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Introduction: Gut microbiota and metabolites play a crucial role in the
progression of colorectal cancer. Over half of the CRC patients are at pT3 stage,
the presence or absence of regional lymph node metastasis in pT3 patients
significantly influences both treatment strategies and prognosis. However, the
associations between these are not been revealed yet. It is crucial to gain a
deeper insight into the mechanisms underlying the differences in gut microbiota
and metabolites between pT3 CRCs with and without lymph node metastasis.
Methods: We processed 16S rRNA gene sequencing and ultrahigh-performance
liquid chromatography—mass spectrometry in 70 pT3NxMQO CRC patients.
In addition, transcriptomic data from TCGA were retrieved to assess
RNA expression differences between the two groups for a comprehensive
comparison. Finally, correlation analyses of microbiota, metabolome and
transcriptomic data were performed to identify meaningful connections and
mechanisms underlying lymph node metastasis.

Results: A total of 192 metabolites were different between the patients
with and without lymph node metastasis; among these metabolites, 94
upregulated different metabolites were enriched in biological processes
of tumor progression. The gut microbiota of lymph node positive CRCs
is characterized by increased abundances of cancer progression, such as
Proteobacteria. We identified 226 differentially expressed genes from TCGA-
CRC cohort, among which the upregulated genes were mainly involved in
pathways of cancer progression, proliferation, migration, and invasion, while
downregulated genes were significantly enriched in pathways of tyrosine
metabolism and immunity. The cross-correlation analysis showed that the
altered metabolites and genes were enriched in neuroactive ligand receptor
interaction pathway.

Conclusion: Our study identified key microbiota and metabolites associated
with lymph node metastasis in pT3 colorectal cancer, along with potential
pathways and interactions implicated in the lymph node metastasis.
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1 Introduction

Colorectal cancer (CRC) is one of the most common and high-
risk malignant tumors in the world. Globally, the incidence and
mortality rates of CRC rank third and second among malignant
tumors, respectively. Each year, approximately 1.2 million cases are
diagnosed, and more than 600,000 patients die from this disease
(Mil etal., 2022; Bray et al., 2018). It's worth noting that the incidence
and mortality of CRC saw a rise in recently years due to changes
in dietary habits (Chow et al., 2015), especially among younger
individuals (Allen and Sears, 2019). The overall 5-year survival rate
for CRC is around 60% according to related research (Siegel et al.,
2017), with lymph node metastasis being a crucial factor in
tumor staging and significantly affecting the prognosis of CRC
patients (Lykke et al., 2019; Fortea-Sanchis et al., 2018; Amri et al,,
2016). Numerous studies have reported that patients with lymph
node metastasis tend to receive more aggressive treatment, poorer
survival and higher recurrence rates compared to those with lymph
node-negative (Bockelman et al., 2015; O'Connell et al.,, 2004;
Jemal et al., 2008): CRC patients without lymph node metastasis
have a 5-year overall survival rate as high as 80%-90%, whereas
for those with metastasis, the rate is only 60%-68%. Notably,
more than half of colorectal cancer patients are diagnosed at the
pT3 stage (Foersch et al., 2022), making it the most prevalent pT
stage among CRCs. Critically, lymph node metastasis status serves
as a key determinant in therapeutic decision-making for pT3 CRC,
particularly in determining the necessity of chemotherapy. Given its
high prevalence and the pivotal role of nodal status in treatment
stratification, we focused our investigation on pT3 CRC patients.
This study aims to elucidate the mechanisms driving lymph node
metastasis and identify potential biomarkers that could inform
more personalized treatment strategies for this substantial patient
population.

In recent years, with the deepening of research on microbiota
and metabolites, an increasing amount of evidence has
demonstrated its intricate connections between these factors and the
occurrence and progression of tumors, as well as metastasis (Jia et al.,
2021; Bergers and Fendt, 2021). For example, certain pathogenic
bacteria, such as Enterococcus faecalis (E. faecalis) and Streptococcus
bovis (S. bovis), have been reported to play an important role in long-
term chronic inflammation and further promote CRC development
(Wang and Huycke, 2015). . nucleatum (Fusobacterium nucleatum),
one of the most extensively studied pathogenic bacteria, has the
ability to invade tumor cells, influence the epithelial-mesenchymal
transition (EMT) in tumors and induce tumor metastasis to the liver
or lungs (Chen S. et al., 2022; Yin et al., 2022; Zhang et al., 2022).
Metabolic products of the gut microbiota serve as key mediators of
the crosstalk between the gut microbial community and the human
body and are closely associated with the development of cancers,
including CRC. For instance, some metabolites produced by gut
microbiota, such as bile acids (BAs), are linked to tumor progression
(Jiaetal., 2018). Besides, Deoxycholic Acid (DCA) were also reported
as a tumor promoter in CRC (Ridlon and Bajaj, 2015). However,
the metabolomics characteristics and underlying mechanism of
colorectal cancer regional lymph node metastasis status has not
been thoroughly explored until now.

In this study, we enrolled 70 pT3 colorectal adenocarcinoma
patients with or without regional lymph node metastasis and
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collected their tumor surgical tissues. 16S rRNA gene sequencing
and non-targeted Liquid chromatography-mass spectrometry (HP-
LC-MS) approach were used to analyze their gut microbiota and
metabolites. We compared metabolites and microbiota differences
between lymph node negative and lymph node positive pT3 CRC
patients. In addition, by integrating RNA-seq transcriptomics data
of TCGA-CRC cohort from the TCGA (TCGA, PanCancer Atlas)
database, we finally explore the connection between metabolites and
gene expression and shedding light on the underlying mechanism of
pT3 CRC metastasis to lymph nodes.

2 Materials and methods
2.1 Patient sample collection

Human specimens were obtained from the Department of
Biobank, Division of Clinical Research, The first hospital of
Jilin University. A total of 70 patients with pT3NxMO colorectal
adenocarcinoma between January 2022 and July 2023 at The First
Hospital of Jilin University, Jilin, China were enrolled in this study.
They were divided into two groups based on whether or not they had
lymph node metastasis: Lymph node negative (LN-Neg, n = 34) and
Lymph node positive (LN-Pos, n = 36). The Ethical Committee of
The First Hospital of Jilin University granted ethical approval for this
observational retrospective research (approval number: 2023-535),
and all patients provided written informed consent. The following
demographic, clinical, and pathological data were collected: gender,
age, Diabetes mellitus type 2 (T2DM), hypertension, location,
differentiation grade, pathological types, neural invasion, vascular
invasion and Body Mass Index (BMI). Fresh frozen tumor tissues
from CRC patients were collected at surgery. The flow chart of this
work is displayed in Figure 1.

2.2 16S rRNA gene sequencing data

The CTAB method was used for total genomic DNA extraction.
Finally, DNA samples were diluted to 1 ng/L with sterile Deionized
(DI) water.

Amplification of the 16S rRNA gene from different regions
(16SV34) was performed using specific primers (314F-806R). All
PCR reactions were processed using 15 uL of Phusion® High-
Fidelity PCR Master Mix (New England Biolabs). Thermal cycling
test were carried out by following steps: initial denaturation at 98 °C
for 1 min, followed by 30 cycles of denaturation at 98 °C for 10s,
and annealing at 50 °C for 30 s. Finally, the samples were elongated
at 72 °C for 30 s and 72 °C for 5 min. Mix the PCR product with
an equal volume of 1X loading buffer (including SYBR Green) and
perform gel electrophoresis on a 2% agarose gel. Mix the PCR
products in equal density ratios. Then the PCR products were
purified using the Qiagen Gel Extraction Kit (Qiagen, Germany).
Libraries were constructed using the TruSeq® DNA PCR-Free
Sample Preparation Kit (Illumina, United States). The constructed
libraries were quantified using the Qubit@2.0 Fluorometer (Thermo
Scientific) and the Agilent Bioanalyzer 2100 system. After qualitative
assessment, libraries were pooled and sequenced using the Illumina
NovaSeq 6000.
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FIGURE 1

Overall experimental design and analysis workflow.

2.3 LC-MS data acquisition

Take 100 mg of the sample in an EP tube, add 500 uL of 80%
methanol aqueous solution. Incubate the samples on ice for 5 min,
then centrifuge at 4 °C at 15,000 x g for 20 min. Take a certain
amount of supernatant and dilute with LC-MS grade water until
the methanol content is 53%. Centrifuge at 15,000 x g and 4 °C for
20 min. Finally, collect the supernatant and inject it into the LC-MS
system for analysis. Take equal volumes from each sample and mix
as quality control (QC) samples.

Vanquish UHPLC system (Thermo Fisher, Germany) combined
with an Orbitrap Q ExactiveTM HF-X mass spectrometer (Thermo
Fisher, Germany) was used for UHPLC-MS spectrometry analysis.
Prepared samples were injected onto a Hypersil Gold column
(100 x 2.1 mm, 1.9 um) at a flow rate of 0.2 mL/min with a
linear gradient of 12 min. The positive polarity eluents were eluent
A (0.1% formic acid (FA) in water) and eluent B (methanol).
The negative polarity eluents were eluent A (5 mM ammonium
acetate, pH 9.0) and eluent B (methanol). The gradient elution
program is as follows: 2% B, 1.5 min; 2%-85% B, 3.0 min; 85%-
100% B, 14.0 min; 100%-2% B, 10.1 min; 2% B, 12 min. For mass
spectrometry, the following parameters were set by Q Exactive TM
HF mass spectrometer: i) polarity mode = positive/negative; ii)
spray voltage = 3.5 kV; iii) sheath gas flow rate = 35 psi; iv) was
operated in with; v) capillary temperature = 320 °C; vi) aux gas
flowrate = 10L/min; vii) S-lens RF level = 60; viii) Aux gas heater
temperature = 350 °C.

2.4 Transcriptomic cohort and data sources

Gene expression profiles and clinical data of CRC patients
were downloaded from the TCGA (TCGA, PanCancer Atlas) via
the cBioPortal (http://www.cbioportal.org/). Totally 633 colorectal
cancer cases with clinical information were downloaded, and finally
316 patients included after screening: 1)patients with stage pT3 were
selected, leaving 447 cases, 2) patients with unknown lymph node
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status were excluded (445 patients left); 3) patients lacking follow-
up data, having less than 3 months of follow-up, or missing time
of death data, as well as those with too short a survival time (0 or
1 day), were excluded (383 patients left), 4) patients with unknown
primary site/connective state were excluded (381 patients left), 5)
patients without RNA-seq data were excluded (377 patients left), 6)
advanced patients were excluded (316 patients left).

2.5 Data analysis

2.5.1 16S rRNA gene sequencing data analysis

Paired-end reads were generated based on the barcodes of
each sample and assigned to the respective samples, which were
then merged using the FLASH (Fast Length Adjustment of SHort
reads) software. High-quality filtering of the raw tags was conducted
to acquire clean tags using the fastp (Version 0.23.1) software
(Bokulich et al., 2013). The tags were aligned against the Silva
database (16S) (https://www.arb-silva.de/) to identify chimeric
sequences using the UCHIME Algorithm (http://www.drive5.com/
usearch/manual/uchime_algo.html) (Edgar et al., 2011). After
chimeric sequences were eliminated, the remaining high-quality
non-chimeric tags were retained as effective tags for further analysis.

These effective tags were subjected to denoise using
the DADA2 (Callahan et al., 2016) or deblur plugin in the QIIME2
software (version QIIME2-202202) to acquire the initial amplicon
sequence variants (ASVs), with DADA2 being the default choice.
Species annotation and statistical analysis at different taxonomic
levels (kingdom, phylum, class, order, family, genus, species) were
performed by comparison with the Silval38.1 database using the
QIIME?2 software.

Alpha diversity was analyzed to assess community richness and
diversity using the Chaol and Shannon indices, while beta diversity
analysis, performed via qiime2, was used to evaluate differences in
species complexity between samples. Prior to clustering analysis,
principal component analysis (PCA) was conducted on the raw
non-dimensional variables using the FactoMineR and ggplot2

frontiersin.org


https://doi.org/10.3389/fphys.2025.1724429
http://www.cbioportal.org/
https://www.arb-silva.de/
http://www.drive5.com/usearch/manual/uchime_algo.html
http://www.drive5.com/usearch/manual/uchime_algo.html
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Chen et al.

packages in R software (Version 2.15.3). Finally, MetaStat analysis
was performed using the ComplexHeatmap R package to detect
community structure differences, with significance set at Q
value <0.05.

2.5.2 LC-MS-based metabolomics data analysis

Raw mass spectrometric data of this research have been
uploaded to MetaboLights (https://www.ebi.ac.uk/metabolights/),
they can be accessed using the following information: deposit ID:
MTBLS11418. The raw data files from UHPLC-MS/MS platform
were processed by using Compound Discoverer 3.3 (CD3.3, Thermo
Fisher). Initial screening was conducted for retention time, mass-
to-charge ratio, and other relevant features of each metabolite. To
improve identification precision, peak alignment was standardized
across samples with a retention time deviation of 0.2 min and a mass
deviation of 5 PPM. Peak intensities were then normalized against
the total spectral intensity. The normalized data were utilized for
molecular formula prediction, considering additive ions, molecular
ion peaks, and fragment ions.

Subsequent peak matching against the mzCloud (https://
www.mzcloud.org/), mzVault, and MassList databases ensured
Data
processing was conducted using R software (version 3.4.3),
Python (version 2.7.6), and CentOS (version 6.6). For
non-normally  distributed data, area

accurate qualitative and semi-quantitative analysis.

normalization — was
applied to transform the data to a normal distribution.
Metabolite annotation was facilitated using the KEGG (https://
HMDB  (https://hmdb.ca/
(http://www.lipidmaps.org/)

www.genome.jp/kegg/pathway.html),
metabolites), and  LIPIDMaps
databases.

Multivariate statistical analysis was performed using MetaX (a
flexible and comprehensive software for processing metabolomics
data) for data preprocessing, followed by principal component
analysis (PCA) and partial least square discriminant analysis (PLS-
DA), which were conducted using SIMCA 14.1 (Umetrics, Sweden).
Univariate analysis (t-test) calculated the statistical significance (P
value) of each metabolite between groups using a T-test, along with
fold change (FC) values. Metabolites were identified as differentially
expressed if they exhibited a VIP score >1, P value <0.05, and a fold
change (FC) 22 or <0.5.

A volcano plot was created using the ggplot2 package in R,
integrating VIP values, log2 (Fold Change), and log10 (P value) to
identify metabolites of interest. Clustering heatmaps were generated
using the Pheatmap package in R, with metabolite data normalized
by z-scores. The KEGG database was referenced to explore the
functions and metabolic pathways associated with the metabolites.
Metabolic pathway enrichment analysis was performed separately
for upregulated and downregulated metabolites, and a pathway
was considered enriched when the condition x/n > y/N was
met. A metabolic pathway was deemed significantly enriched if P
value <0.05.

2.5.3 Transcriptome analyses

R package DESeq2 (Love et al., 2014) was introduced to identify
the differentially expressed genes between comparisons by using the
readcount matrix downloaded from TCGA database via cBioPortal.
And the threshold is set as: | log2 (Fold Change) | >1 and P value
<0.05 to filter out the credible DEGs.
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The volcano plot was crafted with the R package (ggplot2),
and clustering heatmaps were generated with the ComplexHeatmap
package in R. To better understand the possible function of
DEGs between two groups, the ClusterProfiler package in R was
employed to do the KEGG enrichment analysis on upregulated or
downregulated DEGs separately with threshold P value <0.05 for
significantly enriched pathway.

2.5.4 Interaction analysis between different
omics

An interaction analysis between different omics datasets was
conducted to explore the overall molecular characteristics and key
biomarkers associated with lymph node metastasis. Metabolomics
data served as a connecting point to integrate the transcriptome and
microbiome data. Specifically, the functional relationship between
the transcriptome and metabolome was investigated through a
comparative KEGG pathway enrichment analysis of DEGs and
differential metabolites. The R package ggplot2 was used to visualize
shared pathways between the metabolic pathway enrichment results
and gene expression pathway enrichment results, highlighting
common pathways between metabolic and gene expression data.

Additionally, the R package corrplot was employed to identify
significant correlations between differential metabolites and
differential community structure, with a significance threshold of P
value <0.05.

3 Result
3.1 Patient characteristics

The clinical characteristics of pT3 CRCs in lymph node negative
(LN-Neg, n = 34) and lymph node positive (LN-Pos, n = 36) cohorts
are summarized in Table 1. Among the LN-Neg group, 23 (67.6%)
were male and 11 (32.4%) were female, with a median BMI of 23.5,
compare with 24 (66.7%) males and 12 (13.3%) females for LN-
Pos group, which had a median BMI of 24.5. The age distribution
was similar between these two groups: both groups had roughly
equal numbers of patients under and over 65 years old (n = 15 and
n =19 for LN-Neg, n = 19 and n = 19 for LN-Pos). Additionally,
31 patients (91.2%) in LN-Neg cohort and 28 (77.8%) in LN-Pos
cohort had no hypertension respectively. The rectum was the most
common tumor location (n = 23, 67.6% and n = 17, 47.5%) in
both two cohorts. Medium differentiation accounted for 88.2%
(n=30) and 58.3% (n = 21) in two group, separately, indicating that
Poor differentiation is associated with a higher likelihood of lymph
node metastasis. In terms of pathological type, the LN-Neg group
included anabrotic (n = 14, 41.2%), tumeur (n = 17, 50.0%) and
infiltrating (n = 3, 8.8%) cases, whereas the LN-Pos group had 23,
10 and 3 cases, respectively. Furthermore, 67.6% of LN-Neg patients
and 55.6% of LN-Pos patients had no neural invasion. However,
vascular invasion was much more common in LN-Pos patients
30, 83.3%) compared to LN-Neg patients (n = 6,
17.6%). Overall, the clinical characteristics were comparable

(n =

between the lymph node negative and lymph node

positive cohorts.
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TABLE 1 Patient characteristics. 3.2 Metabolic analysis between lymph
Characteristics [\ \[=To LN_Pos P-value E(IDQCCI:epnaetigearf’lc\sle and lymph node positive

(N = 34) ‘ (N = 36)

In this study, a non-targeted metabolomics analysis was
Gender 1 conducted based on LC-MS technology. PLS-DA, which offers
superior discrimination power compared to PCA (YulL. et al,
Male 23 (67.6%) 24 (66.7%) . .
2021), was applied to analyze the metabolic profiles based on
Female 11 (32.4%) 12 (33.3%) class information. The significant clustering observed in the PLS-
DA model highlights a clear separation between lymph node-
Age 0.984 negative and lymph node-positive CRC patients (Figure 2A). A
permutation test was conducted to evaluate the model’s quality. The
15 (44.1%) 17 (47.2%) o e s
model demonstrated high interpretability with R“Y = 0.84 and no
265 years 19 (55.9%) 19 (52.8%) signs of overfitting, as all permutation results were inferior to the
original model (Figure 2B).
T2DM 0.676 A total of 1040 metabolites in ESI + mode and 441 metabolites
in ESI- mode were identified between lymph node negative and
No 26 (76.5%) 30 (83.3%) . )
lymph node positive CRC patients (Supplementary Table S1).
Yes 8 (23.5%) 6 (16.7%) After annotation to the KO (KEGG Orthology) database, these
metabolites were found to be involved in 6 main pathways including
Hypertension 0.226 Cellular Processes, Environmental Information Processing, Genetic
Information Processing, Human Diseases, Metabolism and
No 31(91.2%) 28 (77.8%) . . -
Organismal Systems. Notably, the metabolites were primarily
Yes 3(8.8%) 8 (22.2%) associated with in amino acid metabolism, including pathways
such as Global and overview maps, Metabolism of cofactors
Location 0.0742 and vitamins, and Amino acid metabolism (Figure 2D). Based
on variable importance in the projection (VIP) values >1, fold
Rectum 23 (67.6%) 17 (47.2%) . .
change (FC) 22 or 0.5, and P value <0.05, 192 differential
Left-sided 5 (14.7%) 14 (38.9%) metabolites were identified (Supplementary Table S2), with 94
upregulated and 98 downregulated metabolites (Figure 2C).
Right-sided 6 (17.6%) 5 (13.9%) These  metabolites ~ were selected as  references for
) o further analyses.
Differentiation_grade 0.011 k .
KEGG enrichment analysis was then performed separately
Low 4(11.8%) 15 (41.7%) on 94 upregulated and 98 downregulated differential metabolites.
Pathways were considered significantly enriched if P value <0.05,
Medium 30 (88.2%) 21(58.3%) therefore 8 pathways were identified for upregulated metabolites:
Pathological_types 0139 thyroid hormone synthesis, serotonergic synapse, arachidonic
acid metabolism, asthma, neuroactive ligand-receptor interaction,
Anabrotic 14 (41.2%) 23 (63.9%) glutathione metabolism, Fc epsilon RI signaling pathway and
synaptic vesicle cycle (Table2). 14 differential metabolites
Tumeur 17 (50.0%) 10 (27.8%) [Histamine, Adenosine diphosphate (ADP), Prostaglandin F2,
Infltrating 3 (8.8%) 3 (8.3%) 2,3-Dinor-8-epi-prostaglandin F2, Thromboxane B2, 11-Dehydro
thromboxane B2, L-Glutathione oxidized, L-Glutathione (reduced),
Neural_invasion 0.428 Cys-Gly, Prostaglandin J2, Leukotriene C4, D-Xylulose 5-phosphate,
Aminobutyric acid (GABA), Ascorbic acid] participated in these
No 23 (67.6%) 20 (55.6%) significant enriched pathways. And their distribution between
Yes 11 (32.4%) 16 (44.4%) lymph node-negative group and lymph node-positive group
was shown in the heatmap (Figure 2E). On the other hand, no
Vascular_invasion <0.001 significantly enriched pathways were found in downregulated
metabolites.
No 28 (82.4%) 6 (16.7%)
Y 6 (17.6%) 30 (83.3%) . . .
° 3.3 Microbiota analysis between lymph
BMI 0332 node negative and lymph node positive
CRC patients
Mean (SD) 23.5(5.43) 245 (3.59)
Median [Min, Max] 126[177.493] | 244[15.9,323] We examined the compositional differences in the gut
microbiota at the phylum levels between the two groups (Figure 3A).
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FIGURE 2
Metabolic analysis. (A) PLS-DA plot of the LN_Neg and LN_Pos group. (B) Validation of the PLS-DA model. (C) Volcano plot of different metabolites
between the LN_Neg and LN_Pos groups. (D) KEGG pathway annotations of all metabolites identified. (E) Heatmap of 14 differential metabolites
participated in these significant enriched pathways. Four metabolites that contributed in these significantly enriched KEGG pathways.

Proteobacteria were enriched in lymph node positive patients,
whereas lymph node negative patients exhibited significantly higher
abundances of Fusobacteriota.

Alpha diversity, which measures the number and proportion
of microbial species within a sample (species evenness and
richness) (Jiang et al, 2018), was analyzed in both groups.
The Shannon diversity index and Chao 1 index revealed
significant differences between the two groups (P 0.003
and P 0.001, respectively; Figures 3B,C), indicating that
the gut microbiome was strongly associated with lymph

node status.

To future explore these differences, we used the MetaStat
method to perform hypothesis testing on species abundance
data between groups, identifying significant differential microbial
communities with Q value <0.05. Volcano plot (Figure 3E)
displayed 6 differential microbiotas at Phylum levels, with 4
upregulated and 2 downregulated. Similarly, 8 upregulated
and 10 downregulated differential microbial communities
were identified at Genus levels (Figure 3D). Details of these
the this

communities provided

microbiota in study and differential microbial

are in  Supplementary Tables S3, S4

separately.
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3.4 Transcriptome analyses between lymph
node negative and lymph node positive
CRC patients

To further investigate the molecular mechanisms related
to lymph node status, transcriptomics data of CRC patients
were downloaded from the TCGA PanCancer Atlas through
the cBioPortal (http://www.cbioportal.org/). A total of 316
cases including 187 lymph node negative and 129 lymph
node positive patients, were analyzed after screening. The
clinical features of these two groups were summarized in
Supplementary Table S5.

We identified 226 differentially expressed genes (DEGs), with
167 genes upregulated and 59 genes downregulated between the
two groups (Figure 4A; Supplementary Table S6). Subsequently,
KEGG enrichment analysis was performed separately on the
upregulated genes and downregulated genes to explore pathways
associated with lymph node status. As shown in Table 3, the
upregulated genes were significantly enriched in pathways
related to fat metabolism including cholesterol metabolism,
PPAR signaling pathway, bile secretion and fat digestion
and absorption (Figure 4B). Meanwhile, downregulated genes
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Description GeneRatio BgRatio pvalue p-adjust
map04918 Thyroid hormone 3/53 4/379 0.0015395 0.1016069 0.0939904 Com_939_ 3
synthesis pos/Com_10233_
pos/Com_6189_
neg
map04726 Serotonergic 5/53 16/379 0.0044576 0.1050836 0.0972065 Com_14876_ 5
synapse neg/Com_14916_
neg/Com_10942_
neg/Com_14878_
neg/Com_12560_
neg
map00590 Arachidonic acid 6/53 23/379 0.0047765 0.1050836 0.0972065 Com_14876_ 6
metabolism neg/Com_14916_
neg/Com_10942_
neg/Com_12115_
neg/Com_14878_
neg/Com_12560_
neg
map05310 Asthma 2/53 3/379 0.016192 0.2308453 0.2135411 Com_14876_ 2
neg/Com_478_pos
map04080 Neuroactive 5/53 22/379 0.0192844 0.2308453 0.2135411 Com_14876_ 5
ligand-receptor neg/Com_478_
interaction pos/Com_2359_
pos/Com_4675_
neg/Com_12560_
neg
map00480 Glutathione 4/53 15/379 0.0209859 0.2308453 0.2135411 Com_20058_ 4
metabolism pos/Com_939_
pos/Com_10233_
pos/Com_2733_
neg
map04664 Fc epsilon RI 2/53 4/379 0.0308444 0.2908188 0.269019 Com_14876_ 2
signaling pathway neg/Com_478_pos
map04721 Synaptic vesicle 2/53 5/379 0.0489744 0.3602289 0.3332261 Com_478_ 2
cycle pos/Com_4675_
neg

(Table 4) were significantly enriched in pathways associated with
tyrosine metabolism and immunity, such as antigen processing
and presentation and natural killer cell-mediated cytotoxicity
(Figure 5A).

The expression of all DEGs contributing to the significant
enriched pathways between the two groups is summarized in
Table 3. To specify, eight genes were closely involved in fat
metabolism: APOA4, APOA5, APOC3, ATP1A2, CYP7AI,
LRP2, MTTP and SLC10A2. And the differential distributions
of these DEGs
positive groups are depicted in Figures 4C,D. Additionally,

between the lymph node negative and

five downregulated genes involved in tyrosine metabolism
and immunity pathway were identified: DCT, KIR2DLI,
KIR3DLI1, KIR3DL3 and TYR (Figure 5A), with their expression
differences shown in Figures 5B,C.

Frontiers in Physiology

3.5 Cross-correlation analysis among the
microbiota and metabolites and
transcriptome

To investigate overall molecular characteristics of lymph
node metastasis and find out the key biomarkers for lymph
node metastasis, the relationships between different omics were
explored through interaction analysis by using metabolomics
data as the link. We explore the functional relationship
between differentially expressed RNA genes transcriptome and
metabolome altered metabolites by conducting a comparative
KEGG pathway enrichment analysis of transcriptome DEGs and
differential metabolites between the two groups. As shown in
Figure 6A, the neuroactive ligand-receptor interaction pathway
was significantly upregulated in both the transcriptome and
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and LN_Pos groups. (E) Volcano plot of differential microbiota annotated at the phylum levels level between the LN_Neg and LN_Pos group.

metabolome. We further looked into the specific metabolites and
DEGs involved in the neuroactive ligand-receptor interaction
pathway. Five differential metabolites were enrolled in this
pathway, including Adenosine diphosphate (ADP), Histamine,
Leukotriene C4, Prostaglandin F2a and Y-Aminobutyric acid
(GABA) (Figure 6B meta). Meanwhile, six DEGs contributed to this
pathway, such as HTR2C, GRIN2A, GLP1R, GABRQ, GABRA3,
CHRM?2 (Figure 6B RNA).

On the other hand, pearson correlation analysis was conducted
on the quantification data of differential microbial communities
at genus level and differential metabolites to figure out the
association between microbiomics and metabolome (Figure 7B;
Supplementary Table S7). To study the differential microbial
communities at genus level, which are also related to the
neuroactive ligand-receptor interaction pathway, a correlation
analysis between these microbial communities and the differential
metabolites enriched in this pathway was performed. Eighteen
differential microbiotas were significantly associated to the
differential metabolites that involved in the neuroactive ligand-
receptor interaction pathway (Figure 7A), such as Acidothermus,
Butyricimonas, Caproiciproducens, Chthonomonas, Defluviitoga,
Dyella, Faecalibaculum, Fastidiosipila, Gracilibacillus, Leuconostoc,
Novibacillus, Novosphingobium,  Pseudorhodoplanes, ~ Sarcina,
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Sedimentibacter and TM7x (Supplementary Table S8). And
their mean relative abundances were illustrated in Figure 6B
bacterial, with genus Butyricimonas showing particularly
high abundance. In the meantime, as shown in Figure 7A,
Histamine exhibited significantly correlations with various
microbiota, and Leukotriene was significantly correlated
with Acidothermus. Additionally, Prostaglandin F2a and Y-
Aminobutyric acid (GABA) were significantly correlated with

Saccharopolyspora.

4 Discussion

The burgeoning field of metabolomics research have provided
more and more evidence that microbial communities are intricately
intertwined with the genesis and progression of cancer. Therefore,
metabolomics has emerged as a useful tool for identifying novel
diagnostic and prognostic biomarkers, as well as developing new
therapeutic targets for a variety of diseases (Mato et al., 2019;
Patel and Ahmed, 2015; Perakakis et al., 2020). The large bowel is
the part of the human body with the highest amount of bacteria,
and the microorganisms in it can interact with colorectal mucosal
epithelial cells to regulate the basic physiological activities of the
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host, including energy intake, metabolic regulation and immune
homeostasis (Li et al., 2022).

To profile the microbiological and metabolic characteristics
and understand the underlying molecular mechanisms of lymph
node metastasis in pT3 CRC patients, 16S rRNA sequencing
and untargeted metabolomics was utilized to detect differential
microbiota and metabolites in the tumor tissues of Chinese
pT3 colorectal adenocarcinoma patients with or without lymph
node metastasis. Additionally, we further downloaded the pT3
CRC transcriptomic data from the TCGA database to identify
lymph node metastasis-related differentially expressed genes.
Our findings revealed that: (1) pT3 CRCs with lymph node
positivity exhibited higher levels metabolites involved in pathway
related to pro-inflammatory and tumor-promoting; (2) distinct
microbiological characteristics between pT3 CRCs with or without
lymph node metastasis; (3) significant upregulation of gene
expressions associated with cancer progression, proliferation,
migration, and invasion in pT3 CRCs with node-positive;
(4) both differential RNA expression and metabolites were
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significantly enriched in neuroactive ligand-receptor interaction
pathway in lymph node positive pT3 CRC patients. These
results suggested that the metabolites affect importantly in
lymph node metastasis through neuroactive ligand-receptor
interaction pathway.

With regard to the metabolome, many studies have
demonstrated that metabolite profiles are associated with CRC
early diagnosis by using plasma and fecal samples (Sun et al,
2024; Chen FE. et al., 2022; Coker et al., 2022; Yang et al., 2022),
but few studies focused on pT3NxMO CRC patient or explore their
association with lymph node status. In our study, the metabolomics
analysis indicated that pT3 CRC patients with lymph nodes positive
had distinct metabolic characteristics compared to those without.
Further KEGG enrichment analysis revealed that these metabolites
enriched in biological process that promote inflammation and
tumor proliferation, such as thyroid hormone synthesis, arachidonic
acid metabolism and glutathione metabolism. Ma etal. (2023)
reported that thyroid hormone are key regulators of energy
metabolism and homeostasis, influencing processes like protein
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TABLE 4 The KEGG pathways enrichment analysis of differential downregulated genes.

ID Description GeneRatio BgRatio pvalue p.adjust qvalue genelD ’ Count
hsa05150 Staphylococcus aureus 4/22 89/7624 0.0001081 0.0054388 0.0051179 DEFA5/DEFA6/KRT24/ 4
infection KRT34
hsa05332 Graft-versus-host 3/22 38/7624 0.0001648 0.0054388 0.0051179 KIR2DL1/KIR3DL1/ 3
disease KIR3DL3
hsa04612 Antigen processing and 3/22 69/7624 0.000966 0.0212516 0.0199975 KIR2DL1/KIR3DL1/ 3
presentation KIR3DL3
hsa04916 Melanogenesis 3/22 101/7624 0.0028942 0.0477547 0.0449367 DCT/FZD10/TYR 3
hsa00350 Tyrosine metabolism 2/22 36/7624 0.0047192 0.056756 0.0534068 DCT/TYR 2
hsa04650 Natural killer cell 3/22 124/7624 0.0051596 0.056756 0.0534068 KIR2DL1/KIR3DL1/ 3
mediated cytotoxicity KIR3DL3
hsa04915 Estrogen signaling 3/22 137/7624 0.0068076 0.064186 0.0603983 GRM1/KRT24/KRT34 3
pathway
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FIGURE 5

Transcriptomic analysis. (A) The downregulated KEGG pathways of DEGs. (B) The expression differences of genes contributed in downregulated KEGG
pathway between LN_Neg and LN_Pos group. (C) Heatmap showing the differentially expressed genes involved in downregulated KEGG pathway.
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synthesis, glycogen breakdown and synthesis, and the oxidation
of fatty acids and the synthesis and degradation of cholesterol
(Ma et al., 2023). Our study also found upregulation of the thyroid
hormone pathway in lymph node positive cohort, suggesting
heightened cellular activity among these patients. In addition,
glutathione metabolism plays a crucial role in tumor progression
as it not only supports mitochondrial oxidative phosphorylation
but also provides metabolic intermediates for the TCA cycle,
glutathione synthesis, and non-essential amino acid (NEAA)
synthesis, while simultaneously generating NADPH (Yoo et al,
2020). The upregulated differential metabolites of lymph node
positive cohort were significantly enriched in this pathway
in our result demonstrated that tumor progression is more
advanced in these patients compared with these without
LNM metastasis.

Microbiota are increasingly recognized as key influencers of
cancer development and prognosis. Thompson KJ etal. found
that the abundance of Proteobacteria is relatively high in breast
cancer tumor tissues, while Actinobacteria are more abundant in
the adjacent healthy tissues (Thompson et al., 2017). Similarly, we
observed an enrichment of Proteobacteria in lymph node positive
CRC patients, whereas Fusobacteriota were more prevalent in lymph
node-negative patients. Moreover, Alexander JL et al. reported that
Faecalibacterium prausnitzii and Ruminococcus gnavus linked to
poorer disease-free survival outcomes for CRC patients following
resection (Alexander et al., 2023).

In terms of transcriptome, RNA expression characteristics
of pT3 CRCs with lymph node metastasis were different from
patients without lymph node metastasis. KEGG enrichment analysis
showed that upregulated genes in lymph node-positive patients were
predominantly involved in fat metabolism, including cholesterol
metabolism, PPAR signaling pathway, bile secretion and fat
digestion and absorption. Metabolic reprogramming is a hallmark
of cancer progression (Hakimi et al., 2016). PPARs (Peroxisome
Proliferator- Activated Receptors) are a class of nuclear receptors that
play a key role in various aspects such as lipid metabolism, energy
balance, inflammatory responses, and cell differentiation within
the cell. The PPAR signaling pathway influences the metabolic
reprogramming, proliferation, migration, and invasion of cancer
cells to further promote tumor growth (Li Y. et al., 2024). Similarly,
altered cholesterol metabolism can generate oncogenic metabolites
and suppress anti-tumor immune responses, which may support
the survival and migration of cancer cells, a finding consistent
with studies linking metabolic dysregulation to cancer progress
(Huang et al., 2020). Our findings explained from transcriptome
level that patients with lymph node metastasis have a higher degree
of tumor invasion. Cross-correlation KEGG enrichment analysis of
untargeted metabolomics combined with TCGA transcriptomic
data suggested upregulation of the neuroactive ligand-receptor
interaction pathway in lymph node positive cohort. This pathway,
which encompasses all receptors and ligands involved in signaling
inside and outside the cell, has been implicated in various diseases,
including cancer. Ji X etal. reported that neuroactive ligand
receptor interaction pathway was significantly associated with
lung cancer risk (Ji et al., 2018). Besides, there are also some
researches about prognostic value of neuroactive ligand receptor
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interaction pathway. Yang Y et al. reported that neuroactive ligand
receptor interaction pathway was the independent prognostic
factor in colon adenocarcinoma (COAD) and targeted genes in
this pathway can increase treatment response to immunotherapy
(Yang et al,, 2023). Similarly, Yu J found higher TMB (tumor
mutation burden) was correlated with better survival outcome
in gastric cancer patients, and TMB-high group were also
associated with neuroactive ligand-receptor interaction pathway
(Yu]J. et al., 2021).

This study has several limitations that should be acknowledged.
First, the relatively small patient cohort limited our ability to explore
the impact of type 2 diabetes (T2DM)—a recognized independent
risk factor for colorectal cancer progression and metastasis—on
lymph node metastasis in our dataset (Ottaviano et al., 2020;
LiJ. et al, 2024). Second, while our analysis identified metabolic
alterations associated with lymph node metastasis, transcriptomic
validation was not performed in the same patient cohort.
Instead, we relied on RNA-seq data from the public TCGA-
CRC dataset. Third, due to the lack of long-term follow-up
information, survival analysis could not be conducted. This
is particularly relevant given that lymph node metastasis is
a well-established prognostic factor in colorectal cancer, with
studies showing decreased survival as the number of metastatic
lymph nodes increases (Parsons et al, 2011). Although our
results suggest that patients with lymph node metastasis exhibit
elevated levels of tumor-promoting metabolites—implying a
potentially worse prognosis—this association requires further
confirmation in future studies with comprehensive clinical
outcome data.

Comparing prognostic differences of patients would provide
direct insight into how differential microbiota and metabolites
influence patient prognosis. Therefore, further studies are still
needed to validate our protocol.

5 Conclusion

Patients with pT3 colorectal cancer metastasis to lymph nodes
display unique microbiological profiles, significantly enriched
metabolites that involved in pro-inflammatory responses and
tumor promotion and a notable upregulation of gene expression
which are associated with cancer progression, proliferation,
migration, and invasion. Cross-correlation KEGG enrichment
analysis of differential RNA expression and metabolite profiles
show significant enrichment within the neuroactive ligand-
receptor interaction (NLRI) pathway. Collectively, our results
suggest that metabolites play a pivotal role in facilitating
lymph node metastasis, potentially through modulation of the
NLRI pathway.
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