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Background: Continuous-flow ventricular assist devices (VADs) have been 
widely adopted in clinical practice for the treatment of heart failure, but the effect 
of their non-pulsatile blood flow on microvascular circulation is still debated. 
Although VADs with a flatter H-Q curve are known to produce greater pulse 
pressure (PP), other hemodynamic performances have not been systematically 
compared and analyzed.
Methods: This study employed a lumped-parameter cardiopulmonary 
circulation numerical model to compare the hemodynamic responses of two 
continuous-flow centrifugal pumps: the Corheart 6 (flatter H-Q curve) and 
the HeartMate 3 (steeper H-Q curve). Comparisons were conducted across 
four distinct clinical scenarios: left heart failure, right heart failure, myocardial 
recovery and acute preload shifts. A quantitative assessment focused on arterial 
PP, peripheral organ perfusion, ventricular unloading, pump suction risk, and 
pump thrombosis risk.
Results: At the same average pump flow, pumps with a flatter H-Q curve, 
because of their higher sensitivity to preload, generated higher pump flow 
pulsatility and greater arterial PP, thereby creating hemodynamic conditions 
that may theoretically reduce risks associated with flow stasis. However, their 
ventricular unloading and peripheral organ perfusion were slightly inferior. When 
pump speed was increased, these pumps achieved ventricular unloading and 
peripheral organ perfusion comparable to those with steeper H-Q curves while 
simultaneously yielding even higher arterial PP. In contrast to the static condition, 
during dynamic events such as acute preload reduction caused by postural 
changes, VADs with a flatter H-Q curve are better able to maintain systemic 
perfusion pressure. When applied in right heart failure, right atrium implantation 
yields superior right ventricular unloading but lower pump flow pulsatility of 
both pumps.
Conclusion: The findings provide references for VAD developers and clinicians 
for the optimal design and utilization of blood pumps with different H-Q 
characteristics.
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heart FaiIure, hemodynamic, H-Q curve, lumped parameter model, ventricle assist 
device 

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1730883
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1730883&domain=pdf&date_stamp=
2026-01-08
mailto:yushunzhou@coretechmed.com
mailto:yushunzhou@coretechmed.com
mailto:zouliang4836744@163.com
mailto:zouliang4836744@163.com
https://doi.org/10.3389/fphys.2025.1730883
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1730883/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1730883/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1730883/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1730883/full
https://orcid.org/0000-0003-3844-5518
https://orcid.org/0009-0009-0259-9591
https://orcid.org/0009-0001-1424-7456
https://orcid.org/0009-0005-9739-074X
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Yang et al. 10.3389/fphys.2025.1730883

Introduction

The earliest ventricular assist devices (VADs) employed 
a pulsatile flow mechanism, mimicking physiological cardiac 
contraction and relaxation by synchronizing periodic volume 
changes with heartbeats. However, their substantial size and low 
reliability limited widespread clinical adoption (Feller et al., 2007; 
Garatti et al., 2008; Kamdar et al., 2009). In contrast, continuous-
flow VADs have become the primary choice for long-term 
circulatory support due to their smaller size, higher reliability, and 
fewer adverse events (Caccamo et al., 2011; Teutebe et al., 2020; 
Cusimano et al., 2021). Nevertheless, some studies have 
pointed out that their non-pulsatile flow can have detrimental 
effects on systemic and microvascular circulation, including 
inhibition of endothelial nitric oxide synthase, which can lead to 
vascular endothelial dysfunction and increased arterial stiffness 
(Bartoli et al., 2010; Khambadkone et al., 2003). Under prolonged 
continuous-flow support, this could elevate the risk of complications 
such as arteriovenous malformations and gastrointestinal bleeding.

To better approximate normal physiological characteristics, 
certain continuous-flow VADs have been designed with flatter H-
Q curves (Fang P et al., 2023; Motomura et al., 2020), enabling them 
to generate greater pump flow pulsatility and pulse pressure (PP). 
Bartoil et al. investigated the hemodynamic response to continuous-
flow (CF) and pulsatile-flow (PF) pumps in animal models and 
demonstrated that CF pumps impair the physiological pulsatility of 
hemodynamics during ventricular unloading, whereas PF pumps 
maintain more normative physiological values (Bartoli et al., 2010). 
The literature has established that reduced physiological pulsatility 
adversely affects both the macro- and micro-circulation, potentially 
causing vascular stiffening due to the suppression of endothelial 
nitric oxide synthase activity (Khambadkone et al., 2003). Several 
studies have investigated the impact of H-Q curve slope in 
continuous-flow VADs. Sénage et al. (2014) used an experimental 
model to simulate and compare the hemodynamic characteristics 
of an axial-flow pump (HeartMate II, HM II) and a centrifugal 
pump (VentrAssist, VTA). Their findings showed that, under the 
same total cardiac output (CO), support with HM II resulted 
in higher mean arterial pressure, lower left atrial pressure, and 
higher right atrial pressure, but also carried a higher risk of 
ventricular suction, which is consistent with the conclusion of 
study (Giridharan et al., 2015). Eleuteri et al. (2012) investigated 
differences in myocardial reverse remodeling between axial-flow 
and centrifugal pumps by measuring changes in left ventricular 
end-diastolic diameter (LVEDD) before and after implantation. 
The results indicated that patients supported by axial-flow pumps 
had smaller LVEDD and greater reductions in the biomarker 
associated with reverse remodeling. Graefe et al. (2019) found 
that pumps with flatter H-Q curves achieved higher peak flow 
rates and thus providing better ventricular unloading during 
exercise. Telyshev et al. (2019) used a lumped parameter model 
to compare the hemodynamic effects between VADs. At the same 
average pump flow, HeartWare demonstrated superior ventricular 
unloading, evidenced by a smaller ventricular stroke volume. This 
result differed from Sénage’s findings because HeartWare exhibited 
a flatter H-Q curve in low-flow regions and a steeper curve in 
high-flow regions compared to HM II.

These studies primarily focused on comparing the impacts 
of different H-Q curves between axial and centrifugal pumps on 
key hemodynamic parameters in patients with LHF. However, 
they did not extensively explore or quantitatively discuss the 
impact of parameters such as ventricular volume, ventricular 
pressure, arterial pressure, and pump flow on clinical safety (e.g., 
suction/thrombosis risk) and effectiveness (e.g., organ perfusion). 
In addition, VADs are also clinically used for treating right 
heart failure (RHF). Clinicians sometimes prefer right atrium 
(RA) implantation over right ventricle (RV) implantation, but 
clinical outcomes showed no significant differences in pump 
thrombosis rates or gastrointestinal bleeding (Maynes et al., 2020). 
However, a comparative analysis of the hemodynamics of these two 
implantation methods is lacking. Furthermore, the hemodynamic 
consequences of myocardial recovery and dynamic condition 
have not been systematically analyzed across different H-Q curve 
characteristics.

This paper aims to systematically compare and quantitatively 
evaluate the hemodynamic consequences of two representative, 
mainstream third-generation magnetic levitation centrifugal 
VADs—the Corheart 6 (flatter H-Q curve) and the HeartMate 3 
(steeper H-Q curve)—across four key clinical application scenarios 
to inform optimal VAD design and utilization: 

1. LHF with left ventricle (LV) implantation.
2. RHF with RA or RV implantation.
3. Myocardial recovery in both LHF and RHF scenarios.
4. Acute preload shifts.

Through a lumped parameter numerical hemodynamic 
model, this study will quantify the impact of different H-Q 
slopes on key clinical safety and efficacy indicators, including 
arterial pulse pressure (PPao), peripheral organ perfusion (MAP), 
ventricular unloading (ESP, EDV), pump suction risk (EDV, 
PIVAD), and pump thrombosis risk (PIVAD). This systematic 
and quantitative comparison is intended to fill the gaps in 
the existing literature and provide direct reference for current
clinical practice.

Methods

Mathematical model of cardiovascular 
system

A numerical model of the cardiovascular circulation system 
was employed for simulation experiments, with its construction 
referencing existing literature (Liu et al., 2020; Korakianitis 
and Shi, 2006; Hall and Hall, 2011; Westerhof et al., 2009; 
Pant et al., 2018). These data and waveforms in our article are 
all consistent with hemodynamic information in the Textbook of 
Medical Physiology and Guyton and Hall Textbook of Medical 
Physiology (Liu et al., 2020). As shown in Figure 1, the model 
consists of the left heart, right heart, systemic circulation, and 
pulmonary circulation. The arterial system is modeled using the 
Windkessel model. In this model, all pressure variables are defined as 
transmural pressures (the difference between internal and external 
chamber pressures), and the potential physiological effects of 
pericardial constraint on the heart chambers are not considered.
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FIGURE 1
Lumped parameter models of circulatory system with VAD implantation in different heart chambers. In the numerical model, Dmiv, Daov, Dtiv and Dpav

represent mitral, aortic, tricuspid, and pulmonary valves, respectively; R, L and C denote resistance, inertance and compliance, P and Q denote pressure 
and flow rate, lv, la, rv, and ra denote left ventricle, left atrium, right ventricle, and right atrium; sas, sat, pas, and pat represent the aortic sinus, aorta, 
pulmonary sinus, and pulmonary artery, respectively; sar, scp, par, and pcp represent systemic arteries, systemic capillaries, pulmonary arterioles, and 
pulmonary capillaries; and svn and pvn denote systemic veins and pulmonary veins.

The heart is equivalently represented as a chamber with time-
varying elastance during the cardiac cycle (Suga and Sagawa, 1974; 
Karimov et al., 2020; Simaan et al., 2009; Stergiopulos et al., 1996). 
Ventricular elastance is defined as the ratio of ventricular pressure 
to volume, which is the reciprocal of capacitance:

Elv(t) =
1

Clv(t)
=

Plv(t)
Vlv(t) −Vlv,0

(1)

Erv(t) =
1

Crv(t)
=

Prv(t)
Vrv(t) −Vrv,0

(2)

In Equations 1, 2, Elv(t) and Erv(t) are the time-varying 
elastances of the LV and RV, and Clv(t) and Crv(t) are the time-
varying compliances of the LV and RV. Plv(t) and Prv(t) and V lv(t) 
and V rv(t) are the pressures and volumes of the LV and RV, 
respectively. V lv,0(t) and V rv,0(t) are theoretical volumes of LV and 
RV at zero pressure, respectively.

Elv(t) = (Emax ,lv −Emin ,lv)En,lv(tn) +Emin ,lv (3)

Erv(t) = (Emax ,rv −Emin ,rv)En,rv(tn) +Emin ,rv (4)

In Equations 3, 4, Emax,lv and Emin,lv are left ventricular 
end-systolic elastance and left ventricular end-diastolic elastance, 
respectively, and Emax,rv and Emin,rv are right ventricular end-systolic 

elastance and right ventricular end-diastolic elastance, respectively. 
En,lv(tn), En,rv(tn) are normalized ‘double-Hill’ function expressions, 
which define the steepness and shape of the curve. The same 
normalized elastance formula is used for both ventricles since the 
activities of the LV and RV are synchronized.

Valve

The heart valves were simplified as ideal diodes in the model 
to ensure unidirectional blood flow (Korakianitis and Shi, 2006). 
While this approach is standard practice in lumped-parameter 
models, its primary limitation is the inability to simulate valve 
regurgitation. Nevertheless, this simplification remains effective for 
assessing the relative hemodynamic impact of VAD support on 
ventricular unloading. The opening and closing of the aortic valve is 
controlled by the pressure difference between the LV and the aorta:

Qaov =
{{
{{
{

350 ·ARaov · √Plv − Psas, Plv ≥ Psas

350 ·ARaov · √Psas − Plv, Plv < Psas

(5)

Qmiv =
{{
{{
{

400 ·ARmiv · √Pla − Plv, Pla ≥ Plv

400 ·ARmiv · √Plv − Pla, Pla < Plv

(6)
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FIGURE 2
H–Q curves of C6 and HM3 continuous-flow centrifugal pumps at different rotational speeds (operating speed ranges: 2200–4300 rpm for C6 (Fang P 
et al., 2023), 3000–9000 rpm for HM3 (Zayat et al., 2019)).

where Qaov and Qmiv are the flow rates through the aortic and mitral 
valves, Plv, Psas, and Pla are the pressures of the LV, aortic sinus, and 
left atrium, respectively, and the valve opening parameters ARaov and 
ARmiv switch between 0 and 1:

ARaov =
{
{
{

1, Plv ≥ Psas

0, Plv < Psas

(7)

ARmiv =
{
{
{

1, Pla ≥ Plv

0, Pla < Plv

(8)

 

Ventricular assist device

This study compared the hemodynamic effects of C69 and HM3 
(Meissner et al., 2023; Abbott, 2025). As depicted in Figure 2, the C6’s 
H-Q curve consistently remains flatter than that of the HM3 across 
the entire operational flow range. The H-Q characteristic curve of the 
pump is expressed using the following equation. The fitting process 
was performed using the least squares method, and the coefficient 
of determination R2 was used to evaluate the goodness of fit to the 
original data:

H = a∗Q2 + b∗Q∗w+ c∗w2 (9)

Where H is the pump head (mmHg), Q is the pump flow rate 
(L/min), w is the pump rotational speed (rpm), and a, b, and c
are coefficients related to the rotary pump and obtained through 
least-squares fitting. Table 1 presents the fitting coefficients for the 
characteristic curves of the two pumps.

TABLE 1  Pump H-Q characteristic curve fitting parameters.

Pump a, mmHg
min/L

b,
mmHg
min2/L2

c,
mmHg
min2/L2

R2

C6 −1.552 1.125e-03 8.319e-06 0.9988

HM3 −2.431 9.467e-04 3.399e-06 0.9954

Simulation cases

The different simulation experiments were conducted in 
MATLAB Simulink. The ode45 solver was employed for solving the 
system of equations. The time step was set to 0.001 s. All simulation 
durations were set to 60 s with the system achieving a stable periodic 
solution after approximately 10 s. The stable results from the 58 s to 
the 60 s were selected for analysis across all simulated conditions.

Table 2 lists the key parameters used in the numerical model, 
all parameters of the hemodynamic model were set according to 
published literature (Liu et al., 2020; Korakianitis and Shi, 2006; 
Hall and Hall, 2011; Westerhof et al., 2009; Pant et al., 2018), and 
identifiability and robustness of the model has been examined, 
ensuring that the simulated hemodynamic results aligned with 
physiological characteristics. The R elements represent the 
microvascular resistance of the vascular system, and the C elements 
represent the elasticity or volume buffering capacity of the vascular 
walls. The combined action of the R and C elements constitutes the 
Windkessel effect, which determines the pulsatility of the arterial 
pressure waveform. The severity of heart failure (HF) was then 
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TABLE 2  Key model parameters inital value.

Parameter Value Unit

Rsat 0.0398 mmHg·s/mL

Lsat 0.0005 mmHg·s2/ml

Csat 0.08 mL/mmHg

Elv,max 2.19 mmHg/mL

Elv,min 0.04 mmHg/mL

Ela,max 0.25 mmHg/mL

Ela,min 0.15 mmHg/mL

Erv,max 0.84 mmHg/mL

Erv,min 0.04 mmHg/mL

Era,max 0.25 mmHg/mL

Era,min 0.15 mmHg/mL

Vlv,0 450 ml

Vrv,0 400 ml

Rpat 0.005 mmHg·s/mL

Lpat 0.0005 mmHg·s2/ml

Cpat 0.6 mL/mmHg

R, L and C denote resistance, inertance and compliance, E denote elasticity, lv, la, rv, and ra 
denote left ventricle, left atrium, right ventricle, and right atrium; sat and pat represent the 
aorta and pulmonary artery, respectively.

modulated by adjusting the maximum ventricular elastance (Emax), 
with a lower elasticity indicating more severe HF. To isolate the 
hemodynamic effects of the different H-Q curve characteristics 
and avoid different volumetric support as a confounding factor, 
the RPM of both pumps were adjusted to achieve an identical 
mean pump flow.

Case 1: Left heart failure, VAD inflow cannula implanted in the 
left ventricle.

The numerical model is established by adjusting Emax,lv from a 
healthy value of 2.19 mmHg/mL to 1.25 mmHg/mL, with Emax,rv
from a healthy value of 0.84 mmHg/mL to 0.55 mmHg/mL. 
According to the literature (Desai et al., 2011), mild RHF is a 
common complication of LHF.

Case 2: Right heart failure with healthy left heart, VAD 
inflow cannula individually implanted in the right ventricle and 
right atrium.

The numerical model adjusts Emax,rv from a healthy value of 
0.84 mmHg/mL to 0.3 mmHg/mL.

Case 3: Myocardial recovery.
The elasticity of ventricular was increased in both Case 1 and 

Case 2. Specifically, Emax,lv was increased from 1.25 mmHg/mL 
to 2.0 mmHg/mL with the Emax,rv from 0.55 mmHg/mL to 
0.84 mmHg/mL in Case 1 and Emax,rv was increased from 

0.3 mmHg/mL to 0.6 mmHg/mL in Case 2, indicating a partial 
recovery of cardiac function.

Case 4: Acute Preload Change Simulating Postural Hypotension.
The systemic venous compliance Csvn was acutely increased 

from 20.5 mmHg·s/mL to 30 mmHg·s/mL. Based on previously 
published literature (Tyberg and Douglas, 1996), this systemic 
adjustment of the Csvn parameter serves to simulate the 
redistribution of blood volume between the central and peripheral 
circulations caused by postural changes (e.g., transition from 
supine to upright position), thereby inducing an acute change in 
cardiac preload.

The following variables were evaluated in these test cases:
LVESP, RVESP: Left, right ventricular end-systolic 

pressure, mmHg.
LVEDP, RVEDP: Left, right ventricular end-diastolic 

pressure, mmHg.
LVESV, RVESV : Left, right ventricular end-systolic volume, mL.
LVEDV, RVEDV : Left, right ventricular end-diastolic 

volume, mL.
P-V loop: Ventricular pressure-volume loop.
SPAP: Systolic pulmonary artery pressure, mmHg.
DPAP: Diastolic pulmonary artery pressure, mmHg.
SAP: Systolic aortic pressure, mmHg.
DAP: Diastolic aortic pressure, mmHg.
PPao: Aortic pulse pressure, mmHg, calculated as follows:

PPao = SAP−DAP (10)

PPpa: Pulmonary aortic pulse pressure, mmHg, 
calculated as follows:

PPpa = SPAP−DPAP (11)

MAP: Mean aortic pressure, mmHg, calculated as follows:

MAP = 2 ·DAP+ SAP
3

(12)

MPAP: Mean pulmonary artery pressure, mmHg, 
calculated as follows:

MPAP = 2 ·DPAP+ SPAP
3

(13)

CCP: Coronary perfusion pressure, mmHg, using pressure 
gradient to assess (Nguyen et al., 2018).

CCP = DAP− LVEDP (14)

QAV: Aortic valve real-time flow, L/min.
QPV: Pulmonary valve real-time flow, L/min.
QAV,AVG: Mean aortic valve flow over one cardiac cycle, L/min, 

calculated as follows:

QAV,AVG = ∫
T

0
QAV dt (15)

where T is the duration of cardiac cycle, s, QVAD is VAD real-time 
flow, L/min, and QVAD,AVG is mean pump flow over one cardiac cycle, 
L/min, calculated as follows:

QVAD,AVG = ∫
T

0
QVAD dt (16)
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PIVAD is pump flow pulsatility index, physiologically reflects 
the pulsatility of VAD blood flow and serve as a surrogate marker 
for native heart contribution and systemic microcirculatory health, 
calculated as follows:

PIVAD =
QVAD,MAX −QVAD,MIN

QVAD,AVG
(17)

CO is total cardiac output, L/min, calculated as follows:

CO = QAV,AVG +QVAD,AVG (18)

Results

Case 1: Left heart failure, VADs implanted in the left ventricle.
The speed of the pumps was adjusted to achieve the same 

QVAD,AVG of 4.3 L/min, approximating full support flow. This 
corresponded to a C6 speed of 3200 rpm and an HM3 speed 
of 5200 rpm. Results were shown in Table 3 and Figure 3. 
Notably, the simulated hemodynamics of the HeartMate 3 in 
LHF scenario (5200 rpm, MAP 89.7 mmHg, pump flow 4.3 L/min) 
demonstrated close agreement with reported clinical measurements 
(Uriel et al., 2017; Montalto et al., 2019), confirming the model’s 
physiological fidelity.

In terms of perfusion, at the same average pump flow rate 
(4.3 L/min), the HM3, which has a steeper H-Q curve, achieved an 
MAP of 89.7 ± 0.3 mmHg and a CCP of 83.3 ± 0.5 mmHg. These 
values were 0.7 mmHg (0.8%) and 1.8 mmHg (2.2%) higher than 
those achieved by the C6 (MAP: 89.0 ± 0.2 mmHg; CCP:81.5 ± 
0.4 mmHg), respectively, indicating superior organ perfusion and 
coronary perfusion.

Regarding ventricular unloading, the PV loop (Figure 3a) 
demonstrates comparable LVESP (C6: 93.8 mmHg; HM3: 
93.9 mmHg), yet the HM3 exhibits a slightly lower LVEDV 
(108.1 mL versus 110.0 mL). Mechanistically, this difference is 
attributed to the HM3’s steeper H-Q curve (with a higher dH/dQ
ratio), which resulted in a smaller variation in pump flow from 
systole to diastole. While C6 generated a higher peak systolic flow 
(8.7 L/min compared to 7.2 L/min for HM3), its diastolic flow was 
nearly zero. In contrast, HM3 sustained a diastolic flow of 2.4 L/min, 
which contributed to the low LVEDV and more effective ventricular 
unloading. Conversely, regarding arterial PP, the C6 (with a flatter 
H-Q curve) was 11.6 ± 0.4 mmHg, which was significantly higher 
than that of the HM3 (8.6 ± 0.3 mmHg).

In terms of other hemodynamic-related complications, the C6 
maintained a higher LVEDV and exhibited greater PIVAD, making 
it less prone to ventricular suction during diastole and a lower 
risk of pump thrombosis (Fang P et al., 2022). Although third-
generation magnetic levitation pumps rarely experience intrinsic 
pump thrombosis (Nascimbene et al., 2024), there remains a 
possibility of externally introduced thrombi or tissue causing pump 
thrombosis during support. Greater pump flow pulsatility can more 
effectively flush near-wall flow passages and low-velocity regions 
within the pump (Fang P et al., 2022), thereby reducing the risk 
of spontaneous intrapump thrombosis or lodging and subsequent 
thrombosis of exogenous material within the pump. 
Case 2: Right heart failure with healthy left heart, VADs 
individually implanted in the right atrium or right ventricle.
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FIGURE 3
LHF, VAD implantation in the ventricle, hemodynamic characteristics under pump support and baseline conditions: (a) Left ventricular pressure-volume 
loop; (b) Right ventricular pressure-volume loop; (c) Aortic pressure curve; (d) Pulmonary artery pressure curve; (e) Pump flow curve; (f) Left ventricular 
pressure curve; LHF represents left heart failure baseline condition without VAD support; C6 represents the condition under Corheart 6 support; HM3 
represents the condition under HeartMate 3 support.

The VAD inflow cannula was connected to RA, and the pumps 
were adjusted to the same QVAD,AVG of 3.7 L/min. Results were 
shown in Table 4; Figure 4.

Hemodynamic parameter results revealed the following: MAP, 
MPAP, PPpa, RVESP, and RVEDP were comparable for both pumps, 
indicating similar organ perfusion, arterial PP and ventricular 
unloading. Concerning other hemodynamic-related complications, 
the C6 exhibited greater PIVAD, leading to better pump washout and 
a lower likelihood of suction events.

Subsequently, the VAD inflow was relocated from RA to RV. 
The pumps were again adjusted to the same QVAD,AVG of 3.7 L/min. 
The results, presented in Table 4; Figure 4, show that both pumps 
have comparable organ perfusion, and C6 shows less effective right 
ventricular unloading and a greater PPpa. Because the periodic 
variation of right ventricular pressure was greater than right atrial 
pressure, when implanted in RV, the diastolic pump flow of C6 
was lower than that of HM3, thereby reducing the right ventricular 
unloading. In terms of other hemodynamic-related complications, 
the C6 demonstrated greater flow pulsatility and was less prone to 
pump thrombosis and suction events. 
Case 3: Myocardial recovery. 

1. Left ventricular function recovery

Hemodynamic and pump flow characteristics are 
presented in Table 3, which shows increased CO, MAP and PPao 

while QVAD,AVG decreased. C6’s LVESV was slightly lower than 
HM3’s, whereas its LVEDV was slightly higher. This is because C6 
has a greater pump flow during systolic phase and a slightly smaller 
pump flow during diastolic phase. 

1. Right ventricular function recovery

The results were presented in Table 4. It was observed that pumps 
with varying H-Q curves exert distinct hemodynamic impacts based 
on their placement. For C6, RA implantation resulted in lower 
RVEDV and RVESV compared to RV implantation. This occurred 
because as right heart function recovers, the pressure gradient 
between DPAP and RVEDP is greater than that between DPAP 
and right atrial diastolic pressure. This leads to reduced diastolic 
pump flow during RV implantation. In contrast, for HM3, with its 
steeper H-Q curve, changes in pressure gradient have a less impact 
on pump flow. 
Case 4: Acute Preload Change Simulating Postural Hypotension.

An abrupt increase in Csvn at 28s (simulating a decrease in 
preload caused by postural change) resulted in a greater volume 
of blood being sequestered in the veins, thus reducing venous 
return. As shown in Figure 5, this reduction in venous return led 
to a sharp decrease in LVEDV for both pumps (C6: Δ22.87 mL; 
HM3: Δ20.71 mL), suggesting an increased risk of suction for both, 
with C6 showing a marginally greater LVEDV drop. The decrease 
in preload was followed by a reduction in aortic pressure. As the
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FIGURE 4
RHF with RA/RV VAD implantation, hemodynamic characteristics under pumps support and baseline conditions. (a) left ventricular pressure-volume 
loop; (b) Right ventricular pressure-volume loop; (c) Aortic pressure curve; (d) Pulmonary artery pressure curve; (e) Pump flow curve; RHF represents 
RHF baseline condition without VAD support; C6-RA/RV represents the RA/RV under Corheart 6 support; HM3-RA/RV represents the RA/RV under 
HeartMate 3 support.

reduced aortic pressure lowered the hydraulic head across the 
pump, distinct flow responses were observed between the two 
devices. Owing to its flatter H-Q characteristic, C6 exhibited an 
obvious increase in diastolic pump flow. In contrast, HM3 showed 
a more limited diastolic flow response. Despite the reduction in 
LVEDV, the C6 pump’s flatter H-Q curve resulted in a more 
pronounced increase in its diastolic flow. This compensatory 
mechanism enabled C6 to maintain systemic perfusion more 
effectively during the acute preload change, evidenced by a smaller 
decrease in MAP (C6: 89.1 mmHg–86.5 mmHg, Δ2.6 mmHg; HM3: 
90 mmHg–85.7 mmHg, Δ4.3 mmHg). 

Discussion

Under the same average pump flow, C6, with its flatter H-
Q curve, demonstrates greater sensitivity to changes in preload, 
generating stronger pump flow pulsatility and higher arterial 
PP(Pulse pressure). These hemodynamic characteristics may 
partially mitigate the adverse stimuli associated with continuous 
flow, which have been shown in previous studies to contribute to 
endothelial dysfunction. Moreover, under normal HR conditions 
(60–100 bpm), diastole is approximately twice as long as systole. 
Consequently, with the same average pump flow, the C6 directs more 
of its flow output toward systole compared to the HM3. As a result, 
the C6 shows slightly inferior performance in terms of peripheral 
organ perfusion (evaluated by MAP(Mean aortic pressure)) and 

ventricular unloading. However, when HR changes significantly, 
such as during exercise or arrhythmias, this difference may decrease 
or even be reversed. This is because the proportion of diastole in 
the cardiac cycle may drop significantly (potentially below 50%). 
Thus, the overall hemodynamic response primarily depends on the 
relative duration and actual pump flow within systole and diastole.

In RHF application scenario, a high pump flow can be generated 
even at low rotational speeds, requiring VAD design to avoid excessive 
pump flow at minimum operational speed. Further comparison of 
the same VAD implanted in RV or RA showed that RA implantation 
achieves better right ventricular unloading due to the higher diastole 
pump flow. However, compared to RV implantation, RA implantation 
results in slightly lower PPpa and pump flow pulsatility. 

Regardless of whether in LHF or RHF, during myocardial 
recovery scenario, total CO increases despite the pump flow 
decreases, indicating better organ perfusion. Therefore, in clinical 
practice, it is essential to monitor the cardiac function of patients 
receiving VAD support, particularly in cases of RHF. On one 
hand, PAP elevation must be monitored to prevent potential 
complications; on the other hand, as right heart function improves 
and pump flow naturally decreases, anticoagulation strategies 
should be promptly adjusted to prevent pump thrombosis.

To mitigate hemocompatibility-related complications, 
numerous studies recommend selecting pumps with flatter H-Q 
curves to achieve higher PP. Moreover, the enhanced flow pulsatility 
characteristic—manifested as lower flow during diastole and higher 
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FIGURE 5
Comparison of hemodynamics between C6 and HM3 under acute preload change due to postural shift.

TABLE 5  Hemodynamic and pump parameters of C6 and HM3 under LHF with healthy right heart when MAP is equal.

Pump RPM/
Rpm

ΔCOL/
min

MAP/
mmHg

PPao/
mmHg

CCP/
mmHg

LVESV/
ml

LVESP/
mmHg

LVEDV/
ml

Qav/
L/min

QVAD,AVG/
L/min

QVAD(PIVAD)/
L/min

MPAP/
mmHg

C6 3200 1.0 89.6 11.7 81.2 84.0 94.9 131.7 0.2 4.3 0–8.7(2.0) 22.4

HM3 5200 1.1 90.4 8.9 83 84.9 94.9 128.9 0.3 4.3 2.4–7.2(1.1) 22.5

C6 3240 1.1 90.4 10.4 82.7 82.3 93.7 128.9 0.1 4.5 0–8.71(1.91) 22.5

C6: Corheart 6; HM3: HeartMate 3; ΔCO, denotes the increment of cardiac output compared with the baseline (L/min); MAP: mean aortic pressure (mmHg); PPao: aortic pulse pressure 
(mmHg); CCP: coronary perfusion pressure (mmHg); LVESV : left ventricular end-systolic volume (mL); LVESP: left ventricular end-systolic pressure (mmHg); LVEDV : left ventricular 
end-diastolic volume (mL); Qav: aortic valve flow over one cardiac cycle (L/min); QVAD,AVG: mean pump flow over one cardiac cycle (L/min); QVAD(PIVAD): pump real-time flow (pump flow 
pulsatility index); MPAP: mean pulmonary artery pressure (mmHg).

flow during systole—contributes to a reduced risk of suction 
events and pump thrombosis. A lower thrombosis risk, in turn, 
allows for reduced anticoagulant dosage, thereby further decreasing 
non-surgical bleeding events.

Moreover, pumps with flatter H-Q curves exhibit heightened 
sensitivity to variations in both pre- and after-loads. As a result, they 
demonstrate slightly inferior ventricular unloading and lower MAP, 
and more prone to backflow when the pressure difference across the 
pump increases. Although researches have not yet precisely defined 
the exact effects of this backflow, careful control of the patient’s blood 
pressure is recommended when utilizing such pumps. However, 
these limitations can be mitigated by increasing the pump speed to 
achieve a higher average flow.

Table 5, Figure 6 illustrates an example from Case 1 where C6 
pump speed was increased by 40 rpm. This adjustment resulted in 

MAP and LVEDV values equivalent to those achieved by HM3. 
Notably, the PPao remained higher compared to the HM3, while 
LVESP and LVESV were lower. This demonstrates that the C6, 
while maintaining greater pulsatility, can achieve organ perfusion 
and ventricular unloading comparable to pumps with steeper H-
Q curves.

It should be noted that the relationship between speed elevation 
and hemodynamic improvement is not linear, as shown in Figure 7. 
Regardless of the H-Q curve type, the same magnitude of speed 
adjustment yields varying effects on hemodynamic parameters, 
depending on the pre-adjustment operating speed.

A notable and specific dynamic scenario is the acute preload 
change caused by postural variation. In this situation, pumps 
with a flatter H-Q curve demonstrate the capability to generate 
a greater diastolic flow, thereby maintaining effective perfusion 
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FIGURE 6
Comparison of hemodynamics between C6 and HM3 under LHF with healthy right heart, at equal MAP, but different average pump flow.

FIGURE 7
Left ventricular P-V loop and aortic pressure of C6 and HM3 at different speeds under LHF baseline.
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more efficiently during abrupt changes in preload. However, this 
characteristic simultaneously implies a higher risk of suction. Other 
dynamic clinical conditions, including physical exercise, acute pain, 
and transient arrhythmias, may likewise induce abrupt alterations 
in preload and/or afterload. These conditions will be systematically 
investigated in future work.

Our findings regarding the pulsatility and unloading 
performance associated with the H-Q curve are consistent in trend 
with prior in vitro and computational analyses of earlier VAD 
devices. However, the contribution of this study extends beyond 
these qualitative comparisons by providing the first systematic 
quantitative hemodynamic analysis of the two mainstream third-
generation magnetic levitation centrifugal pumps (Corheart 6 and 
HeartMate 3). Furthermore, this work addresses critical gaps in the 
existing literature through detailed analyses of clinically relevant 
scenarios that have previously lacked systematic comparative 
assessment, including the systematic comparison of RA versus 
RV implantation modes in RHF scenarios, and the assessment of 
VAD performance during the myocardial recovery stage. Finally, 
by quantifying the hemodynamic response of both designs under 
acute transient conditions (e.g., acute preload shifts), we enhance the 
understanding of the H-Q curve’s influence on clinical applications.

Limitation

This study has several limitations, which may lead to 
discrepancies between simulation results and actual clinical 
outcomes. Firstly, this model does not incorporate any physiological 
autoregulatory mechanisms, such as the baroreflex, which may 
affect the absolute predicted values of mean aortic pressure and 
pulmonary pressure, particularly in highly dynamic scenarios like 
the myocardial recovery phase. Our analysis therefore focuses on the 
relative differences and trends in performance between the Corheart 
6 and HeartMate 3 VADs under the controlled, fixed baseline 
conditions, rather than aiming for perfect predictive accuracy of the 
absolute systemic pressures. Secondly, the current model simplifies 
the complex fluid dynamics within the pump and the ventricle. The 
pulsatility index of VAD support (PIVAD) is used as a surrogate for 
flow-related thrombosis. While effective for comparative purposes, 
this do not fully capture the detailed shear stress and flow separation 
effects that contribute to thrombosis and hemolysis in vivo. In future 
work, we will incorporate physiological feedback model and couple 
the lumped parameter model with detailed Computational Fluid 
Dynamics (CFD) simulations in the pump and cardiac chambers. 
Furthermore, a significant limitation of our HM3 simulation is 
the exclusion of artificial pulse. The HM3’s artificial pulse is non-
synchronous, and the resultant hemodynamic effect would be highly 
dependent on the heart rate baseline, a complex dynamic variable 
whose detailed interaction with the control algorithm is not the 
central focus of this paper.

Conclusion

This study employed a numerical model of the circulatory 
system to investigate the hemodynamic characteristics of VADs with 
varying H-Q curve slopes across four distinct clinical scenarios. 

The findings indicate that under conditions of equal average pump 
flow, pumps with flatter H-Q curve exhibit lower diastolic pump 
flow and higher systolic pump flow. This generates greater pump 
flow pulsatility and a higher arterial PP, which can help reduce the 
risk of vascular malformations, as well as pump suction and pump 
thrombosis. However, their overall ventricular unloading and organ 
perfusion is slightly diminished. From a computational perspective, 
the results suggest that when utilizing pumps with flatter H-Q 
curves, maintaining a slightly higher average pump flow target may 
be beneficial to ensure adequate organ perfusion and ventricular 
unloading while preserving pulsatility.

In contrast to the static condition, during dynamic events 
such as acute preload reduction caused by postural changes, 
pumps with flatter H-Q curve exhibit improved preservation of 
systemic perfusion pressure, albeit at the expense of a greater 
reduction in LVEDV.

When applying the two types of H-Q curve pumps in RHF 
scenarios, the characteristic hemodynamic changes observed with 
RV implantation are analogous to those seen with LV implantation. 
Conversely, with RA implantation, both pump types exhibit similar 
hemodynamic performance due to the minimal preload variations. 
Comparing the results of implanting the same VAD in RA versus 
RV, RA implantation yields superior right ventricular unloading. 
However, this comes at the cost of lower pulmonary artery PP and 
reduced pump flow pulsatility. Furthermore, as cardiac function 
recovers from HF, an increase in PAP and a decrease in pump flow 
are observed. Consequently, meticulous attention to anticoagulation 
management is crucial.
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