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Introduction: Gut microbiota and metabolites play a crucial role in the 
progression of colorectal cancer. Over half of the CRC patients are at pT3 stage, 
the presence or absence of regional lymph node metastasis in pT3 patients 
significantly influences both treatment strategies and prognosis. However, the 
associations between these are not been revealed yet. It is crucial to gain a 
deeper insight into the mechanisms underlying the differences in gut microbiota 
and metabolites between pT3 CRCs with and without lymph node metastasis.
Methods: We processed 16S rRNA gene sequencing and ultrahigh-performance 
liquid chromatography–mass spectrometry in 70 pT3NxM0 CRC patients. 
In addition, transcriptomic data from TCGA were retrieved to assess 
RNA expression differences between the two groups for a comprehensive 
comparison. Finally, correlation analyses of microbiota, metabolome and 
transcriptomic data were performed to identify meaningful connections and 
mechanisms underlying lymph node metastasis.
Results: A total of 192 metabolites were different between the patients 
with and without lymph node metastasis; among these metabolites, 94 
upregulated different metabolites were enriched in biological processes 
of tumor progression. The gut microbiota of lymph node positive CRCs 
is characterized by increased abundances of cancer progression, such as
Proteobacteria. We identified 226 differentially expressed genes from TCGA-
CRC cohort, among which the upregulated genes were mainly involved in 
pathways of cancer progression, proliferation, migration, and invasion, while 
downregulated genes were significantly enriched in pathways of tyrosine 
metabolism and immunity. The cross-correlation analysis showed that the 
altered metabolites and genes were enriched in neuroactive ligand receptor 
interaction pathway.
Conclusion: Our study identified key microbiota and metabolites associated 
with lymph node metastasis in pT3 colorectal cancer, along with potential 
pathways and interactions implicated in the lymph node metastasis.
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1 Introduction

Colorectal cancer (CRC) is one of the most common and high-
risk malignant tumors in the world. Globally, the incidence and 
mortality rates of CRC rank third and second among malignant 
tumors, respectively. Each year, approximately 1.2 million cases are 
diagnosed, and more than 600,000 patients die from this disease 
(Mil et al., 2022; Bray et al., 2018). It’s worth noting that the incidence 
and mortality of CRC saw a rise in recently years due to changes 
in dietary habits (Chow et al., 2015), especially among younger 
individuals (Allen and Sears, 2019). The overall 5-year survival rate 
for CRC is around 60% according to related research (Siegel et al., 
2017), with lymph node metastasis being a crucial factor in 
tumor staging and significantly affecting the prognosis of CRC 
patients (Lykke et al., 2019; Fortea-Sanchis et al., 2018; Amri et al., 
2016). Numerous studies have reported that patients with lymph 
node metastasis tend to receive more aggressive treatment, poorer 
survival and higher recurrence rates compared to those with lymph 
node-negative (Böckelman et al., 2015; O’Connell et al., 2004; 
Jemal et al., 2008): CRC patients without lymph node metastasis 
have a 5-year overall survival rate as high as 80%–90%, whereas 
for those with metastasis, the rate is only 60%–68%. Notably, 
more than half of colorectal cancer patients are diagnosed at the 
pT3 stage (Foersch et al., 2022), making it the most prevalent pT 
stage among CRCs. Critically, lymph node metastasis status serves 
as a key determinant in therapeutic decision-making for pT3 CRC, 
particularly in determining the necessity of chemotherapy. Given its 
high prevalence and the pivotal role of nodal status in treatment 
stratification, we focused our investigation on pT3 CRC patients. 
This study aims to elucidate the mechanisms driving lymph node 
metastasis and identify potential biomarkers that could inform 
more personalized treatment strategies for this substantial patient 
population.

In recent years, with the deepening of research on microbiota 
and metabolites, an increasing amount of evidence has 
demonstrated its intricate connections between these factors and the 
occurrence and progression of tumors, as well as metastasis (Jia et al., 
2021; Bergers and Fendt, 2021). For example, certain pathogenic 
bacteria, such as Enterococcus faecalis (E. faecalis) and Streptococcus 
bovis (S. bovis), have been reported to play an important role in long-
term chronic inflammation and further promote CRC development 
(Wang and Huycke, 2015). F. nucleatum (Fusobacterium nucleatum), 
one of the most extensively studied pathogenic bacteria, has the 
ability to invade tumor cells, influence the epithelial-mesenchymal 
transition (EMT) in tumors and induce tumor metastasis to the liver 
or lungs (Chen S. et al., 2022; Yin et al., 2022; Zhang et al., 2022). 
Metabolic products of the gut microbiota serve as key mediators of 
the crosstalk between the gut microbial community and the human 
body and are closely associated with the development of cancers, 
including CRC. For instance, some metabolites produced by gut 
microbiota, such as bile acids (BAs), are linked to tumor progression 
(Jia et al., 2018). Besides, Deoxycholic Acid (DCA) were also reported 
as a tumor promoter in CRC (Ridlon and Bajaj, 2015). However, 
the metabolomics characteristics and underlying mechanism of 
colorectal cancer regional lymph node metastasis status has not 
been thoroughly explored until now.

In this study, we enrolled 70 pT3 colorectal adenocarcinoma 
patients with or without regional lymph node metastasis and 

collected their tumor surgical tissues. 16S rRNA gene sequencing 
and non-targeted Liquid chromatography-mass spectrometry (HP-
LC-MS) approach were used to analyze their gut microbiota and 
metabolites. We compared metabolites and microbiota differences 
between lymph node negative and lymph node positive pT3 CRC 
patients. In addition, by integrating RNA-seq transcriptomics data 
of TCGA-CRC cohort from the TCGA (TCGA, PanCancer Atlas) 
database, we finally explore the connection between metabolites and 
gene expression and shedding light on the underlying mechanism of 
pT3 CRC metastasis to lymph nodes. 

2 Materials and methods

2.1 Patient sample collection

Human specimens were obtained from the Department of 
Biobank, Division of Clinical Research, The first hospital of 
Jilin University. A total of 70 patients with pT3NxM0 colorectal 
adenocarcinoma between January 2022 and July 2023 at The First 
Hospital of Jilin University, Jilin, China were enrolled in this study. 
They were divided into two groups based on whether or not they had 
lymph node metastasis: Lymph node negative (LN-Neg, n = 34) and 
Lymph node positive (LN-Pos, n = 36). The Ethical Committee of 
The First Hospital of Jilin University granted ethical approval for this 
observational retrospective research (approval number: 2023-535), 
and all patients provided written informed consent. The following 
demographic, clinical, and pathological data were collected: gender, 
age, Diabetes mellitus type 2 (T2DM), hypertension, location, 
differentiation grade, pathological types, neural invasion, vascular 
invasion and Body Mass Index (BMI). Fresh frozen tumor tissues 
from CRC patients were collected at surgery. The flow chart of this 
work is displayed in Figure 1.

2.2 16S rRNA gene sequencing data

The CTAB method was used for total genomic DNA extraction. 
Finally, DNA samples were diluted to 1 ng/L with sterile Deionized 
(DI) water.

Amplification of the 16S rRNA gene from different regions 
(16SV34) was performed using specific primers (314F-806R). All 
PCR reactions were processed using 15 μL of Phusion® High-
Fidelity PCR Master Mix (New England Biolabs). Thermal cycling 
test were carried out by following steps: initial denaturation at 98 °C 
for 1 min, followed by 30 cycles of denaturation at 98 °C for 10 s, 
and annealing at 50 °C for 30 s. Finally, the samples were elongated 
at 72 °C for 30 s and 72 °C for 5 min. Mix the PCR product with 
an equal volume of 1X loading buffer (including SYBR Green) and 
perform gel electrophoresis on a 2% agarose gel. Mix the PCR 
products in equal density ratios. Then the PCR products were 
purified using the Qiagen Gel Extraction Kit (Qiagen, Germany). 
Libraries were constructed using the TruSeq® DNA PCR-Free 
Sample Preparation Kit (Illumina, United States). The constructed 
libraries were quantified using the Qubit@2.0 Fluorometer (Thermo 
Scientific) and the Agilent Bioanalyzer 2100 system. After qualitative 
assessment, libraries were pooled and sequenced using the Illumina 
NovaSeq 6000. 
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FIGURE 1
Overall experimental design and analysis workflow.

2.3 LC-MS data acquisition

Take 100 mg of the sample in an EP tube, add 500 μL of 80% 
methanol aqueous solution. Incubate the samples on ice for 5 min, 
then centrifuge at 4 °C at 15,000 × g for 20 min. Take a certain 
amount of supernatant and dilute with LC-MS grade water until 
the methanol content is 53%. Centrifuge at 15,000 × g and 4 °C for 
20 min. Finally, collect the supernatant and inject it into the LC-MS 
system for analysis. Take equal volumes from each sample and mix 
as quality control (QC) samples.

Vanquish UHPLC system (Thermo Fisher, Germany) combined 
with an Orbitrap Q ExactiveTM HF-X mass spectrometer (Thermo 
Fisher, Germany) was used for UHPLC-MS spectrometry analysis. 
Prepared samples were injected onto a Hypersil Gold column 
(100 × 2.1 mm, 1.9 µm) at a flow rate of 0.2 mL/min with a 
linear gradient of 12 min. The positive polarity eluents were eluent 
A (0.1% formic acid (FA) in water) and eluent B (methanol). 
The negative polarity eluents were eluent A (5 mM ammonium 
acetate, pH 9.0) and eluent B (methanol). The gradient elution 
program is as follows: 2% B, 1.5 min; 2%-85% B, 3.0 min; 85%-
100% B, 14.0 min; 100%-2% B, 10.1 min; 2% B, 12 min. For mass 
spectrometry, the following parameters were set by Q Exactive TM 
HF mass spectrometer: i) polarity mode = positive/negative; ii) 
spray voltage = 3.5 kV; iii) sheath gas flow rate = 35 psi; iv) was 
operated in with; v) capillary temperature = 320 °C; vi) aux gas 
flowrate = 10L/min; vii) S-lens RF level = 60; viii) Aux gas heater
temperature = 350 °C. 

2.4 Transcriptomic cohort and data sources

Gene expression profiles and clinical data of CRC patients 
were downloaded from the TCGA (TCGA, PanCancer Atlas) via 
the cBioPortal (http://www.cbioportal.org/). Totally 633 colorectal 
cancer cases with clinical information were downloaded, and finally 
316 patients included after screening: 1)patients with stage pT3 were 
selected, leaving 447 cases, 2) patients with unknown lymph node 

status were excluded (445 patients left); 3) patients lacking follow-
up data, having less than 3 months of follow-up, or missing time 
of death data, as well as those with too short a survival time (0 or 
1 day), were excluded (383 patients left), 4) patients with unknown 
primary site/connective state were excluded (381 patients left), 5) 
patients without RNA-seq data were excluded (377 patients left), 6) 
advanced patients were excluded (316 patients left). 

2.5 Data analysis

2.5.1 16S rRNA gene sequencing data analysis
Paired-end reads were generated based on the barcodes of 

each sample and assigned to the respective samples, which were 
then merged using the FLASH (Fast Length Adjustment of SHort 
reads) software. High-quality filtering of the raw tags was conducted 
to acquire clean tags using the fastp (Version 0.23.1) software 
(Bokulich et al., 2013). The tags were aligned against the Silva 
database (16S) (https://www.arb-silva.de/) to identify chimeric 
sequences using the UCHIME Algorithm (http://www.drive5.com/
usearch/manual/uchime_algo.html) (Edgar et al., 2011). After 
chimeric sequences were eliminated, the remaining high-quality 
non-chimeric tags were retained as effective tags for further analysis.

These effective tags were subjected to denoise using 
the DADA2 (Callahan et al., 2016) or deblur plugin in the QIIME2 
software (version QIIME2-202202) to acquire the initial amplicon 
sequence variants (ASVs), with DADA2 being the default choice. 
Species annotation and statistical analysis at different taxonomic 
levels (kingdom, phylum, class, order, family, genus, species) were 
performed by comparison with the Silva138.1 database using the 
QIIME2 software.

Alpha diversity was analyzed to assess community richness and 
diversity using the Chao1 and Shannon indices, while beta diversity 
analysis, performed via qiime2, was used to evaluate differences in 
species complexity between samples. Prior to clustering analysis, 
principal component analysis (PCA) was conducted on the raw 
non-dimensional variables using the FactoMineR and ggplot2 
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packages in R software (Version 2.15.3). Finally, MetaStat analysis 
was performed using the ComplexHeatmap R package to detect 
community structure differences, with significance set at Q 
value <0.05. 

2.5.2 LC-MS-based metabolomics data analysis
Raw mass spectrometric data of this research have been 

uploaded to MetaboLights (https://www.ebi.ac.uk/metabolights/), 
they can be accessed using the following information: deposit ID: 
MTBLS11418. The raw data files from UHPLC-MS/MS platform 
were processed by using Compound Discoverer 3.3 (CD3.3, Thermo 
Fisher). Initial screening was conducted for retention time, mass-
to-charge ratio, and other relevant features of each metabolite. To 
improve identification precision, peak alignment was standardized 
across samples with a retention time deviation of 0.2 min and a mass 
deviation of 5 PPM. Peak intensities were then normalized against 
the total spectral intensity. The normalized data were utilized for 
molecular formula prediction, considering additive ions, molecular 
ion peaks, and fragment ions.

Subsequent peak matching against the mzCloud (https://
www.mzcloud.org/), mzVault, and MassList databases ensured 
accurate qualitative and semi-quantitative analysis. Data 
processing was conducted using R software (version 3.4.3), 
Python (version 2.7.6), and CentOS (version 6.6). For 
non-normally distributed data, area normalization was 
applied to transform the data to a normal distribution. 
Metabolite annotation was facilitated using the KEGG (https://
www.genome.jp/kegg/pathway.html), HMDB (https://hmdb.ca/
metabolites), and LIPIDMaps (http://www.lipidmaps.org/)
databases.

Multivariate statistical analysis was performed using MetaX (a 
flexible and comprehensive software for processing metabolomics 
data) for data preprocessing, followed by principal component 
analysis (PCA) and partial least square discriminant analysis (PLS-
DA), which were conducted using SIMCA 14.1 (Umetrics, Sweden). 
Univariate analysis (t-test) calculated the statistical significance (P 
value) of each metabolite between groups using a T-test, along with 
fold change (FC) values. Metabolites were identified as differentially 
expressed if they exhibited a VIP score >1, P value <0.05, and a fold 
change (FC) ≥2 or ≤0.5.

A volcano plot was created using the ggplot2 package in R, 
integrating VIP values, log2 (Fold Change), and log10 (P value) to 
identify metabolites of interest. Clustering heatmaps were generated 
using the Pheatmap package in R, with metabolite data normalized 
by z-scores. The KEGG database was referenced to explore the 
functions and metabolic pathways associated with the metabolites. 
Metabolic pathway enrichment analysis was performed separately 
for upregulated and downregulated metabolites, and a pathway 
was considered enriched when the condition x/n > y/N was 
met. A metabolic pathway was deemed significantly enriched if P 
value <0.05. 

2.5.3 Transcriptome analyses
R package DESeq2 (Love et al., 2014) was introduced to identify 

the differentially expressed genes between comparisons by using the 
readcount matrix downloaded from TCGA database via cBioPortal. 
And the threshold is set as: | log2 (Fold Change) | >1 and P value 
<0.05 to filter out the credible DEGs.

The volcano plot was crafted with the R package (ggplot2), 
and clustering heatmaps were generated with the ComplexHeatmap 
package in R. To better understand the possible function of 
DEGs between two groups, the ClusterProfiler package in R was 
employed to do the KEGG enrichment analysis on upregulated or 
downregulated DEGs separately with threshold P value <0.05 for 
significantly enriched pathway. 

2.5.4 Interaction analysis between different 
omics

An interaction analysis between different omics datasets was 
conducted to explore the overall molecular characteristics and key 
biomarkers associated with lymph node metastasis. Metabolomics 
data served as a connecting point to integrate the transcriptome and 
microbiome data. Specifically, the functional relationship between 
the transcriptome and metabolome was investigated through a 
comparative KEGG pathway enrichment analysis of DEGs and 
differential metabolites. The R package ggplot2 was used to visualize 
shared pathways between the metabolic pathway enrichment results 
and gene expression pathway enrichment results, highlighting 
common pathways between metabolic and gene expression data.

Additionally, the R package corrplot was employed to identify 
significant correlations between differential metabolites and 
differential community structure, with a significance threshold of P 
value <0.05. 

3 Result

3.1 Patient characteristics

The clinical characteristics of pT3 CRCs in lymph node negative 
(LN-Neg, n = 34) and lymph node positive (LN-Pos, n = 36) cohorts 
are summarized in Table 1. Among the LN-Neg group, 23 (67.6%) 
were male and 11 (32.4%) were female, with a median BMI of 23.5, 
compare with 24 (66.7%) males and 12 (13.3%) females for LN-
Pos group, which had a median BMI of 24.5. The age distribution 
was similar between these two groups: both groups had roughly 
equal numbers of patients under and over 65 years old (n = 15 and 
n = 19 for LN-Neg, n = 19 and n = 19 for LN-Pos). Additionally, 
31 patients (91.2%) in LN-Neg cohort and 28 (77.8%) in LN-Pos 
cohort had no hypertension respectively. The rectum was the most 
common tumor location (n = 23, 67.6% and n = 17, 47.5%) in 
both two cohorts. Medium differentiation accounted for 88.2%
(n = 30) and 58.3% (n = 21) in two group, separately, indicating that 
Poor differentiation is associated with a higher likelihood of lymph 
node metastasis. In terms of pathological type, the LN-Neg group 
included anabrotic (n = 14, 41.2%), tumeur (n = 17, 50.0%) and 
infiltrating (n = 3, 8.8%) cases, whereas the LN-Pos group had 23, 
10 and 3 cases, respectively. Furthermore, 67.6% of LN-Neg patients 
and 55.6% of LN-Pos patients had no neural invasion. However, 
vascular invasion was much more common in LN-Pos patients
(n = 30, 83.3%) compared to LN-Neg patients (n = 6, 
17.6%). Overall, the clinical characteristics were comparable 
between the lymph node negative and lymph node
positive cohorts.

Frontiers in Physiology 04 frontiersin.org

https://doi.org/10.3389/fphys.2025.1724429
https://www.ebi.ac.uk/metabolights/
https://www.mzcloud.org/
https://www.mzcloud.org/
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
https://hmdb.ca/metabolites
https://hmdb.ca/metabolites
http://www.lipidmaps.org/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1724429

TABLE 1  Patient characteristics.

Characteristics LN_Neg LN_Pos P-value

(N = 34) (N = 36)

Gender 1

Male 23 (67.6%) 24 (66.7%)

Female 11 (32.4%) 12 (33.3%)

Age 0.984

15 (44.1%) 17 (47.2%)

≥65 years 19 (55.9%) 19 (52.8%)

T2DM 0.676

No 26 (76.5%) 30 (83.3%)

Yes 8 (23.5%) 6 (16.7%)

Hypertension 0.226

No 31 (91.2%) 28 (77.8%)

Yes 3 (8.8%) 8 (22.2%)

Location 0.0742

Rectum 23 (67.6%) 17 (47.2%)

Left-sided 5 (14.7%) 14 (38.9%)

Right-sided 6 (17.6%) 5 (13.9%)

Differentiation_grade 0.011

Low 4 (11.8%) 15 (41.7%)

Medium 30 (88.2%) 21 (58.3%)

Pathological_types 0.139

Anabrotic 14 (41.2%) 23 (63.9%)

Tumeur 17 (50.0%) 10 (27.8%)

Infiltrating 3 (8.8%) 3 (8.3%)

Neural_invasion 0.428

No 23 (67.6%) 20 (55.6%)

Yes 11 (32.4%) 16 (44.4%)

Vascular_invasion <0.001

No 28 (82.4%) 6 (16.7%)

Yes 6 (17.6%) 30 (83.3%)

BMI 0.332

Mean (SD) 23.5 (5.43) 24.5 (3.59)

Median [Min, Max] 22.6 [17.7, 49.3] 24.4 [15.9, 32.3]

3.2 Metabolic analysis between lymph 
node negative and lymph node positive 
CRC patients

In this study, a non-targeted metabolomics analysis was 
conducted based on LC-MS technology. PLS-DA, which offers 
superior discrimination power compared to PCA (Yu L. et al., 
2021), was applied to analyze the metabolic profiles based on 
class information. The significant clustering observed in the PLS-
DA model highlights a clear separation between lymph node-
negative and lymph node-positive CRC patients (Figure 2A). A 
permutation test was conducted to evaluate the model’s quality. The 
model demonstrated high interpretability with R2Y = 0.84 and no 
signs of overfitting, as all permutation results were inferior to the 
original model (Figure 2B).

A total of 1040 metabolites in ESI + mode and 441 metabolites 
in ESI- mode were identified between lymph node negative and 
lymph node positive CRC patients (Supplementary Table S1). 
After annotation to the KO (KEGG Orthology) database, these 
metabolites were found to be involved in 6 main pathways including 
Cellular Processes, Environmental Information Processing, Genetic 
Information Processing, Human Diseases, Metabolism and 
Organismal Systems. Notably, the metabolites were primarily 
associated with in amino acid metabolism, including pathways 
such as Global and overview maps, Metabolism of cofactors 
and vitamins, and Amino acid metabolism (Figure 2D). Based 
on variable importance in the projection (VIP) values >1, fold 
change (FC) ≧2 or ≦0.5, and P value <0.05, 192 differential 
metabolites were identified (Supplementary Table S2), with 94 
upregulated and 98 downregulated metabolites (Figure 2C). 
These metabolites were selected as references for
further analyses.

KEGG enrichment analysis was then performed separately 
on 94 upregulated and 98 downregulated differential metabolites. 
Pathways were considered significantly enriched if P value <0.05, 
therefore 8 pathways were identified for upregulated metabolites: 
thyroid hormone synthesis, serotonergic synapse, arachidonic 
acid metabolism, asthma, neuroactive ligand-receptor interaction, 
glutathione metabolism, Fc epsilon RI signaling pathway and 
synaptic vesicle cycle (Table 2). 14 differential metabolites 
[Histamine, Adenosine diphosphate (ADP), Prostaglandin F2, 
2,3-Dinor-8-epi-prostaglandin F2, Thromboxane B2, 11-Dehydro 
thromboxane B2, L-Glutathione oxidized, L-Glutathione (reduced), 
Cys-Gly, Prostaglandin J2, Leukotriene C4, D-Xylulose 5-phosphate, 
Aminobutyric acid (GABA), Ascorbic acid] participated in these 
significant enriched pathways. And their distribution between 
lymph node-negative group and lymph node-positive group 
was shown in the heatmap (Figure 2E). On the other hand, no 
significantly enriched pathways were found in downregulated 
metabolites.

3.3 Microbiota analysis between lymph 
node negative and lymph node positive 
CRC patients

We examined the compositional differences in the gut 
microbiota at the phylum levels between the two groups (Figure 3A). 
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FIGURE 2
Metabolic analysis. (A) PLS-DA plot of the LN_Neg and LN_Pos group. (B) Validation of the PLS-DA model. (C) Volcano plot of different metabolites 
between the LN_Neg and LN_Pos groups. (D) KEGG pathway annotations of all metabolites identified. (E) Heatmap of 14 differential metabolites 
participated in these significant enriched pathways. Four metabolites that contributed in these significantly enriched KEGG pathways.

Proteobacteria were enriched in lymph node positive patients, 
whereas lymph node negative patients exhibited significantly higher 
abundances of Fusobacteriota.

Alpha diversity, which measures the number and proportion 
of microbial species within a sample (species evenness and 
richness) (Jiang et al., 2018), was analyzed in both groups. 
The Shannon diversity index and Chao 1 index revealed 
significant differences between the two groups (P = 0.003 
and P = 0.001, respectively; Figures 3B,C), indicating that 
the gut microbiome was strongly associated with lymph
node status.

To future explore these differences, we used the MetaStat 
method to perform hypothesis testing on species abundance 
data between groups, identifying significant differential microbial 
communities with Q value <0.05. Volcano plot (Figure 3E) 
displayed 6 differential microbiotas at Phylum levels, with 4 
upregulated and 2 downregulated. Similarly, 8 upregulated 
and 10 downregulated differential microbial communities 
were identified at Genus levels (Figure 3D). Details of these 
the microbiota in this study and differential microbial 
communities are provided in Supplementary Tables S3, S4
separately.

3.4 Transcriptome analyses between lymph 
node negative and lymph node positive 
CRC patients

To further investigate the molecular mechanisms related 
to lymph node status, transcriptomics data of CRC patients 
were downloaded from the TCGA PanCancer Atlas through 
the cBioPortal (http://www.cbioportal.org/). A total of 316 
cases including 187 lymph node negative and 129 lymph 
node positive patients, were analyzed after screening. The 
clinical features of these two groups were summarized in
Supplementary Table S5.

We identified 226 differentially expressed genes (DEGs), with 
167 genes upregulated and 59 genes downregulated between the 
two groups (Figure 4A; Supplementary Table S6). Subsequently, 
KEGG enrichment analysis was performed separately on the 
upregulated genes and downregulated genes to explore pathways 
associated with lymph node status. As shown in Table 3, the 
upregulated genes were significantly enriched in pathways 
related to fat metabolism including cholesterol metabolism, 
PPAR signaling pathway, bile secretion and fat digestion 
and absorption (Figure 4B). Meanwhile, downregulated genes 
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TABLE 2  The KEGG pathways enrichment analysis of differential metabolites.

ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count

map04918 Thyroid hormone 
synthesis

3/53 4/379 0.0015395 0.1016069 0.0939904 Com_939_
pos/Com_10233_
pos/Com_6189_
neg

3

map04726 Serotonergic 
synapse

5/53 16/379 0.0044576 0.1050836 0.0972065 Com_14876_
neg/Com_14916_
neg/Com_10942_
neg/Com_14878_
neg/Com_12560_
neg

5

map00590 Arachidonic acid 
metabolism

6/53 23/379 0.0047765 0.1050836 0.0972065 Com_14876_
neg/Com_14916_
neg/Com_10942_
neg/Com_12115_
neg/Com_14878_
neg/Com_12560_
neg

6

map05310 Asthma 2/53 3/379 0.016192 0.2308453 0.2135411 Com_14876_
neg/Com_478_pos

2

map04080 Neuroactive 
ligand-receptor 
interaction

5/53 22/379 0.0192844 0.2308453 0.2135411 Com_14876_
neg/Com_478_
pos/Com_2359_
pos/Com_4675_
neg/Com_12560_
neg

5

map00480 Glutathione 
metabolism

4/53 15/379 0.0209859 0.2308453 0.2135411 Com_20058_
pos/Com_939_
pos/Com_10233_
pos/Com_2733_
neg

4

map04664 Fc epsilon RI 
signaling pathway

2/53 4/379 0.0308444 0.2908188 0.269019 Com_14876_
neg/Com_478_pos

2

map04721 Synaptic vesicle 
cycle

2/53 5/379 0.0489744 0.3602289 0.3332261 Com_478_
pos/Com_4675_
neg

2

(Table 4) were significantly enriched in pathways associated with 
tyrosine metabolism and immunity, such as antigen processing 
and presentation and natural killer cell-mediated cytotoxicity
(Figure 5A).

The expression of all DEGs contributing to the significant 
enriched pathways between the two groups is summarized in 
Table 3. To specify, eight genes were closely involved in fat 
metabolism: APOA4, APOA5, APOC3, ATP1A2, CYP7A1, 
LRP2, MTTP and SLC10A2. And the differential distributions 
of these DEGs between the lymph node negative and 
positive groups are depicted in Figures 4C,D. Additionally, 
five downregulated genes involved in tyrosine metabolism 
and immunity pathway were identified: DCT, KIR2DL1, 
KIR3DL1, KIR3DL3 and TYR (Figure 5A), with their expression 
differences shown in Figures 5B,C.

3.5 Cross-correlation analysis among the 
microbiota and metabolites and 
transcriptome

To investigate overall molecular characteristics of lymph 
node metastasis and find out the key biomarkers for lymph 
node metastasis, the relationships between different omics were 
explored through interaction analysis by using metabolomics 
data as the link. We explore the functional relationship 
between differentially expressed RNA genes transcriptome and 
metabolome altered metabolites by conducting a comparative 
KEGG pathway enrichment analysis of transcriptome DEGs and 
differential metabolites between the two groups. As shown in 
Figure 6A, the neuroactive ligand-receptor interaction pathway 
was significantly upregulated in both the transcriptome and 
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FIGURE 3
Microbiota analysis. (A) Taxonomic proportions according to compositions at the phylum level. (B) Shannon diversity index of LN_Neg and LN_Pos 
group. (B) Chao 1 index of LN_Neg and LN_Pos group. (D) Volcano plot of differential microbiota annotated at the genus level between the LN_Neg 
and LN_Pos groups. (E) Volcano plot of differential microbiota annotated at the phylum levels level between the LN_Neg and LN_Pos group.

metabolome. We further looked into the specific metabolites and 
DEGs involved in the neuroactive ligand-receptor interaction 
pathway. Five differential metabolites were enrolled in this 
pathway, including Adenosine diphosphate (ADP), Histamine, 
Leukotriene C4, Prostaglandin F2α and Υ-Aminobutyric acid 
(GABA) (Figure 6B meta). Meanwhile, six DEGs contributed to this 
pathway, such as HTR2C, GRIN2A, GLP1R, GABRQ, GABRA3,
CHRM2 (Figure 6B RNA).

On the other hand, pearson correlation analysis was conducted 
on the quantification data of differential microbial communities 
at genus level and differential metabolites to figure out the 
association between microbiomics and metabolome (Figure 7B; 
Supplementary Table S7). To study the differential microbial 
communities at genus level, which are also related to the 
neuroactive ligand-receptor interaction pathway, a correlation 
analysis between these microbial communities and the differential 
metabolites enriched in this pathway was performed. Eighteen 
differential microbiotas were significantly associated to the 
differential metabolites that involved in the neuroactive ligand-
receptor interaction pathway (Figure 7A), such as Acidothermus, 
Butyricimonas, Caproiciproducens, Chthonomonas, Defluviitoga, 
Dyella, Faecalibaculum, Fastidiosipila, Gracilibacillus, Leuconostoc, 
Novibacillus, Novosphingobium, Pseudorhodoplanes, Sarcina, 

Sedimentibacter and TM7x (Supplementary Table S8). And 
their mean relative abundances were illustrated in Figure 6B 
bacterial, with genus Butyricimonas showing particularly 
high abundance. In the meantime, as shown in Figure 7A, 
Histamine exhibited significantly correlations with various 
microbiota, and Leukotriene was significantly correlated 
with Acidothermus. Additionally, Prostaglandin F2α and Υ-
Aminobutyric acid (GABA) were significantly correlated with
Saccharopolyspora.

4 Discussion

The burgeoning field of metabolomics research have provided 
more and more evidence that microbial communities are intricately 
intertwined with the genesis and progression of cancer. Therefore, 
metabolomics has emerged as a useful tool for identifying novel 
diagnostic and prognostic biomarkers, as well as developing new 
therapeutic targets for a variety of diseases (Mato et al., 2019; 
Patel and Ahmed, 2015; Perakakis et al., 2020). The large bowel is 
the part of the human body with the highest amount of bacteria, 
and the microorganisms in it can interact with colorectal mucosal 
epithelial cells to regulate the basic physiological activities of the 
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FIGURE 4
Transcriptomic analysis. (A) The volcano plot displays an overview of the differential expressed genes (DEGs) between the LN_Neg and LN_Pos group.
(B) The fat metabolism KEGG pathways of DEGs. (C) The expression differences of genes contributed in fat metabolism KEGG pathway between 
LN_Neg and LN_Pos group. (D) Heatmap showing the differentially expressed genes involved in fat metabolism KEGG pathway.

host, including energy intake, metabolic regulation and immune 
homeostasis (Li et al., 2022).

To profile the microbiological and metabolic characteristics 
and understand the underlying molecular mechanisms of lymph 
node metastasis in pT3 CRC patients, 16S rRNA sequencing 
and untargeted metabolomics was utilized to detect differential 
microbiota and metabolites in the tumor tissues of Chinese 
pT3 colorectal adenocarcinoma patients with or without lymph 
node metastasis. Additionally, we further downloaded the pT3 
CRC transcriptomic data from the TCGA database to identify 
lymph node metastasis-related differentially expressed genes. 
Our findings revealed that: (1) pT3 CRCs with lymph node 
positivity exhibited higher levels metabolites involved in pathway 
related to pro-inflammatory and tumor-promoting; (2) distinct 
microbiological characteristics between pT3 CRCs with or without 
lymph node metastasis; (3) significant upregulation of gene 
expressions associated with cancer progression, proliferation, 
migration, and invasion in pT3 CRCs with node-positive; 
(4) both differential RNA expression and metabolites were 

significantly enriched in neuroactive ligand-receptor interaction 
pathway in lymph node positive pT3 CRC patients. These 
results suggested that the metabolites affect importantly in 
lymph node metastasis through neuroactive ligand-receptor
interaction pathway.

With regard to the metabolome, many studies have 
demonstrated that metabolite profiles are associated with CRC 
early diagnosis by using plasma and fecal samples (Sun et al., 
2024; Chen F. et al., 2022; Coker et al., 2022; Yang et al., 2022), 
but few studies focused on pT3NxM0 CRC patient or explore their 
association with lymph node status. In our study, the metabolomics 
analysis indicated that pT3 CRC patients with lymph nodes positive 
had distinct metabolic characteristics compared to those without. 
Further KEGG enrichment analysis revealed that these metabolites 
enriched in biological process that promote inflammation and 
tumor proliferation, such as thyroid hormone synthesis, arachidonic 
acid metabolism and glutathione metabolism. Ma et al. (2023) 
reported that thyroid hormone are key regulators of energy 
metabolism and homeostasis, influencing processes like protein 
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TABLE 4  The KEGG pathways enrichment analysis of differential downregulated genes.

ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count

hsa05150 Staphylococcus aureus
infection

4/22 89/7624 0.0001081 0.0054388 0.0051179 DEFA5/DEFA6/KRT24/
KRT34

4

hsa05332 Graft-versus-host 
disease

3/22 38/7624 0.0001648 0.0054388 0.0051179 KIR2DL1/KIR3DL1/
KIR3DL3

3

hsa04612 Antigen processing and 
presentation

3/22 69/7624 0.000966 0.0212516 0.0199975 KIR2DL1/KIR3DL1/
KIR3DL3

3

hsa04916 Melanogenesis 3/22 101/7624 0.0028942 0.0477547 0.0449367 DCT/FZD10/TYR 3

hsa00350 Tyrosine metabolism 2/22 36/7624 0.0047192 0.056756 0.0534068 DCT/TYR 2

hsa04650 Natural killer cell 
mediated cytotoxicity

3/22 124/7624 0.0051596 0.056756 0.0534068 KIR2DL1/KIR3DL1/
KIR3DL3

3

hsa04915 Estrogen signaling 
pathway

3/22 137/7624 0.0068076 0.064186 0.0603983 GRM1/KRT24/KRT34 3

FIGURE 5
Transcriptomic analysis. (A) The downregulated KEGG pathways of DEGs. (B) The expression differences of genes contributed in downregulated KEGG 
pathway between LN_Neg and LN_Pos group. (C) Heatmap showing the differentially expressed genes involved in downregulated KEGG pathway.
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FIGURE 6
Cross-Correlation Analysis. (A) The KEGG pathway enrichment analysis of transcriptome DEGs and differential metabolites between the LN_Neg and 
LN_Pos group. (B) Mean values of microbiota, metabolites and transcriptome that involved in the neuroactive ligand-receptor interaction pathway.

FIGURE 7
Cross-correlation analysis between microbiota and metabolites. (A) Bubble diagram of the correlation between the microbiota annotated at the genus 
level and metabolites that involved in the neuroactive ligand-receptor interaction pathway. (B) Bubble diagram of the correlation between the 
microbiotas annotated at the genus level and metabolites that significantly enriched in the KEGG pathways.
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synthesis, glycogen breakdown and synthesis, and the oxidation 
of fatty acids and the synthesis and degradation of cholesterol 
(Ma et al., 2023). Our study also found upregulation of the thyroid 
hormone pathway in lymph node positive cohort, suggesting 
heightened cellular activity among these patients. In addition, 
glutathione metabolism plays a crucial role in tumor progression 
as it not only supports mitochondrial oxidative phosphorylation 
but also provides metabolic intermediates for the TCA cycle, 
glutathione synthesis, and non-essential amino acid (NEAA) 
synthesis, while simultaneously generating NADPH (Yoo et al., 
2020). The upregulated differential metabolites of lymph node 
positive cohort were significantly enriched in this pathway 
in our result demonstrated that tumor progression is more 
advanced in these patients compared with these without
LNM metastasis.

Microbiota are increasingly recognized as key influencers of 
cancer development and prognosis. Thompson KJ et al. found 
that the abundance of Proteobacteria is relatively high in breast 
cancer tumor tissues, while Actinobacteria are more abundant in 
the adjacent healthy tissues (Thompson et al., 2017). Similarly, we 
observed an enrichment of Proteobacteria in lymph node positive 
CRC patients, whereas Fusobacteriota were more prevalent in lymph 
node-negative patients. Moreover, Alexander JL et al. reported that 
Faecalibacterium prausnitzii and Ruminococcus gnavus linked to 
poorer disease-free survival outcomes for CRC patients following 
resection (Alexander et al., 2023).

In terms of transcriptome, RNA expression characteristics 
of pT3 CRCs with lymph node metastasis were different from 
patients without lymph node metastasis. KEGG enrichment analysis 
showed that upregulated genes in lymph node-positive patients were 
predominantly involved in fat metabolism, including cholesterol 
metabolism, PPAR signaling pathway, bile secretion and fat 
digestion and absorption. Metabolic reprogramming is a hallmark 
of cancer progression (Hakimi et al., 2016). PPARs (Peroxisome 
Proliferator-Activated Receptors) are a class of nuclear receptors that 
play a key role in various aspects such as lipid metabolism, energy 
balance, inflammatory responses, and cell differentiation within 
the cell. The PPAR signaling pathway influences the metabolic 
reprogramming, proliferation, migration, and invasion of cancer 
cells to further promote tumor growth (Li Y. et al., 2024). Similarly, 
altered cholesterol metabolism can generate oncogenic metabolites 
and suppress anti-tumor immune responses, which may support 
the survival and migration of cancer cells, a finding consistent 
with studies linking metabolic dysregulation to cancer progress 
(Huang et al., 2020). Our findings explained from transcriptome 
level that patients with lymph node metastasis have a higher degree 
of tumor invasion. Cross-correlation KEGG enrichment analysis of 
untargeted metabolomics combined with TCGA transcriptomic 
data suggested upregulation of the neuroactive ligand-receptor 
interaction pathway in lymph node positive cohort. This pathway, 
which encompasses all receptors and ligands involved in signaling 
inside and outside the cell, has been implicated in various diseases, 
including cancer. Ji X et al. reported that neuroactive ligand 
receptor interaction pathway was significantly associated with 
lung cancer risk (Ji et al., 2018). Besides, there are also some 
researches about prognostic value of neuroactive ligand receptor 

interaction pathway. Yang Y et al. reported that neuroactive ligand 
receptor interaction pathway was the independent prognostic 
factor in colon adenocarcinoma (COAD) and targeted genes in 
this pathway can increase treatment response to immunotherapy 
(Yang et al., 2023). Similarly, Yu J found higher TMB (tumor 
mutation burden) was correlated with better survival outcome 
in gastric cancer patients, and TMB-high group were also 
associated with neuroactive ligand-receptor interaction pathway
(Yu J. et al., 2021).

This study has several limitations that should be acknowledged. 
First, the relatively small patient cohort limited our ability to explore 
the impact of type 2 diabetes (T2DM)—a recognized independent 
risk factor for colorectal cancer progression and metastasis—on 
lymph node metastasis in our dataset (Ottaviano et al., 2020; 
Li J. et al., 2024). Second, while our analysis identified metabolic 
alterations associated with lymph node metastasis, transcriptomic 
validation was not performed in the same patient cohort. 
Instead, we relied on RNA-seq data from the public TCGA-
CRC dataset. Third, due to the lack of long-term follow-up 
information, survival analysis could not be conducted. This 
is particularly relevant given that lymph node metastasis is 
a well-established prognostic factor in colorectal cancer, with 
studies showing decreased survival as the number of metastatic 
lymph nodes increases (Parsons et al., 2011). Although our 
results suggest that patients with lymph node metastasis exhibit 
elevated levels of tumor-promoting metabolites—implying a 
potentially worse prognosis—this association requires further 
confirmation in future studies with comprehensive clinical
outcome data.

Comparing prognostic differences of patients would provide 
direct insight into how differential microbiota and metabolites 
influence patient prognosis. Therefore, further studies are still 
needed to validate our protocol. 

5 Conclusion

Patients with pT3 colorectal cancer metastasis to lymph nodes 
display unique microbiological profiles, significantly enriched 
metabolites that involved in pro-inflammatory responses and 
tumor promotion and a notable upregulation of gene expression 
which are associated with cancer progression, proliferation, 
migration, and invasion. Cross-correlation KEGG enrichment 
analysis of differential RNA expression and metabolite profiles 
show significant enrichment within the neuroactive ligand-
receptor interaction (NLRI) pathway. Collectively, our results 
suggest that metabolites play a pivotal role in facilitating 
lymph node metastasis, potentially through modulation of the
NLRI pathway.
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