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Introduction: Heart rate variability (HRV) is a vital metric for assessing 
cardiovascular health, psychological stress, and sleep quality. Non-contact HRV 
monitoring offers advantages in safety, comfort, and hygiene, making it an 
increasingly attractive solution.
Methods:  In this study, we propose a high-precision, non-contact HRV analysis 
method using a 77 GHz multiple-input multiple-output (MIMO) frequency-
modulated continuous wave (FMCW) radar system. The proposed method first 
employs an optimized Capon beamforming algorithm to accurately localize the 
heart and enhance intermediate frequency (IF) signals from the heart’s direction. 
A modified differentiate and cross-multiply (MDACM) algorithm is then used to 
demodulate the phase sequence, yielding a raw vital sign signal that includes both 
respiratory and cardiac components. This signal is further processed using a six-
level wavelet packet transform (WPT), from which specific wavelet coefficients 
(6th to 12th bands at level six) are selected to reconstruct the seismocardiogram 
(SCG) signal. To extract precise inter-beat interval (IBI) sequences, a robust 
aortic valve opening (AO) point detection algorithm is developed. Time-domain 
HRV indices—including the standard deviation of normal-to-normal intervals 
(SDNN), the root mean square of successive differences (RMSSD), and the 
percentage of successive normal-to-normal intervals differing by more than 
50 milliseconds (ms) (pNN50)—are then computed from the IBI sequence. To 
validate the approach, we developed a synchronized data acquisition system 
combining radar and electrocardiogram (ECG) sensors and collected data from 
13 participants—each person collected data for 10 min. 
Results: Experimental results demonstrate the effectiveness of our method, 
achieving average errors of 4.11 ms in SDNN, 8.05 ms in RMSSD, and 2.15% in 
pNN50 compared to ECG-derived ground truth.
Discussion: These results outperform existing non-contact HRV monitoring 
techniques and highlight the method’s potential for practical, continuous, and 
unobtrusive cardiovascular monitoring.
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1 Introduction

Heart rate variability (HRV) refers to the variations in successive 
heartbeat intervals under sinus rhythm. It serves as physiological 
indicator reflecting the autonomic nervous adaptive capacity to 
external stimuli and stress. HRV analysis was first introduced 
by obstetricians Hon and Lee in 1965 (Hon and Lee, 1963), and 
following successful clinical applications by researchers such as 
Wolf (Wolf et al., 1978) and Kleiger (Chiou et al., 1997), it gradually 
became an independent diagnostic criterion for cardiovascular 
diseases. HRV is now widely utilized in the auxiliary diagnosis of 
various cardiovascular conditions (Chen, 2002; Pecchia et al., 2011; 
Li et al., 2019), as well as in the assessment of mental stress 
(Chalmers et al., 2014) and sleep quality (Penzel et al., 2003; 
Gil et al., 2009; Hietakoste et al., 2024). HRV analysis methods 
primarily include time-domain, frequency-domain, and nonlinear 
methods. Time-domain methods quantitatively analyze the time-
domain characteristics of the RR interval series by using traditional 
statistical approaches to derive HRV indicators. These methods 
demonstrate strong resistance to interference, making them suitable 
for long-term detection and analysis, leading to a comprehensive 
evaluation of the autonomic nervous system’s modulation of heart 
rate. HRV analysis requires the acquisition of inter-beat intervals 
(IBI). Traditional HRV analysis typically collects electrocardiogram 
(ECG) signals to obtain RR interval sequences or utilizes 
photoplethysmography (PPG) signals to acquire peak-to-peak 
interval sequences. However, ECG signal collection necessitates 
attaching electrodes to the skin, which can reduce comfort and 
lead to skin allergies. Similarly, using wearable devices to collect 
phonocardiographic (PCG) signals can also pose challenges 
related to comfort and limited battery life. Accelerometer-based 
measurements of thoracic vibrations to extract heartbeat signals can 
also be employed for HRV analysis (Lahdenoja et al., 2016); however, 
the requirement to place the accelerometer device on the thorax can 
still result in discomfort for the user. Non-contact measurement of 
heart signals for HRV analysis offers a comfortable solution that 
avoids skin contact, thereby eliminating the risk of skin allergies. 
This approach is particularly advantageous for populations such as 
burn patients, infants, and those affected by epidemics who may be 
unsuitable for ECG electrodes or PPG sensors. Consequently, non-
contact measurement methods for HRV have garnered significant 
attention from researchers, resulting in a wealth of study outcomes. 
The related research primarily encompasses two strategies: remote 
PPG (rPPG) signal extraction via camera measurements and 
heartbeat signal extraction using radar technology. Camera-based 
rPPG signal measurement is vulnerable to variations in lighting 
conditions and body movements, which makes it challenging to 
obtain high-quality rPPG signals. This further complicates the 
precise extraction of IBI from rPPG signals, hindering accurate 
HRV analysis. Additionally, cameras also raise privacy concerns 
and are ineffective in low-light or nighttime conditions. In contrast, 
radar sensor-based approaches employing radio frequency methods 
for HRV analysis have attracted greater interest.

In the process of measuring vital signs using radar, low-power 
modulated electromagnetic waves are emitted towards the human 
body. By analyzing the phase changes between the transmitted 
signal and the echo, the vibrations of the chest can be detected, 
allowing for the acquisition of vital signs such as respiration and 

heartbeat. Building upon the radar-measured heartbeat signals, 
further analysis of HRV can be conducted, offering advantages 
such as safety, comfort, and the absence of privacy concerns. 
The earliest application of radar in detecting vital signs dates 
back to 1971 (Caro and Bloice, 1971), when Caro at Imperial 
College London developed a radar-based non-contact respiratory 
monitoring system for infants to detect apnea and provide early 
warning. This study marks the first documented application of 
radar in vital sign detection. Subsequently, interest in radar-
based vital sign measurement systems grew among researchers. 
However, most studies have primarily focused on measuring 
respiration rate and heart rate (Li et al., 2006; Li et al., 2008; 
Gu et al., 2010; He et al., 2017; Mercuri et al., 2018; Saeed et al., 2021; 
Wang et al., 2024; Yang et al., 2024), which lack the capability 
to extract high signal-to-noise ratio (SNR) heartbeat signals. This 
limitation hinders the precise determination of heartbeat timings, 
ultimately affecting the accuracy of HRV analysis. Thus, the accurate 
measurement of heartbeat signals with precise heartbeat timings 
using radar sensors is critical for accurate HRV analysis. Although 
existing research on radar-based heart rate measurement has 
achieved high accuracy, these studies typically calculate heart rate 
values in the frequency domain, relying on averaged heart rate over 
a time window, without capturing complete and precise heartbeat 
signals. In fact, achieving accurate HRV analysis is considerably 
more challenging than merely calculating heart rate.

Continuous wave (CW), ultra-wideband (UWB), and frequency 
modulated continuous wave (FMCW) radar systems are commonly 
utilized for non-contact measurement of vital signs. In recent 
years, there has been increasing interest among researchers in 
the use of FMCW radar operating at millimeter wavelengths 
for vital sign detection. FMCW millimeter-wave radar modulates 
continuous millimeter waves to measure chest vibrations based 
on phase changes. This approach effectively mitigates non-target 
signal interference by considering the distance and orientation of 
the subject, and it is capable of detecting vital signs from multiple 
individuals simultaneously (Wang et al., 2021a). Moreover, FMCW 
millimeter-wave radar features a compact size, high integration, 
and low transmit power, making it particularly suitable for 
vital sign monitoring. The heartbeats and respiratory movements 
induce subtle vibrations in the chest, which the radar detects by 
demodulating the phase changes in I/Q signals. However, challenges 
remain in employing radar for heart signal measurement and HRV 
analysis: 

1. The heartbeat signal is strongest at the anatomical location 
of the heart. Accurately localizing the heart position using 
radar can effectively suppress echo interference from other 
directions and enhance the echo signal originating from the 
heart, thereby enabling the acquisition of heartbeat signals 
with the highest SNR. However, although existing studies 
utilizing beamforming techniques can detect the presence 
and general location of the human body, they face challenges 
in precisely localizing the heart and extracting high-SNR 
heartbeat signals.

2. The heartbeat-induced chest displacement is extremely 
subtle compared to that caused by respiration. Specifically, 
respiration typically induces a displacement of approximately 
3–12 mm, whereas the displacement due to cardiac activity 
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is only about 0.1–0.5 mm. As a result, the heartbeat signal is 
easily masked by the respiratory signal and ambient noise. 
This makes the separation of heartbeat signals from raw 
vital sign data highly challenging and consequently impedes 
accurate HRV analysis. Developing algorithms capable of 
effectively separating heartbeat and respiratory components 
remains an ongoing research challenge.

To address the challenges associated with radar-based heart 
rate variability (HRV) analysis, this study proposes a novel HRV 
analysis framework based on a 77-GHz FMCW radar system. 
The proposed method employs an optimized beamforming 
technique to accurately localize the cardiac region, effectively 
suppressing echo signals from non-cardiac directions while 
enhancing those originating from the heart. As a result, high 
signal-to-noise ratio (SNR) remote seismocardiography (SCG) 
signals can be extracted. Based on the recovered SCG signals, 
the aortic valve opening (AO) points are detected, from which 
the inter-beat interval (IBI) sequence is derived for subsequent 
HRV analysis. The HRV metrics include the root mean square 
of successive differences (RMSSD), the standard deviation of 
normal-to-normal intervals (SDNN), and the percentage of 
successive normal interval differences exceeding 50 ms (pNN50). 
Experiments were conducted with synchronous radar and ECG 
acquisitions, and the proposed method was compared with four 
state-of-the-art heartbeat extraction approaches: a Butterworth 
bandpass filter (BPF), which has been widely adopted in numerous 
studies (Petrović et al., 2019; Xia et al., 2018), the mmHRV 
method (Wang et al., 2021b), the variational mode decomposition 
(VMD) method (Yu et al., 2023), and the cyclostationary singular 
spectrum analysis (CiSSA) method (Hu et al., 2021). The absolute 
errors of the HRV indices obtained by these five methods with 
respect to the ECG-derived HRV metrics were calculated as 
quantitative accuracy measures. In addition, the cardiac localization 
performances of three classical beamforming methods and the 
proposed optimized Capon beamforming method were visually 
compared. The experimental results demonstrate that the proposed 
optimized Capon beamforming technique can accurately localize 
the cardiac direction, and that the radar-based HRV analysis results 
obtained using the proposed framework show the closest agreement 
with those derived from the synchronous ECG signals. The main 
contributions of this work are summarized as follows: 

1. We propose an optimized Capon beamforming approach for 
localizing the heart position, in which a signal quality index 
(SQI) for the SCG is introduced to replace the conventional 
azimuth spectrum function used in Capon beamforming. 
This index is employed to search for the azimuth angle 
corresponding to the accurate heart location.

2. We applied the wavelet packet transform (WPT) (Coifman 
and Wickerhauser, 1992) algorithm to extract the SCG signal 
containing accurate heartbeat information from the vital signs.

3. We designed a robust AO detection algorithm that effectively 
prevents the misidentification of other peaks as AO points, 
facilitating precise measurement of the IBI.

4. We compared four of the most popular heartbeat signal 
extraction methods and evaluated their performance 
differences.

The remaining sections of this paper are organized as follows: 
Chapter 2 introduces related research work, Chapter 3 provides a 
detailed description of the proposed methods, Chapter 4 presents 
the experimental procedures and results, Chapter 5 offers a 
discussion, and the final chapter concludes the study. 

2 Related work

The non-contact measurement of heart rate and respiration 
based on radar has been extensively studied, achieving high 
accuracy in heart rate estimation. However, research on radar-
based HRV analysis is relatively limited. HRV analysis provides 
a wealth of physiological indicators beyond heart rate, which are 
crucial for understanding human health. Numerous studies have 
attempted to utilize radar technology for non-contact HRV analysis. 
In 2009, Massagram et al. (2009) and colleagues employed a 
direct conversion quadrature radar system combined with linear 
demodulation techniques to achieve high-precision HRV analysis 
and the extraction of the respiratory sinus arrhythmia index 
(RSA). Experimental results indicated that the standard deviation 
differences in normal inter-beat interval indices derived from 
Doppler radar and ECG references were all less than 9 ms. In 
2014, Hu et al. (2014) utilized continuous wavelet filtering and 
ensemble empirical mode decomposition (EEMD) algorithms to 
recover and separate the original cardiopulmonary signals obtained 
by radar, thereby facilitating precise beat interval extraction in the 
time domain for HRV analysis. The results demonstrated that the 
relative error in the extracted heartbeat intervals, compared to 
ECG R-R peak intervals, ranged from 2.53% to 4.83%. In 2019, 
Petrović et al. (2019) introduced a novel algorithm to estimate 
HRV features using a 24 GHz continuous wave Doppler radar 
structured in quadrature, processing the combined I/Q signals 
through a filter bank of narrowband bandpass filters with varying 
center frequencies. Based on rough heart rate estimates, one 
bandpass filter output was selected as the effective output. The 
zero crossings of the filtered output signals represented heartbeats 
and were used to extract IBI. Ultimately, four HRV characteristics 
were calculated from the IBIs, with the algorithm tested on real 
recorded data from ten subjects. The average relative error in 
the extracted IBIs compared to ECG measurements was between 
1.02% and 2.07%. In 2020, Antolinos et al. (2020) employed a 
122 GHz FMCW radar to monitor vital signs, utilizing the empirical 
mode decomposition (EMD) algorithm to separate heartbeat and 
respiration signals for HRV analysis based on the heartbeat signal. 
That same year, Wang et al. (2021b) proposed a millimeter-wave 
radar HRV analysis system (mmHRV), which included a heartbeat 
signal extractor designed to optimize the phase decomposition of 
chest motion modulation channel information. This enabled the 
accurate estimation of heartbeat signal timing by identifying peak 
positions, allowing further derivation of IBIs for HRV assessment. 
Experimental results indicated that mmHRV accurately measured 
HRV, with a median IBI estimation error of 28 ms (96.16% 
accuracy). In 2021, Xia et al. (2021) introduced a decoding peak 
detection (DPD) method to address the challenge of extracting 
heartbeat peaks by decoding the most probable state sequences 
from the single-band frequency envelope (FEnv) of radar signals, 
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thereby facilitating HRV analysis. Additionally, a hidden semi-
Markov model (HSMM) was utilized to detect heartbeat timings 
within bandpass-filtered radar data. Evaluation against ECG as the 
gold standard demonstrated an average F1 score of 93.19% ± 0.73% 
across six subjects. The accuracy of the IBIs extracted from radar 
was assessed with average relative errors of 0.51%–1.06% for HSMM 
and 0.37%–1.15% for DPD. In 2023, Yu et al. (2023) proposed a 
novel radar-based heartbeat detection method that extracts high-
fidelity pulse templates from smoothed PCG waveforms through 
template matching to analyze HRV based on radar-derived heart 
sound signals.

Existing radar-based HRV analysis methods often face 
challenges in accurately localizing the heart and extracting high 
SNR non-contact SCG signals, leading to substantial errors in 
heartbeat localization. Achieving high-precision HRV analysis 
with radar critically depends on accurate localization of the heart, 
reliable measurement of high-SNR cardiac signals, and precise 
detection of individual heartbeats. In this work, we propose an 
HRV analysis method based on a 77 GHz FMCW radar system that 
not only enables precise beam steering toward the heart but also 
effectively separates high-SNR non-contact SCG signals from raw 
vital sign data. Furthermore, we develop a robust AO point detection 
algorithm capable of accurately identifying the AO fiducial points, 
thereby enabling the extraction of highly precise IBI sequences. 
The proposed method achieves high accuracy in time-domain 
HRV metrics. 

3 Methods

High-precision radar-based HRV analysis relies heavily 
on heartbeat signals with a high SNR. The proposed method 
for remote SCG (rSCG) signal extraction is illustrated in the 
flowchart shown in Figure 1. A commercially available Texas 
Instruments AWR1642 radar sensor is employed and configured in 
a 2-transmit 4-receive (2T4R) mode via time-division multiplexing 
(TDM). The rSCG signal is extracted from the raw intermediate 
frequency (IF) data sampled by the radar’s analog-to-digital 
converter (ADC).

First, a fast-time Fourier transform (FFT) is performed on the IF 
signals to obtain range-bin data for all eight antennas. To suppress 
static background interference, the mean value of each range bin is 
subtracted from itself. Then, for each column vector along the fast-
time dimension of the range-bin matrix, the index corresponding 
to the maximum energy is identified, and the complex value at 
that index is extracted to form a slow-time complex sequence 
at the range gate corresponding to the human target. Next, an 
optimized Capon beamforming algorithm is employed to search for 
the optimal direction of the heartbeat signal, from which the optimal 
spatial weight vector is derived. This weight vector is then used to 
perform a weighted summation of the slow-time complex sequences 
across the eight antennas at the selected range gate. Finally, a phase 
demodulation technique termed modified differential arctangent 
cross-multiplication (MDACM) (Xu et al., 2021) is applied to the 
resulting complex sequence to extract its phase, which constitutes 
the vital sign signal containing both respiration and heartbeat 
components.

Subsequently, a six-level wavelet packet decomposition (Coifman 
and Wickerhauser, 1992) is applied to the vital sign signal, and the 
wavelet coefficients within the frequency band corresponding to 
SCG are selected and reconstructed to obtain the rSCG signal. We 
further design a simple and efficient aortic valve opening (AO) 
peak detection algorithm with high localization accuracy. Once 
the continuous AO point sequence is obtained, IBIs can be readily 
derived, enabling the calculation of time-domain HRV metrics. 

3.1 FMCW millimeter wave radar signal 
model

The relationship between the frequency of the Chirp signal 
emitted by the FMCW millimeter-wave radar and time is expressed 
by Equation 1: 

f(t) = fc +
B
Tc

t (1)

Where fc is the frequency at the initial moment when the chirp 
signal is transmitted, Tc is the duration of the chirp signal frequency 
sweep, and B is the frequency modulation bandwidth. ∅1 is initial 
phase. Therefore, the FMCW millimeter wave radar transmission 
signal can be expressed as Equation 2: 

xT(t) = AT cos(2π fct+ π B
Tc

t2 + ∅1) (2)

Assuming the distance between the radar and the target 
person is R, the radar emits a chirp signal that reaches the chest 
of the person and then reflects back. The round trip time is 
expressed by Equation 3: 

td =
2R
c

(3)

Where c is the speed of light, then the expression of the reflected 
echo signal is expressed by Equation 4: 

xR(t) = xT(t− td) = AR cos(2π fc(t− td) + π B
Tc
(t− td)

2 + ∅2) (4)

The internal circuit of the radar mixes the transmitted 
signal and the reflected echo signal to obtain an IF signal in 
expression (Equation 5): 

xIF(t) = xT(t) · xR(t) (5)

From the product and difference formula of trigonometric 
functions, we can get: 

xIF(t) =
AT ·AR

2
cos(4πBR

cTc
t+

4π fcR
c
+ 4πBR2

c2Tc
t2 + ∅),∅ = ∅1 − ∅2

(6)

Since 4πBR2 is much smaller than c2Tc, and the chirp signal 
period is very short, t2 is also close to zero. Therefore, the quadratic 
term 4πBR2

c2Tc
t2 in expression (Equation 6) is almost equal to zero 

and can be ignored. At the same time, let AIF = AT ·AR/2, then the 
simplified IF signal expression is Equations 7, 8: 

xIF(t) = AIF cos(4πBR
cTc

t+
4π fcR

c
+ ∅) (7)
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FIGURE 1
Flowchart of the proposed method.
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xIF(t) = AIF cos( fIFt+φIF + ∅) (8)

fIF =
2B

c ·Tc
·R (9)

φIF =
4π fcR

c
= 4π

λ
·R (10)

Where fIF is the frequency of the IF signal in Equation 9. φIF is the 
phase of the IF signal. λ is the wavelength of the electromagnetic 
wave emitted by the millimeter wave radar. After the phase 
expression (Equation 9) is differentiated, the phase change of the IF 
signal with respect (Equation 10) to the distance is expressed as: 

ΔφIF =
4π
λ
· ΔR (11)

Where ΔφIF is the phase change of the IF signal, and ΔR is the change 
in chest vibration displacement. From Equation 11, it is evident that 
when the initial frequency of the millimeter-wave radar is 77 GHz, 
the wavelength λ ≈ 4 mm, resulting in a phase shift of 0.314 radians 
for a chest displacement of 0.1 mm induced by the heartbeat. Thus, 
we can capture the minute chest vibrations caused by heartbeat 
and respiration through significant phase variations. This principle 
forms the foundation for using FMCW millimeter-wave radar to 
measure human vital sign signals. 

3.2 Cardiac azimuth search and vital signs 
extraction

When the radar transmits chirp signals toward the human 
body from a certain angle, the reflected waves from the thoracic 
cavity may scatter in multiple directions, and only a portion of 
these echoes are received by the radar antennas. Beamforming 
can effectively enhance the echo signals from the desired direction 
while suppressing clutter and interference from other directions. 
Beamforming relies on a multiple-input multiple-output (MIMO) 
antenna array. The AWR1642 mm-wave radar used in this study can 
be configured as a 2-transmit, 4-receive (2T4R) antenna array, which 
is virtually extended to a 1-transmit, 8-receive (1T8R) linear array 
using TDM. To enhance the echo signal from the thoracic cavity 
and reduce the output noise and interference power, we adopt the 
Capon beamforming method (Capon, 1969). Capon beamforming, 
also known as minimum variance distortionless response (MVDR) 
beamforming, can effectively suppress clutter signals from non-
target directions while enhancing signals from the desired direction. 
It provides superior angular resolution performance compared to 
conventional beamforming methods (Marino and Chau, 2005), 
and although its resolution is lower than that of the multiple 
signal classification (MUSIC) algorithm (Schmidt, 1986), Capon 
beamforming offers significantly lower computational complexity. 
In the 1T8R uniformly spaced linear antenna array, the IF signal 
received at each antenna element experiences a time delay relative 
to the adjacent previous antenna. Let the time delay be denoted as τ, 
d be the inter-element spacing, and θ be the angle of arrival (AoA) 
of the incoming signal, then τ is expressed by Equation 12: 

τ =
dsin(θ)

c
(12)

The slow-time complex sequence corresponding to the range bin 
of the human target can be reasonably modeled as a narrowband 
signal. Due to the different propagation paths between the target and 
individual receiving antennas, the signal phase exhibits variations 
across antenna elements within the inter-antenna propagation delay 
range. Let the IF signal at the target range bin have a frequency 
of fh, an amplitude of Ah, and a phase of φh. At a given time 
instant t, assuming the presence of zero-mean Gaussian noise 
nm(t), and denoting the signal amplitude received by the m-th 
antenna as Ah(m), the signal received by the m-th antenna can be 
expressed as Equation 13:

xm(t) = Ah(m) · cos(2π fh(t−mτ) +φh) + nm(t)
= Ah(m) · cos(2π fht+φh) · cos(−2π fh ·mτ) + nm(t)m
= 0,1,2,3,4,5,6,7. (13)

Let s(t) = Ah(m) · cos(2π fht+φh), am(θ) = cos(−2π fh ·m
dsin(θ)

c
)

a(θ) = [a0(θ),a1(θ),a2(θ),………..,a7(θ)]
T,

n(t) = [n0(t),n1(t),n2(t),………..,n7(t)]
T

The target range gate signals (as snapshot signals) from the eight 
virtual antennas are arranged into a vector form as Equation 14: 

X(i) = s(i)a(θ) + n(i), i = 0,1,2,3,…..N (14)

Where N is the number of snapshots. The calculation formula of 
Capon beamforming weight vector is as Equation 15: 

w(θ) =
R−1XX(θ)a(θ)

aH(θ)R−1XXa(θ)
(15)

The spatial spectrum function is expressed by Equation 16: 

P(θ) = 1
aH(θ)R−1XXa(θ)

(16)

w(θ) is the optimal weight vector, RXX is the snapshot 
signals covariance matrix, and R−1XX represents the inverse 
matrix of the snapshot signal covariance matrix. There is 
expressed by Equation 17: 

RXX =
1
N

N

∑
i=1
 [X(i)XH(i)] (17)

The weighted sum of the target range gate slow-time 
complex signals of the eight virtual antennas is performed, and 
the expression of the enhanced slow-time complex signal is 
obtained as Equation 18: 

Y = wHX (18)

As shown in Formula 18, the slow-time complex sequence 
signals of the target range gates from all eight antenna elements 
can be weighted summed to enhance the signal from the direction 
of the human body while suppressing clutter signals from other 
directions. However, the direction corresponding to the peak of 
the spatial spectrum function in Equation 16 does not necessarily 
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coincide with the direction of the highest SNR of the heartbeat 
signal. In some cases, the spectral peak may occur in the direction 
of clutter or other objects. Furthermore, even if the spectral peak 
appears in the direction of the human body, it does not guarantee 
that this is the direction with the highest SNR for the heartbeat 
signal. For most individuals, whose body height range is about 
1.55–1.9 m, only the region around the heart yields heartbeat 
signals with the highest SNR. Additionally, in some individuals 
who exhibit abdominal breathing, significant motion occurs in the 
abdominal region. Conventional beamforming methods combined 
with respiration detection (Wang et al., 2021b) may misidentify 
the abdominal region as the target direction, which still does not 
correspond to the direction of the strongest heartbeat signal. To 
address these limitations, we propose a new azimuth search method 
to replace the traditional spatial spectrum function approach, 
aiming to identify the direction with the highest SNR of the SCG 
signal. At the beginning of the measurement, we collect the first 
20 s of data and process them using the procedure outlined in 
Figure 1 to extract the SCG signal. To assess the quality of SCG 
signals, we propose a method based on dynamic time warping 
(DTW) (Sakoe and Chiba, 1978). Specifically, a 20 s segment with 
high-quality SCG signal, selected from all radar-measured SCG 
recordings, is designated as the template signal. The DTW distance 
is then calculated between the SCG signal under evaluation and the 
template signal. The beamforming angle is selected by minimizing 
the DTW distance between the extracted SCG signal and the 
reference template. A smaller DTW distance indicates a higher 
similarity between the two signals, thereby reflecting better signal 
quality. Conversely, a larger DTW distance suggests poorer signal 
quality. Let the selected template signal be denoted as SCGtemplate, 
and the SCG signal to be evaluated as SCG. Prior to DTW 
computation, both SCG and SCGtemplate are standardized. Here, σ
represents calculating the variance of the SCG sequence as shown 
in (Equations 19, 20): 

SCG = SCG− SCG
σ(SCG)

(19)

SCGtemplate =
SCGtemplate − SCGtemplate

σ(SCGtemplate)
(20)

SQI = 1
DTW(SCG,SCGtemplate)

(21)

To identify the direction with the highest SNR of the SCG 
signal, we perform a directional search over the angular range of 
[-60°,60°] with a step size of 1°. For each angle, a corresponding 
beamforming weight vector w is computed, and based on this, a 
SQI value is calculated, as shown in Equation 21. This process yields 
a total of 121 angle-SQI pairs. Among all scanned directions, the 
angle θopt corresponding to the maximum SQI value is selected, 
which we consider to be the direction with the highest SCG 
signal SNR. Upon determining the cardiac orientation, the SCG 
template is no longer utilized, and the search for the optimal 
orientation via improved Capon beamforming is terminated. The 
resulting beamforming azimuth is subsequently fixed for all further 
processing. After determining θopt, the optimal beamforming weight 
vector wopt is calculated according to Formula 15, and the slow-
time complex signal in the direction of the heart is obtained using 
Formula 18. This slow time series is then demodulated using a 

method called MDACM (Xu et al., 2021) to produce a phase series 
containing respiratory and cardiac motion components, i.e., the 
original vital sign signal. 

3.3 SCG signal extraction

The original vital sign signal, primarily contains the heartbeat 
signal, respiratory signal, and other noise. Due to the greater 
displacement of the respiratory signal compared to that of the 
heartbeat signal, the heartbeat signal is often overshadowed by 
the respiratory signal. Additionally, the third harmonic frequency 
band of the respiratory signal overlaps with the frequency band 
of the heartbeat signal, complicating the separation of these 
two signals. Designing an algorithm to effectively separate the 
heartbeat signal from the respiratory signal remains a challenge. 
Commonly used methods, such as the BPF, typically set parameters 
of 0.1 Hz–0.5 Hz for the respiratory signal and 0.7 Hz–3 Hz for 
the heartbeat signal. However, these methods yield only moderate 
results and fail to address the issue of frequency band overlap 
caused by the respiratory signal’s third harmonic. Standard binary 
wavelet analysis decomposes signals layer by layer along the low-
frequency direction, which limits its ability to finely segment the 
frequency bands, particularly in the high-frequency region. The 
heartbeat signal contains both high-frequency and low-frequency 
components, and binary wavelet analysis is insufficient for capturing 
the entire frequency spectrum of the heartbeat signal. Wavelet 
packet analysis offers a more detailed and nuanced approach to 
signal analysis. Unlike standard binary wavelet analysis, which 
analyzes low and high-frequency components separately, wavelet 
packet decomposition simultaneously considers both, providing a 
more accurate local analysis. This method allows for finer division 
of the time-frequency plane and offers superior resolution for the 
high-frequency components of the signal. Moreover, wavelet packet 
analysis introduces the concept of optimal basis selection, allowing 
for adaptive selection of the most suitable basis functions that 
align with the characteristics of the signal, thereby significantly 
enhancing the effectiveness of the signal analysis. In this study, we 
employ WPT using the “db45” wavelet to break down the original 
vital sign signal into a series of finely segmented wavelet packet 
coefficients within specific frequency ranges. The “db45″wavelet 
has a 45th-order vanishing moment. A higher vanishing moment 
means a higher concentration in the frequency domain, which 
can better capture the high-frequency details of the signal by 
selecting the wavelet packet coefficients corresponding to the 
SCG signal frequency range, we reconstruct the SCG signal. The 
original vital sign signal, sampled at a rate of fs = 200 Hz over 
a duration of 50 s, undergoes six levels of decomposition using 
the WPT. The first 16 wavelet coefficients from the sixth level are 
illustrated in Figure 2. According to the WPT theory, the frequency 
range of the i-th wavelet coefficient C(i) of the sixth layer is 
expressed by Equation 22

C(i) ∼ [(i− 1) ·
fs/2

26 , i ·
fs/2

26 ] (22)

Where fs = 200 Hz is the sampling rate of the original vital 
signs signal. Further analysis of the wavelet packet coefficient 
energy percentage was conducted, with results illustrated in 
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FIGURE 2
The wavelet coefficients (only the first 16 wavelet coefficients are plotted).

Figure 3. The energy distribution shows that the first five wavelet 
packet coefficients account for a significantly higher energy 
percentage compared to the remaining coefficients. According to 
Equation 22, the frequency range for the first wavelet packet 
coefficient spans from 0 Hz to 1.5625 Hz, primarily containing 
respiratory components and motion artifacts. The second through 
fourth wavelet packet coefficients mainly consist of harmonic 
components of respiratory and motion artifacts. From the sixth 
wavelet packet coefficient to approximately the 12th, a peak in 
energy appears, indicating that these six coefficients primarily 
capture the heartbeat signal components. Although the first five 
wavelet packet coefficients may contain some heartbeat signal 
components, the heartbeat signal content in these coefficients is 
significantly lower than that of respiratory components, motion 
artifacts, and their harmonics. Literature (Taebi et al., 2019) reports 
that the primary frequency range of the SCG signal is below 
25 Hz. Additionally, literature Equation 22, the frequency range 
for these coefficients is 7.8125 Hz–18.750 Hz, which closely aligns 
with the SCG frequency range described in (Zhang et al., 2023). 
Therefore, the selected wavelet packet coefficients effectively 
reconstruct the SCG signal. The time-domain waveform and the 
synchronized ECG are shown in Figure 4. Figure 5 shows the 
SCG signal extracted from the radar signal and the SCG signal 
measured from the synchronously acquired cardiac acceleration 
signal. As shown in Figure 5, the SCG signal measured by 
radar exhibits a high degree of similarity to the SCG signal 
measured by an accelerometer attached near the skin overlying
the heart.

3.4 AO point detection of SCG signal

The SCG is generated by micro-vibrations of the thoracic cavity 
caused by cardiac contractions. It consists of several peaks and 

FIGURE 3
Energy percentage histogram of wavelet packet coefficients.

FIGURE 4
SCG signal extracted by WPT and ECG signal collected synchronously.
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FIGURE 5
SCG signals extracted from radar signals and SCG signals from 
synchronized acceleration measurements.

FIGURE 6
SCG waveform and important key points.

troughs that encompass physiological information related to the 
heart, including the following features: Atrial Systole (AS), Mitral 
Closure (MC), Isovolumetric Contraction (IM), Aortic Opening 
(AO), Isovolumetric Relaxation (IC), Rapid Ejection (RE), Aortic 
Closure (AC), Mitral Opening (MO), and Rapid Filling (RF), as 
illustrated in Figure 6. Among these, the AO point is characterized 
by its distinct features, making it easier to detect. We have 
designed a method for accurately locating the AO point, which 
is both simple and efficient. The detailed steps of the algorithm 
are outlined in Algorithm 1. The algorithm was developed in the 
MATLAB 2021b environment. Initially, the Hilbert Transform (HT) 
is employed to calculate the upper and lower envelope signals 
of the SCG. The MATLAB function findpeaks is then utilized to 
detect the peaks of the upper envelope and the troughs of lower 
envelope, with a minimum spacing parameter set to delta = 0.6∗ fs. 
To address potential noise factors that may lead to false cardiac 
cycle segments in the SCG signal, we apply a criterion based on 
the absolute difference between the x-coordinates of the peaks 
of the upper envelope and the troughs of the lower envelope. If 
this absolute difference exceeds delta1 = 0.15∗ fs, we discard the 
detection of the AO point within that cardiac cycle segment. We 

  Input:fs,SCG[k],k = 1,2,3, ..L,L = length(SCG)

  Set delta1 = 0.15∗ fs, delta2 = 0.1∗ fs.

  Calculate the upper and lower envelope signals of 

SCG[k]by Hilbert Transform.

  yupper[k],ylower[k] = Envelope(SCG[k])

  Finding the peak values of the yupper[k]and the 

valley values of ylower[k]

  [y1,x1] = Findpeaks(yupper[k])

  [y2,x2] = Findpeaks(−ylower[k])

  y2 = −y2,N = length(x1)

  fori = 1:N do

  if |x1(i) −x2(i)| < delta1 then

  a = x2(i) −delta2

  b = x2(i) +delta2

  SCGtemp = SCG[a:b]

  xmin1 = argmin(SCGtemp)

  x21(i) = a+xmin1
  SCGtemp[xmin1] = max(SCGtemp)

  xmin2 = argmin(SCGtemp)

  x22(i) = a+xmin2
  ifx21(i) < x22(i) then

  SCGtemp = SCG[x21(i):x22(i)]

  else

  SCGtemp = SCG[x22(i):x21(i)]

  endif

  xmax = argmax(SCGtemp)

  xAO(i)= min {x21(i),x22(i)} +xmax
  endif

  endfor

  Output:xAO

Algorithm 1. AO Detection Algorithmic Framework.

observed that the IM and IC points are distinctly characterized as 
the lowest and second-lowest points within each valid cardiac cycle 
segment. For each qualified trough of the lower envelope, we first 
identify the lowest and second-lowest points, which correspond to 
the IM and IC points, respectively. The AO point is always located 
within the interval between the IM and IC points. Therefore, we 
continue to search for the maximum value within the x-coordinate 
range defined by the IM and IC points, which represents the AO 
point. This method effectively prevents the erroneous detection of 
the MC and RE points as AO points, as well as mitigating the risk 
of falsely identifying peaks from noisy cardiac cycle segments as
AO points.

3.5 HRV time-domain analysis

HRV analysis metrics can be derived from the IBI sequence. 
In this study, we utilize the three most commonly used time-
domain metrics for HRV analysis: SDNN, RMSSD, and pNN50. 
SDNN represents the standard deviation of all normal sinus 
beats’ IBI. A higher SDNN indicates greater HRV, reflecting 
overall autonomic nervous system activity. RMSSD is the square 
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root of the mean squared differences of successive IBI and 
is primarily used to reflect vagal (parasympathetic) activity; 
higher RMSSD values indicate increased vagal activity. pNN50 
denotes the percentage of successive IBI differences greater 
than 50 ms, which, similar to RMSSD, reflects vagal activity. 
A higher pNN50 percentage suggests a stronger regulatory 
influence from the vagal nerve. The time-domain statistical 
expressions for SDNN, RMSSD, and pNN50 in HRV analysis are as
Equations 23–25: 

SDNN = √ 1
N

N

∑
i=1
 (IBI(i) − IBI)2 (23)

RMSSD = √ 1
N− 1

N

∑
i=2
 (IBI(i) − IBI(i− 1))2 (24)

pNN50 =
∑N

i=2
 {(IBI(i) − IBI(i− 1)) > 50ms}

N
(25)

Where IBI represents the mean of the IBI sequence, and N represents 
the length of the IBI sequence. 

4 Experiments and results

4.1 Experiments

We utilized the Texas Instruments AWR1642Boost commercial 
millimeter-wave radar development kit and the DCA1000EVM data 
acquisition board to collect reflected echo data from the human 
thorax. The raw IF data from the radar was transmitted to a 
laptop via Ethernet. Additionally, we employed the Shimmer ECG 
sensor to collect ECG signals synchronously as a gold standard 
reference. A synchronization data acquisition program for the 
AWR1642 mm-wave radar sensor and Shimmer ECG sensor was 
developed using MATLAB R2021b. AWR1642 millimeter wave 
radar antenna uses TDM method to set up two transmit four 
receive mode, with the Chirp parameters specified in Table 1. 
A total of 13 participants were involved in the experiment, each 
person collected data for 10 min. The ages of the participants 
ranged from 22 to 34 years, and they were dressed in regular 
t-shirts while lying on a bed. The radar sensor was positioned 
0.6 m above the participants, with ECG electrodes attached. Upon 
starting the MATLAB program and setting the acquisition time, 
data could be collected for the predetermined duration. The 
configurations of the radar sensor, Shimmer ECG sensor, and the 
experimental setup are illustrated in Figure 7. All data processing 
and algorithm development were conducted within the MATLAB 
R2021b environment. The primary computer hardware included an 
Intel i5-10400 CPU, 16 GB of RAM, a 500 GB solid-state drive, and 
a 1 TB mechanical hard drive.

4.2 Results

4.2.1 Azimuth estimation for cardiac 
beamforming

In the first experimental scenario, the radar was positioned 
0.6 m above the subject’s chest. Figure 8 illustrates the direction-
of-arrival (DoA) estimation results obtained using the proposed 

TABLE 1  Chirp parameters of AWR1642 radar.

Parameters Values Parameters Values

Start Frequency 77 GHz TxStartTime 1 us

IdleTime 8 us AdcSampleRate 5,000 ksps

AdcStartTime 6 us RX Gain 30 dB

RampEndTime 60 us FramePeriodicity 5 ms

FrequencySlope 60MHz/us Number of Chirp Loops 1

FIGURE 7
Radar sensor, Shimmer ECG sensor and experimental scene.

FIGURE 8
Azimuth angles searched by different beamforming methods (Radar is 
above the chest).

optimized Capon beamforming algorithm, compared with three 
classical beamforming methods: MUSIC, Capon, and Bartlett. 
Figure 9 presents the 20 s time-domain waveforms of SCG signals 
measured along the estimated directions using each method. The 
proposed Modified-Capon method estimated the heart direction at 
−10°, which yielded the highest signal quality SCG waveform among 
all tested directions. In contrast, MUSIC and Bartlett both estimated 
the heart direction at 7°, while the Capon method estimated it at 
−6°. As shown in Figure 8, SCG signals obtained from 7° and −6°
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FIGURE 9
Template signal and SCG signal waveform measured at different azimuths (Radar is above the chest).

FIGURE 10
Azimuth angles searched by different beamforming methods (Radar is 
above the head).

exhibit significantly lower quality compared to those measured at 
−10°.

In the second experimental scenario, the radar was placed 0.6 m 
above the subject’s head. Figure 10 shows the DoA estimation 
results for the same four beamforming methods. Figure 11 illustrates 
the corresponding 20 s time-domain SCG signals obtained from 
the estimated directions. The Modified-Capon method estimated 
the heart direction at 24°, which again produced the highest 
quality SCG signal. In contrast, MUSIC and Bartlett estimated 
the heart direction at −10°, and Capon estimated it at −3°. 
As shown in Figure 11, SCG signals from −10° and −3° directions 
exhibited inferior quality compared to those from 24°. These two 
experiments were conducted with the radar placed at different 
locations above the body, resulting in the heart appearing at 
varying angles relative to the radar antenna array. In both 
scenarios, the proposed Modified-Capon algorithm consistently 
identified the optimal heart direction and yielded SCG signals 
with the highest SNR. In contrast, the classical MUSIC, Capon, 
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FIGURE 11
Template signal and SCG signal waveform measured at different 
azimuths (Radar is above the head).

and Bartlett methods failed to accurately localize the heart. 
Notably, in the second experiment with the radar positioned 
above the head, all three classical methods estimated directions 
toward the head region instead of the heart, leading to poor 
SCG signal quality. These findings indicate that although classical 
beamforming methods perform well for large rigid targets, they are 
not well-suited for vital sign monitoring applications. The proposed 
Modified-Capon algorithm, tailored specifically for non-contact 
cardiopulmonary sensing, demonstrates superior performance in 
accurately estimating the heart direction and extracting high-SNR 
SCG signals. 

4.2.2 HRV analysis results
Time-domain HRV analysis relies on calculating the IBI 

sequence on a beat-by-beat basis. Accurate IBI extraction is 
essential for precise calculation of HRV time-domain metrics. In 
this study, we applied the proposed heartbeat signal extraction 
method based on WPT and the AO point detection method to 
the collected data, calculating the IBI sequence and HRV time-
domain metrics. To demonstrate the superiority of the proposed 
method, we conducted four comparative experiments, applying 
four widely used heartbeat signal extraction methods from recent 
radar-based vital sign measurement studies to the collected data. 
We then calculated the IBI sequence and HRV time-domain 
metrics using each method. These heartbeat signal extraction 

methods included the BPF method, mmHRV method, VMD 
method, and CiSSA method. All methods were evaluated against 
the ECG signal collected simultaneously as the ground truth 
reference. The ECG signal used the classic Pantokin algorithm 
(Pan and Tompkins, 1985) to detect R-peaks, experimental results 
are presented in Figure 12 and Table 2. Figure 12 displays Bland-
Altman plots and boxplots of the IBI sequences obtained by the 
five heartbeat extraction methods. Table 2 presents the which 
were then used to calculate the IBI sequence and HRV time-
domain metrics. The comparative true HRV time-domain metrics 
calculated from the synchronized ECG signal and the HRV time-
domain metrics calculated from the IBI sequences obtained using 
each of the five heartbeat signal extraction methods. Results in 
Figure 12 indicate that the proposed method, which combines WPT-
based SCG signal extraction with AO point detection, exhibits the 
best agreement with the reference IBI sequence from the ECG 
signal. The proposed method achieves the smallest 95% limits of 
agreement (LoA) interval, with an upper and lower LoA distance 
of 0.04 s. The mmHRV and VMD methods show slightly lower 
agreement with the ECG signal, each with a 95% LoA interval 
of 0.08 s. The CiSSA and BPF methods demonstrate somewhat 
lower consistency, with 95% LoA intervals of 0.19 s and 0.21 s, 
respectively. The final box plot in Figure 12 also demonstrates 
that the IBI sequence measured by the proposed method has the 
lowest root mean square error (RMSE) with the IBI sequence 
of ECG, along with the smallest interquartile range. This result 
indicates that the RMSE values of the IBI sequences measured 
by the proposed method compared to the ECG IBI sequence 
show minimal variation across different participants, reflecting a 
more stable IBI measurement. Table 2 presents the results of the 
three time-domain HRV indices (SDNN, RMSSD, and pNN50) 
calculated for 13 participants using five different heartbeat signal 
extraction methods. Additionally, Table 2 provides the absolute 
error values for each HRV index calculated by each extraction 
method compared to those obtained from the reference ECG 
method exhibits the smallest absolute errors for all HRV metrics 
among the five extraction methods. The average SDNN error for 
this method is 4.11 ms, the average RMSSD error is 8.05 ms, and the 
average pNN50 error is 2.15%. In comparison, the corresponding 
average SDNN errors for the mmHRV, VMD, and CiSSA methods 
are 16.16 ms, 16.26 ms, and 22.27 ms respectively. The average 
RMSSD errors for these methods are 19.82 ms, 17.32 ms, and 
21.95 ms, while the average pNN50 errors are 10.95%, 11.1%, and 
11.18%. The BPF method resulted in the highest absolute errors 
for the HRV metrics, with an average SDNN error of 27.57 ms, an 
average RMSSD error of 26.28 ms, and an average pNN50 error
of 13.41%.

We further reviewed recent related studies and summarized 
their results in Table 3. As shown in the Table 3, our 
method continues to demonstrate strong performance in 
terms of mean absolute error (MAE) and mean relative 
error (MRE) of the IBI sequence, as well as the errors 
in time-domain HRV metrics, including SDNN and
RMSSD.
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FIGURE 12
Bland-Altman plots and box plots of IBI sequences obtained by five heartbeat signal extraction methods.

5 Discussion and future work

This paper presents a non-contact HRV analysis method using 
a 77 GHz mm-wave radar. The proposed approach employs an 
optimized Capon beamforming algorithm to accurately localize 
the heart position, and combines WPT techniques to achieve 
high SNR non-contact SCG measurements. In addition, a precise 
AO point detection algorithm is developed. The integration 
of these techniques enables high-accuracy HRV analysis. SCG 
signals contain rich information related to cardiac mechanical 
activity and show great potential for future applications in 
cardiac function assessment and the diagnosis of arrhythmias 
and other heart diseases. This work thus contributes to advancing 
non-contact cardiac health monitoring and holds promising 
clinical application prospects. This study focuses on localizing 
the heart position of a single supine subject using beamforming 
techniques, followed by SCG signal extraction via wavelet 
packet transform, AO point detection, and HRV analysis. 
Scenarios involving multiple subjects are not considered. In the 
proposed heart localization method based on the optimized 
Capon beamforming algorithm, the beam scanning direction 
is limited to the central axis of the body, which constrains its 
applicability to various sleep postures. Employing 4D millimeter-
wave radar with multidirectional beam scanning could potentially 
enable more accurate heart localization and yield SCG signals 

with higher quality. which will be considered as a future 
direction of this research. Moreover, the selected SCG template 
must have a sufficiently high SNR; otherwise, the localization 
performance may degrade, as the quality of all evaluated SCG 
signals is determined based on their DTW distance to the
template. 

6 Conclusion

This study proposes a high-precision HRV analysis method 
using FMCW radar. An optimized Capon beamforming algorithm 
is employed to accurately localize the heart position, effectively 
enhancing echo signals from the cardiac direction while suppressing 
clutter and interference from other directions. This provides 
a solid foundation for extracting high SNR’s SCG signals. By 
incorporating WPT, the method successfully separates the weak 
SCG signal from the stronger respiratory components. Additionally, 
a highly efficient and accurate AO point detection algorithm is 
developed to extract precise IBI sequences, further improving 
the accuracy of HRV analysis. We collected data from 13 
subjects, each person collected data for 10 min. Experiments were 
conducted on this dataset and compared against four existing 
heartbeat signal extraction methods. The results demonstrate 
that the proposed method achieves superior performance 
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TABLE 3  Comparison of HRV analysis metrics of published papers and HRV analysis metrics of the method proposed in this paper.

References Year Radar type Method HRV analysis 
(error)

Wang et al. (2021b) 2021 77GHz FMCW Heartbeat signal extractor 
for optimally decomposing 
the phase of channel 
information modulated by 
chest motion

MAE(IBI) = 28 ms, 
SDNNaverage = 6.45 ms
RMSSDaverage = 6.43 ms

Zhang et al. (2023) 2023 77GHz FMCW Template Matching MedianAE(IBI) = 12 ms

Chen et al. (2024) 2024 77GHz FMCW Deep Learning MAE(IBI) = 14 ms

Sameera et al. (2024) 2024 2.4GHz CW Wavelet-based signal 
processing enhanced with 
template matching

SDNNaverage = 10.71 ms, 
RMSSDaverage = 14.16 ms

Dong et al. (2024) 2024 24GHz CW Vectors analytic 
demodulation (VAD) 
method

NRMSEaverage(IBI) = 1.196%

Shih et al. (2025) 2024 2.4GHz PQSIL 1. Respiration removal 
and autocorrelation

2. One-cycle 
segmentation

3. PRT shaping

SDNNaverage = 4.91 ms, 
RMSSDaverage = 1.84 ms
MREaverage(IBI) = 1.97%

Vignoli et al. (2024) 2024 77GHz Cascade mm Wave 
radar

1. Beamforming to 
acquire multiple 
measurements from 
different points 
on the body

2. Physiology-inspired 
filter

SDNNaverage = 2.48 ms
RMSSDaverage = 3.45 ms

This work 2025 77GHz FMCW 1. Modified Capon 
beamforming

2. Wavelet 
packet transform

3. AO detection based 
on neighborhood 
search for 
envelope peaks

MAEaverage(IBI) = 5.0 ms, 
MREaverage(IBI) = 0.69%
SDNNaverage = 4.11 ms, 
RMSSDaverage = 8.08 ms

∗MedianAE represents median absolute error. MAE represents mean absolute error. NRMSE represents normalised root mean square error. PQSIL is an abbreviation for phase and 
quadrature self-injection-locked.

in terms of both HRV analysis accuracy and computational 
efficiency.
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Glossary

AO Aortic opening

AoA angle of arrival

ADC analog-to-digital converter

BPF Butterworth bandpass filter

CW Continuous Wave

CiSSA cyclostationary singular spectrum analysis

DOA direction-of-arrival

DTW dynamic time warping

DPD decoding peak detection

ECG electrocardiogram

EMD empirical mode decomposition

EEMD ensemble empirical mode decomposition

FFT fast-time Fourier transform

FEnv frequency envelope

FMCW frequency-modulated continuous wave

HRV Heart rate variability

HSMM hidden semi-Markov model

IBI inter-beat interval

IF intermediate frequency

LoA limits of agreement

MAE mean absolute error

MRE mean relative error

MIMO multiple-input multiple-output

MDACM modified differentiate and cross-multiply

MVDR minimum variance distortionless response

MUSIC multiple signal classification

ms milliseconds

mmHRV millimeter-wave radar HRV

PPG photoplethysmography

PCG phonocardiographic

pNN50 percentage of successive normal-to-normal intervals differing 

by more than 50 ms

rSCG remote SCG

rPPG remote PPG

RMSSD root mean square of successive differences

SCG seismocardiogram

SDNN normal-to-normal intervals

SNR signal-to-noise ratio

SQI signal quality index

TDM time-division multiplexing

UWB Ultra-Wideband

VMD variational mode decomposition

WPT wavelet packet transform

2T4R 2-transmit 4-receive
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