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Background: Evidence on the association between the PPARGC1A Gly482Ser 
(rs8192678) polymorphism and elite athlete status is inconsistent, and a prior 
meta-analysis has used a genotype-merging approach that may bias results.
Objective: This systematic review and meta-analysis aimed to clarify the 
association between the PPARGC1A Gly482Ser (rs8192678) polymorphism and 
elite endurance and power athlete status.
Methods: A comprehensive literature search was conducted in PubMed, Web 
of Science, Embase, and Cochrane Library from inception to November 2025. 
Studies were included if they provided genotype frequency data for the
PPARGC1A Gly482Ser polymorphism in elite endurance or power athletes and 
non-athlete controls. Fixed or random-effects models were used to calculate 
odds ratios (OR) with 95% confidence intervals (95% CI), and heterogeneity was 
assessed using the I2 statistic.
Results: 21 studies involving 5,795 athletes and 9,048 non-athlete controls 
were included. Compared with non-athlete controls, a higher frequency of 
the Gly/Gly genotype was observed in Caucasian endurance athletes (OR 1.19; 
95% CI 1.08–1.31; p < 0.001) and Caucasian power athletes (OR 1.30; 95% CI 
1.17–1.44; p < 0.001). In Asians, no significant difference in the frequency of the 
Gly/Gly genotype was observed between endurance athletes and controls (OR 
0.92; 95% CI 0.71–1.19; p = 0.523), whereas a lower frequency was observed in 
Asian power athletes (OR 0.69; 95% CI 0.53–0.90; p = 0.007).
Conclusion: Our findings demonstrate that the Gly/Gly genotype of the
PPARGC1A Gly482Ser polymorphism was associated with an increased 
likelihood of achieving elite athlete status in Caucasians, suggesting its potential 
as a genetic marker for athletic talent identification in this population. In 
Asians, no significant association was observed between the PPARGC1A
Gly482Ser polymorphism and elite endurance athlete status, whereas the
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Gly/Gly genotype is associated with a lower likelihood of achieving elite power 
athlete status.
Systematic Review registration: identifier CRD420251148245.
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1 Introduction

In recent years, there has been a growing body of studies 
on the influence of genetics on athletic performance, which has 
significantly contributed to the field of sports science. Approximately 
66% of the variation in athletic performance among individuals 
can be attributed to genetic factors (İpekoğlu et al., 2025). 
Research indicates that the heritable component of athletic 
traits may account for up to 90% of variation in anaerobic 
performance, 60% in cardiorespiratory function, and 70% in 
maximal muscular strength (Kartibou et al., 2025).

The PPARGC1A gene (located on chromosome 4p15.2) 
encodes the peroxisome proliferator-activated receptor γ 
coactivator-1a (PGC-1α), a transcriptional coactivator that 
serves as a key regulator of numerous metabolic pathways 
(Zhuang et al., 2025). PGC-1α activates transcription factors, such 
as NRF-1, NRF-2, ERR, PPARγ, RXR, MEF2, FOXO1, HNF-4, 
and SREBP1, thereby orchestrating multiple mitochondrial and 
extramitochondrial pathways in cellular energy metabolism. These 
transcription factors regulate genes involved in mitochondrial 
biogenesis, fatty acid oxidation, lipogenesis, thermogenesis, 
and glucose utilization (Michael et al., 2001; Jornayvaz 
and Shulman, 2010; Huang et al., 2023; Yu et al., 2025). 
Furthermore, studies have reported that the expression 
of PPARGC1A increases in both rodent and human 
skeletal muscle following short-term and long-term exercise 
(Pilegaard et al., 2003; Terada and Tabata, 2004; Mathai et al., 2008;
Russell et al., 2003).

In sports science, the most studied polymorphism in the 
PPARGC1A gene is the Gly482Ser (rs8192678) polymorphism, 
which exerts an influence on both mRNA expression and 
protein levels (Eynon et al., 2010). The PPARGC1A Gly482Ser 
polymorphism (rs8192678) is a common missense variant that 
replaces glycine (Gly) with serine (Ser) at codon 482, producing 
three genotypes: Gly/Gly, Gly/Ser, and Ser/Ser (Hall et al., 2023). 
Numerous studies have reported associations between this genetic 
variant and endurance or power athlete status, but findings 
across different studies are contradictory. For instance, Eynon 
et al. found the Gly/Gly genotype and Gly allele to be more 
common in both endurance and power athletes compared with 
non-athlete controls (Eynon et al., 2011). However, a subsequent 
study by Grealy et al. analyzing elite Ironman triathletes found 
no significant association between the PPARGC1A Gly482Ser 
polymorphism and endurance performance (Grealy et al., 2015). 
Additionally, Gineviciene et al. observed that among Lithuanians, 
power athletes had a slightly lower frequency of the Gly/Gly 
genotype and Gly allele than non-athletes (Gineviciene et al., 2016). 
Although two previous meta-analyses have investigated this 
association (Chen et al., 2019; Tharabenjasin et al., 2019), 

genotype-specific evaluations remain limited. Of these, one meta-
analysis pooled genotypes that may have opposing effects, an 
approach that can obscure genotype-specific associations and 
introduce bias (Tharabenjasin et al., 2019). Additionally, the 
dataset in Tharabenjasin et al. included athletes from various 
competitive levels, ranging from college to international athletes. 
Furthermore, both meta-analyses restricted their literature searches 
to studies published up to 2018. Together, the emergence of 
new studies and methodological limitations justify an updated 
systematic assessment. Therefore, this meta-analysis aims to explore 
the potential associations between the PPARGC1A Gly482Ser 
polymorphism and elite endurance and power athlete status by 
meta-analyzing studies on the distribution of genotypes of this 
polymorphism in endurance and power athletes compared with 
non-athlete controls. 

2 Methods

This meta-analysis was registered on PROSPERO 
with the registration number CRD420251148245 and was 
reported in accordance with the Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses (PRISMA) 
guidelines (Page et al., 2021). 

2.1 Eligibility criteria

Our analysis includes studies that investigate the association 
between the PPARGC1A Gly482Ser polymorphism and elite 
endurance or power athlete status, defined as participation at 
national or international competitive levels. Therefore, studies were 
included if they met the following criteria: (1) evaluated the 
association between the PPARGC1A Gly482Ser polymorphism and 
elite endurance or power athlete status; (2) included healthy non-
athlete individuals as controls; (3) provided genotype frequency 
data for the PPARGC1A Gly482Ser polymorphism; (4) conformed 
to the Hardy-Weinberg equilibrium (HWE) in the control group; 
(5) selected the most recent publication in cases of duplicate 
data. Studies were excluded for the following reasons: (1) review 
articles; (2) studies without a control group; (3) absence of genotype 
frequency data for the PPARGC1A Gly482Ser polymorphism; (4) 
included athletes not competing at national or international level. 

2.2 Literature search strategy

A comprehensive search was conducted in electronic databases: 
PubMed, Web of Science, Embase, and Cochrane Library from their 
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inception to November 2025. No restrictions were applied regarding 
language or publication date. The literature search was conducted 
using the following key terms: “PPARGC1A,” “Peroxisome 
Proliferator-Activated Receptor Gamma Coactivator 1-alpha,” 
“PGC-1α,” “rs8192678,” “Gly482Ser,” “polymorphism,” “athletes,” 
“sports.” Full search terms were provided in Supplementary Table S1. 
To ensure comprehensive coverage, we also supplemented 
the electronic search by conducting manual searches 
of the reference lists of included articles and relevant
reviews. 

2.3 Data extraction

Two authors independently extracted data from all included 
studies. Any discrepancies were resolved by consulting a third 
author. Key data were extracted from each of the included 
studies, including study characteristics (author, publication year, 
and country), participant characteristics (ethnicity, sample size, 
sex, age, and athlete status), the number of PPARGC1A Gly/Gly, 
Gly/Ser, and Ser/Ser genotypes in each group, and the genotyping
methods. 

2.4 Quality assessment

The Newcastle–Ottawa Scale (NOS) was used to assess the 
methodological quality of the studies based on three domains: 
Selection (four items), Comparability (one item), and Exposure 
(three items). Each item meeting the criteria was awarded one 
star, with a maximum possible total of nine stars. Studies could 
receive up to one star for each item within the Selection and 
Exposure domains and up to two stars for the Comparability 
domain. Studies with a score ≥7 were considered high quality. 
Two authors independently conducted the quality assessment, and 
any disagreements were resolved through consultation with a third
author. 

2.5 Statistical analyses

The association between the PPARGC1A Gly482Ser 
polymorphism and elite athlete status was determined by calculating 
pooled odds ratios (OR) with 95% confidence intervals (95% CI). 
Statistical significance was defined as a p-value of ≤0.05. The 
statistical heterogeneity across the included studies was assessed 
using the I2 statistic. I2 values of 25%, 50%, and 75% represented low, 
moderate, and high heterogeneity respectively. The heterogeneity 
level determined model selection: fixed-effects models were applied 
when I2 < 50%, while random-effects models were used when I2

> 50%. Publication bias in our meta-analysis was assessed through 
visual inspection of funnel plots for all comparisons. Sensitivity 
analyses were performed by sequentially removing each study to 
assess the stability of the overall results. This meta-analysis was 
conducted using Stata 18.0. 

3 Results

3.1 Selection of studies

A total of 967 records were identified through database searches 
and manual search. After removing duplicates (n = 257) and 
excluding studies based on the title and abstract screening (n = 661), 
49 studies remained. Based on the full-text assessment, a further 
29 studies were excluded for the following reasons: no controls
(n = 6), data insufficient or unusable (n = 8), duplicate populations 
(n = 7), review articles (n = 2), control not in HWE (n = 2), and 
athletes not competing at national or international level (n = 3). 
Finally, 21 eligible studies were included in the systematic review and 
meta-analysis (Figure 1).

3.2 Characteristics of the included studies

These studies involved a total of 5,795 athletes (comprising 3,351 
endurance athletes and 2,444 power athletes) and 9,048 controls. 
According to the type of sports, athletes were divided into endurance 
and power groups. The endurance group included marathon, 
biathlon, orienteering, steeplechase, long-distance swimming, 
football, pentathlon, rowing, road cycling, cross-country skiing, 
long-distance track and field athletics, triathlon, long-distance speed 
skating, race walking, and mountain biking. The power group 
included weightlifting, short-distance track and field athletics, 
powerlifting, kayaking, judo, wrestling, boxing, fencing, short-
distance swimming, speed skating, alpine skiing, artistic gymnastics, 
throwing events, jumping events, bodybuilding, ski jumping, 
canoe speed, basketball, volleyball, tennis, hockey and decathlon. 
The characteristics of the included studies are summarized in 
Table 1. Distributions of the PPARGC1A Gly482Ser polymorphism 
genotypes in endurance and power athletes across included studies 
are presented in Supplementary Table S2; Supplementary Table S3 
respectively.

3.3 Study quality assessment

Following the assessment using the Newcastle–Ottawa Scale 
(NOS), 2 study scored 6 points, 8 studies scored 7 points, 10 studies 
scored 8 points, and 1 study scored 9 points (Table 1). With a 
mean score of 7.48 ± 0.74, the overall quality of the evidence was 
considered satisfactory. 

3.4 Meta-analysis

3.4.1 Endurance athletes
The distribution of PPARGC1A Gly/Gly, Gly/Ser, and Ser/Ser 

genotypes in endurance athletes is as follows. A higher frequency 
of the Gly/Gly genotype was observed compared with the 
Gly/Ser genotype in Caucasians (OR 1.35; 95% CI 1.06–1.71; 
p = 0.015; 78.7% heterogeneity) (Supplementary Figure S1), 
whereas a lower frequency of the Gly/Gly genotype was 
observed in Asians (OR 0.41; 95% CI 0.30–0.57; p < 0.001; 
9% heterogeneity) (Supplementary Figure S1). When combining 
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FIGURE 1
The flow diagram of included/excluded studies.

Caucasian and Asian populations, no significant difference between 
the Gly/Gly genotype and the Gly/Ser genotype was detected 
(OR 1.16; 95% CI 0.88–1.53; p = 0.301; 86.6% heterogeneity) 
(Supplementary Figure S1). Compared with the Ser/Ser genotype, 
the Gly/Ser genotype was significantly more frequent in the 
combined populations (OR 7.21; 95% CI 5.30–9.81; p < 0.001; 
74.8% heterogeneity) (Supplementary Figure S2). This advantage 
was more pronounced in Caucasians (OR 8.14; 95% CI 5.93–11.16; 
p < 0.001; 69.3% heterogeneity) (Supplementary Figure S2) than in 
Asians (OR 3.49; 95% CI 2.55–4.76; p < 0.001; 0% heterogeneity) 
(Supplementary Figure S2). Similarly, the Gly/Gly genotype showed 
a significantly higher frequency than the Ser/Ser genotype in 
the combined populations (OR 8.79; 95% CI 5.25–14.74; p < 
0.001; 91.4% heterogeneity) (Supplementary Figure S3), with 
Caucasians showing the same trend (OR 11.05; 95% CI 7.16–17.06; 
p < 0.001; 84.2% heterogeneity) (Supplementary Figure S3), 
whereas no statistically significant association was observed 
in Asians (OR 1.39; 95% CI 0.81–2.40; p = 0.229; 62.4% 
heterogeneity) (Supplementary Figure S3).

When comparing endurance athletes with controls, we found a 
higher frequency of the Gly/Gly genotype in Caucasian athletes (OR 
1.19; 95% CI 1.08–1.31; p < 0.001; 43.7% heterogeneity) (Figure 2A), 
whereas no significant association was detected in Asians (OR 0.92; 

95% CI 0.71–1.19; p = 0.523; 0% heterogeneity) (Figure 2A).When 
combining both populations, the Gly/Gly genotype frequency was 
higher in athletes than controls (OR 1.15; 95% CI 1.06–1.26; p = 
0.001; 44.5% heterogeneity) (Figure 2A). Analyses of the Ser/Ser 
genotype showed no statistically significant differences: Caucasians 
(OR 0.81; 95% CI 0.59–1.10; p = 0.179; 60.7% heterogeneity) 
(Figure 2B), Asians (OR 1.09; 95% CI 0.82–1.45; p = 0.548; 0% 
heterogeneity) (Figure 2B), or the combined populations (OR 0.86; 
95% CI 0.66–1.12; p = 0.263; 59.3% heterogeneity) (Figure 2B). 
In allelic comparisons, a higher frequency of the Gly allele 
was detected in the combined populations (OR 1.15; 95% CI 
1.01–1.30; p = 0.032; 67% heterogeneity) (Supplementary Figure S4) 
and Caucasians (OR 1.19; 95% CI 1.04–1.36; p = 0.014; 66.5% 
heterogeneity) (Supplementary Figure S4). However, no significant 
differences were found in Asians (OR 0.94; 95% CI 0.79–1.12; p = 
0.468; 9.6% heterogeneity) (Supplementary Figure S4).

When comparing individual genotypes between endurance 
athletes and controls, the frequency of carrying the Gly/Gly 
genotype relative to the Gly/Ser genotype was higher in endurance 
athletes than in controls (OR 1.12; 95% CI 1.02–1.23; p = 0.016; 
0.3% heterogeneity) (Figure 3A), with Caucasians showing the same 
trend (OR 1.15; 95% CI 1.04–1.27; p = 0.006; 0% heterogeneity) 
(Figure 3A) and Asians exhibiting no significant difference (OR 0.93; 
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TABLE 1  Characteristics of included studies in the systematic review and meta-analysis.

Study Country Race Athlete status Total athletes Total controls NOS

Bulğay et al. (2022) Turkey C National endurance 
and power athletes

Number: 60
Sex: Data not shown
Age: 25.07 ± 4.80

Number: 20
Sex: Data not shown
Age: 23.51 ± 7.13

7

Hall et al. (2023) Britain C National endurance 
athletes

Number: 288
Sex: 201 men, 87 
women
Age: Data not shown

Number: 368
Sex: 285 men, 83 
women
Age: Data not shown

7

Eynon et al. (2011) Israel C Olympic-class or 
national endurance 
and power athletes

Number: 155
Sex: 119 men, 36 
women
Age: 35.9 ± 12.2

Number: 240
Sex: 170 men,70 
women
Age: 26 ± 3

8

Ginevičienė et al. (2011) Lithuania C International, 
national or regional 
endurance and 
power athletes

Number: 128
Sex: 106 men, 22 
women
Age: 22 ± 6.3

Number: 250
Sex: 167 men, 83 
women
Age: 36.2 ± 7.2

9

Gineviciene et al. (2014) Lithuania C International or 
national footballers

Number: 199
Sex: 199 men
Age: 17–20

Number: 167
Sex: 167 men
Age: 18–22

8

Gineviciene et al. (2016)

Russia C

International or 
national power 
athletes

Number:
Russian: 114
Lithuanian: 47
Sex: 128 men, 33 
women
Age: 23 ± 6.5

Number:
Russian: 947
Lithuanian: 255
Sex: 540 men, 662 
women
Age: 29 ± 8.5

8
Lithuania C

Grealy et al. (2015) Australia C International 
endurance 
triathletes

Number: 195
Sex: 143 men, 52 
women
Age: 42.5 ± 11.4

Number: 113
Sex: Data not shown
Age: Data not shown

6

Guilherme and 
Lancha (2020)

Brazil C International or 
national power 
athletes

Number: 83
Sex: Data not shown
Age: Data not shown

Number: 818
Sex: 472 men, 346 
women
Age: 32.6 ± 12.3

7

Guilherme et al. (2018) Brazil C Endurance and 
power athletes of the 
Brazilian national 
team

Number: 630
Sex: 426 men, 204 
women
Age: 27.6 ± 10.5

Number: 893
Sex: 521 men, 372 
women
Age: 35.1 ± 17.6

7

He et al. (2015) China A International or 
national endurance 
athletes

Number: 235
Sex: 108 men, 127 
women
Age: 23 ± 4 (men)
21 ± 4 (women)

Number: 504
Sex: 267 men, 237 
women
Age: 20 ± 1

7

Homma et al. (2022) Japan A

International or 
national 
weightlifters

Number: 192
Sex: 113 men, 79 
women
Age: 22.45 ± 8.25

Number: 416
Sex: 151 men, 265 
women
Age: 52.27 ± 18.02

8
International or 
national power 
athletes

Number: 177
Sex: 144 men, 33 
women
Age: Data not shown

Number: 416
Sex: 151 men, 265 
women
Age: 52.27 ± 18.02

(Continued on the following page)
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TABLE 1  (Continued) Characteristics of included studies in the systematic review and meta-analysis.

Study Country Race Athlete status Total athletes Total controls NOS

Lucia et al. (2005) Spain C Olympic-class 
riders, 
middle-distance and 
long-distance track 
runners

Number: 104
Sex: 104 men
Age: Data not shown

Number: 100
Sex: 100 men
Age: 18–55

7

Maciejewska et al. (2012)

Poland C

Olympic-class 
endurance and 
power athletes

Number: 302
Sex: 221 men, 81 
women
Age: 27.8 ± 7.1

Number: 684
Sex: Data not shown
Age: 19–23

8
Russia C Number:1,303

Sex:888 men, 415 
women
Age: 24.4 ± 0.3

Number:1,132
Sex:537 men, 595 
women
Age: 17.2 ± 0.2

Maruszak et al. (2014) Poland C Olympic-class or 
national endurance 
and power athletes

Number: 395
Sex: 249 men, 146 
women
Age: Data not shown

Number: 413
Sex: Data not shown
Age: Data not shown

7

Muniesa et al. (2010) Spain C Olympic-class 
runners, riders and 
rowers

Number: 141
Sex: 141 men
Age: Data not shown

Number: 123
Sex: 123men
Age: Data not shown

8

Peplonska et al. (2017) Poland C Olympic-class or 
national endurance 
and power athletes

Number: 413
Sex: 263 men, 150 
women
Age: 23.5 ± 4.7

Number: 451
Sex: 217 men, 234 
women
Age: 23 ± 3.1

7

Santiago et al. (2010) Spain C National rowers Number: 15
Sex: 15 men
Age: Data not shown

Number: 123
Sex: 123men
Age: Data not shown

8

Varillas Delgado et al. (2020) Spain C International road 
cyclists and runners

Number: 123
Sex: 123 men
Age: 24.9 ± 4.9

Number: 122
Sex: 122 men
Age: 27.9 ± 4.5

8

Varillas-
Delgado et al. (2022)

Spain C International or 
national endurance 
athletes

Number: 292
Sex: 292 men
Age: 25.8 ± 4.2

Number: 160
Sex: 160 men
Age: 25.8 ± 4.2

8

Yvert et al. (2016) Japan A Olympic-class or 
national endurance 
athletes

Number: 154
Sex: 97 men, 57 
women
Age: Data not shown

Number: 649
Sex: 184 men, 465 
women
Age: Data not shown

8

Valipour et al. (2021) Iran C Athletes of the 
Iranian national 
hockey team

Number: 50
Sex: Data not shown
Age: Data not shown

Number: 100
Sex: Data not shown
Age: Data not shown

6

NOS, Newcastle–Ottawa Scale; C, caucasian; A, asian.

95% CI 0.71–1.23; p = 0.628; 0% heterogeneity) (Figure 3A). In 
the comparison of Gly/Ser and Ser/Ser genotypes, no significant 
difference was observed between endurance athletes and controls 
in Caucasians (OR 1.15; 95% CI 0.86–1.54; p = 0.351; 50.6% 
heterogeneity) (Figure 3B), Asians (OR 0.94; 95% CI 0.70–1.27; p = 
0.694; 0% heterogeneity) (Figure 3B), or the combined populations 
(OR 1.10; 95% CI 0.86–1.40; p = 0.449; 47.2% heterogeneity) 
(Figure 3B). Similarly, In the comparison of Gly/Gly and Ser/Ser 
genotypes, no significant difference was found for Caucasians 
(OR 1.35; 95% CI 0.95–1.91; p = 0.090; 64.4% heterogeneity) 

(Supplementary Figure S5), Asians (OR 0.88; 95% CI 0.62–1.25;
p = 0.479; 12.4% heterogeneity) (Supplementary Figure S5), or the 
combined populations (OR 1.24; 95% CI 0.92–1.67; p = 0.154; 64% 
heterogeneity) (Supplementary Figure S5).

3.4.2 Power athletes
The distribution of PPARGC1A Gly/Gly, Gly/Ser, and Ser/Ser 

genotypes in power athletes is as follows. Compared with the 
Gly/Ser genotype, the Gly/Gly genotype was more frequent 
in Caucasians (OR 1.47; 95% CI 1.11–1.93; p = 0.006; 72.5% 
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FIGURE 2
Forest plot of the comparison between genotype frequencies in endurance athletes versus controls. (A) Gly/Gly vs. Gly/Ser + Ser/Ser and (B) Ser/Ser vs. 
Gly/Gly + Gly/Ser.

heterogeneity) (Supplementary Figure S6), but less frequent in 
Asians (OR 0.36; 95% CI 0.26–0.48; p < 0.001; 0% heterogeneity) 
(Supplementary Figure S6) and showed no significant association 
in the combined populations (OR 1.13; 95% CI 0.78–1.64;
p = 0.516; 88.6% heterogeneity) (Supplementary Figure S6). The 
frequency of the Gly/Ser genotype was significantly higher than 

the Ser/Ser genotype in Caucasians (OR 6.80; 95% CI 5.70–8.11;
p < 0.001; 37.2% heterogeneity) (Supplementary Figure S7), Asians 
(OR 5.11; 95% CI 3.66–7.14; p < 0.001; 0% heterogeneity) 
(Supplementary Figure S7), and the combined populations 
(OR 6.42; 95% CI 5.50–7.50; p < 0.001; 32.3% heterogeneity) 
(Supplementary Figure S7). Similarly, the frequency of the Gly/Gly 
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FIGURE 3
Forest plot of the comparison between individual genotype frequencies in endurance athletes versus controls. (A) Gly/Gly vs. Gly/Ser and (B) Gly/Ser 
vs. Ser/Ser.

genotype was higher than the Ser/Ser genotype in Caucasians 
(OR 10.41; 95% CI 7.57–14.32; p < 0.001; 57.9% heterogeneity) 
(Supplementary Figure S8), Asians (OR 1.82; 95% CI 1.28–2.57; 
p = 0.001; 0% heterogeneity) (Supplementary Figure S8), and the 
combined populations (OR 8.13; 95% CI 5.06–13.05; p < 0.001; 
86.4% heterogeneity) (Supplementary Figure S8).

When comparing power athletes with controls, the Gly/Gly 
genotype was more frequent in power athletes in the combined 
populations (OR 1.19; 95% CI 1.09–1.31; p < 0.001; 58.6% 
heterogeneity) (Figure 4A) and in Caucasians (OR 1.30; 95% 
CI 1.17–1.44; p < 0.001; 13% heterogeneity) (Figure 4A), but 
less frequent in Asians (OR 0.69; 95% CI 0.53–0.90; p = 
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FIGURE 4
Forest plot of the comparison between genotype frequencies in power athletes versus controls. (A) Gly/Gly vs. Gly/Ser + Ser/Ser and (B) Ser/Ser vs. 
Gly/Gly + Gly/Ser.

0.007; 0% heterogeneity) (Figure 4A). In contrast, a lower 
frequency of the Ser/Ser genotype was observed in the combined 
populations (OR 0.84; 95% CI 0.72–0.99; p = 0.033; 17.9% 
heterogeneity) and in Caucasians (OR 0.82; 95% CI 0.68–0.97;

p = 0.025; 29.7% heterogeneity) (Figure 4B), whereas no significant 
difference was detected in Asians (OR 0.95; 95% CI 0.69–1.30; 
p = 0.733; 0% heterogeneity) (Figure 4B). Furthermore, there 
was a higher frequency of the Gly allele in the combined 
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populations (OR 1.15; 95% CI 1.07–1.24; p < 0.001; 49.4% 
heterogeneity) (Supplementary Figure S9) and in Caucasians 
(OR 1.22; 95% CI 1.13–1.32; p < 0.001; 18.2% heterogeneity) 
(Supplementary Figure S9), but no significant difference was 
detected in Asians (OR 0.86; 95% CI 0.72–1.03; p = 0.099; 0% 
heterogeneity) (Supplementary Figure S9).

When comparing individual genotypes between power athletes 
and controls, the frequency of the Gly/Gly genotype relative to 
the Gly/Ser genotype was higher in the combined populations 
(OR 1.17; 95% CI 1.06–1.29; p = 0.002; 59.5% heterogeneity) 
(Figure 5A) and in Caucasians (OR 1.28; 95% CI 1.15–1.43; p < 
0.001; 13.9% heterogeneity) (Figure 5A), but lower in Asians (OR 
0.65; 95% CI 0.49–0.86; p = 0.003; 0% heterogeneity) (Figure 5A). 
For the comparison of the Gly/Ser and Ser/Ser genotypes, no 
significant differences between power athletes and controls were 
detected in Caucasians (OR 1.10; 95% CI 0.91–1.32; p = 0.332; 30% 
heterogeneity) (Figure 5B), Asians (OR 1.26; 95% CI 0.90–1.75; p = 
0.181; 0% heterogeneity) (Figure 5B) or the combined populations 
(OR 1.13; 95% CI 0.96–1.33; p = 0.134; 20.8% heterogeneity) 
(Figure 5B). Additionally, the frequency of the Gly/Gly genotype 
relative to the Ser/Ser genotype was higher in power athletes than in 
controls for the combined populations (OR 1.26; 95% CI 1.07–1.48; 
p = 0.005; 37.7% heterogeneity) (Supplementary Figure S10) and 
Caucasians (OR 1.40; 95% CI 1.17–1.68; p < 0.001; 25.8% 
heterogeneity) (Supplementary Figure S10), whereas no significant 
difference was observed in Asians (OR 0.82; 95% CI 0.57–1.17; p = 
0.273; 0% heterogeneity) (Supplementary Figure S10).

3.5 Sensitivity analysis and publication bias

To assess the effect of each study on the overall results, we 
conducted sensitivity analysis. The use of fixed-effects and random-
effects models was based on the percentage of heterogeneity. 
After excluding one study each time, the ORs, 95% confidence 
interval, and p-values did not significantly change, which may 
indicate the robustness of our results. Moreover, the visual 
inspection of the funnel plots suggested no publication bias 
among the included studies. The information of funnel plots is 
provided in Supplementary Figures S11–S29. 

4 Discussion

The primary objective of this meta-analysis was to investigate 
the associations between the PPARGC1A Gly482Ser polymorphism 
and athlete status, focusing on genotype distribution in endurance 
and power athletes compared with controls. In Caucasians, the 
distribution of the PPARGC1A Gly482Ser polymorphism in both 
endurance and power athletes followed the trend: Gly/Gly > Gly/Ser 
> Ser/Ser. Furthermore, both the Gly/Gly genotype and the Gly 
allele were significantly more frequent in Caucasian elite athletes 
compared with controls. Specifically, the Gly/Gly genotype was more 
frequently observed than the Gly/Ser genotype in both endurance 
and power athletes compared with controls. In contrast, direct 
comparisons of Gly/Ser versus Ser/Ser revealed no significant 
differences between athletes and controls in either discipline.

Notably, three studies respectively investigating Asian athletes 
from China and Japan (He et al., 2015; Yvert et al., 2016; 
Homma et al., 2022), included 758 athletes (389 endurance athletes 
and 369 power athletes). For endurance athletes, there is no 
statistically significant differences in genotype frequencies (Gly/Gly, 
Gly/Ser, Ser/Ser) compared with their respective controls. For 
power athletes, the Gly/Gly genotype is less frequent relative to 
controls, whereas the Gly/Ser and Ser/Ser genotypes show no 
significant differences between athletes and controls. These findings 
suggest that the PPARGC1A Gly482Ser polymorphism may not 
be associated with Asian athlete status. However, this conclusion 
should be interpreted with caution. The Genome Aggregation 
Database (gnomAD) reveals significant inter-population differences 
in rs8192678 allele frequencies (Chen et al., 2024). The Ser allele is 
more common in East Asians, less frequent in Caucasians, and rare 
in African populations. Consequently, the baseline prevalence of the 
Gly/Gly genotype is lower in East Asians than in Caucasians. These 
background differences, combined with the limited sample size of 
existing Asian athlete cohorts, may reduce statistical power to detect 
genotype–phenotype effects, which may partly explain the absence 
of significant associations in our meta-analysis.

Our findings demonstrate that the Gly/Gly genotype is 
advantageous for both endurance and power athletic performance. 
This finding is consistent with two previous meta-analyses 
(Chen et al., 2019; Tharabenjasin et al., 2019) and is further 
supported, for endurance-specific cohorts, by a homogeneous 
meta-analysis of long-distance runners and road cyclists 
(Konopka et al., 2022).Mechanistically, this genotype enhances 
the expression of PGC-1α, a key transcriptional coactivator 
that regulates cellular energy metabolism. For endurance 
athletes, enhanced PGC-1α expression promotes GLUT4-
mediated glucose transport and muscle glycogen storage, 
ultimately improving metabolic efficiency and athletic performance 
(Katz et al., 1986; Wasserman, 2009; Wasserman et al., 2011; 
Richter and Hargreaves, 2013). Furthermore, PGC-1α associates 
with and coactivates nuclear respiratory factor 1 (NRF-1), thereby 
upregulating the expression of mitochondrial transcription factor A 
(mtTFA), which directly activates the transcription and replication 
of mitochondrial DNA. One study found that cells overexpressing 
PGC-1α exhibited a 57% increase in mitochondrial density relative 
to control cells (Wu et al., 1999). This enhanced skeletal muscle 
mitochondrial content can lead to reduced lactate production, 
enhanced fat utilization, and improved endurance performance 
(Coyle et al., 1988; LeBlanc et al., 2004). Furthermore, this increased 
oxidative capacity also elevates the rate of carbohydrate oxidation 
when required, enabling higher power output and contributing 
to improved athletic performance (Westgarth-Taylor et al., 1997). 
Upregulation of PGC-1α has been shown to significantly enhance 
fatty acid oxidation in skeletal muscle, which reduces reliance on 
finite muscle glycogen reserves, prolongs exercise duration, and 
ultimately improves endurance performance (Huang et al., 2017; 
Muscella et al., 2020; Yu et al., 2025; Gerhart-Hines et al., 2007). 
Moreover, PGC-1α expression induces a functional shift in skeletal 
muscle, converting fast-twitch type IIb fibers toward a more 
oxidative type IIa and type I fibers (Lin et al., 2002).

Notably, the same metabolic adaptations also contribute to 
enhanced power performance. The increase in glucose transport 
and muscle glycogen storage provides sufficient substrate for the 
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FIGURE 5
Forest plot of the comparison between individual genotype frequencies in power athletes versus controls. (A) Gly/Gly vs. Gly/Ser and (B) Gly/Ser 
vs. Ser/Ser.

glycolytic system, thereby supporting high-power output. Moreover, 
the elevated mitochondrial content reduces lactate accumulation 
during high-intensity efforts (Chesley et al., 1996). Additionally, 

the improved oxidative capacity is a key factor determining 
the rate of PCr resynthesis and the restoration of performance 
during repeated sprint exercises (Bogdanis et al., 1996). Studies 

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2025.1733458
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Su et al. 10.3389/fphys.2025.1733458

have demonstrated the aerobic system contributes substantially 
to energy production even in high-intensity efforts: Spencer and 
Gastin et al. revealed that the aerobic system is activated rapidly 
after the onset of exercise and becomes the predominant energy 
supplier between 15 and 30 s for the 400-m, 800-m, and 1500-
m events (Spencer and Gastin, 2001). Similarly, Hargreaves and 
Spriet et al. demonstrated that aerobic ATP production is activated 
during very intense exercise, with approximately 50% of the 
energy contribution in the final 5 s of a 30-s sprint being derived 
aerobically (Hargreaves and Spriet, 2020). Moreover, achieving 
elite athlete status depends not only on athletic performance 
capacity but also on the risk of sports-related injuries and the 
ability to recover from them. Evidence from candidate-gene and 
genome-wide association studies indicates that genetic background 
contributes to inter-individual variability in susceptibility to 
musculoskeletal injuries and in the rate of recovery (Koks et al., 2020; 
Ebert et al., 2023; Massidda et al., 2024; Sun et al., 2025). 
Several experimental studies using acute skeletal muscle injury 
models have shown that muscle-specific overexpression of PGC-
1α leads to smaller necrotic areas, faster clearance of necrotic 
debris, and better preservation of muscle architecture after injury 
(Dinulovic et al., 2016; Washington et al., 2022). Given that power 
athletes are at a particularly high risk of acute musculoskeletal 
injuries, we hypothesized that the Gly/Gly genotype would confer 
an additional advantage in this population by mitigating the risk of 
such injuries and/or facilitating faster recovery, thereby contributing 
to their likelihood of achieving elite status.

Our findings also demonstrate that individuals carrying one 
or two copies of the Ser allele of the PPARGC1A Gly482Ser 
polymorphism show no significant association with elite endurance 
athlete status and exhibit a lower likelihood of achieving elite power 
athlete status. This finding diverges from the conclusions of two 
prior meta-analyses (Chen et al., 2019; Tharabenjasin et al., 2019). 
Potential explanations for this discrepancy include the larger 
sample size incorporated in the present meta-analysis and potential 
differences in population genetic backgrounds. In addition, the 
previously reported association may have been confounded by 
the strong selective advantage of the Gly/Gly genotype, which 
increases the overall Gly allele frequency in athletes rather than 
reflecting a true effect of the heterozygous genotype. To date, the 
functional impact of the Ser allele remains controversial. Several 
studies support an impaired functional role associated with the 
Ser allele. For instance, Stefan et al. found that the Gly/Ser or 
Ser/Ser genotype in PPARGC1A was associated with lower aerobic 
fitness (Stefan et al., 2007), and Petr et al. reported that carriers 
of the Ser allele exhibited reduced training responsiveness after 
aerobic training (Petr et al., 2018). Moreover, Steinbacher et al. 
reported that the Ser-encoding allele inhibits the exercise-induced 
transition from type II to type I muscle fibers, although it does not 
affect improvements in mitochondrial biogenesis, capillarization, 
or lipid metabolism (Steinbacher et al., 2015). In contrast, other 
studies report no functional deficit under certain conditions. 
Okauchi et al. demonstrated that no significant difference in the 
level of co-activation was observed between the wild-type (Gly482) 
and variant (Ser482) PGC-1α proteins (Okauchi et al., 2008). 
Furthermore, one study revealed that the Ser482 allele exerted 
no significant influence on PGC-1α mRNA expression levels in 
young individuals but was associated with reduced expression in 

elderly carriers (Ling et al., 2004), suggesting an age-dependent 
functional impact of the Ser allele.

This study identifies methodological limitations in the approach 
of Tharabenjasin et al. who merged antagonistic genotypes (Gly/Gly 
+ Ser/Ser) into a single reference group, which may introduce bias 
(Tharabenjasin et al., 2019). First, because genotype frequencies sum 
to 100%, the beneficial effect of the Gly/Gly genotype will necessarily 
reduce the proportions of the remaining genotypes in athletes. Thus, 
a lower frequency of Gly/Ser in athletes relative to controls cannot 
be interpreted as evidence that it is disadvantageous; it may instead 
reflect the dominance of Gly/Gly genotype. Second, combining 
opposite-effect genotypes (Gly/Gly + Ser/Ser) distorts the baseline 
of the reference group. For instance, if the Gly/Ser genotype has 
an enhancing or neutral effect on athletic performance, the Gly/Gly 
genotype is significantly more frequent in athletes than in controls, 
and the Ser/Ser genotype is slightly less frequent. Consequently, 
the combined frequency of Gly/Gly + Ser/Ser genotypes may be 
higher in athletes than in controls. This results in the frequency 
of the Gly/Ser genotype in athletes appearing relatively lower 
than in controls. Alternatively, if the Gly/Ser genotype has a 
detrimental effect on athletic performance and the frequency of 
Gly/Gly + Ser/Ser genotypes is lower in athletes than in controls. 
This results in the frequency of the Gly/Ser genotype in athletes 
appearing relatively higher than in controls. Therefore, to avoid 
confounding effects arising from the opposing influences of Gly/Gly 
and Ser/Ser genotypes, the present study separately compared 
Gly/Gly versus Gly/Ser, Gly/Ser versus Ser/Ser, and Gly/Gly versus 
Ser/Ser to reevaluate the impact of the Gly/Ser genotype on athletic 
performance. Furthermore, as noted by Chen et al., the study by 
Tharabenjasin et al. incorporated duplicate genotype data from 
overlapping populations (Chen et al., 2019), further underscoring 
the need for a re-evaluation of this topic.

This meta-analysis has several limitations. First, due to the 
scarcity of studies on the PPARGC1A Gly482Ser polymorphism 
in Asian populations, particularly among power athletes, our 
findings are primarily applicable to Caucasians. Second, although 
we dichotomized athletic disciplines into “power” and “endurance” 
groups for this meta-analysis, this approach may oversimplify the 
complex physiological demands of different sports. Additionally, 
we observed high heterogeneity in some of the analyzed groups. 
Despite conducting subgroup analyses by ethnicity and genotyping 
method, the sources of heterogeneity could not be definitively 
identified. Finally, due to the unavailability of comprehensive 
individual data from the included studies, we were unable to 
perform sex-based subgroup analyses. This represents a critical 
shortcoming, considering that sex exerts a profound influence 
on both gene expression and athletic performance phenotypes 
(Singh et al., 2018; Senefeld and Hunter, 2024; Hunter et al., 2023). 
For instance, Mägi et al. reported that the ACE ID and ACTN3 
RR genotypes were significantly associated with elite male skier 
status in a longitudinal cohort, but no such association was observed 
in females (Mägi et al., 2016).

Our findings suggest that the Gly/Gly genotype of the 
PPARGC1A Gly482Ser polymorphism may represent a candidate 
genetic marker associated with elite athlete status in Caucasians. 
Therefore, screening for the Gly/Gly genotype in youth talent 
identification and elite athlete development programs could 
contribute to a more scientific evaluation of genetic predisposition
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and optimize the allocation of training resources. These findings 
provide strong evidence for the role of genetics in athletic 
performance. Meanwhile, the lack of a significant association in 
Asian endurance athletes highlights the need for population-specific 
approaches in genetic profiling. To improve the accuracy of talent 
identification, we recommend integrating this marker with other 
sports-related genes into polygenic scores.

In conclusion, the association between the PPARGC1A
Gly482Ser polymorphism and elite athlete status appears 
population-specific. In Caucasians, the Gly/Gly genotype of the 
PPARGC1A Gly482Ser polymorphism was associated with an 
increased likelihood of achieving elite athlete status, whereas the 
Gly/Ser and Ser/Ser genotypes showed no significant association 
with elite endurance athlete status and were associated with a 
lower likelihood of achieving elite power athlete status. In Asians, 
no significant association was observed between the PPARGC1A
Gly482Ser polymorphism and elite endurance athlete status. The 
Gly/Gly genotype is associated with a lower likelihood of achieving 
elite power athlete status, whereas the Gly/Ser and Ser/Ser genotypes 
show no significant association with elite power athlete status. In this 
meta-analysis, we resolve methodological limitations in a previous 
meta-analysis (Tharabenjasin et al., 2019), thereby providing a 
more accurate evaluation. Future studies should enroll diverse 
ethnic cohorts, report data stratified by sex and conduct functional 
experiments to elucidate how the PPARGC1A polymorphisms 
modulate energy metabolism and athletic performance.
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