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Introduction: Heart rate variability (HRV) is a vital metric for assessing
cardiovascular health, psychological stress, and sleep quality. Non-contact HRV
monitoring offers advantages in safety, comfort, and hygiene, making it an
increasingly attractive solution.

Methods: In this study, we propose a high-precision, non-contact HRV analysis
method using a 77 GHz multiple-input multiple-output (MIMO) frequency-
modulated continuous wave (FMCW) radar system. The proposed method first
employs an optimized Capon beamforming algorithm to accurately localize the
heart and enhance intermediate frequency (IF) signals from the heart'’s direction.
A modified differentiate and cross-multiply (MDACM) algorithm is then used to
demodulate the phase sequence, yielding araw vital sign signal thatincludes both
respiratory and cardiac components. This signal is further processed using a six-
level wavelet packet transform (WPT), from which specific wavelet coefficients
(6th to 12th bands at level six) are selected to reconstruct the seismocardiogram
(SCQ) signal. To extract precise inter-beat interval (IBl) sequences, a robust
aortic valve opening (AO) point detection algorithm is developed. Time-domain
HRV indices—including the standard deviation of normal-to-normal intervals
(SDNN), the root mean square of successive differences (RMSSD), and the
percentage of successive normal-to-normal intervals differing by more than
50 milliseconds (ms) (pNN50)—are then computed from the IBI sequence. To
validate the approach, we developed a synchronized data acquisition system
combining radar and electrocardiogram (ECG) sensors and collected data from
13 participants—each person collected data for 10 min.

Results: Experimental results demonstrate the effectiveness of our method,
achieving average errors of 4.11 ms in SDNN, 8.05 ms in RMSSD, and 2.15% in
pPNN50 compared to ECG-derived ground truth.

Discussion: These results outperform existing non-contact HRV monitoring
techniques and highlight the method’s potential for practical, continuous, and
unobtrusive cardiovascular monitoring.

aortic opening (AO) detection, beamforming, frequency-modulated continuous-wave
(FMCW) radar, heart rate variability (HRV), interbeat interval (IBI), seismocardiogram
(SCG), wavelet packet transform (WPT)
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1 Introduction

Heart rate variability (HRV) refers to the variations in successive
heartbeat intervals under sinus rhythm. It serves as physiological
indicator reflecting the autonomic nervous adaptive capacity to
external stimuli and stress. HRV analysis was first introduced
by obstetricians Hon and Lee in 1965 (Hon and Lee, 1963), and
following successful clinical applications by researchers such as
Wolf (Wolf et al., 1978) and Kleiger (Chiou et al., 1997), it gradually
became an independent diagnostic criterion for cardiovascular
diseases. HRV is now widely utilized in the auxiliary diagnosis of
various cardiovascular conditions (Chen, 2002; Pecchia et al., 2011;
Li et al, 2019), as well as in the assessment of mental stress
(Chalmers et al., 2014) and sleep quality (Penzel et al., 2003;
Gil et al,, 2009; Hietakoste et al., 2024). HRV analysis methods
primarily include time-domain, frequency-domain, and nonlinear
methods. Time-domain methods quantitatively analyze the time-
domain characteristics of the RR interval series by using traditional
statistical approaches to derive HRV indicators. These methods
demonstrate strong resistance to interference, making them suitable
for long-term detection and analysis, leading to a comprehensive
evaluation of the autonomic nervous system’s modulation of heart
rate. HRV analysis requires the acquisition of inter-beat intervals
(IBI). Traditional HRV analysis typically collects electrocardiogram
(ECG) signals to obtain RR interval sequences or utilizes
photoplethysmography (PPG) signals to acquire peak-to-peak
interval sequences. However, ECG signal collection necessitates
attaching electrodes to the skin, which can reduce comfort and
lead to skin allergies. Similarly, using wearable devices to collect
phonocardiographic (PCG) signals can also pose challenges
related to comfort and limited battery life. Accelerometer-based
measurements of thoracic vibrations to extract heartbeat signals can
also be employed for HRV analysis (Lahdenoja et al., 2016); however,
the requirement to place the accelerometer device on the thorax can
still result in discomfort for the user. Non-contact measurement of
heart signals for HRV analysis offers a comfortable solution that
avoids skin contact, thereby eliminating the risk of skin allergies.
This approach is particularly advantageous for populations such as
burn patients, infants, and those affected by epidemics who may be
unsuitable for ECG electrodes or PPG sensors. Consequently, non-
contact measurement methods for HRV have garnered significant
attention from researchers, resulting in a wealth of study outcomes.
The related research primarily encompasses two strategies: remote
PPG (rPPG) signal extraction via camera measurements and
heartbeat signal extraction using radar technology. Camera-based
rPPG signal measurement is vulnerable to variations in lighting
conditions and body movements, which makes it challenging to
obtain high-quality rPPG signals. This further complicates the
precise extraction of IBI from rPPG signals, hindering accurate
HRV analysis. Additionally, cameras also raise privacy concerns
and are ineffective in low-light or nighttime conditions. In contrast,
radar sensor-based approaches employing radio frequency methods
for HRV analysis have attracted greater interest.

In the process of measuring vital signs using radar, low-power
modulated electromagnetic waves are emitted towards the human
body. By analyzing the phase changes between the transmitted
signal and the echo, the vibrations of the chest can be detected,
allowing for the acquisition of vital signs such as respiration and
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heartbeat. Building upon the radar-measured heartbeat signals,
further analysis of HRV can be conducted, offering advantages
such as safety, comfort, and the absence of privacy concerns.
The earliest application of radar in detecting vital signs dates
back to 1971 (Caro and Bloice, 1971), when Caro at Imperial
College London developed a radar-based non-contact respiratory
monitoring system for infants to detect apnea and provide early
warning. This study marks the first documented application of
radar in vital sign detection. Subsequently, interest in radar-
based vital sign measurement systems grew among researchers.
However, most studies have primarily focused on measuring
respiration rate and heart rate (Li et al., 2006; Li et al., 2008;
Guetal., 2010; He et al., 2017; Mercuri et al., 2018; Saeed et al., 2021;
Wang et al., 2024; Yang et al., 2024), which lack the capability
to extract high signal-to-noise ratio (SNR) heartbeat signals. This
limitation hinders the precise determination of heartbeat timings,
ultimately affecting the accuracy of HRV analysis. Thus, the accurate
measurement of heartbeat signals with precise heartbeat timings
using radar sensors is critical for accurate HRV analysis. Although
existing research on radar-based heart rate measurement has
achieved high accuracy, these studies typically calculate heart rate
values in the frequency domain, relying on averaged heart rate over
a time window, without capturing complete and precise heartbeat
signals. In fact, achieving accurate HRV analysis is considerably
more challenging than merely calculating heart rate.

Continuous wave (CW), ultra-wideband (UWB), and frequency
modulated continuous wave (FMCW) radar systems are commonly
utilized for non-contact measurement of vital signs. In recent
years, there has been increasing interest among researchers in
the use of FMCW radar operating at millimeter wavelengths
for vital sign detection. FMCW millimeter-wave radar modulates
continuous millimeter waves to measure chest vibrations based
on phase changes. This approach effectively mitigates non-target
signal interference by considering the distance and orientation of
the subject, and it is capable of detecting vital signs from multiple
individuals simultaneously (Wang et al., 2021a). Moreover, FMCW
millimeter-wave radar features a compact size, high integration,
and low transmit power, making it particularly suitable for
vital sign monitoring. The heartbeats and respiratory movements
induce subtle vibrations in the chest, which the radar detects by
demodulating the phase changes in I/Q signals. However, challenges
remain in employing radar for heart signal measurement and HRV
analysis:

1. The heartbeat signal is strongest at the anatomical location
of the heart. Accurately localizing the heart position using
radar can effectively suppress echo interference from other
directions and enhance the echo signal originating from the
heart, thereby enabling the acquisition of heartbeat signals
with the highest SNR. However, although existing studies
utilizing beamforming techniques can detect the presence
and general location of the human body, they face challenges
in precisely localizing the heart and extracting high-SNR
heartbeat signals.

2. The heartbeat-induced chest displacement is extremely
subtle compared to that caused by respiration. Specifically,
respiration typically induces a displacement of approximately
3-12 mm, whereas the displacement due to cardiac activity
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is only about 0.1-0.5 mm. As a result, the heartbeat signal is
easily masked by the respiratory signal and ambient noise.
This makes the separation of heartbeat signals from raw
vital sign data highly challenging and consequently impedes
accurate HRV analysis. Developing algorithms capable of
effectively separating heartbeat and respiratory components
remains an ongoing research challenge.

To address the challenges associated with radar-based heart
rate variability (HRV) analysis, this study proposes a novel HRV
analysis framework based on a 77-GHz FMCW radar system.
The proposed method employs an optimized beamforming
technique to accurately localize the cardiac region, effectively
suppressing echo signals from non-cardiac directions while
enhancing those originating from the heart. As a result, high
signal-to-noise ratio (SNR) remote seismocardiography (SCG)
signals can be extracted. Based on the recovered SCG signals,
the aortic valve opening (AO) points are detected, from which
the inter-beat interval (IBI) sequence is derived for subsequent
HRV analysis. The HRV metrics include the root mean square
of successive differences (RMSSD), the standard deviation of
normal-to-normal intervals (SDNN), and the percentage of
successive normal interval differences exceeding 50 ms (pNN50).
Experiments were conducted with synchronous radar and ECG
acquisitions, and the proposed method was compared with four
state-of-the-art heartbeat extraction approaches: a Butterworth
bandpass filter (BPF), which has been widely adopted in numerous
studies (Petrovi¢ et al., 2019; Xia et al, 2018), the mmHRV
method (Wang et al., 2021b), the variational mode decomposition
(VMD) method (Yu et al.,, 2023), and the cyclostationary singular
spectrum analysis (CiSSA) method (Hu et al., 2021). The absolute
errors of the HRV indices obtained by these five methods with
respect to the ECG-derived HRV metrics were calculated as
quantitative accuracy measures. In addition, the cardiac localization
performances of three classical beamforming methods and the
proposed optimized Capon beamforming method were visually
compared. The experimental results demonstrate that the proposed
optimized Capon beamforming technique can accurately localize
the cardiac direction, and that the radar-based HRV analysis results
obtained using the proposed framework show the closest agreement
with those derived from the synchronous ECG signals. The main
contributions of this work are summarized as follows:

1. We propose an optimized Capon beamforming approach for
localizing the heart position, in which a signal quality index
(SQI) for the SCG is introduced to replace the conventional
azimuth spectrum function used in Capon beamforming.
This index is employed to search for the azimuth angle
corresponding to the accurate heart location.

We applied the wavelet packet transform (WPT) (Coifman
and Wickerhauser, 1992) algorithm to extract the SCG signal
containing accurate heartbeat information from the vital signs.
We designed a robust AO detection algorithm that effectively
prevents the misidentification of other peaks as AO points,
facilitating precise measurement of the IBI.

We compared four of the most popular heartbeat signal
extraction methods and evaluated their performance
differences.
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The remaining sections of this paper are organized as follows:
Chapter 2 introduces related research work, Chapter 3 provides a
detailed description of the proposed methods, Chapter 4 presents
the experimental procedures and results, Chapter 5 offers a
discussion, and the final chapter concludes the study.

2 Related work

The non-contact measurement of heart rate and respiration
based on radar has been extensively studied, achieving high
accuracy in heart rate estimation. However, research on radar-
based HRV analysis is relatively limited. HRV analysis provides
a wealth of physiological indicators beyond heart rate, which are
crucial for understanding human health. Numerous studies have
attempted to utilize radar technology for non-contact HRV analysis.
In 2009, Massagram et al. (2009) and colleagues employed a
direct conversion quadrature radar system combined with linear
demodulation techniques to achieve high-precision HRV analysis
and the extraction of the respiratory sinus arrhythmia index
(RSA). Experimental results indicated that the standard deviation
differences in normal inter-beat interval indices derived from
Doppler radar and ECG references were all less than 9 ms. In
2014, Hu et al. (2014) utilized continuous wavelet filtering and
ensemble empirical mode decomposition (EEMD) algorithms to
recover and separate the original cardiopulmonary signals obtained
by radar, thereby facilitating precise beat interval extraction in the
time domain for HRV analysis. The results demonstrated that the
relative error in the extracted heartbeat intervals, compared to
ECG R-R peak intervals, ranged from 2.53% to 4.83%. In 2019,
Petrovi¢ et al. (2019) introduced a novel algorithm to estimate
HRV features using a 24 GHz continuous wave Doppler radar
structured in quadrature, processing the combined I/Q signals
through a filter bank of narrowband bandpass filters with varying
center frequencies. Based on rough heart rate estimates, one
bandpass filter output was selected as the effective output. The
zero crossings of the filtered output signals represented heartbeats
and were used to extract IBL. Ultimately, four HRV characteristics
were calculated from the IBIs, with the algorithm tested on real
recorded data from ten subjects. The average relative error in
the extracted IBIs compared to ECG measurements was between
1.02% and 2.07%. In 2020, Antolinos et al. (2020) employed a
122 GHz FMCW radar to monitor vital signs, utilizing the empirical
mode decomposition (EMD) algorithm to separate heartbeat and
respiration signals for HRV analysis based on the heartbeat signal.
That same year, Wang et al. (2021b) proposed a millimeter-wave
radar HRV analysis system (mmHRV), which included a heartbeat
signal extractor designed to optimize the phase decomposition of
chest motion modulation channel information. This enabled the
accurate estimation of heartbeat signal timing by identifying peak
positions, allowing further derivation of IBIs for HRV assessment.
Experimental results indicated that mmHRV accurately measured
HRV, with a median IBI estimation error of 28 ms (96.16%
accuracy). In 2021, Xia et al. (2021) introduced a decoding peak
detection (DPD) method to address the challenge of extracting
heartbeat peaks by decoding the most probable state sequences
from the single-band frequency envelope (FEnv) of radar signals,
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thereby facilitating HRV analysis. Additionally, a hidden semi-
Markov model (HSMM) was utilized to detect heartbeat timings
within bandpass-filtered radar data. Evaluation against ECG as the
gold standard demonstrated an average F1 score of 93.19% + 0.73%
across six subjects. The accuracy of the IBIs extracted from radar
was assessed with average relative errors of 0.51%-1.06% for HSMM
and 0.37%-1.15% for DPD. In 2023, Yu et al. (2023) proposed a
novel radar-based heartbeat detection method that extracts high-
fidelity pulse templates from smoothed PCG waveforms through
template matching to analyze HRV based on radar-derived heart
sound signals.

Existing radar-based HRV analysis methods often face
challenges in accurately localizing the heart and extracting high
SNR non-contact SCG signals, leading to substantial errors in
heartbeat localization. Achieving high-precision HRV analysis
with radar critically depends on accurate localization of the heart,
reliable measurement of high-SNR cardiac signals, and precise
detection of individual heartbeats. In this work, we propose an
HRYV analysis method based on a 77 GHz FMCW radar system that
not only enables precise beam steering toward the heart but also
effectively separates high-SNR non-contact SCG signals from raw
vital sign data. Furthermore, we develop a robust AO point detection
algorithm capable of accurately identifying the AO fiducial points,
thereby enabling the extraction of highly precise IBI sequences.
The proposed method achieves high accuracy in time-domain
HRV metrics.

3 Methods

High-precision radar-based HRV analysis relies heavily
on heartbeat signals with a high SNR. The proposed method
for remote SCG (rSCG) signal extraction is illustrated in the
flowchart shown in Figure 1. A commercially available Texas
Instruments AWR1642 radar sensor is employed and configured in
a 2-transmit 4-receive (2T4R) mode via time-division multiplexing
(TDM). The rSCG signal is extracted from the raw intermediate
frequency (IF) data sampled by the radars analog-to-digital
converter (ADC).

First, a fast-time Fourier transform (FFT) is performed on the IF
signals to obtain range-bin data for all eight antennas. To suppress
static background interference, the mean value of each range bin is
subtracted from itself. Then, for each column vector along the fast-
time dimension of the range-bin matrix, the index corresponding
to the maximum energy is identified, and the complex value at
that index is extracted to form a slow-time complex sequence
at the range gate corresponding to the human target. Next, an
optimized Capon beamforming algorithm is employed to search for
the optimal direction of the heartbeat signal, from which the optimal
spatial weight vector is derived. This weight vector is then used to
perform a weighted summation of the slow-time complex sequences
across the eight antennas at the selected range gate. Finally, a phase
demodulation technique termed modified differential arctangent
cross-multiplication (MDACM) (Xu et al.,, 2021) is applied to the
resulting complex sequence to extract its phase, which constitutes
the vital sign signal containing both respiration and heartbeat
components.
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Subsequently, a six-level wavelet packet decomposition (Coifman
and Wickerhauser, 1992) is applied to the vital sign signal, and the
wavelet coefficients within the frequency band corresponding to
SCG are selected and reconstructed to obtain the rSCG signal. We
further design a simple and efficient aortic valve opening (AO)
peak detection algorithm with high localization accuracy. Once
the continuous AO point sequence is obtained, IBIs can be readily
derived, enabling the calculation of time-domain HRV metrics.

3.1 FMCW millimeter wave radar signal
model

The relationship between the frequency of the Chirp signal
emitted by the FMCW millimeter-wave radar and time is expressed
by Equation 1:

fH)=f.+ %t 1)

Where f_ is the frequency at the initial moment when the chirp
signal is transmitted, T, is the duration of the chirp signal frequency
sweep, and B is the frequency modulation bandwidth. @, is initial
phase. Therefore, the FMCW millimeter wave radar transmission
signal can be expressed as Equation 2:

xp(t) = Ar cos<27rfct+7r$t2 +ﬂ1> (2)
c
Assuming the distance between the radar and the target
person is R, the radar emits a chirp signal that reaches the chest
of the person and then reflects back. The round trip time is
expressed by Equation 3:

Where c is the speed of light, then the expression of the reflected
echo signal is expressed by Equation 4:

xp(t) =xp(t—t;) = Ag cos<2ﬂfc(t— ty)+ ﬂ%(t— th)+ ﬁ2> (4)

The internal circuit of the radar mixes the transmitted
signal and the reflected echo signal to obtain an IF signal in
expression (Equation 5):

xpp(t) = xp(t) - xp(t) (5)

From the product and difference formula of trigonometric
functions, we can get:

Ar-A 4nf R 2
xpp(f) = — Rcos<4ﬂBRt+ Je +47128R 2+0

2 cT, c T

c

),ﬂ =0,-9,
(6)

Since 47BR? is much smaller than ¢*T,, and the chirp signal

period is very short, % is also close to zero. Therefore, the quadratic

2
4R 2 in expression (Equation 6) is almost equal to zero

term

AT,
and can be ignored. At the same time, let A;; = A+ Ag/2, then the
simplified IF signal expression is Equations 7, 8:

4 f R
47TBRt + —ﬂcfc + Q)) (7)

t)=A
xpp(t) 1Fcos< T

c
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FIGURE 1
Flowchart of the proposed method.
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xpp(t) = A cos(fipt + 9+ 0) (8)
2B
fIF = c-T ‘R (9)
4nf R
P = H{C = 4771 : (10)

Where f is the frequency of the IF signal in Equation 9. ¢, is the
phase of the IF signal. A is the wavelength of the electromagnetic
wave emitted by the millimeter wave radar. After the phase
expression (Equation 9) is differentiated, the phase change of the IF
signal with respect (Equation 10) to the distance is expressed as:

4
Agyp= 5 -AR (11)

Where Ag,. is the phase change of the IF signal, and AR is the change
in chest vibration displacement. From Equation 11, it is evident that
when the initial frequency of the millimeter-wave radar is 77 GHz,
the wavelength A ~ 4 mm, resulting in a phase shift of 0.314 radians
for a chest displacement of 0.1 mm induced by the heartbeat. Thus,
we can capture the minute chest vibrations caused by heartbeat
and respiration through significant phase variations. This principle
forms the foundation for using FMCW millimeter-wave radar to
measure human vital sign signals.

3.2 Cardiac azimuth search and vital signs
extraction

When the radar transmits chirp signals toward the human
body from a certain angle, the reflected waves from the thoracic
cavity may scatter in multiple directions, and only a portion of
these echoes are received by the radar antennas. Beamforming
can effectively enhance the echo signals from the desired direction
while suppressing clutter and interference from other directions.
Beamforming relies on a multiple-input multiple-output (MIMO)
antenna array. The AWR1642 mm-wave radar used in this study can
be configured as a 2-transmit, 4-receive (2T4R) antenna array, which
is virtually extended to a 1-transmit, 8-receive (1T8R) linear array
using TDM. To enhance the echo signal from the thoracic cavity
and reduce the output noise and interference power, we adopt the
Capon beamforming method (Capon, 1969). Capon beamforming,
also known as minimum variance distortionless response (MVDR)
beamforming, can effectively suppress clutter signals from non-
target directions while enhancing signals from the desired direction.
It provides superior angular resolution performance compared to
conventional beamforming methods (Marino and Chau, 2005),
and although its resolution is lower than that of the multiple
signal classification (MUSIC) algorithm (Schmidt, 1986), Capon
beamforming offers significantly lower computational complexity.
In the 1T8R uniformly spaced linear antenna array, the IF signal
received at each antenna element experiences a time delay relative
to the adjacent previous antenna. Let the time delay be denoted as T,
d be the inter-element spacing, and 6 be the angle of arrival (AoA)
of the incoming signal, then t is expressed by Equation 12:

dsin(6)
T=
c

(12)
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The slow-time complex sequence corresponding to the range bin
of the human target can be reasonably modeled as a narrowband
signal. Due to the different propagation paths between the target and
individual receiving antennas, the signal phase exhibits variations
across antenna elements within the inter-antenna propagation delay
range. Let the IF signal at the target range bin have a frequency
of f,, an amplitude of A;, and a phase of ¢,. At a given time
instant f, assuming the presence of zero-mean Gaussian noise
n,,(t), and denoting the signal amplitude received by the m-th
antenna as A, (m), the signal received by the m-th antenna can be
expressed as Equation 13:

X,,(t) = Ay (m) - cos (27f, (t —m7) + ¢,) + 1n,,,(1)
=Ay(m)- cos(2nf,t+¢,) - cos(=27mf, - mt) +n,,(t)m
=0,1,2,3,4,5,6,7. (13)

Lets(t) = A, (m) - cos (2mfyt + ), ,,(0) = cos(-27f, - mw)

a(0) = [ag(8),a,(0),ay(0),...........a;()]",
n(t) = [ng(0, 1, (), 1y (s o oo oo sy (D]

The target range gate signals (as snapshot signals) from the eight
virtual antennas are arranged into a vector form as Equation 14:

X(i) = s(i)a(0) + n(i),i=0,1,2,3,....N (14)

Where N is the number of snapshots. The calculation formula of
Capon beamforming weight vector is as Equation 15:

RL(0)a(6)
g)= XX
O a(6)R;a(6) =

The spatial spectrum function is expressed by Equation 16:

1

P(O) = ——
©) aH(G)R;&a(G)

(16)
w(f) is the optimal weight vector, Ryyx is the snapshot
signals covariance matrix, and R;& represents the inverse
matrix of the snapshot signal covariance matrix. There is
expressed by Equation 17:

Z|=

N
Ry = < [X()XM()] (17)
i=1

The weighted sum of the target range gate slow-time
complex signals of the eight virtual antennas is performed, and
the expression of the enhanced slow-time complex signal is
obtained as Equation 18:

Y =whX (18)

As shown in Formula 18, the slow-time complex sequence
signals of the target range gates from all eight antenna elements
can be weighted summed to enhance the signal from the direction
of the human body while suppressing clutter signals from other
directions. However, the direction corresponding to the peak of
the spatial spectrum function in Equation 16 does not necessarily
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coincide with the direction of the highest SNR of the heartbeat
signal. In some cases, the spectral peak may occur in the direction
of clutter or other objects. Furthermore, even if the spectral peak
appears in the direction of the human body, it does not guarantee
that this is the direction with the highest SNR for the heartbeat
signal. For most individuals, whose body height range is about
1.55-1.9m, only the region around the heart yields heartbeat
signals with the highest SNR. Additionally, in some individuals
who exhibit abdominal breathing, significant motion occurs in the
abdominal region. Conventional beamforming methods combined
with respiration detection (Wang et al, 2021b) may misidentify
the abdominal region as the target direction, which still does not
correspond to the direction of the strongest heartbeat signal. To
address these limitations, we propose a new azimuth search method
to replace the traditional spatial spectrum function approach,
aiming to identify the direction with the highest SNR of the SCG
signal. At the beginning of the measurement, we collect the first
20 s of data and process them using the procedure outlined in
Figure 1 to extract the SCG signal. To assess the quality of SCG
signals, we propose a method based on dynamic time warping
(DTW) (Sakoe and Chiba, 1978). Specifically, a 20 s segment with
high-quality SCG signal, selected from all radar-measured SCG
recordings, is designated as the template signal. The DTW distance
is then calculated between the SCG signal under evaluation and the
template signal. The beamforming angle is selected by minimizing
the DTW distance between the extracted SCG signal and the
reference template. A smaller DTW distance indicates a higher
similarity between the two signals, thereby reflecting better signal
quality. Conversely, a larger DTW distance suggests poorer signal
quality. Let the selected template signal be denoted as SCGyepypiaes
and the SCG signal to be evaluated as SCG. Prior to DTW
computation, both SCG and SCG,,,pjare
represents calculating the variance of the SCG sequence as shown
in (Equations 19, 20):

are standardized. Here, o

SCG-SCG

SCG= 19
a(SCG) (19)
SCGtemplate - SCGtemplate
SCGtemplate = (20)
G(SCGtemplate)
. (1)

SQI =
DTW(SCG> SCGtemplute)

To identify the direction with the highest SNR of the SCG
signal, we perform a directional search over the angular range of
[-60°,60°] with a step size of 1°. For each angle, a corresponding
beamforming weight vector w is computed, and based on this, a
SQI value is calculated, as shown in Equation 21. This process yields
a total of 121 angle-SQI pairs. Among all scanned directions, the
angle 0,,, corresponding to the maximum SQI value is selected,
which we consider to be the direction with the highest SCG
signal SNR. Upon determining the cardiac orientation, the SCG
template is no longer utilized, and the search for the optimal
orientation via improved Capon beamforming is terminated. The
resulting beamforming azimuth is subsequently fixed for all further
processing. After determining 6, the optimal beamforming weight
vector W, is calculated according to Formula 15, and the slow-
time complex signal in the direction of the heart is obtained using
Formula 18. This slow time series is then demodulated using a

Frontiers in Physiology

07

10.3389/fphys.2025.1733573

method called MDACM (Xu et al., 2021) to produce a phase series
containing respiratory and cardiac motion components, i.e., the
original vital sign signal.

3.3 SCG signal extraction

The original vital sign signal, primarily contains the heartbeat
signal, respiratory signal, and other noise. Due to the greater
displacement of the respiratory signal compared to that of the
heartbeat signal, the heartbeat signal is often overshadowed by
the respiratory signal. Additionally, the third harmonic frequency
band of the respiratory signal overlaps with the frequency band
of the heartbeat signal, complicating the separation of these
two signals. Designing an algorithm to effectively separate the
heartbeat signal from the respiratory signal remains a challenge.
Commonly used methods, such as the BPE, typically set parameters
of 0.1 Hz-0.5 Hz for the respiratory signal and 0.7 Hz-3 Hz for
the heartbeat signal. However, these methods yield only moderate
results and fail to address the issue of frequency band overlap
caused by the respiratory signal’s third harmonic. Standard binary
wavelet analysis decomposes signals layer by layer along the low-
frequency direction, which limits its ability to finely segment the
frequency bands, particularly in the high-frequency region. The
heartbeat signal contains both high-frequency and low-frequency
components, and binary wavelet analysis is insufficient for capturing
the entire frequency spectrum of the heartbeat signal. Wavelet
packet analysis offers a more detailed and nuanced approach to
signal analysis. Unlike standard binary wavelet analysis, which
analyzes low and high-frequency components separately, wavelet
packet decomposition simultaneously considers both, providing a
more accurate local analysis. This method allows for finer division
of the time-frequency plane and offers superior resolution for the
high-frequency components of the signal. Moreover, wavelet packet
analysis introduces the concept of optimal basis selection, allowing
for adaptive selection of the most suitable basis functions that
align with the characteristics of the signal, thereby significantly
enhancing the effectiveness of the signal analysis. In this study, we
employ WPT using the “db45” wavelet to break down the original
vital sign signal into a series of finely segmented wavelet packet
coefficients within specific frequency ranges. The “db45"”wavelet
has a 45th-order vanishing moment. A higher vanishing moment
means a higher concentration in the frequency domain, which
can better capture the high-frequency details of the signal by
selecting the wavelet packet coefficients corresponding to the
SCG signal frequency range, we reconstruct the SCG signal. The
original vital sign signal, sampled at a rate of f, =200 Hz over
a duration of 50 s, undergoes six levels of decomposition using
the WPT. The first 16 wavelet coefficients from the sixth level are
illustrated in Figure 2. According to the WPT theory, the frequency
range of the i-th wavelet coefficient C(i) of the sixth layer is
expressed by Equation 22

512 f2
PP

CH~|G-1)- (22)
Where f, =200 Hz is the sampling rate of the original vital
signs signal. Further analysis of the wavelet packet coefficient

energy percentage was conducted, with results illustrated in
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FIGURE 2
The wavelet coefficients (only the first 16 wavelet coefficients are plotted).

Figure 3. The energy distribution shows that the first five wavelet

packet coefficients account for a significantly higher energy Percentage of Energy of Wavelet Packet Coefficients
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Equation 22, the frequency range for the first wavelet packet ®|
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significantly lower than that of respiratory components, motion

artifacts, and their harmonics. Literature (Taebi et al., 2019) reports FIGURE 3

that the primary frequency range of the SCG signal is below Energy percentage histogram of wavelet packet coefficients.

25 Hz. Additionally, literature Equation 22, the frequency range
for these coefficients is 7.8125 Hz-18.750 Hz, which closely aligns
with the SCG frequency range described in (Zhang et al., 2023).
Therefore, the selected wavelet packet coefficients effectively L : : SCG (Radar)

reconstruct the SCG signal. The time-domain waveform and the —AO points

ECG I
synchronized ECG are shown in Figure 4. Figure 5 shows the Rps:k";’"as
SCG signal extracted from the radar signal and the SCG signal AL /
measured from the synchronously acquired cardiac acceleration 05- ’/‘ 1

§
signal. As shown in Figure 5, the SCG signal measured by g
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FIGURE 4

The SCG is generated by micro-vibrations of the thoracic cavity SCG signal extracted by WPT and ECG signal collected synchronously.

caused by cardiac contractions. It consists of several peaks and
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SCG signals extracted from radar signals and SCG signals from
synchronized acceleration measurements.
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SCG waveform and important key points.

troughs that encompass physiological information related to the
heart, including the following features: Atrial Systole (AS), Mitral
Closure (MC), Isovolumetric Contraction (IM), Aortic Opening
(AO), Isovolumetric Relaxation (IC), Rapid Ejection (RE), Aortic
Closure (AC), Mitral Opening (MO), and Rapid Filling (RF), as
illustrated in Figure 6. Among these, the AO point is characterized
by its distinct features, making it easier to detect. We have
designed a method for accurately locating the AO point, which
is both simple and efficient. The detailed steps of the algorithm
are outlined in Algorithm 1. The algorithm was developed in the
MATLAB 2021b environment. Initially, the Hilbert Transform (HT)
is employed to calculate the upper and lower envelope signals
of the SCG. The MATLAB function findpeaks is then utilized to
detect the peaks of the upper envelope and the troughs of lower
envelope, with a minimum spacing parameter set to delta = 0.6 * f,.
To address potential noise factors that may lead to false cardiac
cycle segments in the SCG signal, we apply a criterion based on
the absolute difference between the x-coordinates of the peaks
of the upper envelope and the troughs of the lower envelope. If
this absolute difference exceeds deltal = 0.15 # f, we discard the
detection of the AO point within that cardiac cycle segment. We
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Input: f,SCG[k],k =1,2,3,.L,L = 1ength(SCG)

Set deltal=0.15%f,, delta2=0.1x fg.

Calculate the upper and lower envelope signals of
SCG[k]by Hilbert Transform.

yupperl[k],ylower[k] = Envelope(SCG[k])

Finding the peak values of the yupper[k]land the
valley values of ylower[k]

[y1,x1] =Findpeaks(yupper[k])

[v2,x2] = Findpeaks(-ylower[K])

y2=-y2,N=1ength(x1)
fori=1:N do
if|x1(i)-x2(1)| <deltal
a=x2(i)-delta2

b =x2(i)+delta2

SCG e, = SCG[a : b]

Xpin1 =argmin(SCG. ey, )

then

X21(1) = a+Xyipn1
SCGtemp[Xmim 1= maX(SCGtemp)
Xning =argmin(SCG.ey, )
Xx22(1) =a+Xyipo

ifx21(1)<x22(i) then
SCBemp = SCG[X21(1) : x22(1)]
else

SCBomp = SCG[x22(1) :x21(1)]
endif

Xpax = argmax(SCGey, )

Xao(1)= Min{x21(1),x22(1)} + Xpax
endif

endfor

Output:xyy

Algorithm 1. AO Detection Algorithmic Framework.

observed that the IM and IC points are distinctly characterized as
the lowest and second-lowest points within each valid cardiac cycle
segment. For each qualified trough of the lower envelope, we first
identify the lowest and second-lowest points, which correspond to
the IM and IC points, respectively. The AO point is always located
within the interval between the IM and IC points. Therefore, we
continue to search for the maximum value within the x-coordinate
range defined by the IM and IC points, which represents the AO
point. This method effectively prevents the erroneous detection of
the MC and RE points as AO points, as well as mitigating the risk
of falsely identifying peaks from noisy cardiac cycle segments as
AO points.

3.5 HRV time-domain analysis

HRV analysis metrics can be derived from the IBI sequence.
In this study, we utilize the three most commonly used time-
domain metrics for HRV analysis: SDNN, RMSSD, and pNN50.
SDNN represents the standard deviation of all normal sinus
beats IBI. A higher SDNN indicates greater HRYV, reflecting
overall autonomic nervous system activity. RMSSD is the square
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root of the mean squared differences of successive IBI and
is primarily used to reflect vagal (parasympathetic) activity;
higher RMSSD values indicate increased vagal activity. pNN50
denotes the percentage of successive IBI differences greater
than 50 ms, which, similar to RMSSD, reflects vagal activity.
A higher pNN50 percentage suggests a stronger regulatory
influence from the vagal nerve. The time-domain statistical
expressions for SDNN, RMSSD, and pNN50 in HRV analysis are as
Equations 23-25:

N
1 N =
SDNN = \j 5 ; (1B1()) - IBI)’ (23)
N
1 . .
RMSSD = \[~— ; (IBI(i) - IBI(i — 1)) (24)

N . .
Y {(IBI(i) ~ IBI(i - 1)) > 50ms}
N

PNN50 = (25)
Where IBI represents the mean of the IBI sequence, and N represents
the length of the IBI sequence.

4 Experiments and results
4.1 Experiments

We utilized the Texas Instruments AWR1642Boost commercial
millimeter-wave radar development kit and the DCA1000EVM data
acquisition board to collect reflected echo data from the human
thorax. The raw IF data from the radar was transmitted to a
laptop via Ethernet. Additionally, we employed the Shimmer ECG
sensor to collect ECG signals synchronously as a gold standard
reference. A synchronization data acquisition program for the
AWRI1642 mm-wave radar sensor and Shimmer ECG sensor was
developed using MATLAB R2021b. AWRI1642 millimeter wave
radar antenna uses TDM method to set up two transmit four
receive mode, with the Chirp parameters specified in Table I.
A total of 13 participants were involved in the experiment, each
person collected data for 10 min. The ages of the participants
ranged from 22 to 34 years, and they were dressed in regular
t-shirts while lying on a bed. The radar sensor was positioned
0.6 m above the participants, with ECG electrodes attached. Upon
starting the MATLAB program and setting the acquisition time,
data could be collected for the predetermined duration. The
configurations of the radar sensor, Shimmer ECG sensor, and the
experimental setup are illustrated in Figure 7. All data processing
and algorithm development were conducted within the MATLAB
R2021b environment. The primary computer hardware included an
Intel i5-10400 CPU, 16 GB of RAM, a 500 GB solid-state drive, and
a 1 TB mechanical hard drive.

4.2 Results

4.2.1 Azimuth estimation for cardiac
beamforming

In the first experimental scenario, the radar was positioned
0.6 m above the subject’s chest. Figure 8 illustrates the direction-
of-arrival (DoA) estimation results obtained using the proposed
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TABLE 1 Chirp parameters of AWR1642 radar.

Parameters | Values ’ Parameters Values
Start Frequency 77 GHz TxStartTime 1us
IdleTime 8 us AdcSampleRate 5,000 ksps
AdcStartTime 6us RX Gain 30 dB
RampEndTime 60 us FramePeriodicity 5ms
FrequencySlope 60MHz/us Number of Chirp Loops 1

FIGURE 7
Radar sensor, Shimmer ECG sensor and experimental scene.
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FIGURE 8
Azimuth angles searched by different beamforming methods (Radar is
above the chest).

optimized Capon beamforming algorithm, compared with three
classical beamforming methods: MUSIC, Capon, and Bartlett.
Figure 9 presents the 20 s time-domain waveforms of SCG signals
measured along the estimated directions using each method. The
proposed Modified-Capon method estimated the heart direction at
—10°, which yielded the highest signal quality SCG waveform among
all tested directions. In contrast, MUSIC and Bartlett both estimated
the heart direction at 7°, while the Capon method estimated it at
—6°. As shown in Figure 8, SCG signals obtained from 7° and —6°
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exhibit significantly lower quality compared to those measured at
—-10°.

In the second experimental scenario, the radar was placed 0.6 m
above the subject’s head. Figure 10 shows the DoA estimation
results for the same four beamforming methods. Figure 11 illustrates
the corresponding 20 s time-domain SCG signals obtained from
the estimated directions. The Modified-Capon method estimated
the heart direction at 24°, which again produced the highest
quality SCG signal. In contrast, MUSIC and Bartlett estimated
the heart direction at —10° and Capon estimated it at —3°.
As shown in Figure 11, SCG signals from —10° and -3° directions
exhibited inferior quality compared to those from 24°. These two
experiments were conducted with the radar placed at different
locations above the body, resulting in the heart appearing at
varying angles relative to the radar antenna array. In both
scenarios, the proposed Modified-Capon algorithm consistently
identified the optimal heart direction and yielded SCG signals
with the highest SNR. In contrast, the classical MUSIC, Capon,
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and Bartlett methods failed to accurately localize the heart.
Notably, in the second experiment with the radar positioned
above the head, all three classical methods estimated directions
toward the head region instead of the heart, leading to poor
SCG signal quality. These findings indicate that although classical
beamforming methods perform well for large rigid targets, they are
not well-suited for vital sign monitoring applications. The proposed
Modified-Capon algorithm, tailored specifically for non-contact
cardiopulmonary sensing, demonstrates superior performance in
accurately estimating the heart direction and extracting high-SNR
SCG signals.

4.2.2 HRV analysis results

Time-domain HRV analysis relies on calculating the IBI
sequence on a beat-by-beat basis. Accurate IBI extraction is
essential for precise calculation of HRV time-domain metrics. In
this study, we applied the proposed heartbeat signal extraction
method based on WPT and the AO point detection method to
the collected data, calculating the IBI sequence and HRV time-
domain metrics. To demonstrate the superiority of the proposed
method, we conducted four comparative experiments, applying
four widely used heartbeat signal extraction methods from recent
radar-based vital sign measurement studies to the collected data.
We then calculated the IBI sequence and HRV time-domain
metrics using each method. These heartbeat signal extraction

Frontiers in Physiology

12

10.3389/fphys.2025.1733573

methods included the BPF method, mmHRV method, VMD
method, and CiSSA method. All methods were evaluated against
the ECG signal collected simultaneously as the ground truth
reference. The ECG signal used the classic Pantokin algorithm
(Pan and Tompkins, 1985) to detect R-peaks, experimental results
are presented in Figure 12 and Table 2. Figure 12 displays Bland-
Altman plots and boxplots of the IBI sequences obtained by the
five heartbeat extraction methods. Table 2 presents the which
were then used to calculate the IBI sequence and HRV time-
domain metrics. The comparative true HRV time-domain metrics
calculated from the synchronized ECG signal and the HRV time-
domain metrics calculated from the IBI sequences obtained using
each of the five heartbeat signal extraction methods. Results in
Figure 12 indicate that the proposed method, which combines WPT-
based SCG signal extraction with AO point detection, exhibits the
best agreement with the reference IBI sequence from the ECG
signal. The proposed method achieves the smallest 95% limits of
agreement (LoA) interval, with an upper and lower LoA distance
of 0.04s. The mmHRV and VMD methods show slightly lower
agreement with the ECG signal, each with a 95% LoA interval
of 0.08s. The CiSSA and BPF methods demonstrate somewhat
lower consistency, with 95% LoA intervals of 0.19s and 0.21s,
respectively. The final box plot in Figure 12 also demonstrates
that the IBI sequence measured by the proposed method has the
lowest root mean square error (RMSE) with the IBI sequence
of ECG, along with the smallest interquartile range. This result
indicates that the RMSE values of the IBI sequences measured
by the proposed method compared to the ECG IBI sequence
show minimal variation across different participants, reflecting a
more stable IBI measurement. Table 2 presents the results of the
three time-domain HRV indices (SDNN, RMSSD, and pNN50)
calculated for 13 participants using five different heartbeat signal
extraction methods. Additionally, Table 2 provides the absolute
error values for each HRV index calculated by each extraction
method compared to those obtained from the reference ECG
method exhibits the smallest absolute errors for all HRV metrics
among the five extraction methods. The average SDNN error for
this method is 4.11 ms, the average RMSSD error is 8.05 ms, and the
average pNN50 error is 2.15%. In comparison, the corresponding
average SDNN errors for the mmHRV, VMD, and CiSSA methods
are 16.16 ms, 16.26 ms, and 22.27 ms respectively. The average
RMSSD errors for these methods are 19.82 ms, 17.32 ms, and
21.95 ms, while the average pNN50 errors are 10.95%, 11.1%, and
11.18%. The BPF method resulted in the highest absolute errors
for the HRV metrics, with an average SDNN error of 27.57 ms, an
average RMSSD error of 26.28 ms, and an average pNN50 error
of 13.41%.

We further reviewed recent related studies and summarized
in Table 3. As shown in the Table 3,
method continues strong performance
terms of mean absolute error (MAE) and mean relative

their results our

to demonstrate in
error (MRE) of the IBI sequence, as well as the errors

in time-domain HRV metrics, including SDNN and

RMSSD.
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FIGURE 12
Bland-Altman plots and box plots of IBl sequences obtained by five heartbeat signal extraction methods.

Discussion and future work

This paper presents a non-contact HRV analysis method using
a 77 GHz mm-wave radar. The proposed approach employs an
optimized Capon beamforming algorithm to accurately localize
the heart position, and combines WPT techniques to achieve
high SNR non-contact SCG measurements. In addition, a precise
AO point detection algorithm is developed. The integration
of these techniques enables high-accuracy HRV analysis. SCG
signals contain rich information related to cardiac mechanical
activity and show great potential for future applications in
cardiac function assessment and the diagnosis of arrhythmias
and other heart diseases. This work thus contributes to advancing
non-contact cardiac health monitoring and holds promising
clinical application prospects. This study focuses on localizing
the heart position of a single supine subject using beamforming
techniques, followed by SCG signal extraction via wavelet
packet transform, AO point detection, and HRV analysis.
Scenarios involving multiple subjects are not considered. In the
proposed heart localization method based on the optimized
Capon beamforming algorithm, the beam scanning direction
is limited to the central axis of the body, which constrains its
applicability to various sleep postures. Employing 4D millimeter-
wave radar with multidirectional beam scanning could potentially
enable more accurate heart localization and yield SCG signals
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with higher quality. which will be considered as a future
direction of this research. Moreover, the selected SCG template
must have a sufficiently high SNR; otherwise, the localization
performance may degrade, as the quality of all evaluated SCG
signals is determined based on their DTW distance to the
template.

6 Conclusion

This study proposes a high-precision HRV analysis method
using FMCW radar. An optimized Capon beamforming algorithm
is employed to accurately localize the heart position, effectively
enhancing echo signals from the cardiac direction while suppressing
clutter and interference from other directions. This provides
a solid foundation for extracting high SNR’s SCG signals. By
incorporating WPT, the method successfully separates the weak
SCG signal from the stronger respiratory components. Additionally,
a highly efficient and accurate AO point detection algorithm is
developed to extract precise IBI sequences, further improving
the accuracy of HRV analysis. We collected data from 13
subjects, each person collected data for 10 min. Experiments were
conducted on this dataset and compared against four existing
heartbeat signal extraction methods. The results demonstrate
that the proposed method achieves superior performance
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TABLE 3 Comparison of HRV analysis metrics of published papers and HRV analysis metrics of the method proposed in this paper.

References Radar type Method HRV analysis
(error)
Wang et al. (2021b) 2021 77GHz FMCW Heartbeat signal extractor MAE(IBI) = 28 ms,
for optimally decomposing SDNN_orqq, = 6.45 ms
the phase of channel RMSSD 4yerqg = 6.43 ms
information modulated by
chest motion
Zhang et al. (2023) 2023 77GHz FMCW Template Matching Median AE(IBI) = 12 ms
Chen et al. (2024) 2024 77GHz FMCW Deep Learning MAE(IBI) = 14 ms
Sameera et al. (2024) 2024 2.4GHz CW Wavelet-based signal SDNN 4yrgqe = 10.71 ms,
processing enhanced with RMSSD 4yp1qg = 14.16 ms
template matching
Dong et al. (2024) 2024 24GHz CW Vectors analytic NRMSEuvng(IBI) =1.196%
demodulation (VAD)
method
Shih et al. (2025) 2024 2.4GHz PQSIL 1. Respiration removal SDNNavmge =491 ms,
and autocorrelation RMSSD,erqge = 1.84 ms
2. One-cycle MRE ;10 (IBI) = 1.97%
segmentation
3. PRT shaping
Vignoli et al. (2024) 2024 77GHz Cascade mm Wave 1. Beamforming to SDNN 4yrgq, = 2-48 ms
radar acquire multiple RMSSD g1 = 345 ms
measurements from
different points
on the body
2. Physiology-inspired
filter
This work 2025 77GHz FMCW 1. Modified Capon MAEavemge(IBI) =5.0ms,
beamforming MRE ;140 (IBI) = 0.69%
2. Wavelet SDNN_yrq, = 4.11 ms,
packet transform RMSSD e1qge = 8.08 ms
3. AO detection based
on neighborhood
search for
envelope peaks

"Median AE represents median absolute error. MAE represents mean absolute error. NRMSE represents normalised root mean square error. PQSIL is an abbreviation for phase and

quadrature self-injection-locked.

in terms of both HRV analysis accuracy and computational
efficiency.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by the Institutional
Ethics Committee (IEC) of the Affiliated Zhongda Hospital,

Frontiers in Physiology

Southeast University (Ethical Approval Code: 2021ZDSYLL206-
P01). The studies were conducted in accordance with the local
legislation and institutional requirements. The participants provided
their written informed consent to participate in this study.

Author contributions

GY: Data curation, Methodology,
Conceptualization, Software, Writing - original draft. CY: Writing -

Investigation,

review and editing, Formal Analysis, Supervision. HL: Writing -
review and editing. CW: Writing — review and editing, Resources.
XZ: Writing - review and editing, Resources, Funding acquisition.
JL: Resources, Supervision, Writing — review and editing. CL:

frontiersin.org


https://doi.org/10.3389/fphys.2025.1733573
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Yu et al.

Funding acquisition, Resources, Writing — review and editing,

Supervision, Formal Analysis.

Funding

The author(s) declared that financial support was received for
this work and/or its publication. This research was funded by
the National Key Research and Development Program of China
(2023YFC3603600) and the National Natural Science Foundation
of China (62471132). This research was supported in part by the
Joint Fund of the Zhejiang Provincial Natural Science Foundation
of China (LQ23F010006), and "Kunpeng Action" project of
Zhejiang Province.

Conflict of interest

The author(s) declared that this work was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

Antolinos, E., Garcia-Rial, F, Herndndez, C., Montesano, D., Godino-Llorente, J.
I, and Grajal, J. (2020). Cardiopulmonary activity monitoring using millimeter wave
radars. Remote Sens. 12 (14), 2265. doi:10.3390/rs12142265

Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proc.
IEEE 57 (8), 1408-1418. d0i:10.1109/proc.1969.7278

Caro, C. G,, and Bloice, J. A. (1971). Contactless apnoea detector based on radar.
Lancet 298 (7731), 959-961. doi:10.1016/s0140-6736(71)90274-1

Chalmers, J. A., Quintana, D. S., Abbott, M. J. A., and Kemp, A. H. (2014). Anxiety
disorders are associated with reduced heart rate variability: a meta-analysis. Front.
Psychiatry 5, 80. doi:10.3389/fpsyt.2014.00080

Chen, S. W. (2002). A wavelet-based heart rate variability analysis for the study
of nonsustained ventricular tachycardia. IEEE Trans. Biomed. Eng. 49 (7), 736-742.
doi:10.1109/TBME.2002.1010859

Chen, J,, Zhang, D., Wu, Z., Zhou, E, Sun, Q,, and Chen, Y. (2024). Contactless
electrocardiogram monitoring with millimeter wave radar. IEEE Trans. Mob. Comput.
23 (1), 270-285. doi:10.1109/tmc.2022.3214721

Chiou, C. W, Eble, J. N, and Zipes, D. P. (1997). Efferent vagal innervation of the
canine atria and sinus and atrioventricular nodes - the third fat pad. Circulation 95 (11),
2573-2584. d0i:10.1161/01.¢ir.95.11.2573

Coifman, R. R., and Wickerhauser, M. V. (1992). Entropy-based algorithms for best
basis selection. IEEE Trans. Inf. Theory 38 (2), 713-718. d0i:10.1109/18.119732

Dong, S., Li, Y., Gu, C., and Mao, J. (2024). Robust cardiac timing detection technique
with vectors analytic demodulation in doppler cardiogram sensing. IEEE Trans. Microw.
Theory Tech. 72 (8), 4866-4877. doi:10.1109/tmtt.2024.3360469

Gil, E., Mendez, M., Vergara, J. M., Cerutti, S., Bianchi, A. M., and Laguna, P.
(2009). Discrimination of sleep-apnea-related decreases in the amplitude fluctuations
of ppg signal in children by HRV analysis. IEEE Trans. Biomed. Eng. 56 (4), 1005-1014.
doi:10.1109/TBME.2008.2009340

Gu,C.Z,Li,C.Z,Lin,].S., Long, J., Huangfu, J. T., and Ran, L. X. (2010). Instrument-
based noncontact doppler radar vital sign detection system using heterodyne digital
quadrature demodulation architecture. IEEE Trans. Instrum. Meas. 59 (6), 1580-1588.
doi:10.1109/tim.2009.2028208

He, M., Nian, Y. J., and Gong, Y. S. (2017). Novel signal processing method for
vital sign monitoring using FMCW radar. Biomed. Signal Process. Control 33, 335-345.
doi:10.1016/j.bspc.2016.12.008

Hietakoste, S., Armanac-Julian, P., Karhu, T, Bailon, R., Sillanmaki, S., Toyras,
J., et al. (2024). Acute cardiorespiratory coupling impairment in worsening sleep
apnea-related intermittent hypoxemia. IEEE Trans. Biomed. Eng. 71 (1), 326-333.
doi:10.1109/TBME.2023.3300079

Hon, E. H., and Lee, S. T. (1963). Electronic evaluations of the fetal heart rate patterns
preceding fetal death. Am. J. Obstetrics Gynecol. 87 (6), 814-817.

Frontiers in Physiology

17

10.3389/fphys.2025.1733573

Generative Al statement

The author(s) declared that generative AI was used in the
creation of this manuscript. For thesis translation and proofreading.

Any alternative text (alt text) provided alongside figures
in this article has been generated by Frontiers with the
support of artificial intelligence and reasonable efforts have
been made to ensure accuracy, including review by the
authors wherever possible. If you identify any issues, please
contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Hu, W, Zhao, Z., Wang, Y., Zhang, H., and Lin, E (2014). Noncontact accurate
measurement of cardiopulmonary activity using a compact quadrature doppler radar
sensor. IEEE Trans. Biomed. Eng. 61 (3), 725-735. d0i:10.1109/TBME.2013.2288319

Hu, H., Chen, Y, Li, S., Yang, ], and Sun, Z. (2021). “Seismocardiographic signals
detection based on circulant singular spectrum analysis through millimeter wave radar,”
in 2021 IEEE 6th international conference on signal and image processing (ICSIP),
720-724.

Lahdenoja, O., Hurnanen, T,, Tadi, M. J., Pinkiild, M., and Koivisto, T. (2016). “Heart
rate variability estimation with joint accelerometer and gyroscope sensing;” in 43rd
computing in cardiology conference (CinC) (Vancouver, Canada), 43, 717-720.

Li, C. Z,, Xiao, Y. M., and Lin, J. S. (2006). Experiment and spectral analysis of a low-
power Ka-band heartbeat detector measuring from four sides of a human body. IEEE
Trans. Microw. Theory Tech. 54 (12), 4464-4471. doi:10.1109/tmtt.2006.884652

Li, C.,, Xiao, Y, Lin, J. J. I. M., and Letters, W. C. (2008). A 5GHz double-sideband
radar sensor chip in 0.18um CMOS for non-contact vital sign detection. IEEE Microw.
and Wirel. Components Lett. 18 (7), 494-496. doi:10.1109/LMWC.2008.924921

Li, Y. E, Pan, W. E, Li, K. Y, Jiang, Q., and Liu, G. Z. (2019). Sliding trend fuzzy
approximate entropy as a novel descriptor of heart rate variability in obstructive sleep
apnea. IEEE J. Biomed. Health Inf. 23 (1), 175-183. d0i:10.1109/JBHI1.2018.2790968

Marino, C. S., and Chau, P. M. (2005). High-resolution DOA estimation from
synthetic aperture beamforming. Proc. IEEE Antennas Propag. Soc. Int. Symp. 3A,
279-282. doi:10.1109/aps.2005.1552235

Massagram, W., Lubecke, V. M., Host-Madsen, A., and Boric-Lubecke, O. (2009).
Assessment of heart rate variability and respiratory sinus arrhythmia via doppler radar.
IEEE Trans. Microw. Theory Tech. 57 (10), 2542-2549. doi:10.1109/tmtt.2009.2029716

Mercuri, M., Liu, Y. H., Lorato, L, Torfs, T., Wieringa, F, Bourdoux, A., etal. (2018). A
direct phase-tracking doppler radar using wavelet independent component analysis for
non-contact respiratory and heart rate monitoring. IEEE Trans. Biomed. Circuits Syst.
12 (3), 632-643. doi:10.1109/TBCAS.2018.2813013

Pan, J., and Tompkins, W.J. (1985). A real-time QRS detection algorithm. IEEE Trans.
Biomed. Eng. 32 (3), 230-236. doi:10.1109/TBME.1985.325532

Pecchia, L., Melillo, P, and Bracale, M. (2011). Remote health monitoring of heart
failure with data mining via CART method on HRV features. IEEE Trans. Biomed. Eng.
58 (3), 800-804. doi:10.1109/TBME.2010.2092776

Penzel, T., Kantelhardt, J. W.,, Grote, L., Peter, J. H., and Bunde, A. (2003).
Comparison of detrended fluctuation analysis and spectral analysis for heart rate
variability in sleep and sleep apnea. IEEE Trans. Biomed. Eng. 50 (10), 1143-1151.
doi:10.1109/TBME.2003.817636

Petrovié, V. L., Jankovi¢, M. M., Lupsi¢, A. V., Mihajlovi¢, V. R., and Popovi¢-
Bozovi¢, J. S. (2019). High-accuracy real-time monitoring of heart rate variability
using 24 GHz continuous-wave doppler radar. IEEE Access 7, 74721-74733.
doi:10.1109/access.2019.2921240

frontiersin.org


https://doi.org/10.3389/fphys.2025.1733573
https://doi.org/10.3390/rs12142265
https://doi.org/10.1109/proc.1969.7278
https://doi.org/10.1016/s0140-6736(71)90274-1
https://doi.org/10.3389/fpsyt.2014.00080
https://doi.org/10.1109/TBME.2002.1010859
https://doi.org/10.1109/tmc.2022.3214721
https://doi.org/10.1161/01.cir.95.11.2573
https://doi.org/10.1109/18.119732
https://doi.org/10.1109/tmtt.2024.3360469
https://doi.org/10.1109/TBME.2008.2009340
https://doi.org/10.1109/tim.2009.2028208
https://doi.org/10.1016/j.bspc.2016.12.008
https://doi.org/10.1109/TBME.2023.3300079
https://doi.org/10.1109/TBME.2013.2288319
https://doi.org/10.1109/tmtt.2006.884652
https://doi.org/10.1109/LMWC.2008.924921
https://doi.org/10.1109/JBHI.2018.2790968
https://doi.org/10.1109/aps.2005.1552235
https://doi.org/10.1109/tmtt.2009.2029716
https://doi.org/10.1109/TBCAS.2018.2813013
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1109/TBME.2010.2092776
https://doi.org/10.1109/TBME.2003.817636
https://doi.org/10.1109/access.2019.2921240
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Yu et al.

Rong, Y., Lenz, I, and Bliss, D. W. (2024). Noncontact cardiac parameters estimation
using radar acoustics for healthcare IoT. IEEE Internet Things J. 11 (5), 7630-7639.
doi:10.1109/ji0t.2023.3317670

Saeed, U,, Shah, S. Y., Alotaibi, A. A., Althobaiti, T., Ramzan, N., Abbasi, Q. H., et al.
(2021). Portable UWB radar sensing system for transforming subtle chest movement
into actionable micro-doppler signatures to extract respiratory rate exploiting
resnet algorithm. IEEE Sensors J. 21 (20), 23518-23526. d0i:10.1109/jsen.2021.3110367

Sakoe, H., and Chiba, S. (1978). Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans. Acoust. Speech, Signal Process. 26 (1), 43-49.
doi:10.1109/tassp.1978.1163055

Sameera, J. N., Ishrak, M. S., Lubecke, V. M., and Boric-Lubecke, O. (2024).
Enhancing beat-to-beat analysis of heart signals with respiration harmonics reduction
through demodulation and template matching. IEEE Trans. Microw. Theory Tech. 72 (1),
750-758. doi:10.1109/tmtt.2023.3324444

Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation.
IEEE Trans. Antennas Propag. 34 (3), 276-280. doi:10.1109/tap.1986.1143830

Shih, J. Y., Zhong, J. X, Chu, Y.-J, and Wang, E K. (2025). PRT shaping
method for heart rate variability monitoring using Phase- and quadrature self-
injection-locked (PQSIL) radar. IEEE Trans. Microw. Theory Tech. 73 (2), 1183-1194.
doi:10.1109/tmtt.2024.3439522

Taebi, A., Solar, B. E., Bomar, A. ], Sandler, R. H., and Mansy, H. A. (2019). Recent
advances in seismocardiography. Vibration 2 (1), 64-86. doi:10.3390/vibration2010005

Vignoli, E., Guerzoni, G., and Matteo Vitetta, G. (2024). A novel method for
estimating heart rate variability through a multiple-input multiple-output FMCW radar.
IEEE Access 12, 178062-178079. doi:10.1109/access.2024.3507365

Wang, E, Zhang, F, Wu, C., Wang, B., and Liu, K. J. R. (2021a). ViMo: multiperson
vital sign monitoring using commodity millimeter-wave radio. IEEE Internet Things J.
8 (3), 1294-1307. doi:10.1109/ji0t.2020.3004046

Frontiers in Physiology

18

10.3389/fphys.2025.1733573

Wang, E, Zeng, X., Wy, C., Wang, B., and Liu, K. J. R. (2021b). mmHRV: contactless
heart rate variability monitoring using millimeter-wave radio. IEEE Internet Things J. 8
(22), 16623-16636. doi:10.1109/ji0t.2021.3075167

Wang, S. S., Han, C., Guo, J., and Sun, L. (2024). MM-FGRM.: fine-grained respiratory
monitoring using mimo millimeter wave radar. IEEE Trans. Instrum. Meas. 73, 1-13.
doi:10.1109/tim.2023.3334353

Wolf, M. M., Varigos, G. A., Hunt, D., and Sloman, J. G. (1978). Sinus arrhythmia
in acute myocardial infarction. Med. J. Aust. 2 (2), 52-53. do0i:10.5694/j.1326-
5377.1978.tb131339.x

Xia, Z., Shandhi, M. M. H,, Inan, O. T,, and Zhang, Y. (2018). Non-contact sensing
of seismocardiogram signals using microwave doppler radar. IEEE Sensors J. 18 (14),
5956-5964. doi:10.1109/jsen.2018.2842122

Xia, W, Li, Y, and Dong, S. (2021). Radar-based high-accuracy cardiac
activity sensing. IEEE Trans. Instrum. Meas. 70, 1-13. doi:10.1109/tim.2021.
3050827

Xu, W, Li, Y, Gu, C, and Mao, J. E (2021). Large displacement motion
interferometry with modified differentiate and cross-multiply technique.
IEEE Trans. Microw. Theory Tech. 69 (11), 4879-4890. doi:10.1109/tmtt.2021.
3103576

Yang, B., Min, L., Wang, M., and Shi, H. (2024). Non-contact respiratory and heart

rate detection using IR-UWB radars under random body activity. IEEE Trans. Instrum.
Meas. 73, 1-13. doi:10.1109/tim.2024.3379391

Yu, H. M., Huang, W. J, and Du, B. Q. (2023). SSA-VMD for UWB
radar sensor vital sign extraction. Semsors 23 (2), 756. doi:10.3390/
523020756

Zhang, H,, Jian, P, Yao, Y, Liu, C., Wang, P,, Chen, X,, et al. (2023). Radar-beat:
contactless beat-by-beat heart rate monitoring for life scenes. Biomed. Signal Process.
Control 86, 105360. doi:10.1016/j.bspc.2023.105360

frontiersin.org


https://doi.org/10.3389/fphys.2025.1733573
https://doi.org/10.1109/jiot.2023.3317670
https://doi.org/10.1109/jsen.2021.3110367
https://doi.org/10.1109/tassp.1978.1163055
https://doi.org/10.1109/tmtt.2023.3324444
https://doi.org/10.1109/tap.1986.1143830
https://doi.org/10.1109/tmtt.2024.3439522
https://doi.org/10.3390/vibration2010005
https://doi.org/10.1109/access.2024.3507365
https://doi.org/10.1109/jiot.2020.3004046
https://doi.org/10.1109/jiot.2021.3075167
https://doi.org/10.1109/tim.2023.3334353
https://doi.org/10.5694/j.1326-5377.1978.tb131339.x
https://doi.org/10.5694/j.1326-5377.1978.tb131339.x
https://doi.org/10.1109/jsen.2018.2842122
https://doi.org/10.1109/tim.2021.3050827
https://doi.org/10.1109/tim.2021.3050827
https://doi.org/10.1109/tmtt.2021.3103576
https://doi.org/10.1109/tmtt.2021.3103576
https://doi.org/10.1109/tim.2024.3379391
https://doi.org/10.3390/ s23020756
https://doi.org/10.3390/ s23020756
https://doi.org/10.1016/j.bspc.2023.105360
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Yu et al.

Glossary

AO
AoA
ADC
BPF
Ccw
CiSSA
DOA
DTW
DPD
ECG
EMD
EEMD
FFT
FEnv
FMCW
HRV
HSMM
IBI

IF

LoA
MAE
MRE
MIMO
MDACM
MVDR
MUSIC
ms
mmHRV
PPG
PCG

pNN50

rSCG
rPPG
RMSSD
SCG
SDNN
SNR
SQI
TDM
UWB

VMD

Aortic opening

angle of arrival

analog-to-digital converter

Butterworth bandpass filter

Continuous Wave

cyclostationary singular spectrum analysis
direction-of-arrival

dynamic time warping

decoding peak detection
electrocardiogram

empirical mode decomposition
ensemble empirical mode decomposition
fast-time Fourier transform

frequency envelope
frequency-modulated continuous wave
Heart rate variability

hidden semi-Markov model

inter-beat interval

intermediate frequency

limits of agreement

mean absolute error

mean relative error

multiple-input multiple-output

modified differentiate and cross-multiply
minimum variance distortionless response
multiple signal classification
milliseconds

millimeter-wave radar HRV
photoplethysmography
phonocardiographic

percentage of successive normal-to-normal intervals differing

by more than 50 ms

remote SCG

remote PPG

root mean square of successive differences
seismocardiogram

normal-to-normal intervals
signal-to-noise ratio

signal quality index

time-division multiplexing
Ultra-Wideband

variational mode decomposition
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WPT

2T4R

wavelet packet transform

2-transmit 4-receive
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