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Diabetic kidney disease (DKD), a grave microvascular complication of diabetes, is
the primary cause of end-stage renal disease. Despite advances in conventional
therapies, their limited efficacy underscores the urgent need for novel, multi-
target intervention strategies. Macrophage infiltration and the subsequent
chronic microinflammation are central to the pathogenesis of renal injury
in DKD. A diverse array of natural bioactive compounds are emerging as
promising therapeutic agents, capable of modulating these inflammatory
pathways. This review investigates the mechanisms underlying the attenuation
of DKD progression by six major classes of natural compounds, such as
glycosides, diterpenoids, and alkaloids, among others, through the targeting
of macrophage infiltration. Collectively, this synthesis offers a compelling
case for developing natural product-based, multiple-target strategies to
combat DKD. Collectively, this synthesis builds a compelling case for
developing multi-target therapeutic strategies derived from natural products to
combat DKD.

KEYWORDS

diabetic kidney disease, macrophage infiltration, inflammation, active compounds,
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1 Introduction

Diabetic kidney disease (DKD), a significant complication of diabetes involving the
microvasculature, is the foremost cause of ESRD worldwide (Liu et al., 2024; Zhao et al.,
2024). Tt is predicted that the global prevalence of diabetes will increase from 643 million
in 2030 to 783 million by 2045, with up to 40% of these individuals expected to develop
kidney disease. This escalating prevalence positions DKD as a major global health challenge,
profoundly impacting patient prognosis and imposing a substantial socioeconomic burden
(Hill-Briggs et al., 2020; Pan et al., 2022).

At the core of DKD pathogenesis lies chronic renal microinflammation, hallmarked
by the infiltration of macrophages into the glomeruli and tubulointerstitium
(Wang et al, 2022). Within the diabetic renal microenvironment, these infiltrated
macrophages become activated, releasing a cascade of proinflammatory cytokines
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and chemokines that drive progressive renal tissue damage and
functional decline (Liu et al., 2023; Li et al., 2022). Consequently,
targeting macrophage-mediated inflammation represents a critical
therapeutic strategy for mitigating DKD progression.

According to guidelines from the American Diabetes
Association (ADA) and Kidney Disease: Improving Global
Outcomes (KDIGO), the standard treatment for DKD combines
renin-angiotensin system inhibitors (ACE inhibitors or angiotensin
receptor blockers) with cardiorenal protective medications,
including sodium-glucose cotransporter-2 inhibitors (SGLT21i),
non-steroidal mineralocorticoid receptor antagonists (ns-MRA),
and glucagon-like peptide-1 receptor agonists (GLP-1R). However,
this strategy provides only partial renal protection and is associated
with various adverse effects (Tang et al., 2021; Zhao et al., 2025;
de Boer et al, 2022). This highlights a critical unmet clinical
need for novel therapeutic strategies. Natural products, many
derived from traditional herbal medicines, are emerging as a
promising source of multi-target agents capable of modulating
these complex inflammatory pathways (Deng et al, 2025;
Wang et al., 2024; Chung et al, 2023). This review, therefore,
synthesizes current evidence on the mechanisms by which natural
products modulate macrophage infiltration and activity in DKD,
providing a rationale for their development as adjunctive therapies
to prevent or treat this devastating disease.

2 Mechanisms of macrophage
infiltration in the intervention of DKD

In adults, the predominant origin of macrophages is from bone
marrow hematopoietic stem cells. The development of circulating
monocytes that then go on to mature as macrophages is triggered
by these progenitors (Chowdhury and Trivedi, 2023). However,
certain tissues also harbor self-renewing, embryonically-derived
resident macrophage populations (Lazarov et al., 2023). Crucially,
the local renal microenvironment dictates macrophage identity and
function by inducing tissue-specific gene expression programs that
are essential for maintaining homeostasis.

Macrophage infiltration into the kidney is a pivotal early event
that drives sustained renal injury in DKD (Jiang et al., 2022). In the
context of diabetic conditions, a combination of hyperglycaemia,
oxidative stress and advanced glycation end products (AGEs)
stimulates renal cells to secrete a range of chemokines and
inflammatory mediators. These signals orchestrate the recruitment
and subsequent activation of macrophages, thereby initiating
and amplifying the local inflammatory cascade (Ansari et al,
2025). Once recruited, these macrophages exhibit remarkable
plasticity, polarizing into two distinct functional phenotypes in
response to microenvironmental cues, namely, the classically
activated (M1) pro-inflammatory and the alternatively activated
(M2) anti-inflammatory/reparative subtypes (Wynn and Vannella,
2016). Consequently, inhibiting macrophage infiltration represents
a powerful therapeutic approach. This strategy not only limits the
expansion of the intrarenal macrophage pool but also modulates
the local polarization balance, primarily by reducing the influx
of pro-inflammatory monocytes that differentiate into MI-like
macrophages. Shifting the balance away from a dominant M1
inflammatory response, which is characterized by citokines such as
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interleukin (IL)-6 and IL-12, mitigates tissue damage and promotes
a microenvironment conducive to M2-mediated repair (Yan et al.,
2020). Therefore, a central strategy for modulating the progression
of DKD is to target macrophage infiltration.

3 Natural medicines modulate
macrophage infiltration

Numerous bioactive constituents derived from Chinese herbal
medicine, such as Paeoniflorin, Loganin, Baicalin, Triptolide,
Ligustrazine, Curcumin, Hirudin, and Acetylshikonin, demonstrate
protective effects against DKD by mitigating renal macrophage
infiltration. They orchestrate this process through a multi-targeted
mechanism, concurrently suppressing key signaling pathways
including TLR4/NF-kB, RAGE/MCP-1, MAPK, PKC/NF-kB,
and TGF-P1/Smad, thereby achieving synergistic renoprotection
(Table 1; Figure 1).

3.1 Glycoside compounds

The monoterpene glycoside Paeoniflorin (PF), which is
isolated from various Paeonia species, is characterized by diverse
pharmacological activities. Anti-allergic, antioxidant, and anti-
inflammatory activities are among its documented range of effects
(Cao et al, 2023). This compound has shown great promise as
a treatment for various diseases, including arthritis, psoriasis,
lupus and diabetes (Hong et al., 2022). Preclinical evidence
strongly supports the utility of PF as a renoprotective compound
in DKD (Zhang et al, 2023). Nuclear factor-kB (NF-kB) is a
widely distributed nuclear transcription factor that regulates
the expression of immune-related genes and participates in
innate and adaptive immunity, mediating inflammatory responses
(Yu et al, 2020). Toll-like receptors (TLRs) play a pivotal role
in the innate immune response, recognising both pathogen- and
damage-associated molecular patterns (de Melo et al., 2022). TLRs
activate NF-xB transcription through both MyD88-dependent
and MyD88-independent pathways, leading to the release of
multiple proinflammatory cytokines including tumor necrosis
factor alpha (TNF-a), IL-6, and monocyte chemoattractant protein-
1 (MCP-1). Among these, the TLR4 signaling pathway plays a
pivotal role in the inflammatory response and progressive fibrosis
associated with kidney disease (Fock and Parnova, 2021). This
activation, through both MyD88-dependent and independent
pathways, converges on the transcription factor NF-kB, triggering
the expression of proinflammatory cytokines (e.g., TNF-a, IL-
6) and the potent chemokine MCP-1. Both experimental TLR4
knockout and clinical observations have confirmed a direct
correlation between TLR4 expression, macrophage infiltration, and
the severity of renal injury in DKD (Devaraj et al., 2011; Lin et al.,
2012). By specifically inhibiting the TLR4/NF-kB p65 signaling
axis, PF effectively suppresses this inflammatory cascade, thereby
blocking macrophage migration into renal tissue and attenuating
the progression of DKD (Shao et al., 2019).

Loganin is the most abundant cycloarene-type triterpene
glycoside in Cornus officinalis (Zhang et al., 2022). Through
its mediation of anti-inflammation, combating of oxidation, and
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inhibition of fibrosis, it exhibits broad biological activity against
various kidney injuries, both acute and chronic (Jiang et al., 2012).
Notably, strychnine exhibits renoprotective effects in early-stage
DKD (Kong et al,, 2023). AGEs are a pathogenic factor in DKD,
causing kidney damage through multiple mechanisms (Yuan et al.,
2017). AGEs drive renal injury by binding to their receptor (RAGE),
which activates downstream signaling cascades, including NF-
kB and Protein Kinase C (PKC). The transcription of MCP-1 is
subsequently upregulated by this (Nebb et al., 2022). As a key
chemokine, MCP-1 orchestrates the recruitment of macrophages
to the kidney via its receptor, CC chemokine receptor 2 (CCR2),
thus initiating and amplifying the local inflammatory response
(He et al., 2023). Investigations into loganin’s mechanism of action
highlight its role in inhibiting the RAGE-MCP-1/CCR2 axis as a
key mechanism for reducing macrophage infiltration and alleviating
renal injury in DKD models. This was substantiated by an in vivo
study where an 8-week, low-dose treatment significantly improved
renal pathology (Du et al., 2021).

Baicalin (BAI) is one of the most abundant flavonoid
compounds found in the root of Scutellaria baicalensis Georgi
(Wen et al., 2023). Modern pharmacological research indicates that
BAI has a number of biological properties, such as antitumour,
antibacterial, antioxidant and anti-inflammatory effects. This
suggests its potential for treating various diseases (Li et al., 2025).
In the field of DKD, BAI has been shown to have effective renal
protective properties owing to its significant anti-inflammatory
and antioxidant effects (Ren et al., 2023). The efficacy of BAI was
demonstrated in a trial involving early-stage DKD patients, where
it significantly improved markers of renal function, including 24-h
urinary protein (UPT) and urinary albumin excretion rate (UAER),
by reducing oxidative stress and modulating immune responsiveness
(Yang et al., 2019). The mitogen-activated protein kinase (MAPK)
signaling pathway is a central regulator of inflammatory responses.
Its dysregulated activation prompts the secretion of inflammatory
mediators and the infiltration of immune cells into tissues
(Moon and Ro, 2021). BAIT directly inhibits the phosphorylation
of key proteins in the MAPK pathway—extracellular signal-
related kinases one and 2 (Erkl/2), C-jun N-terminal kinase
(JNK), and p38, thereby blocking downstream inflammatory
signaling. Concurrently, it downregulates MCP-1 expression,
reducing macrophage chemotaxis (Ma et al., 2021). Concurrently,
the
nuclear factor E2-related factor 2 (Nrf2) pathway, a master

BAI engages antioxidant response by activating the
regulator of endogenous antioxidant defenses. By suppressing
MAPK-driven inflammation while bolstering Nrf2-mediated
cytoprotection, this dual-pronged mechanism synergistically
inhibits macrophage infiltration and ameliorates renal damage,
as evidenced by reduced albuminuria in DKD animal models
(Ma et al., 2021).

3.2 Diterpenoid compounds

Triptolide (TP), a diterpene lactone derived from the roots
of Tripterygium wilfordii Hook. f. has been widely used in the
management of inflammatory and immune-mediated diseases
due to its significant anti-inflammatory and immunosuppressive
properties (Song et al, 2023). It is currently regarded as one
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of the most exciting bioactive compounds in the shift from
traditional to modern medicine (Gao et al., 2021). Recent research
demonstrates that TP has a positive effect on multiple kidney
diseases, characterised by a significant reduction in proteinuria
(He et al., 2015; Zhou et al., 2016; Lv et al.,, 2023). In DKD,
the immunopathology is driven in part by a skewed T-helper
(Th) cell balance, favoring pro-inflammatory Thl and pro-fibrotic
Th2 responses (Wu et al, 2011). This inflammatory milieu
promotes the NF-xkB-dependent upregulation of MCP-1, the
principal chemokine orchestrating the kidney’s recruitment of
monocytes/macrophages. Local injury is amplified and fibrosis is
driven by these recruited immune cells through mechanisms that
include the induction of ransforming growth factor 1 (TGF-
B1) (Tanase et al, 2022). Preclinical studies in a rat model of
DKD confirm that TP mitigates renal injury precisely by targeting
this axis: it rebalances the Th1/Th2 ratio, suppresses NF-«kB
activation, and consequently, inhibits the infiltration of pathogenic
monocytes/macrophages (Guo et al., 2016).

Despite its therapeutic promise, the clinical translation of TP
is severely hampered by significant systemic toxicity and poor
aqueous solubility. To overcome these limitations, next-generation
strategies are being pursued. These include the development of
structurally optimized analogues with improved safety profiles, such
as (5R)-5-Hydroxytriptolide (LLDT-8) and Minnelide, alongside
novel drug delivery systems. Such advancements seek to improve the
therapeutic index of triptolide-based compounds, with the potential
to unlock their use for treating DKD and other inflammatory
disorders (Tong et al., 2021).

3.3 Alkaloids

Ligustrazine is an efficacious alkaloid monomer extracted from
the Chinese medicinal herb Ligusticum chuanxiong (Mu et al.,
2023). This compound exerts its pharmacological effects through
a multi-target mechanism, including improving microcirculatory
disorders, inhibiting aldose reductase activity, providing antioxidant
and anti-inflammatory effects, inhibiting fibrosis, and regulating
autophagy. It demonstrates significant renal protective efficacy in
the treatment of DKD (Gong et al., 2023). The clinical efficacy
of Ligustrazine is substantiated by a metanalysis of 25 randomized
controlled trials involving 1,645 patients. This analysis demonstrated
that Ligustrazine significantly improves key markers of renal
function, including blood urea nitrogen (BUN) and serum
creatinine (SCr), while markedly reducing UTP and UAER. These
data establish Ligustrazine as an effective therapy for preserving
renal function and mitigating proteinuria in patients with DKD
(Wang et al., 2012). The renoprotective mechanism of Ligustrazine
is primarily attributed to its ability to suppress tubulointerstitial
inflammation, a core pathological feature of DKD driven by
macrophage infiltration (Liu S. et al., 2024). Intercellular adhesion
molecule-1 (ICAM-1) is a key molecule mediating the adhesion
of macrophages to vascular endothelium. Under physiological
conditions, it exhibits basal low expression. However, its expression
is increased in response to inflammatory stimuli (Ohga et al.,
2007). Research indicates that anti-ICAM-1 antibodies effectively
inhibit macrophage infiltration into DKD tissues by blocking
the function of this molecule. This finding confirms the pivotal
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role of ICAM-1 in promoting macrophage recruitment in DKD
(Wang et al., 2025). Ligustrazine directly targets the upstream
signaling cascade governing ICAM-1 expression. Specifically, it
inhibits the Protein Kinase C (PKC)/NF-kB signaling axis, which
in turn prevents NF-kB-dependent transcription of the ICAM-172
gene. By downregulating this key adhesion molecule, Ligustrazine
effectively diminishes macrophage infiltration into the renal
tubulointerstitium, thus alleviating local inflammation and injury
(Wang et al., 2004).

3.4 Polyphenolic compounds

Turmeric plants are widely cultivated and recognized
throughout Southeast Asia, with their rhizomes commonly used as
a spice and yellow food coloring (Yu et al., 2019; Chen et al., 2024).
Curcumin (CUR) is a polyphenolic compound extracted from
Curcuma longa L. as its core active ingredient. With its significant
antioxidant and anti-inflammatory properties, coupled with
favorable pharmacological safety characteristics, it demonstrates
considerable therapeutic potential in the management of chronic
inflammation, tumors, metabolic disorders and neurological
diseases (ALTamimi et al., 2021). Its utility in DKD is substantiated
by a meta-analysis of randomized controlled trials, which showed
that CUR supplementation not only reduces serum creatinine but
also concurrently improves key metabolic and cardiovascular risk
factors, including total cholesterol, blood pressure, and fasting blood
glucose (Jie et al., 2021). Mechanistically, CUR’s renoprotective
effects are largely attributed to its potent inhibition of the NF-xB
signaling pathway, a central hub for inflammation and fibrosis
in the kidney (Liu et al, 2021). In the quiescent state, NF-kB
is sequestered in the cytoplasm by its inhibitor, IkB. Within the
diabetic milieu, however, pathogenic stimuli trigger the degradation
of IkB, liberating NF-kB for nuclear translocation. Subsequent
phosphorylation of its p65 subunit is a critical step that unleashes its
transcriptional activity, driving the expression of pro-inflammatory
and pro-fibrotic genes (Capece et al, 2022; Wang et al., 2010).
Curcumin intervenes at critical nodes within this cascade to
suppress the expression of key NF-kB target genes that mediate
macrophage infiltration (e.g., ICAM-1, MCP-1) and fibrosis (TGF-
B1). By inhibiting this inflammatory-fibrotic axis, CUR effectively
reduces immune cell infiltration and extracellular matrix deposition,
thereby attenuating the advancement progression of DKD
(Soetikno et al., 2011).

3.5 Peptide compounds

Hirudin, a polypeptide derived from medicinal leeches, is the
most potent natural inhibitor of thrombin known (Tian et al.,
2024). While renowned for its clinical use as an anticoagulant,
Hirudin’s therapeutic activities extend to anti-inflammatory and
anti-fibrotic effects, which are highly relevant to DKD pathology
(LiuS-J. et al, 2024). Recent findings have highlighted that
thrombin plays a pivotal role in kidney disease and inflammatory
regulation. For instance, nanoparticle-specific inhibition of
thrombin activity can mitigate ischemia-reperfusion-induced
kidney injury and improve renal function (DiSilvestro, 2000).
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Inflammation and thrombin exhibit bidirectional regulation,
jointly driving disease progression. Concurrently, DKD represents
a significant microvascular complication of diabetes, with its
pathological essence being a chronic inflammatory state (Wang et al.,
2023). A central feature of DKD is podocyte injury, which
compromises the integrity of the glomerular filtration barrier and
leads to proteinuria (Chen et al., 2024). This damage is driven by the
pathological activation of intracellular signaling cascades, including
the p38 MAPK and NF-«kB pathways, which promote apoptosis
and the secretion of inflammatory cytokines (Ural et al., 2023;
Gong et al.,, 2021; Cui et al., 2019). Hirudin directly counteracts
this pathology. Preclinical evidence demonstrates that Hirudin can
suppress macrophage infiltration and proinflammatory cytokine
expression through p38 MAPK/NF-kB-dependent mechanisms,
thereby alleviating hyperglycemia-induced foot cell apoptosis
and inflammatory responses. The functional consequence of this
targeted mechanism is a marked improvement in renal function
and a significant decrease in proteinuria in DKD animal models
(Han et al., 2020).

3.6 Naphthoquinone compounds

Acetylshikonin, a naphthoquinone compound isolated from the
plant Lithospermum erythrorhizon, exhibits pleiotropic biological
activities such as antitumor, antimicrobial, and antioxidant effects
(Lin et al., 2023a). Its therapeutic potential has been established for
cardiovascular diseases, sexual dysfunction, and cancer (Lin et al.,
2023b). Notably, Acetylshikonin exerts broad beneficial effects on
diabetes and its complications, highlighting its promising potential
as a novel treatment for DKD. Activation of the TGF-f1/Smad
signaling pathway is closely associated with the fibrotic process
in kidney disease. TGF-Pl not only promotes mesangial cell
proliferation, mesangial matrix expansion and glomerulosclerosis,
but also makes a significant contribution to tubulointerstitial
fibrosis, making it a key pathway in the progression of DKD
(Wangetal., 2021). Downstream, the Smad protein family, especially
Smad2, Smad3, and Smad7, plays a pivotal role in the pathological
regulation of DKD. Studies indicate that in STZ-induced DKD
models, conditional knockout of Smad2 in fibroblasts using the
fibroblast-specific protein-1 (FSP1) promoter significantly reduces
renal fibrosis (Loeffler et al., 2018). Additionally, knockout of Smad3
markedly ameliorates pathological features including glomerular
basement membrane thickening, extracellular matrix accumulation
and proteinuria (Wang et al, 2021). Early renal inflammation
and hypertrophy are crucial preliminary stages in the progression
of renal fibrosis (Tian et al., 2015). Research in STZ-induced
diabetic mouse models has shown that Acetylshikonin significantly
alleviates inflammatory responses and fibrotic lesions in the kidneys
(Li et al., 2018). Specifically, it inhibits macrophage infiltration
and downregulates the expression of inflammatory cytokines IL-
1B, IL-6, MCP-1, and the adhesion molecule ICAM-1, thereby
effectively reducing local renal inflammation. Trichrome staining
further confirmed that Acetylshikonin significantly inhibits renal
fibrosis. At the signaling level, Acetylshikonin acts by reducing TGF-
B1 levels and Smad2/3 phosphorylation, concurrently restoring
Smad7 expression. In summary, Acetylshikonin prevents kidney
inflammation and slows down the development of fibrosis in
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DKD by blocking the TGF-f1/Smad pathway. This results in fewer
macrophages infiltrating the kidneys and lower expression of pro-
inflammatory factors (Li et al., 2018).

4 Conclusion and perspectives

This review synthesizes existing evidence indicating that
multiple natural active ingredients converge on the core pathogenic
mechanism in DKD, namely, macrophage-mediated inflammation.
Although current standard therapies, such as renin-angiotensin
system inhibitors, SGLT2 inhibitors, and GLP-1 receptor agonists,
provide cardiorenal protection through hemodynamic and
metabolic regulation, a substantial residual risk of disease
progression persists, primarily driven by ongoing inflammatory
and fibrotic processes. The natural compounds discussed herein
inhibit macrophage infiltration and downregulate the expression of
key inflammatory mediators such as MCP-1 and ICAM-1, thereby
intervening in pathological pathways that act synergistically with
existing treatments. This offers a promising combinatorial strategy
to disrupt the inflammatory-fibrotic axis driving DKD progression.

However, translational challenges remain, as most efficacy
data are derived from preclinical models, and issues such as low
bioavailability and dose-limiting toxicity hinder clinical application.
To realize this synergistic potential, innovation in drug delivery
systems and rigorous clinical trials are essential to validate the
efficacy and safety of these natural compounds as adjuvants to
standard therapy. The ultimate goal is to harness the complementary
mechanisms of both conventional and natural agents to achieve
superior therapeutic outcomes. Ultimately, this will fulfill their
therapeutic value as a multi-target treatment strategy for DKD.
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