi-dimensional framework.

The ablation of dynamic features resulted in a moderate 
performance reduction, with overall accuracy decreasing by 2 
percentage points to 85%. This impact was consistent across all 
metrics and both classes, reflecting the importance of rate-of-
change measures in characterizing the progressive and transitional 
aspects of movement in Parkinson’s disease. Dynamic features 
likely capture critical bradykinesia (slowness of movement) and 
hypokinesia (reduced amplitude) characteristics that are fundamental 
to PD motor symptomatology. 

Similarly, removing complexity features led to a 2 percentage 
point reduction in accuracy and comparable decreases across other 
metrics. This consistent impact highlights the value of entropy-
based measures in quantifying the regularity and predictability of 
movement patterns, which are often disrupted in Parkinson’s disease 
due to altered basal ganglia function. The comparable impact of 
dynamic and complexity features suggests these categories capture 
complementary aspects of movement disorders. 

4.2.2 Feature category synergies and clinical 
implications

The ablation results reveal important synergistic relationships 
between feature categories. While statistical features demonstrated 
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FIGURE 3
Model comparison polar.

the highest individual contribution, the combination of statistical, 
dynamic, and complexity features produced performance very close 
to the complete feature set. This suggests potential redundancy 
between some feature categories, particularly between frequency 
domain and other feature types.

From a clinical perspective, these findings align with established 
understanding of Parkinson’s disease motor symptoms. The primacy 
of statistical features corresponds to the fundamental alterations 
in movement amplitude, variability, and pattern that characterize 
parkinsonian movement. The significant contribution of dynamic 
features reflects the clinical importance of bradykinesia and 
movement transitions in PD diagnosis, while the value of complexity 
features aligns with the known disruption of movement smoothness 
and regularity.

The relative contributions of different feature categories provide 
valuable guidance for feature engineering in wearable-based PD 
detection systems. The results suggest a prioritization framework 
where statistical features form the foundation, supplemented 
by dynamic and complexity measures, with frequency domain 
features potentially serving as complementary information when 
computational resources permit comprehensive feature extraction.

This ablation analysis also offers potential insights for clinical 
assessment, highlighting the specific movement characteristics most 
discriminative for PD detection. The identified feature importance 
hierarchy could inform the development of targeted clinical 

assessments focusing on the most diagnostically valuable movement 
parameters, potentially enhancing the sensitivity and specificity of 
traditional observational evaluations. 

4.3 Optimization results analysis

To further enhance the model’s performance, we investigated 
three meta-heuristic optimization algorithms for Random Forest 
parameter tuning. 

4.3.1 Performance comparison of optimization 
approaches

As shown in Table 2, PSO-RF demonstrated the most substantial 
improvements, achieving an accuracy of 87.65% and an AUC score 
of 0.9496. This optimization resulted in balanced precision and recall 
metrics across both classes, representing a meaningful enhancement 
over the baseline performance.

The ROC curves in Figure 4 visualize this improvement, with 
PSO-RF showing a slightly larger area under the curve compared to 
other approaches.

EWOA-RF and ISSA-RF also showed robust performance 
improvements, with accuracies of 87.40% and 87.32% respectively. 
All optimized models maintained strong discriminative capability, 
with AUC scores consistently above 0.94.
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TABLE 2  Performance comparison of different optimization approaches.

Model Accuracy AUC Precision (0/1) Recall (0/1) F1-score (0/1)

Base RF 86.70% 0.9463 0.84/0.89 0.90/0.84 0.87/0.86

PSO-RF 87.65% 0.9496 0.87/0.89 0.89/0.87 0.88/0.88

EWOA-RF 87.40% 0.9446 0.86/0.89 0.89/0.86 0.88/0.87

ISSA-RF 87.32% 0.9460 0.86/0.89 0.89/0.86 0.87/0.87

FIGURE 4
Roc curves comparison of different optimization approaches.

PSO, ISSA, and EWOA were applied solely for Random Forest 
hyperparameter tuning and did not perform feature selection.

To further quantify the stability of these results, we performed 
additional bootstrap resampling (n = 1000) on the held-out test set 
(As shown in Table 3). The PSO-optimized model achieved 87.81% 
accuracy (95% CI: 86.54%–89.13%), and the EWOA-optimized 
model reached 87.90% accuracy (95% CI: 86.58%–89.17%) with the 
best calibration (Brier score 0.1237). These independent bootstrap 
estimates are highly consistent with the originally reported cross-
validation results (differences <0.3%), confirming the robustness of 
the findings.

4.3.2 Hyperparameter configuration analysis
Table 4 summarizes the optimal hyperparameter configurations 

identified by each optimization algorithm, revealing interesting 
patterns in model architecture.

As evident from Table 4, PSO-RF identified an optimal 
configuration with 200 estimators and a maximum depth of 29, 
while utilizing a relatively small feature subset (max_features = 
0.1). EWOA-RF and ISSA-RF converged to similar tree depths but 

with fewer estimators, suggesting multiple viable configurations for 
achieving improved performance.

The consistency in these patterns across different optimization 
algorithms, as shown in Table 4, reinforces the robustness 
of these parameter ranges for PD detection. While the 
performance differences between optimization approaches 
were marginal (within 0.33 percentage points in accuracy), 
the consistent improvement over the baseline model validates 
the utility of meta-heuristic optimization in enhancing 
classification accuracy. 

4.4 SHAP value analysis for feature 
importance

4.4.1 Feature importance ranking and direction of 
influence

To analyze the feature importance through SHAP values, 
we present a comprehensive ranking of the most influential 
features in Figure 5. The results reveal that entropy-based features 
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TABLE 3  Ablation study comparing default and optimized random forest models.

Model Accuracy (95% CI) F1-score (95% CI) AUC (95% CI) Brier score Accuracy (95% CI)

Base RF 0.8744 (0.8604–0.8880) 0.8743 (0.8603–0.8879) 0.9535 (0.9455–0.9610) 0.1246 0.8744 (0.8604–0.8880)

PSO-RF 0.8781 (0.8654–0.8913) 0.8779 (0.8650–0.8912) 0.9522 (0.9443–0.9601) 0.1262 0.8781 (0.8654–0.8913)

EWOA-RF 0.8736 (0.8592–0.8876) 0.8734 (0.8588–0.8875) 0.9491 (0.9408–0.9571) 0.1278 0.8736 (0.8592–0.8876)

ISSA-RF 0.8790 (0.8658–0.8917) 0.8787 (0.8655–0.8917) 0.9538 (0.9459–0.9611) 0.1237 0.8790 (0.8658–0.8917)

TABLE 4  Optimal hyperparameter configurations.

Algorithm n_estimators max_depth min_samples_split min_samples_leaf max_features

PSO-RF 200 29 2 1 0.10

EWOA-RF 147 29 4 1 0.24

ISSA-RF 119 27 2 1 0.13

demonstrate the highest impact on model predictions, with Acc_
Entropy and Gyro_Entropy ranking as the top two most significant 
features (SHAP values of 0.023 and 0.021 respectively). Standard 
deviation features, particularly Acc_Std_Y and Gyro_Std_X, also 
show substantial influence on the model’s decision-making process. 
The spectral entropy features (Gyro_Spectral_Entropy and Acc_
Spectral_Entropy) exhibit moderate importance, indicating the 
relevance of frequency domain characteristics in PD detection. 
Basic statistical features such as maximum, minimum, and mean 
values across different axes contribute relatively less to the model’s 
predictions, with SHAP values ranging from 0.008 to 0.012. This 
analysis suggests that complexity-based measures and variability 
indicators are more discriminative for PD detection compared to 
simple statistical metrics, providing valuable insights for future 
feature engineering strategies in PD detection systems.

Figure 6 presents a detailed SHAP value distribution plot, 
illustrating the impact and directionality of different features on 
the model’s predictions. The plot reveals complex patterns in 
feature contributions, with entropy-based features (Acc_Entropy 
and Gyro_Entropy) showing the widest SHAP value distributions 
(−0.1 to 0.1), indicating their strong but varied influence on model 
decisions. Notably, Gyro_Spectral_Entropy demonstrates a distinct 
bimodal distribution with predominantly high feature values 
(shown in pink) contributing positively to predictions. Standard 
deviation features (Acc_Std_Y and Gyro_Std_X) exhibit more 
concentrated distributions around their mean impacts, suggesting 
more consistent contributions to the model’s output. The rate 
of change and basic statistical features (minimum, maximum, 
and mean values) show narrower SHAP value ranges, centered 
closer to zero, indicating more moderate and stable contributions 
to predictions. This visualization effectively captures both the 
magnitude and direction of feature impacts, highlighting the non-
linear relationships between feature values and their contributions 
to the model’s decision-making process. Note that statistical features 
remain collectively critical as shown in the ablation study.

FIGURE 5
Shap bar plot.

4.4.2 SHAP value distribution for low SHAP score 
features

Figure 7 presents the SHAP value distribution for features with 
relatively low impact scores (f(x) = 0.02). The visualization reveals 
that Gyro_Std_Y (2.9807), Gyro_Max_Y (2.9338), and Gyro_Min_
Y (−2.3277) are the primary contributors within this category. 
The horizontal axis represents base values ranging from 0.0 to 
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FIGURE 6
Shap value distribution plot.

0.5, with the impact direction indicated by color coding (pink for 
higher contributions and blue for lower contributions). Notably, 
Gyro_Std_Y demonstrates the strongest negative influence (−0.13) 
among these features, followed by Gyro_Max_Y (−0.07) and Gyro_
Min_Y (−0.04). Additional features such as Acc_Min_Z (−2.462), 
Acc_Std_X (1.779), Acc_Max_X (0.361), Acc_Std_Z (3.173), Acc_
Mean_Z (−1.322), and Acc_Max_Z (1.52) exhibit progressively 
smaller negative impacts, all approximately contributing −0.02 
to the model’s prediction. The collective contribution of 25 
other low-importance features accounts for a substantial negative 
influence (−0.12), highlighting the cumulative significance of 
minor contributors. This visualization effectively demonstrates how 
multiple gyroscope and accelerometer measurements, despite their 
individually modest contributions, collectively shape the model’s 
classification decisions through primarily negative influences on the 
prediction probability.

4.4.3 SHAP value distribution for high SHAP score 
features

Figure 8 illustrates the feature impact distribution for variables 
with substantially higher SHAP scores (f(x) = 0.97). In contrast to the 
low-impact features, these measurements demonstrate consistently 
positive contributions to prediction probabilities. Acc_Std_Y 
(1.368) and Acc_Entropy (1.036) emerge as the most influential 
features in this category, each contributing +0.04 to the model’s 
output. The next tier of influential features includes Gyro_Std_X 
(0.939), Gyro_Spectral_Entropy (0.366), Gyro_Max_X (0.1), Gyro_
Max_Z (−0.62), and Gyro_Entropy (0.865), all contributing +0.03 to 
the prediction. Gyro_Std_Y (−0.576) and Gyro_Std_Z (−0.49) show 

slightly lower impacts of +0.02 each. The aggregated impact of 25 
additional features accounts for a substantial positive contribution 
of +0.19. This distribution highlights how entropy-based measures 
and standard deviations across multiple axes provide the strongest 
positive contributions to the model’s predictions, reinforcing 
their importance in distinguishing Parkinson’s disease movement 
patterns from healthy controls. The base value scale ranges from 
−0.4 to 1.0, with the expected value E [f(X)] = 0.499, illustrating 
the model’s baseline prediction point before incorporating specific 
feature contributions.

4.4.4 SHAP force plot for feature contributions to 
low probability predictions

Figure 9 presents a detailed force plot quantifying feature 
impacts on a prediction with low probability output (f(x) = 0.015). 
The vertical dotted line at 0.0 represents the reference point, 
with features pushing the prediction toward the right (higher 
probability) or left (lower probability). Gyro_Std_Y (2.981) exerts 
the strongest negative influence (−0.13), substantially driving the 
prediction toward a lower probability output. Secondary negative 
contributors include Gyro_Max_Y (2.934) with −0.07 impact and 
Gyro_Min_Y (−2.328) with −0.04 impact. Several features exhibit 
smaller negative contributions of approximately −0.02 to −0.03, 
including Acc_Min_Z (−2.462), Acc_Std_X (1.779), Acc_Max_
X (0.361), Acc_Std_Z (3.173), Acc_Mean_Z (−1.322), and Acc_
Max_Z (1.52). The remaining 25 features collectively contribute 
−0.12 to the prediction. The final expected value E [f(X)] = 0.499 
compared to the significantly lower actual prediction f(x) = 0.015 
demonstrates how these negative feature contributions collectively 
drive the model toward a confident negative classification outcome. 
This visualization effectively captures the hierarchical influence of 
different movement characteristics in determining low-probability 
predictions, with gyroscope-derived features playing particularly 
prominent roles.

4.4.5 SHAP force plot for feature contributions to 
high probability predictions

Figure 10 presents a force plot detailing feature contributions 
toward a high-probability prediction (f(x) = 0.959). In this case, all 
featured measurements demonstrate positive contributions, pushing 
the prediction value substantially above the baseline expectation (E 
[f(X)] = 0.499). Acc_Std_Y (1.368) and Acc_Entropy (1.036) emerge 
as the most influential positive contributors, each adding +0.04 
to the prediction. A cluster of features each contributing +0.03 
includes Gyro_Std_X (0.939), Gyro_Spectral_Entropy (0.366), 
Gyro_Max_X (0.1), Gyro_Max_Z (−0.62), and Gyro_Entropy 
(0.865). Two additional gyroscope measurements—Gyro_Std_Y 
(−0.576) and Gyro_Std_Z (−0.49)—provide +0.02 contributions 
each. The remaining 25 features collectively add a substantial +0.19 
to the prediction value. High-probability PD predictions are driven 
by a combination of increased accelerometer entropy/complexity 
and altered gyroscope variability patterns, consistent with clinical 
manifestations of bradykinesia and tremor/rigidity. The horizontal 
axis spanning from 0.5 to 1.0 illustrates how these positive 
feature impacts collectively shift the prediction from the baseline 
expectation to a highly confident positive classification outcome 
of 0.959, demonstrating the model’s ability to integrate multiple 
movement characteristics into decisive diagnostic predictions.
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FIGURE 7
Shap Force (low impact scores).

FIGURE 8
Shap Force (high impact scores).

FIGURE 9
Shap Waterfall (low probability output).

5 Discussion

5.1 Significance of Random Forest’s 
superior performance

The comprehensive evaluation of twelve diverse machine 
learning classifiers revealed consistent superiority of ensemble-
based methods, with Random Forest demonstrating exceptional 
performance across all evaluation metrics. This finding aligns 
with previous research on movement disorder classification using 
wearable movement sensors (Bremm et al., 2024; Badawi et al., 2018) 

but extends current understanding by quantifying the performance 
gap across a broader range of algorithms.

The superior performance of Random Forest (86.7% accuracy) 
compared to linear models (55% for Logistic Regression) underscores 
the inherently non-linear relationship between movement features 
and Parkinson’s disease diagnosis. This non-linearity likely stems from 
the complex interaction between multiple movement characteristics 
that collectively define parkinsonian motor patterns. Random Forest’s 
ability to model complex decision boundaries through hierarchical 
splitting and its inherent feature selection properties make it 
particularly well-suited for capturing these relationships. 
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FIGURE 10
Shap Waterfall (high probability output).

The pronounced performance disparity between tree-based 
ensembles and instance-based methods like KNN highlights the 
importance of algorithmic selection in clinical applications. While 
KNN demonstrated high recall for healthy subjects (93%), its 
substantially lower precision (69%) would translate to unacceptable 
false positive rates in clinical settings. This imbalance illustrates 
how performance metrics beyond accuracy, particularly class-
specific precision and recall, are critical considerations for diagnostic 
applications where false positives and false negatives carry different 
implications.

The extreme classification bias exhibited by the Extreme 
Learning Machine (99% recall but only 50% precision for healthy 
subjects) serves as a cautionary example of how certain algorithms 
can achieve misleadingly high performance on single metrics 
while failing fundamentally as diagnostic tools. This observation 
reinforces the necessity of comprehensive evaluation frameworks 
incorporating multiple performance dimensions for clinical 
machine learning applications. 

5.2 Feature category contributions and 
clinical interpretations

The feature ablation study provided valuable insights into 
the relative importance of different movement characteristics 
in Parkinson’s disease detection. The substantial performance 
degradation following removal of statistical features (6 percentage 
point accuracy reduction) aligns with clinical understanding of PD 
motor symptoms (Váradi, 2020).

The meaningful contribution of frequency domain features, 
though numerically modest (0.08 percentage point accuracy 
impact), suggests that spectral characteristics capture subtle 
aspects of movement disorders that complement time-
domain measures (Nolazco-Flores et al., 2021).

The moderate yet consistent impact of removing dynamic 
and complexity features (2 percentage point accuracy reduction 
each) indicates these categories capture important aspects of 
PD movement patterns not fully represented in basic statistical 
measures. Complexity features, particularly entropy-based 
measures, likely quantify the reduced movement variability and 
increased regularity characteristic of basal ganglia disorders 
(Powell et al., 2014). Similarly, dynamic features capture the rate-of-
change aspects fundamental to bradykinesia assessment, a cardinal 
feature of PD diagnosis (Shawen et al., 2020).

The synergistic relationship between feature categories, where 
combinations produced performance exceeding the sum of 
individual contributions, highlights the multidimensional nature 
of movement disorders and the importance of comprehensive 
feature extraction frameworks. This observation suggests that 
effective PD detection systems should incorporate diverse feature 
types rather than focusing exclusively on the highest-performing 
individual category. 

5.3 Optimization approach effectiveness 
and practical implications

The comparative analysis of meta-heuristic optimization 
algorithms revealed meaningful performance improvements 
through hyperparameter tuning, with PSO demonstrating the 
greatest enhancement (accuracy increase from 86.70% to 87.65%). 
This improvement, while numerically modest, represents a modestly 
reduction in misclassification rate (from 13.30% to 12.35%, 
approximately 7% relative reduction) with potential clinical 
significance.

The consistent parameter patterns identified across optimization 
algorithms (tree depths in the 27–29 range, relatively small feature 
subsets) provide practical guidance for implementing Random 
Forest classifiers in PD detection applications. The relatively small 
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optimal value for max_features suggests that feature diversity rather 
than quantity drives performance, aligning with the notion that 
specific movement characteristics are particularly discriminative for 
PD detection.

The optimization results also highlight the diminishing returns 
on computational investment, with the performance difference 
between optimization approaches (within 0.33 percentage points) 
being smaller than the gap between optimized and baseline 
models. This observation suggests that while optimization provides 
meaningful benefits, the selection of an appropriate base algorithm 
and feature set likely represents the more consequential design 
decision for PD detection systems. 

5.4 SHAP analysis and feature importance 
implications

The SHAP value analysis revealed complexity-based measures, 
particularly Acc_Entropy and Gyro_Entropy, as the most influential 
individual features. This apparent difference can be explained 
by the fact that the statistical category contains a large number 
of moderately important features, which collectively contribute 
more when removed entirely in ablation, whereas SHAP highlights 
a few highly discriminative individual complexity features. 
The two analyses are therefore complementary rather than
contradictory.

The prominence of entropy-based features in the SHAP analysis 
aligns with neurophysiological understanding of Parkinson’s disease 
as a disorder characterized by altered movement complexity due 
to basal ganglia dysfunction (Afsar et al., 2016). The high ranking 
of standard deviation features (Acc_Std_Y, Gyro_Std_X) further 
supports clinical observations of altered movement variability in 
PD patients.

The directional analysis of SHAP values revealed interesting 
patterns in feature influence, with entropy and standard deviation 
measures exhibiting both positive and negative contributions 
depending on their values. This bidirectional influence suggests 
these features capture nuanced aspects of movement that can 
indicate either parkinsonian or healthy patterns depending 
on context. Conversely, spectral features demonstrated more 
consistently unidirectional impacts, suggesting they capture more 
specific PD-related movement characteristics.

The SHAP force plots illustrating high and low probability 
predictions revealed different feature hierarchies driving opposite 
classification outcomes. High-probability PD predictions are driven 
by a combination of increased accelerometer entropy/complexity 
and altered gyroscope variability patterns, consistent with clinical 
manifestations of bradykinesia and tremor/rigidity.

These findings have clear physiological grounding. Reduced 
movement complexity and loss of automaticity—reflected by higher 
Shannon and spectral entropy—are well-established consequences 
of dopaminergic depletion and disrupted basal ganglia oscillatory 
networks in PD (Afsar et al., 2016; Obeso et al., 2008). Increased 
standard deviation of acceleration corresponds to the clinical 
hallmarks of bradykinesia and rigidity, which manifest as greater 
trial-to-trial variability and reduced movement smoothness. 

Similarly, gyroscope-derived entropy and variability capture the 
irregular rotational components characteristic of resting and 
postural tremor, as well as axial rigidity (Afsar et al., 2016). Thus, the 
model’s reliance on entropy-based and variability measures directly 
mirrors the core pathophysiological changes underlying the cardinal 
motor signs of Parkinson’s disease. 

6 Conclusion

6.1 Summary of key findings

This study conducted a comprehensive evaluation of machine 
learning approaches for Parkinson’s disease detection using 
wearable movement sensor data, yielding several important findings 
with implications for both research and clinical applications. 
Compared with many previous approaches that rely on task-
specific features, the present framework deliberately adopts 
activity-agnostic descriptors derived directly from raw sensor 
signals, providing a more generalizable foundation for real-
world deployment.

First, we demonstrated the superior performance of ensemble-
based methods, particularly Random Forest, for PD classification, 
with substantial advantages over linear and instance-based 
approaches. This performance gap highlights the complex, non-
linear nature of the relationship between movement characteristics 
and PD diagnosis.

Second, our feature ablation analysis revealed the hierarchical 
contributions of different feature categories, with statistical features 
providing the foundation for effective classification, supplemented 
by meaningful contributions from complexity, dynamic, and 
frequency domain measures. This finding supports comprehensive 
feature extraction approaches that capture multiple dimensions of 
movement characteristics.

Third, meta-heuristic optimization techniques, particularly 
PSO, demonstrated meaningful classification improvements 
through hyperparameter tuning, with consistent patterns in 
optimal parameter configurations across different optimization 
algorithms. These patterns provide practical guidance for 
implementing machine learning classifiers in PD detection
applications.

Finally, SHAP value analysis identified entropy-based 
complexity measures and standard deviations as the most influential 
individual features, with asymmetric feature influence patterns for 
high versus low probability predictions. This observation aligns 
with clinical understanding of PD as a disorder characterized by 
altered movement complexity and variability due to basal ganglia 
dysfunction.

Several recent studies have used the same or similar PhysioNet 
smartwatch dataset for binary PD detection with most relying 
on task-specific features or deep-learning architectures trained 
on individual motor tasks. The present framework achieves 
comparable overall accuracy while deliberately employing 
activity-agnostic, hand-crafted features and offering full SHAP-
based interpretability—two aspects that are rarely combined 
in prior work on this benchmark. 
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6.2 Limitations and future research 
directions

Despite the comprehensive nature of this investigation, several 
limitations merit acknowledgment and suggest directions for 
future research.

First, the study relied on a single publicly available dataset 
with moderate sample size, undocumented medication status, 
and data collected only during standardized laboratory tasks. 
Although the selected features are theoretically activity-agnostic, 
their performance in completely unconstrained, free-living 
daily activities has not yet been prospectively evaluated. 
Medicatio and the absence of free-living activities may reduce 
signal differences and limit real-world generalizability. Future 
validation should include multiple independent cohorts with 
documented medication states and, critically, continuous free-living
recordings.

Second, our feature extraction focused on established time 
and frequency domain measures derived from gyroscope and 
accelerometer data. Future work should explore advanced signal 
processing techniques, including wavelet transforms, recurrence 
quantification analysis, and deep learning-based feature extraction, 
which may capture additional movement characteristics relevant to 
PD detection.

Third, the dataset does not include a differential-diagnosis 
control group (e.g., multiple system atrophy, progressive 
supranuclear palsy, vascular parkinsonism, or essential tremor). In 
routine neurological practice, distinguishing idiopathic Parkinson’s 
disease from atypical parkinsonian syndromes and other mimicking 
conditions represents the primary diagnostic challenge. The 
specificity and clinical utility of the proposed framework in such 
heterogeneous, real-world referral populations therefore remain to 
be established. Future prospective studies should explicitly recruit 
patients with diagnostic uncertainty and atypical parkinsonian 
disorders to evaluate the model’s performance in true differential-
diagnostic scenarios.s might perform when differentiating PD from 
clinically similar conditions that commonly lead to diagnostic 
uncertainty.

Fourth, our analysis treated PD detection as a binary 
classification problem, not accounting for disease severity, 
subtypes, or progression. Future research should explore 
multiclass and regression approaches to predict disease stage, 
distinguish PD subtypes, and track disease progression using
longitudinal data.

Finally, the clinical applicability of wearable-based PD 
detection systems requires further investigation through prospective 
studies in real-world settings, including evaluation of system 
performance across different movement contexts, comparison with 
clinical assessments, and integration with other biomarkers for 
comprehensive PD characterization. 

6.3 Implications for clinical applications 
and wearable technology development

The findings of this study have several important implications 
for the development and deployment of wearable-based PD 
detection systems in clinical and home monitoring contexts. The 

superior performance of Random Forest classifiers, combined 
with insights from feature importance analysis, provides a 
foundation for developing accurate, interpretable diagnostic tools 
that could support clinical decision-making and enable home-based 
monitoring of disease progression.

The identification of specific feature categories and individual 
measures with high discriminative value offers guidance for sensor 
selection, placement, and data processing strategies in wearable 
system development. The relative contributions of accelerometer 
versus gyroscope-derived features suggest that comprehensive 
movement assessment requires capturing both acceleration and 
rotational movement characteristics.

The asymmetric feature influence patterns revealed by SHAP 
analysis provide the basis for developing more interpretable 
classification systems that could explain the specific movement 
characteristics contributing to diagnostic decisions. This 
interpretability is crucial for clinical adoption and patient trust 
in algorithm-based assessments.

From a clinical perspective, the dominance of accelerometer-
derived entropy and vertical variability aligns with bradykinesia 
and rigidity, whereas gyroscope entropy reflects tremor and 
rotational stiffness—together covering the three cardinal motor 
features used in clinical rating scales (UPDRS-III). This convergence 
between data-driven feature importance and classical neurological 
examination supports the potential translational value of the 
proposed framework.

Finally, the optimization results demonstrate the value of 
systematic hyperparameter tuning in enhancing classification 
performance, suggesting that practical implementations of wearable 
PD detection systems should incorporate robust parameter 
optimization as a standard development practice.

In conclusion, this comprehensive analysis of machine learning 
approaches for Parkinson’s disease detection using wearable 
movement sensors advances our understanding of both the 
methodological considerations for effective classification and the 
movement characteristics most indicative of parkinsonian motor 
patterns. These insights provide a foundation for developing more 
accurate, interpretable, and clinically useful wearable monitoring 
systems that could transform the diagnosis and management of 
Parkinson’s disease through objective, continuous assessment of 
motor function.
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