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Objectives: Both sleep deprivation (SD) and light at night have negative effects
on human health and performance. The aim of our work was to compare the
intermediate effects of total SD under two lighting conditions: fullindoor lighting
and darkness mimicking natural nocturnal wakefulness.

Methods: We examined melatonin levels during SD nights, locomotor activity
and peripheral temperature rhythms, cognitive performance, mood, hunger,
glycaemia and food preference after SD and recovery sleep. Statistical evaluation
included ANOVA with FDR correction and confidence intervals.

Results: SD transiently altered peripheral temperature rhythm and post-
SD activity, with faster resynchronisation after SDin darkness. Subjective
sleepiness increased after SD, with light at night alleviating morning sleepiness.
Positive affect decreased after SD but normalised after recovery sleep in both
groups. Negative affect worsened in the morning after SD in darkness. Cognitive
performance declined after SD, but this effect was higher after SD in darkness.
Preprandial glycaemia was higher after recovery sleep following SD in darkness,
and sweet taste preference was significantly higher after SD in darkness.
Conclusion: Light exposure during SD may lead to lower subjective sleepiness
and better cognitive performance the next morning compared to SDin
darkness. However, light during SD also causes more pronounced and persistent
disruptions to circadian rhythms of temperature and activity. This underscores
the trade-off between the short-term benefits of nocturnal light exposure and
its potential long-term impacts on circadian health.

circadian clock, cognition, light at night, melatonin, sleep deprivation, taste preference
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1 Introduction

Total sleep deprivation (SD) significantly increases the risk
of accidents by impairing cognitive functions such as alertness,
attention, memory, reaction time, and decision-making leading to
errors in activities like driving and operating machinery. It also
disrupts mood, socio-emotional functioning (Groeger et al., 2022)
hunger, appetite, and subjective food preferences (Liu et al., 2022).

SD arises from factors like work demands, lifestyle choices,
environmental conditions, chronic medical issues (e.g., persistent
pain or diabetes), and mental health conditions such as
chronic stress or depression (Liew and Aung, 2021). Previous
work has shown that morning alertness can be affected by
modifiable factors such as prior physical activity and meal
composition (Vallat et al., 2022). However, a notable distinction lies
in the presence or absence of nocturnal light. Sleep deprivation in
illuminated environments, such as in a hospital or care facility, may
have distinct physiological and behavioural consequences compared
to wakefulness in darkness.

Research in recent decades has focused on the effects of
nocturnal light on the circadian system. Disrupted circadian
function is associated with metabolic disorders, cardiovascular
diseases, and impaired mental health (Walker et al, 2020;
Meléndez-Fernandez et al., 2023). Laboratory studies show that
light, particularly with high blue spectral content, delays sleep
onset, enhances attention, and affects cognitive performance
(Gumenyuk et al., 2012; Smotek et al., 2020; Cajochen et al., 2022;
Sunde et al.,, 2022). A specific effect of nocturnal light, but not
SD, is the suppression of pineal melatonin synthesis, regulated
by the suprachiasmatic nucleus (SCN) to occur at night and in
darkness. Once produced, melatonin circulates via the bloodstream
and cerebrospinal fluid, aiding circadian rhythm synchronization
with the solar cycle (Amaral and Cipolla-Neto, 2018). SD does
not directly suppress melatonin production, but light exposure
at night, especially with greater melanopic efficacy, significantly
suppresses melatonin synthesis within minutes (Gooley et al., 2011).
Typical indoor lighting (>300 lux) and even much dimmer
light (~6 lux) can suppress melatonin in some individuals
(Phillips et al., 2019; Cain et al., 2020).

Both  SDand
thermoregulation

circadian  disruption can  influence

and activity patterns, typically assessed
non-invasively via actigraphy and distal skin temperature,
which reflect circadian phase and sleep-wake stability
(van Marken Lichtenbelt 2006; 2007).
addition, impact metabolic function and

food-related behaviour. Experimental studies show that total

et al, Kriauchi, In

both conditions

or partial SD increases hunger and preference for calorie-
rich, sweet foods (Benedict et al, 2012; Greer et al, 2013),
while circadian misalignment alters glucose metabolism and
subjective appetite (Scheer et al., 2009; McHill et al., 2022).
Since exogenous melatonin may reduces appetite under nocturnal
light exposure (Albreiki et al, 2022), we hypothesised that
light during SD may similarly modulate post-deprivation food
preferences.

Although light at night and SD often co-occur, their
physiological effects are rarely disentangled. Most studies on SD are
conducted under light, while circadian studies on nocturnal light
usually involve partial or total sleep loss. This overlap complicates
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interpretation and may obscure distinct effects on circadian
regulation, cognition, and behaviour. To address this, we compared
the immediate and medium-term effects of total SD under
either indoor-like lighting or darkness. We evaluated cognitive
performance, mood, hunger, and food preferences following SD and
after recovery sleep (RS). Actigraphy was used to assess changes in
movement activity days before and after SD, alongside peripheral
temperature rhythm profiles. A homogenous cohort of military
cadets allowed us to minimise interindividual variability in age,
body composition, and general health status—factors that often
confound findings in sleep and circadian research in humans.

2 Participants and methods
2.1 Participants

Eighteen healthy male military cadets (Military Department
of Charles University) participated in the study (age 24.1 +
3.0 years, height 181.5 + 6.3 cm, weight 79.3 + 83kg). All
were enrolled in Master’s or early-stage PhD programmes and
had no prior operational service. Inclusion criteria required
no diagnosed psychiatric or neurological disorders, no sleep-
affecting medications, and no shift work for at least 1 year.
Participants followed a shared daily schedule, resulting in a
consistent sleep—wake routine across the cohort. All 18 volunteers
underwent sleep deprivation under light conditions (SD/L group),
and 12 also participated in sleep deprivation under constant
darkness (SD/D group; all abbreviations are defined in Table 1).
The Ethics Committee of the National Institute of Mental Health
in the Czech Republic (ref. 176/20) approved the study, adhering to
ethical standards. Written informed consent was obtained following
the Declaration of Helsinki.

2.2 Experimental design

We conducted a repeated-measures study at the National
Institute of Mental Health’s sleep laboratory to assess the effects of
~39 h of total SD. The study had two experimental phases (February
and November) involving SD/L and SD/D groups, respectively, each
lasting 4 days (Figure 1).

One week before the start of the protocol, participants were
familiarized at the Faculty of Physical Education and Sports, where
they learned about the study design, tests, and ethics, and provided
informed consent. They were instructed to avoid alcohol for
1 week and caffeine for 48 h before each phase. Physical behaviour
and peripheral temperature were monitored using actigraphs
and sensors, starting 1 week before and continuing 1 week after
each phase.

Subjects arrived at the sleep laboratory on Thursday (day
A) at ~6 p.m., completed health questionnaires, and familiarized
themselves with the lab and test protocols. They received task
instructions and practiced to minimise learning effects. Baseline
testing began with uninterrupted sleep (10:00 p.m. to 6:30 a.m.). On
Friday (day B, before SD), participants underwent morning testing
(7:30-9:30 a.m.) and evening testing (7:00-9:00 p.m.), with saliva
sampling from 10 a.m. on Friday to Saturday after SD (Figure 1).
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TABLE 1 Abbreviations and their definitions used in the study. This table
provides a comprehensive list of abbreviations used throughout the
manuscript, arranged in alphabetical order alongside their
corresponding definitions.
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TABLE 1 (Continued) Abbreviations and their definitions used in the
study. This table provides a comprehensive list of abbreviations used
throughout the manuscript, arranged in alphabetical order alongside
their corresponding definitions.

Abbreviation  Definition Abbreviation  Definition ‘
BD Before deprivation Mo/AD/L Monday after Sleep deprivation - light conditions
BE Before Sleep deprivation in the evening Mo/BD Monday before Sleep deprivation
BE/D Before Sleep deprivation in the evening - dark conditions R Recovery phase, after recovery sleep
BE/L Before Sleep deprivation in the evening - light conditions RA Relative amplitude
BM Before Sleep deprivation in the morning RAB/D Recovery day after breakfast - light conditions
BM/D Before Sleep deprivation in the morning - dark conditions RAB/L Recovery day after breakfast - dark conditions
BM/L Before Sleep deprivation in the morning - light conditions RBB/D Recovery day phase before breakfast - dark conditions
D1-D5 First day after SD (D1) and the following days (D2-D5) RBB/L Recovery day phase before breakfast - light conditions
DIAB/D D1 after breakfast - dark conditions RM Morning after recovery sleep
DI1AB/L D1 after breakfast - light conditions RM/D Morning after recovery sleep - dark conditions
D1AD/D D1 after dinner - dark conditions RM/L Morning after recovery sleep - light conditions
D1AD/L D1 after dinner - light conditions SD/D Sleep deprivation - dark conditions
D1AL/D D1 after lunch - dark conditions SD/L Sleep deprivation - light conditions
DIAL/L D1 after lunch - light conditions
D1BB/D D1 before breakfast - dark conditions
During the SD night (Friday-Saturday), the SD/L group was
DIBB/L D1 before breakfast - light conditions exposed to constant LED light (~2700 K; ~500 lux; ~240 melanopic
) i horizontal plane), engaging in passive activities
DI1BD/D D1 before dinner - dark conditions hux, measured in the P . ) gaging mn p
such as board games, TV, and reading in a common room. The SD/D
DIBD/L D1 before dinner - light conditions group remained in darkness, occasionally using red headlamps
(640 nm, 0.8-1 W/m?) while conversing and listening to audio.
DIBL/D D1 before lunch - dark conditions Both sessions were supervised to prevent napping or daytime
DIBL/L DI before hunch - light conditions sleep, and participants remained on the institution’s premises
throughout the day.
DIE D1 in the evening On Saturday (day DI), participants completed two test
sessions, identical to Friday’s. Recovery sleep occurred on Saturday
DLE/D D1in the evening - dark conditions night (~10:00 p.m. to spontaneous awakening on Sunday).
DIE/L DI in the evening - light conditions Final tests were conducted Sunday morning before participants
departed with actigraphs and sensors to continue monitoring
DIM D1 in the morning for 1 week.
Throught the entire study protocol, participants received
DIM/D Dlin the morning - dark conditions personalized daily rations of standard Czech military “ready-
DIM/L D1 in the morning - ight conditions to-eat” meals. No additional food intake was allowed. Body
composition was measured 1 week before the experiment using
v Intra-daily variability air displacement plethysmography (Bod Pod Body Composition
System; Life Measurement Instruments, Concord, CA). Total daily
L5 The leastactive five-hour period energy expenditure was calculated based on resting metabolic rate
M10 The most active ten-hour period and an “active” physical activity factor of 1.6 (Conkright et al., 2021).
Water was consumed ad libitum, with meals scheduled at ~9:30 a.m.,
Mo/AD Monday after Sleep deprivation ~12:30 p.m., and ~5:30 p.m. daily. The experiment was conducted
in a standardised hospital environment with regulated temperature
Mo/AD/D Monday after Sleep deprivation - dark conditions and ventilation in compliance with institutional standards. The sleep

(Continued on the following page)
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laboratory is specifically adapted for chronobiological experiments:
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FIGURE 1

Schematic overview of the experimental design. Participants arrived on Thursday at 6 p.m. and departed on Sunday at 1 p.m. ® = 2-h interval. Only
scheduled personalized rations were provided throughout the protocol. SRT, Simple Response Time task; BD, days before deprivation; D1-D5, days

after deprivation; R, recovery day.
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FIGURE 2

The impact of SD and lighting conditions during SD on the diurnal
rhythm of salivary melatonin levels. Each point represents the mean of
12 values +standard deviation, with p-values indicating the results of
the RM two-way ANOVA.

all windows are fully sealed to prevent any intrusion of outdoor
light, no indicator lights are present in the rooms, and the
bathroom is equipped only with dim red illumination, the use
of which is monitored. Participants wore their own sleepwear
or athletic clothing, and no specific control over clothing layers
was applied.

2.3 Melatonin assay
Saliva samples were collected via passive drool on Friday before

SD at 10 a.m. and subsequently at 2 p.m., 6 p.m., 8 p.m., 10 p.m., 12
am., 2am,4am.,6am,8am,and 10 a.m. the next day. Samples
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were stored at —80°C and analyzed in duplicate using double
antibody RIA kits (Melatonin direct Serum/Plasma/Saliva RIA, IBL
International GmbH) following the manufacturer’s protocol. The
kit's analytical sensitivity was 0.3 pg/mL for saliva, with results
expressed in pg/mL.

2.4 Peripheral skin temperature
measurement

Wrist temperature was recorded every 15 min using iButton
DS1921H-F5 sensors (Maxim Integrated, United States), placed
on the non-dominant wrist above the radial artery and secured
in cotton sweatbands for optimal contact. Participants wore the
sensors continuously, except while bathing, for 2 weeks. Data were
downloaded via DS1402D-DR8 adapters (IDC, Spain) and analyzed
using iButton Viewer v.3.22. Values below 30 °C were excluded. A
24-h cosine function was fitted to the raw data, and averages from
5 days pre- and post-SD characterized circadian profiles and their
return to baseline.

2.5 Actigraphy

Activity/rest cycles were monitored using MotionWatch 8
actigraphs (Cambridge, Neurotechnology Ltd, UK) on the non-
dominant hand for 2 weeks. Data were analyzed with MotionWare
software. A 24-h cosine function was fitted to the raw data, and
averages from 5days pre- and post-SD characterized circadian
profiles and their return to baseline.

Non-Parametric Circadian Rhythm Analysis (NPCRA) assessed
the least active 5-h (L5) and most active 10-h periods (M10),
relative amplitude (RA; 0-1), and intra-daily variability (IV; 0-2) for
the Monday before and after the SD. Higher RA indicates greater
amplitude, while higher IV reflects greater fragmentation.
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FIGURE 3
The impact of SD and lighting conditions during SD on the diurnal rhythm of wrist skin temperature. The temperature values measured 5 days before
SD were averaged for the groups SD/L (BD, light orange lines and symbols) and SD/D (light blue lines and symbols) and compared with the averaged
temperature values for all participants measured on the first day after SD (D1, red or dark blue lines and symbols) and on the subsequent days (D2-D5).
Each point represents the mean of 12 values +standard deviation. p-values indicate the results of RM one-way ANOVA; g-values indicate significance
according to the Benjamini—Hochberg FDR correction. Inset: Parameters of circadian rhythms (mesor, amplitude, and acrophase) were compared.
Asterisks indicate significance according to one-way ANOVA with Tukey's multiple comparisons test.

2.6 Simple response time task (SRT)

Participants completed the SRT using the PEBL program,
responding to visual stimuli by pressing the space bar. Stimulus
timing ranged from 2 to 12s. Sessions lasted 10 min, conducted
twice daily (Figure 1). Reaction times were expressed as the session
median for analysis.

2.7 Questionnaires
The questionnaire battery included.

2.7.1 Morningness-eveningness questionnaire
(MEQ)

Evaluates circadian phenotype through 19 items, categorizing
chronotypes from extreme morning (70-86)
evening (16-30) (Horne and Ostberg, 1976).

to extreme

2.7.2 Stanford sleepiness scale (SSS)
Single-item scale rating sleepiness from one to 7 (Hoddes et al,
1973).

2.7.3 Positive and negative affect schedule
(PANAS)

Assesses emotional states through 20 descriptors rated on
a Likert scale (1

very slightly or not at all, 5

extremely)
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(Watson et al., 1988). Administered at 10 a.m. and 10 p.m. before
and after SD and post-recovery sleep (Figure 1).

2.7.4 Visual analogue scales (VAS) for assessment
of appetite sensations

Evaluates hunger and appetite, with responses recorded on
a 100 mm scale, measured before and after meals within a 5-
min window (Flint et al., 2000). To obtain the resulting score, the
distance between the left end and the participant's marker was
determined.

2.8 Blood glucose measurement

Glucose levels were measured using the FreeStyle Optium
Neo meter (range: 1.1-27.8 mmol/L; +0.2 mmol/L or +2%).
Measurements were taken before meal and 30 min postprandially
to capture glucose response peaks while maintaining experimental
continuity (Figure 1).

2.9 Data processing

The circadian rhythmicity of melatonin profile, peripheral
temperature and activity was analysed using cosinor analysis
defined by the equation: [Y = mesor + (amplitude®cos (2n* (X-
acrophase)/period] with a fixed period of 24 h. Cosinor p-values
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FIGURE 4

The impact of SD and lighting conditions during SD on the diurnal rhythm of activity. The activity values measured 5 days before SD were averaged for
the groups SD/L (BD, light orange lines and symbols) and SD/D (light blue lines and symbols) and compared with the averaged values for all participants
measured on the first day after SD (D1, red or dark blue lines and symbols) and on the subsequent days (D2-D5). Each point represents the mean of 12

values +standard deviation. p-values indicate the results of RM one-way ANOVA; g-values indicate significance according to the Benjamini—Hochberg
FDR correction. Inset: Parameters of circadian rhythms (mesor, amplitude, and acrophase) were compared. Asterisks indicates significance according

to one-way ANOVA with Tukey’'s multiple comparison test.

D3

D4

correspond to the zero-amplitude test, comparing a 24-h cosine
model with a horizontal line to confirm the presence of a rhythm.
Parameters of the cosine curve, mesor (the mid-value of the
cosine curve, representing a rhythm-adjusted mean), amplitude (the
difference between the peak or trough and the mean value of the
cosine curve), and acrophase (the time of peak value of the fitted
curve, representing the average time of high values in the data), were
calculated.

2.10 Statistics

Diurnal melatonin secretion profiles were analysed using two-
way repeated measures ANOVA (RM ANOVA), with time and
condition as factors. Circadian profiles of body temperature and
activity were analysed using one-way RM ANOVA followed by
multiple comparisons with BD as the reference group. Mesor, cosine
amplitude and acrophase were compared by one-way ANOVA
with Tukey’s multiple comparisons test. Data from NPCRA (L5,
M10, RA, IV), SRT, questionnaires, and glycaemia were analysed
by RM one-way ANOVA, with participant numbers adjusted to
available complete datasets for each condition (18 in SD/L, 12
in SD/D); direct SD/L vs. SD/D comparisons were based on the
12 participants who completed both conditions. All analyses were
supported by normality checks and non-parametric confirmation.
Effect size was expressed as R?, with values interpreted according
to Cohen’s guidelines: small effect (R* = 0.01-0.059), medium effect
(R? = 0.06-0.137), and large effect (R* = 0.14). Ninety-five percent

Frontiers in Physiology

0

confidence intervals (CI) for mean differences were obtained from
the output of the uncorrected Fisher’s LSD test; CIs not crossing zero
were considered to indicate statistical significance. The significance
threshold for all ANOVA analyses was set at p < 0.05. In all ANOVA
models involving both SD/L and SD/D groups, session or time of
day was treated as a within-subject factor, and lighting condition as
a between-subject factor. In analyses limited to a single group (e.g.,
circadian profiles), only the within-subject factor (day or time) was
included. All analyses were followed by false discovery rate (FDR)
correction using the Benjamini-Hochberg method with q = 0.1 as
the threshold for statistical significance. All statistical analyses were
performed using GraphPad Prism 10.4.1.

3 Results

We aimed to compare the immediate and medium-term effects
of SD under light and dark conditions. To support this comparison,
we structured the Results section into three domains: circadian
rhythms, cognitive performance, and metabolism/food intake.

3.1 Effect of lighting regime during SD on
circadian rhythms

The average MEQ score (53) indicated an intermediate
chronotype, ranging from 33 (one moderate evening chronotype)
to 63 (five moderate morning chronotypes).
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Melatonin secretion, highly sensitive to light, validated our
lighting conditions during SD. Figure 2 illustrates the mean
profiles for SD/L and SD/D groups. Cosinor model fit confirmed
a statistically significant 24-h rhythmicity for both profiles (p <
0.0001). Cosinor amplitudes were higher in SD/D (SD/L: = 6.535;
SD/D: = 28.35). The effect of light condition accounted for 13.9%
of the total variance (RM two-way ANOVA), which corresponds
to a medium-to-large effect size. The between-group difference was
statistically significant (F (10, 160) = 13.53; p < 0.0001; 95% CI of
difference: —19.44 to —8.42).
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Wrist skin temperature exhibited a circadian rhythm in both
SD/L and SD/D groups (cosinor model fit, p < 0.0001). A one-way
RM ANOVA (time x condition) revealed a significant interaction
effect (SD/L: F (2.869, 272.6) = 18.65, p < 0.0001, R* = 0.1641;
SD/D: F (3,546, 333,3) = 10.71, p < 0.0001, R? = 0.1023). Baseline
profiles showed no significant differences (Figure 3, panel BD).
In the SD/L group, temperature profiles differed from baseline
until day 5, whereas in SD/D, profiles aligned with baseline
by day 3 (full statistics, including mean differences, 95% ClI,
uncorrected p-values and FDR-adjusted g-values, are provided in
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FDR correction.

Supplementary Table S1). One-way ANOVA with Tukey’s multiple
comparisons test revealed that mesor variations were more
prominent than amplitude or acrophase changes (Figure 3, insets;
full statistics in Supplementary Table S2).

Actigraphy confirmed circadian rhythms in both groups
(cosinor model fit: p < 0.0001) with early afternoon acrophases.
A one-way RM ANOVA (time x condition) revealed a significant
interaction effect (SD/L: F (2,876, 135,2) = 5.328, p = 0.0020, R? =
0.7972; SD/D: F (3,900, 183,3) = 10.95, p < 0.0001, R? = 0.6896).
Baseline activity profiles were similar (Figure 4, panel BD). RM
one-way ANOVA detected differences in SD/L profiles until day 5;
in SD/D, profiles aligned with baseline by days 3-4 (full statistics,
including mean differences, 95% CI, uncorrected p-values and FDR-
adjusted g-values, are provided in Supplementary Table S3). Both
groups showed lower mesors post-SD, with reduced amplitudes
observed only in SD/L during the first 3 days. A phase delay in
acrophase occurred solely on DI in SD/L (Figure 4, insets; full
statistics in Supplementary Table S4).
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The parameters obtained from nonparametric circadian rhythm
analysis were compared between baseline Mondays (Mo/BD)
and post-SD Monday (Mo/AD) using RM one-way ANOVA.
Figures 5A,B shows no significant differences in L5 (RM one-
way ANOVA: F (2.640, 21.12) = 0.4632, p = 0.6875, R> =
0.055), M10 (F (1,749, 15,74) = 1.429, p 0.2668, R* =
0.1370; Figures 5D,E), or RA (F (2,321, 20,89) = 0.8330, p
= 0.4644; R* = 0.0847; Figures 5G,H) but a difference in IV
values (F (1,979, 17,81) = 3.541, p = 0.0477, R> = 0.2896;
Figures 5],K). Post-hoc analysis with Benjamini-Hochberg FDR
correction revealed a significant difference in IV between Mo/BD
and Mo/AD in the SD/L group (95% CI [0.0644, 0.8664], p =
0.0324, q = 0.0651; R? = 0.290; Figure 5]). The trend towards
significance for IV on post-SD Monday (Mo/AD) between groups
(95% CI [0.04873, 0.8897], p = 0.0694, q = 0.0723) likely
reflects pre-existing disparities in baseline IV values between
the SD/L and SD/D groups (Figures 5C,ELL; full statistics in
Supplementary Table S5).
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3.2 Effect of lighting regime during SD on
cognitive parameters

Subjective sleepiness, assessed via SSS, increased significantly
after SD nights in both SD/L (F (2.769, 47.07) = 32.21, p < 0.0001,
R* = 0.6546; Figures 6A,B) and SD/D (F (1.876, 20.64) = 25.13,
p < 0.0001, R? = 0.6955; Figures 6C,D) sessions. In both sessions,
sleepiness was higher compared to baseline and recovery day in
the morning and evening (Figures 6A,C). Between-session analysis
also showed a significant difference (F (4.219, 46.41) = 22.00, p <
0.0001, R? = 0.6667; Figures 6E,E,G). Differences between February
and November (BM/L vs. BM/D) were not statistically significant
(Supplementary Table S6B). Sleepiness levels were higher in the
SD/D group during the morning after SD (Figure 6E; full statistics,
including mean differences, 95% CI, uncorrected p-values and FDR-
adjusted g-values, are provided in Supplementary Table S6).

PANAS scores showed a significant decrease in positive affect
post-SD in both SD/L (F (3.089, 52.52) 23.70, p < 0.0001,
R? = 0.5823; Figures 7A,B) and SD/D (F (2.346, 25.81) = 12.34, p
<0.0001, R* = 0.5287; Figures 7C,D) sessions returning to baseline
after recovery sleep (Figures 7A,C). Between-session analysis also
showed a significant difference (F (2.666, 29.33) = 7.404, p = 0.0011,
R? = 0.4023), however, no baseline differences (BM/L vs. BM/D)
or group differences (SD/L vs. SD/D on D1) were observed with
Benjamini-Hochberg FDR correction (Figures 7E-G; full statistics,
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including mean differences, 95% CI, uncorrected p-values, and
FDR-adjusted q-values, are provided in Supplementary Table S7).
Negative affect did not change post-SD in SD/L and SD/D
groups (F (2.640, 44.87) = 2.334, p 0.0939, R* = 0.1207;
Figures 8A,B,D), but decreased after recovery sleep in the SD/D
group (F (2.112,23.23) = 3.889, p = 0.0330, R?=0.2612; Figure 8C).
Between-session analysis also showed a significant difference (F
(2.212, 24.33) = 4.010, p = 0.0279, R? = 0.2672), however, no
baseline differences (BM/L vs. BM/D) or group differences (SD/L
vs. SD/D on D1) were observed with Benjamini-Hochberg FDR
correction (Figures 8E-G; full statistics, including mean differences,

95% CI, uncorrected p-values, and FDR-adjusted q-values, are
provided in Supplementary Table S8).

SRT tests, conducted twice daily, showed significantly longer
reaction times in the SD/L group (F (2.580, 43.86) = 4.205, p
= 0.0141, R* = 0.1983; Figures 9A,B) and in the SD/D group (F
(2,561, 28,18) = 16,51, p < 0.0001, R? = 0.6002; Figures 9C,D).
Between-session analysis also showed a significant difference (F
(4.229, 46.52) = 5.673, p = 0.0007, R* = 0.3403). No baseline
differences were found between BM/L and BM/D or BE/L and BE/D.
However, a significant increase in SD/D reaction times, confirmed
by Benjamini-Hochberg FDR correction, suggests an effect of SD in
darkness (Figures 9E-G; Full statistics, including mean differences,
95% CI, uncorrected p-values, and FDR-adjusted q-values, are
provided in Supplementary Table S9).
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3.3 Effect of lighting regime during SD on
glycaemia and hunger sensation

Blood glucose levels, measured daily before breakfast, were
not significantly affected by SD in either session (RM one-way
ANOVA, all p > 0.05; Figures 10A,B). Similarly, no significant
changes were found for glycaemia after meal (Figures 10E,F).
However, before-meal glucose levels on RM differed significantly
(F (3.166, 31.66) = 3.036, p = 0.0411, R? = 0.2329; Figure 10D),
suggesting a delayed effect of lighting conditions during SD,
as no significant baseline differences between SD/L and SD/D
groups were found before meals. (Figures 10C,D,G,H; full post hoc
results, including mean differences, 95% CI, p- and g-values, are
provided in Supplementary Table S10).

(sweet,
piquant, greasy) were assessed using VAS. Hunger ratings
differed significantly from baseline on D1 and RM in both
sessions. SD did not affect sweet or salty preferences, though

Hunger and appetite for specific tastes salty,

piquant preference decreased post-recovery sleep in the SD/D
group. Greasy appetite increased after breakfast on D1 in the
SD/D group (Supplementary Table S11).

Baseline comparisons between SD/L and SD/D groups showed
no significant differences for hunger or taste preferences, except for
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salty taste (RM one-way ANOVA: BAD/L vs. BAD/D: p =0.0077, q =
0.0359). Differences in SD/L and SD/D groups (Figure 11) thus likely
reflect lighting conditions during SD. Sweet preference was higher
in SD/D, while salty preference was lower after lunch on D1 and
piquant preference decreased after recovery sleep. Greasy preference
was unaffected by lighting conditions (Full statistics, including
RM ANOVA main effects, FDR-adjusted post hoc comparisons
(Benjamini-Hochberg), and uncorrected Fisher’s LSD tests where
appropriate, are provided in Supplementary Table S12).

Exploratory correlations between circadian body temperature
rhythm parameters and affected outcomes identified a single FDR-
significant result: fasting glycaemia on the recovery day in the SD/L
group, which, however, did not correlate with the amplitude of the
activity rhythm (Supplementary Figure S1).

4 Discussion

This study aimed to compare the immediate and medium-
term effects of total SDin illuminated versus dark conditions.
Given that aberrant light exposure impairs melatonin production,
disrupts circadian regulation and affects brain regions involved
in emotion and mood control (Bedrosian and Nelson, 2017), we

frontiersin.org


https://doi.org/10.3389/fphys.2025.1732257
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Skalova et al.

10.3389/fphys.2025.1732257

The impact of SD and lighting conditions during SD on the SRT score. Scores were compared for the morning before SD (BM), the morning after SD
(D1M), and the morning after recovery sleep (RM; panels A, C), as well as for the evening before SD (BE) and the evening after SD (D1E; panels B, D).
Between-session comparisons of corresponding time points are shown in panels E-G. See Materials and Methods for details. p-values refer to the
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hypothesized that SD in darkness is less detrimental to circadian
regulation and melatonin production. To minimise disruption of
natural sleep, melatonin sampling was conducted only on SD nights.
As expected, melatonin profiles confirmed that nighttime light
significantly suppressed melatonin production compared to dark
conditions.

To assess the effects of light or dark during SD on the circadian
system, we monitored peripheral temperature 5 days pre- and post-
SD. Both conditions impacted these rhythms, but a faster return to
baseline was observed in the SD/D group. Comparing the circadian
parameters, we observed a notable increase in the mesor on D1
in the SD/D group and on D2 in the SD/L group, along with a
transient decrease in amplitude, reflecting higher daytime peripheral
temperature minima. Wrist skin temperature, inversely related to
core body temperature (CBT), rises during sleep to aid heat loss
(Krduchi and Wirz-Justice, 1994). Evening light slows this rise,
while morning light accelerates CBT rise and decreases peripheral
temperature (Te Kulve et al., 2016; Lok et al., 2022). Limited data
exist on how SD affects skin temperature in humans; however, recent
data in young men showed that 24-h SD did not alter whole-body
heat exchange or core temperature, indicating preserved central
thermoregulation (Koetje et al., 2025). To our knowledge, no delayed
effects of nocturnal light exposure or SD on thermoregulation have
been observed, except for reports linking increased slow-wave sleep
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during RS to higher body temperature (Dijk and Czeisler, 1993).
Thus our finding may guide further investigation of how nocturnal
light modulates peripheral thermoregulatory responses and their
circadian dynamics.

Peripheral temperature rhythm acrophase advanced on D1 in
the SD/L group, consistent with actigraphic recordings. Previous
studies, however, report phase delays in melatonin rhythm during
dim-light SD (Cajochen et al., 2003). Elevated serotonin levels
during SD, as shown in humans (Davies et al, 2014), may
explain the phase advances observed here, given serotonin’s role
in circadian clock advancement (Prosser, 2003). Although light
exposure throughout the night is not expected to cause a significant
phase shift according to the light phase response curve, it might
amplify SD effects beyond statistical thresholds. However, the
transient phase advance in activity rhythm might have a simpler
explanation: reduced activity in the hours before the 10 p.m. bedtime
during experiment could be interpreted as a phase advance in
sleep timing.

Following SD, decreased activity rhythm mesors reflected a
general reduction in activity levels. Amplitude reductions were more
pronounced in the SD/L group, aligning with prior findings on
light's additive effect during SD (Dijk et al., 2012). Activity and
temperature rhythms, as assessed by the two-way ANOVA, showed
deviations from baseline for up to five and 4 days, respectively,
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in the SD/L group, while the SD/D group normalized by D3/D4.
On D5, the activity rhythm again deviated from baseline, likely
reflecting changes in the participants’ daily routine, as suggested
by distinct activity patterns in the records. These findings show
that total SD disrupts circadian rhythms of body temperature and
physical activity, with SD in darkness enabling a faster return to pre-
SD rhythms. In contrast, circadian rhythms after SD in light remain
misaligned with pre-SD parameters even after 5 days.

SD negatively impacts cognitive function and mood regulation
(Killgore, 2010; Groeger et al., 2022; Malecek et al., 2023). In our
study, SD increased sleepiness and reduced positive affect in both
groups on D1, and also prolonged reaction times in the SRT test.
Notably, enhanced negative affect in the morning and prolonged
evening reaction times on D1 were observed only in the SD/D group.
Given that the slopes of most regression lines are comparable to
those in the SD/L group, the observed differences may partly reflect
the unequal group sizes in this comparison. Overall, these results are
consistent with previous reports indicating minimal effects of SD on
negative affect (Saksvik-Lehouillier et al., 2020; Stenson et al., 2021),
although recent studies report increased negative affect during
SDin individuals with late chronotypes (Cox et al, 2024).
Light at night, particularly high-CCT or bright light reduces
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sleepiness, enhances alertness and mood, and improves cognitive
performance (Miinch et al., 2016; Motamedzadeh et al., 2017;
Scheuermaier et al.,, 2018; Sunde et al., 2022). Consistent with
these findings, our results showed lower morning sleepiness and
better SRT performance in the SD/L group. Differences in positive
and negative affect scores between groups did not reach statistical
significance. Although the night-time activities were matched in
terms of arousal level, as participants in both SD/L and SD/D
were kept awake through conversation or engaging podcasts, we
acknowledge that even subtle differences in night-time stimulation
may influence next-morning sleepiness and SRT performance.

SD and circadian disruption are linked to metabolic issues and
obesity (Benedict et al., 2012; Greer et al., 2013; Liu et al., 2022;
McHill et al, 2022; Meléndez-Fernandez et al, 2023). In
particular, sleep restriction has been associated with a higher
likelihood of consuming sweet snacks (Nedeltcheva et al., 2009;
Heath et al., 2012), while simulated night shifts increased preference
for high-fat breakfast foods (Cain et al., 2015). Our data do
not show statistically significant evidence for increased sweet
preference after any SD sessions. Spicy preference rose before
dinner in the SD/L group and before breakfast on the recovery
day in the SD/D group, while fatty food preference rose only
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FIGURE 11
The impact of lighting conditions during SD on hunger and appetite. Scores were compared between SD/L and SD/D groups after SD before breakfast
(D1BB, RBB), before lunch (D1BL), before dinner (D1BD), after breakfast (D1AB, RAB), after lunch (D1AL), and after dinner (D1AD). See Materials and
Methods for details. p-values refer to the uncorrected results of the RM one-way ANOVA; g-values indicate significance after Benjamini-Hochberg
FDR correction.

after breakfast on D1 in the SD/D group. Nevertheless, our results
indicate heightened sweet cravings in the SD/D group compared
to SD/L, alongside a milder but decreasing trend in salty after
lunch in DI, and spicy cravings, particularly before and after
breakfast on the recovery day. Although no direct link between
taste preference and nighttime light exposure has been studied, the
sweet preference could stem from insulin disturbances, as seen in a
study on humans exposed to 100 lux of light at night during sleep
(Mason et al., 2022).

Glycaemia was not elevated after SD, consistent with findings
that sleep duration alone does not primarily determine glucose
metabolism (Kothari et al., 2021; Tsereteli et al., 2022). We did,
however, identified a small yet significant difference in preprandial
glycaemia levels between the SD/L and SD/D groups after RS. This
effect may relate to increased slow-wave sleep (SWS) during RS,
which has been associated with altered glucose and insulin dynamics
(Scheen et al., 1996; Van Cauter et al., 2008; Ukraintseva et al., 2020).
These findings suggest a connection between SWS and glucose
metabolism but do not explain the observed differences between
SD/L and SD/D groups. One possibility is a rebound effect
of melatonin suppression during SD, potentially influencing
insulin secretion and next-morning glucose levels (Martorina and
Tavares, 2023). If confirmed, this would suggest a delayed metabolic
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impact of nocturnal light exposure, despite its acute benefits for
vigilance and mood.

A limitation of our study is its exclusive focus on male
participants, necessitating caution when interpreting the findings
due to potential differences in the effects of SDon women,
particularly regarding metabolism (Markwald et al, 2013).
Additionally, the participant group was relatively homogeneous
in age, physical fitness, and lifestyle, which further constrains the
generalisability of the findings to broader populations. Another
limitation is that we did not assess cognition, sleepiness, or appetite
during the SD night. The study focused on next-day effects of
nocturnal wakefulness under different lighting conditions, as
overnight testing would have disrupted the protocol and was largely
unfeasible, especially where maintaining darkness throughout
the night was essential. However, a key strength of our design is
the homogeneity of the participant group, comprising similarly
aged, healthy men with comparable physical fitness and work
routines, all consuming a uniform, standardised diet. This approach
likely minimises variables that could confound the outcomes of
similar studies. Another limitation is the small sample size of 12
participants in the second phase, reflecting the inherent challenges
of sleep deprivation research, such as logistical complexity and
associated risks, which led to a 30% attrition rate after the first
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phase. However, the well-controlled repeated-measures design,
allowing for paired comparisons, helps mitigate this limitation and
supports the reliability of the observed effects despite the smaller
sample size.

Insufficient sleep, whether due to restriction or deprivation,
is increasingly common in modern society, negatively impacting
wellbeing and public health. Our findings suggest that light exposure
during SD was associated with lower subjective tiredness, reflected
in reduced morning sleepiness, faster SRT reaction times in the
morning on D1, and lower sweet cravings, compared to SD in
darkness. However, these immediate benefits must be weighed
against the potentially harmful effects on the circadian system, as
light exposure during SD prolonged the alterations in circadian
rhythms. While SD alone temporarily altered diurnal rhythms of
peripheral temperature and activity, these changes were more
pronounced and lasted longer under nocturnal light. The robustness
of these results is supported by converging outcomes across
ANOVA, FDR correction, and confidence interval analyses. Given
that a stable circadian system is vital for health, our study highlights
the trade-off between the short-term benefits and the medium-term
risks of nighttime light exposure.
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