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Scanpath analysis provides a powerful window into visual behavior by jointly 
capturing the spatial organization and temporal dynamics of gaze. By linking 
perception, cognition, and oculomotor control, scanpaths offer rich insights 
into how individuals explore visual scenes and accomplish task goals. Despite 
decades of research, however, the field remains methodologically fragmented, 
with a wide diversity of representations and comparison metrics that complicate 
interpretation and methodological choice. This article reviews computational 
approaches for the characterization and comparison of scanpaths, with an 
explicit focus on their underlying assumptions, interpretability, and practical 
implications. We first survey representations and metrics designed to describe 
individual scanpaths, ranging from geometric descriptors and spatial density 
representations to more advanced approaches such as attention maps, 
recurrence quantification analysis, and symbolic string encodings that capture 
temporal regularities and structural patterns. We then review methods for 
comparing scanpaths across observers, stimuli, or tasks, including point-
mapping metrics, elastic alignment techniques, string-edit distances, saliency-
based measures, and hybrid approaches integrating spatial and temporal 
information. Across these methods, we highlight their respective strengths, 
limitations, and sensitivities to design choices such as discretization, spatial 
resolution, and temporal weighting. Rather than promoting a single optimal 
metric, this review emphasizes scanpath analysis as a family of complementary 
tools whose relevance depends on the research question and experimental 
context. Overall, this work aims to provide a unified conceptual framework 
to guide methodological selection, foster reproducibility, and support the 
meaningful interpretation of gaze dynamics across disciplines.
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 1 Introduction

Understanding how humans explore their visual environment has been a central topic 
in eye-tracking research for nearly a century. The term scanpath was first introduced by 
Noton and Stark (1971a) and Noton and Stark (1971b), who proposed that an internal
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cognitive representation guides both visual perception and the 
associated mechanism of active eye movements in a top-down 
manner. Their pioneering work suggested that gaze behavior 
reflects deeper cognitive processes such as expectations, memory, 
and task goals. This groundbreaking idea is considered one of 
the most influential theories in the study of vision and eye 
movements. However, these key concepts were also foreshadowed 
in earlier classic works on eye movements. In particular, Yarbus 
(1967b) demonstrated that gaze patterns vary systematically with 
the observer’s instructions: when viewing the same painting 
under distinct task sets, participants produced markedly different 
trajectories. These findings revealed that fixation locations, their 
temporal ordering, and the overall structure of the scanpath 
depend jointly on stimulus properties and the observer’s mental 
state. Subsequent influential contributions to scanpath analysis 
include the work of Choi et al. (1995), who introduced string-
based representations for visual search, as well as studies by 
Zangemeister et al. (1995a) and Zangemeister et al. (1995b), which 
demonstrated the existence of global scanpath strategies and high-
level oculomotor control in both healthy observers and patients with 
visual field defects.

For the purposes of this review, we define a scanpath
as a sequence of successive eye fixations, each specified by 
its spatial location—horizontal and vertical coordinates—and 
its associated duration. The process for constructing scanpath 
trajectories generally begins by segmenting raw gaze recordings into 
slow—fixation—and fast—saccadic—phases. After segmentation, 
slow phases are grouped into fixation events, while saccades 
are collapsed into transition events between fixations, thereby 
producing scanpath time series. It is important to emphasize that this 
abstraction captures the essential dynamics of visual exploration: 
fixations represent moments of relative perceptual stability, whereas 
saccades indicate shifts of attention between loci of interest. Figure 1 
provides a schematic representation of this transformation from raw 
gaze signals to scanpath trajectories.

The classic scanpath theory posits that scanpaths are 
predominantly top-down processes, driven by an observer’s mental 
model. In this view, cognitive goals and intentions dictate fixation 
locations, adapting to the task at hand. However, alternative 
perspectives, such as visual saliency models, emphasize the role of 
bottom-up influences, wherein low-level stimulus properties—e.g., 
contrast, color, and motion—capture attention and guide eye 
movements. These models argue that salient features in the visual 
field dictate gaze trajectories, with cognitive influences acting 
secondarily. One key limitation of scanpath theory in its strongest 
form is its inability to fully explain variability in eye movements 
across different observers and tasks. Similarly, a purely bottom-up
saliency model also struggles to account for the diversity in gaze 
patterns during repeated exposures to the same visual stimulus.

Over recent decades, considerable debate has revolved around 
the interplay between top-down and bottom-up mechanisms in 
the control of visual attention (Theeuwes, 2010). Whereas early 
frameworks tended to treat these mechanisms as competing sources 
of guidance, more recent accounts emphasize a dynamic and 
interactive process unfolding over multiple timescales. According 
to this view, initial fixations are predominantly driven by bottom-
up salience—reflecting local stimulus properties such as contrast, 
motion, or color—while later stages increasingly reflect top-down

influences related to task goals, expectations, prior knowledge, and 
learned attentional sets (Hochstein and Ahissar, 2002; VanRullen 
and Koch, 2003; Wolfe, 2021). These influences interact through 
recurrent processing loops linking higher-order cortical areas 
with early visual regions, enabling cognitive goals to progressively 
reshape fixation patterns during exploration. Contemporary 
computational models likewise implement hybrid architectures in 
which salience, goal-driven priority maps, and learned attentional 
biases jointly contribute to fixation selection (Mengers et al., 2025). 
Together, these findings converge toward a multifactorial account 
in which bottom-up signals dominate initial orienting but are 
rapidly integrated with feedback mechanisms that incorporate task 
demands, contextual expectations, and experience-driven biases.

Computational characterization of scanpaths is 
methodologically challenging because it requires capturing 
sequential dependencies, spatial distributions, and temporal 
dynamics. Since the early work of Noton and Stark, the field 
has grown substantially, producing a diverse array of approaches 
(Anderson et al., 2013; Brandt and Stark, 1997; Burmester and 
Mast, 2010; Foulsham et al., 2012; Foulsham and Underwood, 2008; 
Johansson et al., 2006; Shepherd et al., 2010). This review of scanpath 
analysis and representations is organized into two main sections. 
First, we outline the geometric and descriptive characteristics 
of scanpaths, including representations derived from fixation 
sequences and quantitative measures that capture the spatial and 
temporal properties of fixation trajectories. Second, we examine the 
extensive body of work devoted to comparing scanpath trajectories, 
a key aspect of gaze dynamics research.

This article is the third contribution in an ongoing series of 
methodological reviews dedicated to the analysis of oculomotor 
signals and gaze trajectories. The first article, published in Frontiers 
in Physiology (Laborde et al., 2025b), synthesizes current knowledge 
on canonical eye movements, with particular emphasis on the 
differences between controlled laboratory settings and naturalistic 
viewing conditions. The second article (Laborde et al., 2025a) 
reviews segmentation algorithms and oculomotor features that 
enable the reliable identification and characterization of fixations, 
saccades, and smooth pursuits. The present work focuses on 
the representations and metrics used to characterize scanpaths, as 
well as on the methods for comparing scanpaths across stimuli, 
observers, or tasks.

In this review, we distinguish between representations, which 
refer to how scanpaths are encoded or transformed into alternative 
forms—e.g., geometric trajectories, symbolic strings, attention 
maps—and metrics, which define quantitative functions operating 
on these representations to summarize, compare, or characterize 
gaze behavior. Our goal is not to provide an exhaustive technical 
treatment of each approach, but rather to propose a unified 
conceptual framework that organizes the diversity of existing 
methods and clarifies their assumptions, required inputs, and 
interpretability, along with references to formal mathematical 
descriptions and implementation details. Importantly, this article 
does not address areas of interest (AoIs), which fall outside the scope 
of the present review and are treated in a separate dedicated work. 
As will become apparent, several methods developed for scanpath 
analysis are conceptually related to AoI-based approaches, yet the 
symbolic nature of AoI representations warrants an independent 
treatment. 
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FIGURE 1
Scanpath. This figure illustrates a commonly used representation of scanpath trajectories. Fixations are first extracted from raw gaze data using binary 
segmentation algorithms — (a) The scanpath is then visualized (b) — with fixations represented at the centroid of their spatial coordinates. The 
temporal aspect of fixations is depicted using blue circles, with the radius proportional to the fixation duration. Purple lines connect successive 
fixations, representing saccades—the non-linear trajectory of saccades is thus abandoned in favor of a simplified representation.

2 Single scanpath representation

In this section, scanpaths are analyzed independently by 
examining the sequential and spatial properties of fixation 

sequences. We focus on methods designed to characterize the 
structure of a single gaze trajectory, without explicit comparison 
across observers or trials. We first introduce foundational 
geometrical metrics, which operate directly on fixation coordinates 
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to quantify the spatial extent, dispersion, and complexity of 
scanpaths.

Beyond such low-level descriptors, a large body of work 
relies on higher-level representations that transform scanpaths into 
alternative forms in order to emphasize specific dimensions of gaze 
behavior. These include spatial density and attention maps, which 
support intuitive visual inspection and lie at the intersection of 
eye-tracking research and visual analytics, as well as recurrence-
based representations that highlight the temporal organization and 
self-similarity of gaze sequences. We also review symbolic string 
encodings, which discretize scanpaths into categorical sequences 
and form the basis of many sequence-analysis techniques.

For each family of methods, we discuss their underlying 
assumptions, typical parameterizations, interpretability, and 
main limitations, with particular attention to sensitivity to 
discretization, spatial resolution, and temporal binning. The 
metrics and algorithms discussed in this section are systematically 
summarized in Table 1, which specifies the required inputs, typical 
outputs, and key references for implementation.

2.1 Geometrical approaches

From the earliest studies of eye movement behavior in 
observational tasks (Buswell, 1935), it was recognized that simple 
descriptive and geometric characterizations of scanpath trajectories 
could offer valuable insights into the underlying cognitive processes. 
With this in mind, we begin our overview by introducing several 
intuitive metrics that capture the spatial and geometric features of 
gaze trajectories. 

2.1.1 Basic descriptive features
A frequently studied feature in the literature is the scanpath 

length, which quantifies the total distance traveled by the eye 
during scanning. This metric is typically expressed in degrees 
of visual angle or pixels. To ensure meaningful interpretation, 
scanpath length is often normalized by time or analyzed within the 
framework of specific tasks or sub-tasks. High values of scanpath 
length are often associated with less efficient search behavior, as 
they reflect extensive eye movement without rapidly converging 
toward task-relevant information (Goldberg and Kotval, 1998). This 
metric has proven useful in various contexts. For instance, it has 
been employed to assess the diagnostic skills of medical students, 
pathology residents, and practicing pathologists when analyzing 
histopathology slides, revealing differences in scanning strategies 
and expertise (Krupinski et al., 2006). In clinical research, scanpath 
length has also been interpreted to characterize restricted scanning 
behaviors. For example, it has highlighted the limited exploration 
strategies observed in patients with schizophrenia, providing 
insights into their oculomotor dysfunction (Toh et al., 2011).

In addition to scanpath length, another valuable approach 
involves analyzing the angles formed by successive fixations along 
the scanpath trajectory. These angles are calculated based on two 
consecutive line segments connecting three fixations—previous, 
current, and next. They provide a way to characterize the 
geometric efficiency of visual search, with smaller and more direct 
angles often indicative of more focused behavior (Goldberg and 
Kotval, 1998). The analysis of angular distributions within scanpaths 

can be conducted independently or in combination with advanced 
modeling techniques. For example, Mao et al. (2022) used angular 
distributions to quantify task performance, while Fuhl et al. (2019) 
proposed leveraging sequences of saccadic angles for scanpath 
comparison. Similarly, Kümmerer et al. (2022) utilized inter-
fixation angles as a validation metric for computational models of 
human scanpaths, demonstrating their relevance for benchmarking 
algorithms designed to replicate human visual behavior.

Another widely used descriptor is fixation dispersion, also 
known as spread, which assesses the spatial distribution of fixations. 
Dispersion can be computed in various ways, such as by calculating 
the standard deviation of fixation coordinates across a scene 
(Guo et al., 2023; Ryerson et al., 2021) or by measuring the deviation 
from a central reference point, often referred to as dispersion 
from the center (Anliker et al., 1976). This measure offers valuable 
insights into spatial viewing strategies and has been applied, for 
instance, to differentiate visual search strategies between novice and 
expert pathologists (Jaarsma et al., 2014). High fixation dispersion 
may reflect exploratory search patterns, whereas low dispersion 
can indicate focused attention—or, in some clinical or atypical 
populations, restricted exploration that is not necessarily efficient. 
This underlines the importance of interpreting these metrics in the 
context of the task, stimulus, and population under study.

Finally, many studies complement global scanpath metrics 
with descriptive measures of individual fixational and saccadic 
components. Examples include the mean saccade amplitude
and the mean fixation duration. These measures help provide 
a more detailed characterization of oculomotor behavior and 
are particularly useful for comparing performance across tasks 
or populations. For a more comprehensive treatment of these 
descriptors, readers are referred to the Oculomotor Processing part 
of this review series (Laborde et al., 2025a), where the features used 
to characterize canonical oculomotor events are examined in detail.

Fundamental scanpath metrics such as scanpath length, angular 
analysis, and fixation dispersion provide complementary insights 
into the global structure of visual exploration. They are particularly 
appropriate in tasks where overall search efficiency, spatial spread, or 
exploratory style is of interest, such as visual search, inspection, and 
reading. When complemented by detailed measures of individual 
fixations and saccades, these metrics enable a more nuanced and 
comprehensive understanding of oculomotor behavior across a wide 
range of experimental and clinical contexts. 

2.1.2 Spatial density
A prominent global search metric, introduced by Kotval and 

Goldberg (1998), is the scanpath spatial density. This descriptive 
measure, computed independently of the temporal order of 
fixations, characterizes how widely the visual field is explored. 
A broadly distributed pattern of fixations typically reflects 
extensive searching, whereas fixations concentrated within a 
limited region suggest a more direct or focused exploration 
strategy. Consequently, spatial density has been employed to assess 
viewer expertise during complex cognitive tasks, with higher 
density often linked to more systematic and skillful performance 
(Augustyniak and Tadeusiewicz, 2006). Alternatively, spatial density 
can also be interpreted as a measure of scanpath regularity, which 
is particularly relevant in reading and comprehension studies 
(Mézière et al., 2023; von der Malsburg et al., 2015).
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TABLE 1  Single scanpath metrics and their required input representations.

Feature name Input Description References

Length Fixation sequence Computes the total distance traveled by the gaze 
between successive fixation centroids

Goldberg and Kotval (1998)

Dispersion Fixation coordinates Computes the standard deviation of fixation 
coordinates within a scanpath

Guo et al. (2023)

Successive angles Fixation sequence Computes the angles formed by successive saccadic 
trajectories between fixations

Goldberg and Kotval (1998)

Spatial density Fixation coordinates Computes the proportion of the visual field foveated 
during a task using circular filters centered on 
fixations

Castelhano et al. (2009)

K-coefficient Fixation durations + saccade amplitudes Computes, for each fixation, the difference between 
standardized fixation duration and standardized 
amplitude of the subsequent saccade

Krejtz et al. (2016)

Nearest neighbor index Fixation coordinates Computes the mean minimum inter-fixation 
distance normalized by the expected value under 
spatial randomness

Di Nocera et al. (2006)

Voronoi cells Fixation coordinates Computes statistical parameters — e.g., skewness, 
scale — of a gamma distribution fitted to normalized 
Voronoi cell areas

Over et al. (2006)

Convex hull Fixation coordinates Computes the area of the smallest convex polygon 
containing all fixation points of a scanpath

Bhattacharya et al. (2020)

Higuchi fractal dimension Fixation sequence (Hilbert-transformed) Computes the Higuchi fractal dimension of the 
one-dimensional Hilbert-curve distance series 
derived from fixation centroids

Newport et al. (2021)

Saliency map Fixation coordinates Computes a fixation density map using Gaussian 
kernel smoothing over fixation locations

Bojko (2009)

Saliency map entropy Saliency map Computes the Shannon entropy of the normalized 
attention map distribution

Gu et al. (2021)

RQA recurrence rate Fixation sequence Computes the percentage of recurrence points in the 
recurrence matrix

Webber and Zbilut (1994)

RQA determinism Fixation sequence Computes the percentage of recurrence points 
forming diagonal line structures

Webber and Zbilut (1994)

RQA laminarity Fixation sequence Computes the percentage of recurrence points 
forming vertical or horizontal line structures

Webber and Zbilut (1994)

RQA CORM Fixation sequence Computes the distance between the center of 
recurrence mass and the main diagonal of the 
recurrence plot

Anderson et al. (2013)

RQA entropy Fixation sequence Computes the Shannon entropy of the diagonal-line 
length distribution in the recurrence plot

Marwan et al. (2007)

From a computational perspective, the earliest method for 
estimating spatial density relied on superimposing a regular grid 
over the visual field (Goldberg and Kotval, 1998). Fixations 
are mapped onto the grid, and the density is defined as the 
proportion of grid cells containing at least one fixation relative 
to the total number of cells. While straightforward, this approach 
is limited by the arbitrary choice of grid resolution, which 
directly influences the resulting density estimate. To alleviate 

this dependency, Castelhano et al. (2009) proposed a continuous 
alternative that avoids grid-based discretization. In this method, 
the proportion of the visual field foveated during a search 
task is computed by centering a circular filter—typically with 
a radius of 1° or 2° of visual angle—on each fixation. The 
union of the covered areas, normalized by the total visual field 
area, provides a smoother and more physiologically grounded
density estimate.
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Recently, Krejtz et al. (2016) and Krejtz et al. (2017) introduced 
the K coefficient as an extension of the saccade-fixation ratio. 
Developed to explore the dynamics of visual scanning in tasks such 
as artwork and map viewing, this metric averages the differences, 
for each fixation, between the standardized fixation duration and the 
standardized saccade amplitude of the subsequent saccade. The K 
coefficient has proven effective in distinguishing between ambient 
and focal attention states and serves as an indicator of cognitive 
load changes. Its ability to capture subtle shifts in attention dynamics 
makes it an effective tool for both experimental and applied research.

Another innovative metric, the nearest neighbor index (NNI), 
evaluates the randomness of fixation distribution across the 
visual field (Di Nocera et al., 2006). The NNI is computed as 
the mean of the minimum distances between fixation points, 
normalized by the expected mean distance under a random 
distribution. This metric has proven useful in assessing the 
relationship between fixation patterns and cognitive workload. For 
instance, lower workload conditions often correspond to more 
regular fixation distributions, suggesting systematic monitoring of 
an interface or visual layout.

A more sophisticated density measure, introduced by 
Over et al. (2006), utilizes Voronoi diagrams to characterize fixation 
uniformity. This method assigns each fixation a unique region 
of the visual field, known as a Voronoi cell, which comprises all 
points closer to that fixation than to any other—an illustration is 
provided in Figure 2a. The size and shape of these cells depend on 
factors such as the visual stimulus characteristics, the total number 
of fixations, and their spatial arrangement. This approach enables 
detailed analysis of fixation density by extracting descriptors from 
the distribution of Voronoi cell sizes, such as skewness or parameters 
of a gamma distribution. These descriptors provide insights into the 
uniformity and clustering of fixations, offering a powerful tool for 
understanding how visual attention is distributed during cognitive 
processes.

Overall, spatial density approaches are particularly well suited 
for research questions concerned with how thoroughly, widely, or 
uniformly a stimulus is explored, or for distinguishing between 
ambient and focal viewing modes, rather than for capturing the 
precise temporal ordering of fixations. 

2.1.3 Convex hull
The concept of the convex hull of fixations was introduced 

early on as a natural extension to the scanpath length metric 
(Kotval and Goldberg, 1998). The convex hull is defined as the 
smallest convex polygon encompassing all fixation points for a given 
participant under a specific experimental condition. This can be 
visualized as the area bounded by a tightened rubber band stretched 
around all fixation points until it encloses them completely—see 
Figure 2b for an illustration. The convex hull area provides an 
estimate of the extent of the peripheral visual field explored 
during a task (Bhattacharya et al., 2020). This metric has been 
widely employed to assess visual effort and attention distribution 
across various tasks and experimental conditions (Fu et al., 2017; 
Goldberg and Kotval, 1999; Imants and de Greef, 2011; Moacdieh 
and Sarter, 2015; Sharafi et al., 2015a). A consistent observation in 
these studies is that smaller convex hull areas correspond to more 
concentrated fixations and reduced visual effort, often indicative 
of a task-focused approach. For this reason, convex hull area is 

frequently analyzed in conjunction with scanpath length, as the two 
metrics together offer complementary insights into the spatial extent 
and efficiency of visual search.

While the convex hull area measure is a useful metric, it 
has significant limitations. A key drawback is its sensitivity to 
outliers and stray fixations, which can significantly distort the 
results. For instance, as noted by Bhattacharya et al. (2020), a 
scanpath with a few stray fixations near the corners of a region 
may produce a convex hull area comparable to that of a scanpath 
reflecting concentrated, systematic exploration of the same region. 
This highlights the challenge of using convex hull area in isolation, 
as it may fail to distinguish between meaningful search patterns 
and scattered fixations unrelated to the task—outlier fixations, 
even if rare, can disproportionately expand the convex hull and 
distort results (Sharafi et al., 2015a; b). Moreover, as an aggregated 
metric computed after a visual search sequence, its relevance can 
vary depending on the specific visual task, sometimes leading to 
misinterpretations.

To address these limitations, researchers have developed refined 
convex hull-based measures that incorporate temporal and fixation-
density dimensions. Notably, Bhattacharya et al. (2020) introduced 
two refined metrics to enhance the analysis of visual search behavior: 
the hull area per time, which combines the dynamic convex hull 
area with the elapsed task duration to provide a time-normalized 
measure of the search spread, and the fixations per hull area, which 
integrates the running count of fixations with the corresponding 
convex hull area, offering a quantitative indicator of fixation density 
within the explored region. These enhanced features aim to provide 
more nuanced insights into visual behavior by addressing the static 
and outlier-sensitive nature of the raw convex hull area. Convex-
hull-based metrics are therefore best used as global indicators of 
spatial extent or visual effort, and ideally in combination with other 
measures that capture fixation density or temporal dynamics. 

2.1.4 Fractal dimension
The concept of fractal dimension can be intuitively explained 

using the classic problem of measuring the coastline of an island. 
As the scale of measurement becomes smaller, the length of the 
coastline increases, making it increasingly difficult to measure 
accurately at finer scales, such as the granularity of a single 
grain of sand. This phenomenon highlights the complexity of 
irregular structures, and to quantify such complexity, a powerful 
tool was introduced: the box-counting dimension, also known as 
the Minkowski–Bouligand dimension. To compute the box-counting 
dimension, the fractal structure is overlaid with a grid of evenly 
spaced boxes. The number of boxes required to cover the structure 
is then counted, and the dimension is determined by observing 
how this count changes as the size of the grid cells is reduced. 
This approach is useful for quantifying the degree of irregularity in 
structures that exhibit fractal properties, which are often self-similar 
across scales.

Interestingly, the scanpath formed by connecting successive 
eye fixations during scene viewing or visual search tasks can 
be treated as a fractal pattern. Fractals are particularly effective 
at capturing spatial structures and offer valuable insights into 
the geometric organization or generation of scanpaths during 
cognitive tasks such as visual search or scene exploration 
(Cote et al., 2011). The fractal dimension has been employed to 

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1721768
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Laborde et al. 10.3389/fphys.2025.1721768

FIGURE 2
Geometrical Analysis. (a) illustrates the Voronoi tessellation derived from the scanpath shown in Figure 1. Each fixation serves as a generator point, 
defining a corresponding Voronoi cell whose area reflects the local spatial density of neighboring fixations. (b) depicts the convex hull of the same 
scanpath, shown in light blue. The convex hull corresponds to the smallest convex polygon—defined by interior angles not exceeding 180°—that 
encloses the entire set of fixation locations, thereby providing a global measure of the spatial extent of visual exploration.

characterize human visual search behavior in diverse contexts, 
including mammography screening (Alamudun et al., 2017; 2015) 
and the analysis of brain magnetic resonance imaging (MRI) scans 
(Suman et al., 2021), as well as to explore its relationship with task 
complexity and reader expertise—for instance Wu et al. (2014) 
demonstrated the utility of this metric in quantifying scene
complexity.

Traditional box-counting methods applied to the two-
dimensional shape of scanpaths do not account for the 
temporal aspect of these eye movements. To address this 
limitation, Newport et al. (2021) recently introduced an alternative 
method that captures the fractal complexity of two-dimensional gaze 
patterns while incorporating the temporal dimension. Their method 
utilizes the Higuchi fractal dimension (HFD), an approximation of 
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the Minkowski–Bouligand method specifically designed for one-
dimensional time series. The primary advantage of HFD lies in its 
ability to directly analyze non-periodic, non-stationary data, which 
is characteristic of eye movement patterns.

Since the HFD method is applied to one-dimensional time 
series, ithe two-dimensional positional data of scanpaths must 
first be transformed into a single one-dimensional sequence. 
Newport and colleagues addressed this dimensionality reduction 
by employing Hilbert curve distances (Bially, 1969), a technique 
that maps two-dimensional scanpath coordinates into a one-
dimensional sequence while preserving the spatial order of fixations. 
This transformation enables the application of the HFD method to 
characterize the fractal complexity of scanpaths, as illustrated in 
Figure 3. This two-step approach has proven particularly effective 
in filtering out outlier scanpaths that exhibit inconsistent or 
meaningless patterns, thereby enhancing the robustness of scanpath 
analyses (Newport et al., 2021; 2022). Fractal-based measures 
are therefore particularly appropriate when the research focus 
lies on the complexity, irregularity, or self-similar structure of 
exploration patterns, rather than on precise fixation locations or 
exact temporal ordering.

2.2 Saliency maps

The term saliency map can be a source of confusion due to 
its broad application across various research domains, where it 
encompasses different conceptualizations and uses. It has been 
described in multiple, overlapping contexts: as an abstract map for 
attentional priority, as a neural mechanism for integrating visual 
activity, as a bottom-up predictor of gaze locations, and as any 
heatmap-like representation of fixation series (Foulsham, 2019). In 
the following sections, we focus on two specific interpretations of 
saliency maps. First, we introduce attention maps, or heat maps, 
which are commonly used techniques for visualizing gaze data and 
naturally extend the concept of scanpath density. Second, we provide 
an overview of saliency models, which generate maps that estimate 
the likelihood of different image regions attracting an observer’s 
attention. These models are typically grounded in computational 
neuroscience and computer vision, aiming to predict the areas 
where visual attention is most likely to be directed based on image 
characteristics. 

2.2.1 Attention maps
A viewer’s attention map—often referred to as a heat map—is a 

widely used visualization of the spatial distribution of visual fixations 
across a stimulus. Conceptually, attention maps are spatial density 
plots that indicate how frequently different regions of the visual field 
are inspected. They can be understood as a continuous analogue of 
a histogram, where fixations, from a single observer or aggregated 
across observers, are accumulated on a discretized grid, and the 
fixation counts determine the resulting pixel intensities—typically 
indicated by color gradients or opacity. Importantly, the resolution 
of this grid is chosen by the user and does not necessarily 
match the original resolution of the stimulus; it is a modelling 
choice that influences the smoothness and spatial precision of 
the map. To generate a continuous density field, each fixation is 
typically convolved with a Gaussian kernel whose standard deviation 

determines how broadly the fixation spreads across the visual field. 
The choice of this parameter is critical, as it should reflect eye-
position uncertainty and foveal extent, and is often set to 1 or 
2 degrees of visual angle. As illustrated in Figure 4, varying the 
Gaussian dispersion parameter directly affects the granularity and 
interpretability of the resulting attention map.

This general description must be nuanced by several 
important considerations. While the fixation-count attention map, 
which aggregates the number of fixations, is an intuitive and 
straightforward representation, it has inherent limitations that can 
affect its interpretability and reliability. Most notably, this method 
assigns equal weight to all fixations, irrespective of their duration. 
Consequently, regions with similar intensity on a fixation-count map 
do not necessarily correspond to equivalent total gaze durations. For 
example, a brief glance repeated several times in one area may be 
indistinguishable from prolonged sustained attention in another, 
despite the potentially different cognitive or perceptual implications 
of these gaze patterns.

Furthermore, when fixation-count maps are generated from 
data collected across multiple observers, they can inadvertently 
introduce biases. For instance, observers who are exposed to the 
stimulus for longer durations naturally have more opportunities to 
produce fixations, disproportionately influencing the overall map. 
This effect can skew the representation toward their individual 
viewing behavior, especially in datasets where exposure times vary 
significantly among participants. It is also important to note that 
the idiosyncratic interests of certain observers can introduce bias. 
Individuals with particularly high interest in specific items or regions 
may contribute a disproportionately large number of fixations to 
those areas, overshadowing the collective patterns of the broader 
group. As a result, fixation-count maps may over-represent such 
idiosyncrasies, reducing their ability to generalize about attention 
allocation across a population.

To mitigate these shortcomings, alternative methods have 
been proposed that incorporate additional dimensions of 
visual behavior (Bojko, 2009). One such approach is the absolute gaze 
duration attention map, which represents the total time observers 
spend fixating on different areas of a stimulus. This method 
highlights regions that consistently attract sustained attention, 
offering insights into areas of prolonged engagement. However, 
it may still be influenced by differences in exposure time among 
observers or individual variability in attention patterns, potentially 
introducing bias into the results.

Another approach is the relative gaze duration attention 
map, which normalizes gaze duration data by calculating the 
time spent fixating on each area as a proportion of the total 
viewing time for each observer. This normalization reduces 
biases caused by variations in individual exposure times or 
personal viewing tendencies, enabling more equitable comparisons 
across participants. Despite its advantages, this method may 
obscure absolute differences in gaze duration between regions or 
participants, which could be significant for certain analyses.

A third method is the participant-percentage attention map, 
which reflects the proportion of observers who fixate on specific 
areas of a stimulus. This approach is particularly useful for 
identifying regions that consistently attract attention in a population 
and highlighting universally salient or compelling features. 
However, since it does not account for the frequency or duration 
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FIGURE 3
Higuchi Fractal dimension. (a) illustrates dimensionality reduction using the Hilbert curve. Fixations forming the scanpath are mapped onto a Hilbert 
curve, a space-filling curve that traverses the entire visual field. In this representation, Cartesian fixation coordinates are reduced to a 
single-dimensional coordinate representing their position along the Hilbert curve, starting from the origin at the bottom-left corner of the visual field.
(b) plots the Hilbert curve distances against their temporal indices. Subsequently, the Higuchi method can be applied to estimate fractal dimensions. 
Briefly, this approach computes the lengths L(k) of sub-series extracted from the Hilbert distance series for various lags k between consecutive 
samples. Assuming a power-law relationship, L(k) ∝ k−D, the fractal dimension D is estimated using logarithmic regression, as illustrated in Figure (c).

of fixations, it is less effective in assessing the intensity or depth of 
attention directed toward specific areas.

Each of these methods has unique strengths and weaknesses, 
and their suitability depends on the research objectives and 
the experimental paradigm. For example, absolute or relative 
gaze-duration maps are often preferred in studies focusing on 

sustained attention, while participant-percentage maps are more 
appropriate for understanding population-wide trends in visual 
salience. For further discussion on this conceptual topic, we refer 
the reader to Bojko (2009), who provide guidelines for avoiding 
the misuse and misinterpretation of attention maps. They stress 
that attention maps, regardless of the method used to create them, 
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FIGURE 4
Attention Maps. Two attention maps derived from the same scanpath illustrated in Figure 1b. (a,b) specifically illustrate attention maps generated using 
Gaussian kernels with low and high standard deviation values, respectively. These examples highlight the significant influence of the Gaussian 
dispersion parameter, which must be carefully calibrated to accurately represent the variability and resolution of the visual system. Note that attention 
maps are computed on a user-defined grid whose resolution is independent of the original stimulus. As a result, the coordinate axes in these maps 
differ from those in Figure 1b.

must be interpreted carefully, as the choices made during their 
construction can significantly influence the conclusions drawn from 
the data. By aligning methodological choices with the specific aims 
of a study, researchers can maximize the accuracy and relevance of 
their findings.

Owing to their simplicity, intuitive readability, and strong 
visual appeal, attention maps have become a widely adopted 
tool for illustrating what captures viewers’ gaze. They offer 
a qualitative representation of attentional allocation and are 

employed across numerous domains. In marketing, they are used to 
analyze consumer focus, inform strategies for product placement, 
and optimize the visual layout of advertisements and interfaces 
(Li et al., 2016; Pan et al., 2011). In ergonomics, they guide the 
design of more efficient workplace layouts and support usability 
improvements in human–machine interaction (Bhoir et al., 2015). 
In psycholinguistics, attention maps contribute to the study 
of reading patterns and the cognitive mechanisms underlying 
language comprehension (Liu and Yuizono, 2020). In cognitive 
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assessment, they provide insights into individual differences in 
perceptual and attentional processing, shedding light on both typical 
and atypical developmental trajectories (Pettersson et al., 2018). 
Beyond classical eye-tracking applications, attention maps can be 
seen as part of a broader visual analytics framework, in which 
interactive visualizations support exploration and interpretation of 
complex gaze data.

Conceptually, attention maps have long demonstrated that visual 
fixations are not uniformly distributed throughout the viewer’s field 
of vision. One key observation, noticed as early as the foundational 
studies of gaze behavior in complex scenes (Buswell, 1935), is the 
presence of a central bias, where fixations tend to cluster near 
the center of the visual field. This phenomenon has since been 
consistently confirmed in a variety of experimental paradigms 
(Mannan et al., 1995; 1996; 1997), reinforcing its robustness as a 
characteristic of gaze distribution.

Attention maps, however, offer a static visualization of 
averaged spatial scanpaths, providing no direct information 
about the temporal dynamics of gaze behavior, such as the 
sequence or duration of fixations. Additionally, while attention 
maps approximate the spatial distribution of visual attention, 
they remain largely qualitative in nature. Attempts to quantify 
these distributions, such as using metrics like heatmap entropy
(Gu et al., 2021), remain relatively rare. Quantitative analyses 
typically necessitate comparative approaches, as outlined in 
Sections 3.3.1, 3.3.2, emphasizing the importance of robust 
methodological frameworks for interpreting attention maps. 
In practice, attention maps are most useful as intuitive visual 
summaries or as components of visual analytics pipelines, often 
combined with scanpaths or other representations. 

2.2.2 Saliency models
Similar to attention maps, saliency models are concerned with 

spatial distributions of attention, but they refer specifically to 
computational frameworks designed to predict the regions of an 
image or scene where individuals are most likely to focus their 
visual attention. Rooted in the concept of visuo-spatial attention, 
these models aim to explain how humans allocate attention to 
areas perceived as most salient or important. While the detailed 
development of saliency models falls outside the scope of this 
review, which focuses on eye-tracking data analysis, we briefly 
outline key aspects of these models and their applications across 
diverse domains.

One central function of the human visual system is to direct 
attention toward regions of the visual environment that are 
perceived as salient—areas likely to contain important information 
or require further cognitive processing. Evidence suggests that 
specific brain regions, particularly those in the frontal and parietal 
lobes responsible for controlling eye movements, may act as a 
saliency map (Treue, 2003). These regions are thought to encode 
spatial priorities, integrating bottom-up sensory inputs with top-
down cognitive factors such as intentions, expectations, and goals 
(Bisley and Goldberg, 2010; Zelinsky and Bisley, 2015). The biased 
competition theory of attention (Maunsell and Treue, 2006; Beck and 
Kastner, 2009; Schoenfeld et al., 2014) provides a robust framework 
for understanding this process. According to the theory, bottom-up 
visual features—such as color, contrast, and motion—compete for 
attentional resources but are dynamically influenced by top-down 

factors like task goals or expectations. This interaction results in a 
competitive process where stimuli that are most relevant or task-
critical ultimately win, directing cognitive and perceptual focus to 
areas of highest priority.

From a computational perspective, early saliency models, 
such as the influential framework proposed by Koch and 
Ullman (1985), introduced the concept of modeling visual 
attention as a topographical salience map. In this approach, 
regions of the visual field more likely to attract attention are 
assigned higher saliency values, producing a two-dimensional 
map that encodes the relative prominence of various areas. 
The allocation of attention is then governed by a winner-
takes-all mechanism, in which the most significant region is 
prioritized as the target for the next fixation. The saliency at each 
location reflects its capacity to draw attention, with higher values 
indicating an increased likelihood of directing visual processing 
to that area.

Building upon this foundational concept, Itti and Koch 
(2000) developed a more sophisticated computational model that 
incorporated a range of low-level visual features, such as color, 
intensity, orientation, and contrast. This model used a parallel 
processing architecture where each feature was processed through 
separate channels, with each channel contributing to the overall 
saliency map. By integrating these diverse features, their model 
generated a saliency map that more accurately reflected the complex, 
multidimensional nature of visual attention. Specifically, the saliency 
value of each pixel was determined by combining the outputs of the 
different feature channels.

Over the years, the field of saliency modeling has matured 
significantly, with numerous new models being published regularly, 
each introducing new features and improvements. Many of these 
models focus on detecting visually interesting regions of an image, 
with applications in areas such as automated object detection, 
autonomous vehicle navigation, and real-time video compression. 
The original Itti-Koch model has been refined over time to include 
additional features like log spectrum (Hou and Zhang, 2007), 
entropy (Wang et al., 2010), histograms of oriented gradients 
(Ehinger et al., 2009), and center bias (Tatler, 2007), all of which 
help to better approximate human visual attention. Recently, 
models have also begun incorporating top-down modulation, 
allowing them to account for context or task-specific priorities in
guiding attention.

The success of deep learning approaches has further 
revolutionized the field. Today, fully convolutional neural networks 
(CNNs) dominate the landscape of saliency models, offering 
improved performance through the use of large-scale datasets 
and powerful feature-learning algorithms (Wang et al., 2021). 
These deep saliency models have significantly advanced the 
accuracy of predicting where people will look in complex 
scenes, marking a new era in the study of visual attention. 
The topic of predicting human scanpaths when viewing 
visual stimuli lies beyond the scope of this work. For further 
information on this subject, we refer the reader to recent studies, 
including Kümmerer and Bethge (2021), Yang et al. (2024), 
Sui et al. (2023), and Li et al. (2024). In the context of this review, 
saliency models are primarily relevant as generators of predicted 
attention maps that can be compared with empirical scanpath-based 
representations. 
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2.3 Recurrence quantification analysis

The methods introduced so far have focused primarily on 
the spatial structure of scanpaths. However, many aspects of 
gaze behavior—such as repeated inspections of the same region, 
the ordering of fixations, or the persistence of specific scanning 
routines—are inherently temporal. Capturing these temporal 
properties requires a different analytical strategy. Recurrence 
quantification analysis (RQA), originally developed to study 
nonlinear and dynamical systems (Eckmann, 1987; Webber 
and Zbilut, 1994), provides such a framework and has proven 
particularly effective for analyzing the temporal evolution of eye 
movements.

RQA provides a versatile framework for quantifying the 
temporal organisation of fixation sequences, offering metrics that 
describe how often—and in what manner—a scanpath revisits 
previously observed states. In the context of gaze behaviour, these 
states correspond to fixation locations, and RQA metrics capture 
temporal regularities such as re-inspections, repeated subsequences, 
or periods of sustained attention within a given region. The first 
formal application of RQA to scanpath analysis was introduced by 
Anderson et al. (2013), who demonstrated that recurrence-based 
measures reveal meaningful temporal structure across observers 
and tasks. Their pioneering work has since inspired a broad range 
of studies showing that RQA-derived measures are sensitive to 
variations in scene complexity and visual clutter (Wu et al., 2014), 
as well as to differences in expertise, cognitive load, and 
attentional strategy (Vaidyanathan et al., 2014; Farnand et al., 2016; 
Gandomkar et al., 2018; Perez et al., 2018; Gurtner et al., 2019). 
Collectively, these findings illustrate how RQA complements spatial 
metrics by emphasizing the dynamic unfolding of fixations over 
time, thereby enriching our understanding of gaze behaviour and 
its relation to visual and cognitive processing. 

2.3.1 Towards a recurrence plot
To fully comprehend this approach, it is crucial to first understand 

the concept of recurrence plots. These plots, fundamental to recurrence 
quantification analysis (RQA) methodologies (Eckmann et al., 1987), 
visually represent the recurrent patterns of fixations. Introducing 
recurrence plots establishes the foundation for analyzing their role 
in interpreting scanpath dynamics. 

A recurrence plot is a square array constructed from a scanpath, 
where a dot is placed at the (i, j)-th entry whenever the i-th fixation 
is sufficiently close to the j-th fixation. Each dot, referred to as a 
recurrence point, indicates that the scanpath trajectory has returned 
to a previously visited location, within a small error tolerance. As 
illustrated in Figure 5a, the recurrence plot visualizes the set of all 
pairs of time indices where such recurrences occur. Conceptually, 
it corresponds to a square recurrence matrix where each element 
represents the proximity of two fixations within a predefined cutoff 
limit. Typically, recurrence points are binary, with the (i, j)-th entry 
assigned a value of 1 to signify recurrence. However, some studies 
propose incorporating temporal weighting by adjusting the value of 
each recurrence point based on the combined durations of the i-th 
and j-th fixations in the scanpath, adding a temporal dimension to 
the analysis.

FIGURE 5
Recurrence Quantification Analysis. (a) illustrates a recurrence plot, 
where the columns and rows correspond to the fixations of the 
analyzed scanpath. A dot is placed at position (i, j) if the i-th fixation is 
sufficiently close to the j-th fixation, indicating spatial recurrence. (b)
highlights all diagonal lines of at least three points extracted from the 
recurrence plot, which represent repeated patterns and are used to 
calculate determinism. (c) depicts the horizontal and vertical lines 
extracted from the recurrence plot, representing re-scanning 
sequences, which are used to compute laminarity.
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One significant challenge in (RQA) is selecting an appropriate 
distance threshold to define recurrence. If the threshold is set too 
low, the recurrence plot may display few or no recurrence points, 
rendering the analysis uninformative. Conversely, an overly high 
threshold results in excessive recurrences, where nearly all points are 
neighbors, obscuring meaningful patterns. Currently, no universal 
threshold is applicable across all experimental paradigms. Instead, 
the threshold must be carefully calibrated based on context-specific 
rules and heuristics (Zbilut et al., 2002), with particular attention to 
the semantic density of the visual field being analyzed.

Recurrence plots are inherently symmetrical about the main 
diagonal, allowing all relevant information to be extracted from the 
upper triangle while excluding the main diagonal and lower triangle. 
Upon qualitative examination, recurrence plots often reveal distinct 
short line segments parallel to the main diagonal, representing 
clusters of fixations associated with brief periods of consistent 
gaze behavior. Additionally, isolated points may appear, reflecting 
sporadic or chance recurrences.

To move beyond qualitative visual inspection, researchers 
have developed systematic methods for extracting quantitative 
characteristics and metrics from recurrence plots. These automated 
techniques enable detailed characterization of recurrence patterns, 
providing a more rigorous basis for analysis. The next section details 
these metrics and their application to scanpath studies. 

2.3.2 Recurrence quantitative features
Once a recurrence plot has been constructed, several 

quantitative measures can be derived to characterize how a scanpath 
unfolds over time. The most direct of these is the recurrence rate, 
defined as the percentage of fixation pairs that fall within the 
recurrence threshold. This descriptor—introduced to scanpath 
analysis by Anderson et al. (2013) following earlier developments 
in nonlinear time-series analysis (Eckmann, 1987; Webber and 
Zbilut, 1994) — captures how often observers return to locations 
previously fixated during exploration.

A second feature, determinism, quantifies the percentage of 
recurrence points that align to form diagonal line segments in 
the plot, as shown in Figure 5b. These diagonals reflect the 
repetition of short subsequences of fixations and therefore index 
the predictability or stereotypy of gaze behavior. High determinism 
often emerges in tasks involving structured comparisons or 
repeated scanning routines, as illustrated in several applied studies 
(Vaidyanathan et al., 2014; Farnand et al., 2016; Perez et al., 2018). 
Complementary to this, laminarity measures the extent to which 
recurrence points form vertical or horizontal lines, as shown in 
Figure 5c. These features correspond to prolonged dwell times 
or repeated returns to specific regions, and have been shown to 
relate to task demands and the semantic structure of the stimulus 
(Anderson et al., 2013; Gandomkar et al., 2018; Gurtner et al., 2019).

A more global descriptor, the center of recurrence mass (CORM) 
reflects the temporal distribution of recurrent points. It is defined as 
the distance between the center of gravity of the recurrence points 
and the main diagonal of the recurrence plot—representing self-
recurrence (Anderson et al., 2013). A small CORM value indicates 
that re-fixations are closely spaced in time, while a larger CORM 
suggests that re-fixations are more spread out. Together with the 
recurrence rate, CORM captures the global temporal structure 

of fixation sequences, while determinism and laminarity provide 
insights into local gaze patterns.

Finally, entropy characterizes the complexity of the recurrence 
structure by computing the Shannon entropy of the distribution 
of diagonal line lengths (Shannon, 1948; Lanata et al., 2020). 
Although less frequently reported in the gaze literature (Villamor 
and Rodrigo, 2017), entropy is informative about the diversity of 
repeated patterns: low values reflect highly regular or stereotyped 
behavior, whereas high entropy indicates more variable and irregular 
recurrence structures.

Together, these quantitative features provide a multidimensional 
characterization of the temporal organization of scanpaths, 
capturing tendencies toward repetition, revisits, temporal clustering, 
and structural complexity. They offer a principled way to summarize 
dynamic viewing behavior and have been successfully applied across 
a wide range of visual tasks and experimental domains. Several 
open-source toolboxes provide implementations of RQA and CRQA 
for eye-tracking and time-series data, including the CRP Toolbox for 
MATLAB (Marwan et al., 2007) and Python-based libraries such 
as pyRQA (Rawald et al., 2017), which facilitate reproducible and 
scalable applications of recurrence-based methods.

Beyond the characterization of a single scanpath, the same 
methodological principles extend naturally to the comparison of 
two observers or two viewing conditions. This approach, known 
as cross-recurrence quantification analysis (CRQA), replaces the self-
comparison of a scanpath with a joint recurrence plot constructed 
from two separate gaze sequences. Whereas RQA identifies how 
an individual revisits locations over time, CRQA captures how 
two scanpaths converge, diverge, or realign as they evolve. This 
makes CRQA particularly suitable for studying inter-observer 
consistency, shared viewing strategies, or condition-dependent 
synchrony in gaze behavior. The specific metrics and methodological 
considerations associated with CRQA are detailed in Section 3.4, 
where we examine its role within the broader landscape of scanpath 
comparison techniques.

Although RQA and areas of interest (AoI) analysis may appear 
conceptually related—both seek to identify stable patterns and 
revisitations within a scanpath—their objectives and assumptions 
differ in important ways. AoI analysis relies on predefined, 
semantically meaningful regions of the stimulus, and focuses on how 
often, in what order, and for how long these regions are fixated. 
RQA, in contrast, operates without any semantic partitioning of 
the visual field: it quantifies recurrence directly from the geometry 
and temporal structure of the fixation sequence. As a result, RQA 
can reveal regularities, cycles, or temporal dependencies that extend 
beyond the boundaries of any a priori region definition. Conversely, 
AoI methods offer interpretability grounded in stimulus meaning, 
which RQA does not provide on its own. These approaches are 
therefore complementary rather than interchangeable. A fuller 
discussion of AoI techniques and their methodological implications 
is provided in a separate dedicated work. 

2.4 String sequence representation

A notable way to represent scanpath trajectories relevant to 
this discussion is to transform them into string sequences. In this 
approach, the visual field is discretized by superimposing a static 
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two-dimensional grid onto the stimulus, with each grid cell assigned 
a symbolic label, typically an alphabetic character. Each fixation is 
then mapped to the corresponding cell, transforming the spatial 
progression of gaze points into an ordered sequence of symbols. 
This symbolic encoding recasts the scanpath as a string, yielding a 
compact and structured representation that preserves the temporal 
order of visited regions while deliberately abstracting away fine-
grained spatial detail.

From a qualitative standpoint, this representation is particularly 
advantageous because it suppresses low-level geometric variability 
while retaining the meaningful organization of the observer’s 
visual exploration. By reducing a continuous trajectory to a 
sequence of symbolic transitions, recurring patterns become easier 
to detect—such as preferred regions of interest, characteristic 
scanning strategies, or stimulus-driven exploration pathways. The 
resulting strings also lend themselves to intuitive comparisons across 
observers: similarities and differences in viewing patterns can often 
be perceived at a glance, without the need for detailed geometric 
analysis. In this way, string-based representations foreground the 
qualitative structure of visual behavior, making complex spatio-
temporal dynamics more interpretable and more amenable to 
systematic comparison.

Furthermore, the string-sequence representation provides a 
foundational basis for a wide range of string-based scanpath 
comparison algorithms, which will be examined in subsequent 
sections, particularly in Sections 3.2, 3.5. These methods operate 
directly on the symbolic sequences to quantify similarities 
or differences between scanpaths, thereby enabling systematic 
comparisons across observers, stimuli, or experimental conditions.

While this approach facilitates the conversion of continuous 
gaze data into a discrete format, the process of spatial binning 
demands careful consideration (Anderson et al., 2015). A fixed grid 
resolution may inadequately capture fine-grained fixation details in 
high-interest areas if the grid is too coarse; conversely, a grid that is 
too fine may introduce unnecessary complexity in low-salience or 
uniform regions. For this reason, it is often advantageous to adapt 
the grid resolution to the underlying image content, ensuring that 
meaningful regions are represented with adequate precision.

In cases where the scene contains large, visually variable but 
semantically uninformative areas, grid-based discretization may 
fragment these regions excessively, making cognitive interpretation 
more difficult. A common alternative is therefore to assign 
symbolic representations to predefined areas of interest (AoIs) 
based on their distinct semantic or functional roles (Josephson 
and Holmes, 2002b; West et al., 2006). This strategy aligns the 
discretization process with the structure of the scene and the 
expected attentional targets of viewers. However, it requires careful 
analysis of the image content and the viewer’s attention patterns, 
necessitating the use of specialized methodologies, which will be 
explored in detail in a separate dedicated contribution.

Beyond spatially defined discretization methods, other strategies 
focus on the statistical distribution of fixations rather than 
their geometric layout. One such method is percentile mapping, 
in which elements of the scanpath are mapped to a discrete 
alphabet so that each symbol appears with approximately equal 
frequency (Kübler et al., 2014). This normalization compensates for 
spatial offsets that may arise between different recording sessions 
or observers, providing a more balanced representation across 

FIGURE 6
String Sequence. To convert a scanpath trajectory into a sequence of 
characters, the visual field is first divided into regions of equal size, 
each designated by a character, from A to P. Accordingly, each fixation 
is associated with a character to produce, based on the example 
trajectory illustrated above, the following sequence: PJNOPLKFEAB. 
Additionally, if a temporal binning is performed, each character is 
repeated in proportion to the corresponding fixation duration, to 
produce the following sequence: PPJJJJNOPLLKFEAAB.

datasets. Compared with grid-based methods, percentile mapping 
can therefore reduce bias introduced by uneven fixation density, 
offering improved comparability across heterogeneous stimuli 
(Kübler et al., 2017). This technique resembles the discretization 
procedure used in the well-known SAX (Symbolic Aggregate 
approXimation) representation for time series data (Lin et al., 2007), 
where continuous values are transformed into discrete symbols to 
facilitate analysis.

One of the key challenges associated with converting scanpaths 
into string sequences is the loss of temporal information, particularly 
fixation duration, which is an integral component of eye movement 
behavior. To address this issue, it is possible to introduce temporal 
binning into the string sequence. This process involves repeating 
the symbol corresponding to a specific spatial region in proportion 
to the duration of the corresponding fixation (Cristino et al., 2010; 
Takeuchi and Matsuda, 2012). By encoding the fixation duration 
in this manner, the resulting string captures not only the spatial 
location and sequence of fixations but also the temporal dimension, 
offering a richer depiction of gaze behavior. In summary, the 
effectiveness of string-based representations critically depends 
on how spatial and temporal aspects of gaze are discretized 
and weighted in the resulting sequence. An example of this 
representation can be seen in Figure 6.

3 Similarity between scanpaths

As discussed earlier in this review, visual scanpaths are 
shaped by a combination of bottom-up and top-down factors, 
including the task assigned to viewers (Simola et al., 2008), 
the characteristics of the stimuli (Yarbus, 1967a), and individual 
variability (Viviani, 1990). Quantifying the differences or similarities 
between visual behaviors is therefore critical for understanding 
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how these factors influence eye movements and for gaining deeper 
insights into the cognitive processes underlying visual attention.

Comparing visual scanpaths also plays a central role in scanpath 
theory. While early studies by Noton and Stark (1971a) and 
Noton and Stark (1971b) relied on visual inspection to evaluate 
scanpath similarity, the development of automated metrics began 
approximately two decades later (Brandt and Stark, 1997). Since 
then, the growing interest in analyzing eye movement sequences 
has led to the creation of numerous methodologies for the 
automated comparison of scanpaths. These methods differ in the 
representations they operate on—raw fixations, vectors, strings, 
saliency maps—in the aspects of behavior they emphasize—spatial 
overlap, temporal structure, pattern repetition—and in their 
computational demands. The comparison methods presented in 
this section are summarized in Table 2, which provides a 
concise description of each approach, the required input formats, 
and references from the literature that offer guidance for their 
implementation.

3.1 Direct comparison

This first class of methods compares pairs of scanpaths 
directly in the spatial–temporal domain, without converting them 
into alternative symbolic or image-based representations. Such 
approaches preserve the original coordinate information and 
are particularly attractive when precise spatial relationships are 
important or when one wishes to avoid additional preprocessing 
steps such as discretization or spatial binning. We distinguish 
here simple point-mapping metrics from more sophisticated elastic 
alignment methods. 

3.1.1 Point mapping metrics
The Euclidean distance—also referred to as the straight-line

distance—is one of the fundamental measures initially employed for 
comparing scanpaths. In its simplest form, this metric is calculated 
as the sum of the distances between corresponding fixations in 
two scanpaths. However, this naive approach was quickly deemed 
inadequate, as it implicitly assumes equal-length fixation sequences 
and strict one-to-one correspondence between fixations, a condition 
rarely met in practical applications.

To address this limitation, Mannan et al. (1995) introduced 
a seminal metric based on the weighted mean distance between 
each fixation in one scanpath and its nearest neighbor in 
the other—a technique often referred to as point-mapping
(Mannan et al., 1995; 1996). Extending this principle, their double-
mapping approach considers bidirectional mappings between two 
scanpaths and has inspired a broad family of metrics applicable 
to sequences of varying lengths. These methods have found 
utility in diverse research contexts, including studies on visual 
scanning behavior and scene perception (Pambakian et al., 2000; 
Foulsham and Underwood, 2008; Mannan et al., 2009; 
Shakespeare et al., 2015; Konstantopoulos, 2009).

Despite their utility, point-mapping techniques have notable 
limitations. A major drawback is their exclusive reliance on spatial 
properties, as they disregard the temporal order of fixations. 
Consequently, two scanpaths with reversed fixation sequences 
but identical spatial configurations will yield identical Mannan 

distances, ignoring the sequencing dynamics that are often 
central to interpretation. Additionally, these methods can lead 
to disproportionate mappings, where many points from one 
scanpath are matched to a small subset of points from the other, 
compromising the meaningfulness of the comparison.

Several refinements of the Mannan double-mapping approach 
have been proposed. For instance, the EyeAnalysis method (Mathôt
et al., 2012) introduced a simplified and more adaptable similarity 
metric. This method calculates the sum of all point-mapping 
distances, normalized by the number of points in the longer 
sequence, ensuring that scanpaths of differing lengths are treated 
equitably. A key innovation in this approach is its incorporation 
of additional dimensions—such as timestamps and fixation 
durations—when determining optimal point pairings, providing 
a more comprehensive measure of similarity across spatial and 
temporal domains.

Henderson et al. (2007) further refined the Mannan metric by 
implementing a unique assignment procedure, enforcing a one-to-
one mapping between fixation points. While this variant addresses 
issues of spatial variability and prevents over-mapping onto a limited 
subset of points, it is constrained to sequences of equal length and 
still fails to fully account for the temporal dynamics of fixation 
order. Paradoxically, this requirement for equal-length sequences 
contradicts the original motivation for the Mannan metric, which 
was designed to compare sequences of different lengths.

These limitations have motivated the development of more 
advanced comparison techniques that explicitly integrate the 
temporal dimension of scanpath sequences while maintaining 
flexibility in handling differences in length and complexity. Such 
methods, often framed as time-series alignment problems, represent 
a critical evolution in scanpath analysis, accommodating the 
multidimensional nature of eye-tracking data and advancing our 
ability to interpret visual behavior more comprehensively. 

3.1.2 Elastic alignment metrics
To address the limitations discussed in the previous section, 

researchers have increasingly turned to time-series alignment 
techniques that offer elastic measures of dissimilarity, such as 
dynamic time warping (DTW) and the discrete Fréchet distance. Both 
are widely used in time-series analysis across various fields and 
are particularly well suited for comparing trajectories that exhibit 
similar shapes but are not strictly time-synchronized.

DTW compares two signals by aligning them in the time 
domain using dynamic programming. Initially introduced by 
Vintsyuk (1968) and Sakoe and Chiba (1978) for speech recognition, 
DTW measures the sum of the warps required to align one 
scanpath trajectory to another. Specifically, DTW seeks a temporal 
alignment—a mapping between time indices in the two series—that 
minimizes the Euclidean distance between aligned points. As a 
result, DTW provides a global measure of similarity that captures 
the overall shape and ordering of the trajectories, as illustrated in 
Figure 7. The key advantage of DTW lies in its ability to achieve 
robust time alignment between reference and test patterns, even 
when there are local accelerations or decelerations in the eye 
movement sequence (Brown et al., 2006).

The discrete Fréchet distance represents an alternative measure, 
distinct in its explicit penalization of temporal misalignments. The 
Fréchet distance can be intuitively understood as the shortest leash 
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TABLE 2  Scanpath comparison methods and their required input representations.

Method name Input Description References

Mannan distance Fixation coordinates Computes the weighted mean distance 
between each fixation in one scanpath 
and its nearest neighbor in the other — 
point-mapping

Mannan et al. (1995)

EyeAnalysis distance Fixation coordinates + durations Computes the sum of all point-mapping 
distances normalized by the number of 
points in the longer sequence

Mathôt et al. (2012)

TDE distance Fixation sequences Computes the time-delay embedding 
distance between two scanpaths

Wang et al. (2011)

DTW distance Fixation sequences Computes the temporal alignment that 
minimizes the Euclidean distance 
between aligned fixation points

Berndt and Clifford (1994)

Fréchet distance Fixation sequences Computes the minimum of the 
maximum distances between two 
scanpaths under continuous alignment 
with preserved ordering

Eiter and Mannila (1994)

Levenshtein distance String sequences Computes the minimum number of 
edits — insertions, deletions, 
substitutions — required to transform 
one scanpath into another

Wagner and Fischer (1974)

Generalized edit distance String sequences Computes the edit distance with 
distinct insertion, deletion, and 
substitution costs defined by a cost 
matrix

Wagner and Fischer (1974)

Needleman–Wunsch distance String sequences Computes an optimal global alignment 
with match bonuses and gap penalties 
using dynamic programming

Needleman and Wunsch (1970)

Normalized scanpath saliency Fixations + saliency map Computes a z-scored saliency value at 
fixation locations relative to the saliency 
map

Peters et al. (2005)

Saliency percentile Fixations + saliency map Computes the mean percentile rank of 
saliency values at fixation locations

Peters and Itti (2008)

Information gain Fixations + saliency map Computes the gain in predictive power 
of a saliency model relative to a 
center-prior baseline

Kümmerer et al. (2014)

Saliency AUC Fixations + saliency map Evaluates how well a saliency map 
predicts fixations using ROC curve 
analysis across thresholds

Bylinskii et al. (2018)

Kullback–Leibler divergence Saliency maps Computes the information loss when 
one saliency map approximates another

Le Meur et al. (2007)

Pearson correlation Saliency maps Computes the linear correlation 
coefficient between two saliency maps

Le Meur et al. (2006)

Earth mover distance Saliency maps Computes the minimum transport cost 
required to morph one saliency 
distribution into another

Riche et al. (2013)

CRQA recurrence rate Fixation sequences Computes the percentage of recurrent 
fixation pairs in the cross-recurrence 
matrix

Marwan et al. (2007)

(Continued on the following page)
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TABLE 2  (Continued) Scanpath comparison methods and their required input representations.

Method name Input Description References

CRQA determinism Fixation sequences Computes the percentage of cross-recurrent points forming diagonal 
line structures

Marwan et al. (2007)

CRQA laminarity Fixation sequences Computes the percentage of vertically aligned cross-recurrent points Marwan et al. (2007)

CRQA entropy Fixation sequences Computes the Shannon entropy of the distribution of diagonal line 
lengths in the cross-recurrence plot

Marwan et al. (2007)

SubsMatch similarity String sequences Computes scanpath similarity from frequency differences of symbolic 
subsequences of size n

Kübler et al. (2014)

ScanMatch score String sequences Computes a similarity score using Needleman–Wunsch alignment 
with a spatial substitution matrix

Cristino et al. (2010)

MultiMatch alignment Saccade vectors Computes similarity across five dimensions: shape, length, position, 
direction, and fixation duration after vector alignment

Dewhurst et al. (2012)

length required to connect two points: one moving along the first 
trajectory and the other along the second, where the points may 
travel at different rates but must move forward along their respective 
paths. Figure 7 illustrates this concept. The Fréchet distance provides 
a local measure of path similarity, focusing on the location and 
order of points while not allowing temporal indices to be arbitrarily 
warped. Like DTW, the discrete Fréchet distance is computed using 
dynamic programming (Eiter and Mannila, 1994).

Both DTW and the discrete Fréchet distance provide valuable 
measures of similarity. However, they also have important 
limitations that should guide their use. Unlike the Fréchet distance, 
DTW does not satisfy the triangle inequality and is therefore 
not a true distance metric. This limitation becomes particularly 
apparent when comparing scanpaths of different lengths, as DTW 
tends to overestimate the similarity between shorter and longer 
trajectories. Conversely, the discrete Fréchet distance is more 
sensitive to outliers and local deviations (Ahn et al., 2012). Despite 
these drawbacks, both DTW and the Fréchet distance are widely 
used in the literature to compare scanpaths without preprocessing 
(Le Meur and Liu, 2015; Li and Chen, 2018; Kumar et al., 2019), or 
as reference metrics to evaluate new methods (Wang et al., 2023). 
In applications involving large datasets, the computational cost of 
these alignment methods—and their scaling to pairwise distance 
matrices—should also be taken into account. 

3.2 String edit distances

More than a single metric, the string edit distance encompasses 
a family of measures based on the concept of edit operations, 
enabling quantification of dissimilarity between sequences. In the 
context of scanpaths, these methods require converting fixation 
coordinates into string sequences, as detailed in Section 2.4. Once 
this transformation is performed, string edit distances can be applied 
to measure the similarity or divergence between scanpaths in a way 
that directly incorporates sequence order.

Among the various string edit distance methods, the 
Levenshtein distance (Levenshtein, 1966) remains one of the 

most frequently employed due to its simplicity and effectiveness 
(Holmqvist et al., 2011; Le Meur and Baccino, 2013). This approach 
calculates the minimum cost required to transform one sequence 
into another using three fundamental edit operations: (i) deletion, 
which removes an element from the string, (ii) insertion which 
adds an element into the string and (iii) substitution which replaces 
one element in the string with another. Each operation is assigned 
an edit cost, and the total transformation cost—usually computed 
using the Wagner–Fischer algorithm (Wagner and Fischer, 1974) 
— represents the Levenshtein distance between the two sequences. 
The Wagner–Fischer algorithm employs dynamic programming, 
iteratively computing a comparison matrix where rows correspond 
to the characters of one sequence and columns to those of the other. 
The algorithm determines the optimal alignment path through 
the matrix, with the distance given by the final matrix value. This 
score is often normalized by the length of the longer sequence 
to facilitate comparisons across scanpaths of differing lengths. 
The principle of scanpath comparison using the Levenshtein edit 
distance is illustrated in Figure 8, where two scanpaths are first 
converted into symbolic sequences and then optimally aligned 
using the Wagner–Fischer algorithm to compute the minimum 
transformation cost.

The Levenshtein distance has undergone substantial 
enhancements, with a variety of derivatives developed to improve 
both its accuracy and adaptability across diverse experimental 
contexts (Foulsham et al., 2008; Underwood et al., 2009; Harding 
and Bloj, 2010; Foulsham and Kingstone, 2013). While the original 
Levenshtein method remains effective, it traditionally assumes 
equal costs for all edit operations, disregarding factors such as 
the spatial proximity of fixation regions or their varying semantic 
significance. To overcome these limitations, recent adaptations have 
introduced variable weights for the insertion and deletion operations. 
Furthermore, many contemporary approaches incorporate a 
substitution cost function—typically represented as a substitution 
matrix—that accounts for the spatial relationships between different 
regions of the visual field. These enhancements facilitate a more 
nuanced and context-sensitive evaluation of scanpath similarity, 
allowing for a richer representation of meaningful patterns 
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FIGURE 7
Elastic Metrics. Two scanpath trajectories—blue and purple 
curves—aligned using DTW and discrete Frechet distance. The DTW 
metric is computed by summing the length of all links between aligned 
data samples—figured by the black dotted lines. The Frechet distance, 
on the other hand, is calculated as the maximum distance—red line in
(b) — between aligned data samples. (a) Dynamic time warping.

in fixation data (Josephson and Holmes, 2002a; Takeuchi and 
Habuchi, 2007; Takeuchi and Matsuda, 2012).

Additionally, alternative formulations of the string edit distance 
have been proposed. Notably, the Damerau–Levenshtein distance
introduces a fourth operation, transposition, which swaps adjacent 
elements. This extension is especially beneficial when transpositions 
occur frequently in the data, as it reduces the overall edit distance in 
such cases (Foulsham et al., 2008). In contrast, the longest common 
subsequence (LCS) method focuses on local alignment by identifying 
the longest shared subsequence between two strings. LCS only 
considers insertions and deletions, excluding substitutions, providing 
a more intuitive measure of similarity based on common segments 
within the sequences. This approach is particularly valuable for 
detecting shared patterns in scanpaths, even when the sequences 

differ markedly in length or structure (Dewhurst et al., 2018; 
Davies et al., 2016; Eraslan and Yesilada, 2015).

Like any analytical method, string-edit distances have inherent 
limitations, primarily due to the spatial binning process used to 
discretize continuous scanpath trajectories into string sequences. 
This discretization can result in the loss of fine-grained spatial 
information, potentially limiting the method’s ability to capture 
detailed characteristics of the scanpath. The choice of grid resolution 
or AOI definition—and its interaction with the spatial structure 
of the stimulus—plays a central role in determining the sensitivity 
and interpretability of the resulting distances—see Section 2.4. 
Despite these limitations, string-edit distance remains a widely used 
and popular method for scanpath comparison, largely due to its 
simplicity, its clear link to sequence alignment, and the intuitive 
manner in which it quantifies dissimilarities between scanpaths. 
Furthermore, string-edit distance methods were foundational in 
early scanpath comparison research (Brandt and Stark, 1997) and 
have since been applied across a wide range of experimental 
contexts (Harding and Bloj, 2010; Underwood et al., 2009), 
making them particularly valuable for researchers seeking to 
compare their findings with previous studies. From a computational 
standpoint, classical string-edit distances scale quadratically with 
sequence length, which can limit their applicability to very long 
scanpaths or large pairwise comparison matrices without additional 
optimization. 

3.3 Saliency comparison approaches

Saliency models, as discussed in Section 2.2.2, generate saliency 
maps that estimate the probability of different regions in an image 
attracting attention, thereby enabling automatic prediction of the 
most relevant areas. However, to validate these models across various 
applications or to quantify individual variations in gaze behavior, it 
is essential to analyze scanpaths derived from real data and apply 
appropriate comparison metrics.

In a similar vein, a reference saliency map—or reference
attention map—can be constructed from the recorded fixations 
of a group of individuals, serving as a ground truth saliency map. 
A common task then involves comparing this reference saliency 
map with new scanpath recordings. To facilitate this comparison, 
we provide an overview of various metrics and analytical 
methods—often referred to as hybrid (Le Meur and Baccino, 2013) 
— for quantitatively comparing a saliency map with a single 
scanpath, and then turn to direct comparisons between pairs of
saliency maps. 

3.3.1 Comparing reference saliency maps and 
scanpaths

A significant advantage of hybrid metrics is their ability to bypass 
the need for generating continuous saliency maps from fixation 
data, which often depend on parameterized models (Le Meur 
and Baccino, 2013). For instance, the choice of the Gaussian 
kernel’s standard deviation used to smooth fixation distributions 
introduces subjective decisions that can impact the results. By 
avoiding such dependencies, hybrid metrics provide a more direct 
and interpretable approach for assessing scanpath saliency when a 
reference map is available.
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FIGURE 8
Levenshtein Edit Distance. The pairs of scanpaths to be compared—the purple and blue trajectories in (a) — are first converted into character 
sequences—for instance, in the example shown above, PJNOPLKFEAB and OKJNLFAEB. The resulting string sequences are then aligned — (b) — using 
the Wagner-Fischer algorithm and the minimum cost necessary to transform one sequence into another, using insertions, deletions and substitutions is 
computed. If deletion and insertion have cost of 1 and substitution a cost of 1.5, distance between the two scanpaths is 7.5.

A first popular metric is the normalized scanpath saliency (NSS) 
introduced by Peters et al. (2005). To compute NSS, the reference 
saliency map is normalized by subtracting the mean saliency 
across all map locations and dividing by the standard deviation 
of saliency values, yielding a z-score. This z-score represents how 
many standard deviations the saliency value at a fixation point is 
above or below the average saliency. As human fixations typically do 
not align perfectly with individual pixels, NSS values for a fixation 
are calculated over a localized neighborhood centered around 
the fixation point (Le Meur and Baccino, 2013). This adjustment 
accounts for the spatial variability of human gaze, enhancing the 
robustness of NSS to minor positional discrepancies.

The percentile metric, introduced a few years later by Peters and 
Itti (2008), offers a straightforward yet effective means of quantifying 
the similarity between a viewer’s scanpath and a reference saliency 
map. For a given fixation, its associated saliency value is expressed 
as the proportion of map locations with lower saliency than 
at the fixation point. This percentile-based measure intuitively 
ranks each fixation’s saliency relative to the entire visual field. To 
compute a summary value for an entire scanpath, the individual 
saliency percentiles of all fixations are averaged. A key advantage 
of this approach lies in its simplicity and computational efficiency. 
Moreover, it is inherently invariant to re-parameterizations, as 

it relies on ranking saliency values rather than their absolute 
magnitudes, making it robust to monotonic transformations of the 
saliency map.

More recently, information gain (IG) was introduced by 
Kümmerer et al. (2014) and Kümmerer et al. (2015) as a robust 
metric to assess saliency model performance while accounting 
for systematic biases, such as the center prior. The center prior 
reflects the natural human tendency to fixate near the center 
of a visual scene, a phenomenon that can artificially inflate 
performance metrics for saliency models if not properly controlled. 
The information gain metric quantifies how much better a saliency 
model predicts recorded fixation points compared to a baseline 
model, typically the center prior. Mathematically, it measures 
the average increase in predictive power that the model offers 
over the baseline for the observed fixations. By focusing on the 
added predictive value beyond generic biases, IG provides a more 
nuanced evaluation of model performance, enabling researchers 
to isolate the unique contribution of a saliency model to fixation
prediction.

Finally, it is essential to highlight location-based metrics, which 
are among the most extensively utilized measures for evaluating 
saliency maps (Bylinskii et al., 2018). These metrics are grounded 
in the concept of the area under the receiver operating characteristic 
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curve (AUC), a widely applied tool in signal detection theory. AUC-
based metrics evaluate the accuracy of a saliency map in predicting 
empirical fixations by interpreting the saliency map as a binary 
classifier, where each pixel is classified as either fixated or not fixated. 
The evaluation process begins by thresholding the reference saliency 
map—or ground truth saliency map—to retain a given percentage 
of the most salient pixels. By systematically varying the threshold, a 
receiver operating characteristic (ROC) curve is constructed, which 
plots the true positive rate—the proportion of correctly predicted 
fixated pixels—against the false positive rate—the proportion of non-
fixated pixels incorrectly classified as fixated. The area under the 
ROC curve quantifies the overall prediction performance, with 
values closer to 1 indicating high predictive accuracy.

Several AUC implementations have been introduced, differing 
in how true positives and false positives are defined. A popular, 
straightforward approach called AUC-Judd (Judd et al., 2009; 
Bylinskii et al., 2014) computes true positive rates by considering 
the proportion of fixated pixels with saliency values exceeding a 
threshold, while false positive rates are derived from unfixated 
pixels exceeding the same threshold. Alternatively, AUC-Borji
(Borji et al., 2012; 2013) employs uniform random sampling 
across the image to define false positives, improving robustness 
by controlling for uneven pixel distributions. Another variant, the 
shuffled AUC (sAUC), addresses the well-known center bias—the 
tendency of human observers to fixate near the center of visual 
stimuli—by using fixations from other images as the negative 
set, effectively sampling false positives predominantly from central 
regions of the image space (Zhang et al., 2008). Overall, location-
based metrics provide an intuitive, flexible, and widely accepted 
framework for evaluating saliency models, balancing simplicity of 
computation with robust interpretability. 

3.3.2 Pair saliency comparison
Beyond hybrid approaches that compare fixation sets with 

reference saliency maps, a diverse range of methods has been 
developed for directly comparing pairs of saliency or attention maps. 
These methods provide complementary insights into the structural 
and statistical relationships between saliency distributions and are 
particularly useful when one wishes to compare two models, or two 
groups of observers, rather than individual scanpaths.

First, the Kullback–Leibler divergence (KL) is a key metric 
from information theory that quantifies the difference between 
two probability distributions (Kullback and Leibler, 1951). In the 
context of saliency maps, it evaluates how well an input saliency 
map approximates a reference map. Conceptually, it measures the 
information loss incurred when using the input distribution as a 
proxy for the reference. Lower KL divergence values indicate a 
closer match between the distributions. However, the asymmetry of 
KL divergence—requiring the designation of a reference map—and 
its unbounded upper limit can limit its intuitive interpretability 
and complicate comparative analyses across datasets. Despite these 
limitations, it remains a powerful tool for evaluating probabilistic 
saliency models (Rajashekar et al., 2004; Tatler et al., 2005; 
Le Meur et al., 2007) and can be adapted to compare pairs of maps 
generated by different models (Le Meur et al., 2006).

Another popular approach consists of using the Pearson 
correlation coefficient to quantify the strength of the linear 
relationship between two saliency maps. Widely adopted in 

computational models of visual attention (Jost et al., 2005; 
Le Meur et al., 2006; Rajashekar et al., 2008), this measure produces 
a single scalar value invariant to linear transformations, making it 
ideal for assessing overall alignment between maps. Values close 
to 1 signify a strong positive correlation, while values near −1
denote an inverse relationship. When a non-linear relationship is 
suspected, an alternative is the Spearman rank correlation coefficient, 
which assesses the relationship between the ranked values of 
two datasets (Toet, 2011). This rank-based approach provides 
robustness against non-linearities and outliers.

Finally, the earth mover’s distance (EMD) offers a spatially 
robust method to compare two saliency maps (Judd et al., 2012; 
Riche et al., 2013; Bylinskii et al., 2018). Unlike metrics that primarily 
assess value overlap, EMD quantifies the minimal effort required to 
transform one distribution into the other. This effort is computed 
as the product of the amount of density moved and the distance 
over which it is moved, effectively capturing spatial discrepancies 
between the maps. EMD thus addresses a key limitation of 
earlier methods—namely, the inability to account for small spatial 
misalignments. By incorporating positional differences into its 
calculations, EMD allows for a more nuanced comparison of maps, 
particularly in cases where distributions exhibit partial alignment or 
slight positional shifts in density. From a computational standpoint, 
metrics such as EMD and pixel-wise KL divergence can become 
costly for high-resolution maps or large numbers of pairwise 
comparisons, which should be considered when scaling saliency 
analyses to large datasets. 

3.4 Cross recurrence quantification 
analysis

Beyond the comparison of single scanpaths or saliency maps, 
an increasingly influential line of work focuses on the temporal 
coordination between two observers or between an observer and 
a stimulus. In recent years, the adaptation of cross recurrence 
quantification analysis (CRQA) to scanpath comparison has 
generated a surge of research in gaze studies (Richardson and 
Dale, 2005; Richardson et al., 2009; 2007; Shockley et al., 2009; 
Cherubini et al., 2010; Dale et al., 2011a; b). CRQA extends 
the recurrence framework introduced in Section 2.3 to quantify 
dynamic coupling between two time series.

A cross-recurrence plot is essentially a matrix that visualizes the 
temporal coupling between two sequences of eye fixations. The 
vertical axis corresponds to the fixations of the first scanpath, while 
the horizontal axis represents the fixations of the second. Recurrence 
is indicated when two fixations, one from each sequence, fall within 
a predefined proximity radius. In the plot, recurrent pairs of fixations 
are represented as points, meaning the two systems exhibit similar 
states at corresponding times—see Figure 9. When the scanpaths are 
of equal length, points along the main diagonal of the recurrence plot 
represent synchronous recurrence—when the two viewers fixate on 
the same visual target at the same time. Points or diagonal lines offset 
from the main diagonal indicate recurring patterns with a time lag.

CRQA provides several metrics that can be assessed along 
the diagonal, horizontal, and vertical dimensions of the cross-
recurrence plot. These metrics are adapted from the traditional 
RQA framework, but interpreted in the context of joint behavior 
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FIGURE 9
Cross Recurrence Quantification Analysis. A cross-recurrence plot is 
illustrated, with fixations from the first scanpath define the row 
divisions, while fixations from the second scanpath define the column 
divisions. A dot is placed at the (i, j) entry if the i-th fixation from the 
first scanpath is sufficiently close to the j-th fixation from the second 
scanpath. Similar to Recurrence Quantification Analysis (RQA), sets of 
diagonal and vertical lines can be extracted from the cross-recurrence 
plot to compute cross-determinism and cross-laminarity, respectively.

(Anderson et al., 2015; Marwan et al., 2007). First, cross-recurrence
quantifies the percentage of fixations that match between the two 
scanpaths. In essence, a higher cross-recurrence indicates greater 
spatial similarity between the two fixation sequences, reflecting their 
degree of spatial overlap in fixation locations.

In a manner similar to traditional RQA, cross-determinism
measures the percentage of cross-recurrent points that form 
diagonal lines. These diagonal lines represent fixation trajectories 
that are shared by both sequences. This measure captures the overlap 
in specific fixation subsequences, preserving the temporal order of 
fixations. Cross-determinism is useful for identifying whether small 
subsequences of one scanpath are replicated in the other, even when 
the overall trajectories differ significantly.

Similarly, cross-laminarity quantifies repeated fixations in 
particular regions as the percentage of consecutive recurrence points 
in one fixation series that are aligned vertically with recurrence 
points in the other series, forming vertical structures in the 
combined recurrence plot. This measure is closely related to cross-
determinism, and they are often interpreted together. High values 
of both cross-laminarity and cross-determinism suggest that both 
scanpaths tend to fixate on a few particular regions, with sustained 
fixation over several points in time. Conversely, a high cross-
laminarity value coupled with low cross-determinism indicates that 
certain locations are explored in detail in one scanpath, but only 
briefly in the other.

Lastly, cross-entropy captures the complexity of the temporal 
coupling between two scanpaths by quantifying the variability of 
diagonal line lengths in the cross-recurrence plot. Low cross-entropy 
values indicate highly regular and stereotyped synchronization 
patterns, whereas higher values reflect more irregular, less 
predictable alignment between the two gaze sequences. In terms 

of computational complexity, CRQA relies on pairwise comparisons 
between complete scanpaths and therefore exhibits quadratic scaling 
with respect to scanpath length. As a result, the computational 
cost can become substantial for long recordings or large inter-
observer datasets, unless strategies such as temporal windowing, 
sub-sampling, or parallelization are employed.

In some studies (Richardson and Dale, 2005; 
Shockley et al., 2009; Dale et al., 2011a; b), gaze data are quantified 
in terms of predefined areas of interest (AoIs). In this framework, 
two fixations are considered recurrent if they occur within the 
same AoI. Unlike traditional RQA, no spatial distance threshold 
needs to be set, as the cross-recurrence plot is reduced to a dot plot 
where fixations are marked as recurrent if they fall within the same 
predefined region. This approach emphasizes the semantic structure 
of the stimulus and its relation to joint attention. A more extensive 
discussion of AoI techniques and their methodological implications 
is provided in a separate dedicated contribution. 

3.5 Specific comparison algorithms

The literature offers a diverse range of scanpath comparison 
algorithms, reflecting the depth and innovation within the field. 
Among these, three methodologies have emerged as particularly 
influential due to their widespread adoption and substantial 
contributions to scanpath analysis: ScanMatch, MultiMatch, and 
SubsMatch. These algorithms build on the representations and 
metrics discussed above, integrating them into cohesive frameworks 
that are well suited for practical applications and for deployment 
in software toolkits. The subsequent sections provide an overview 
of these approaches, highlighting their theoretical underpinnings, 
implementation techniques, and relative strengths. 

3.5.1 ScanMatch algorithm
Cristino et al. (2010) introduced the widely used ScanMatch

method, a generalized approach for comparing scanpaths based 
on sequence alignment. ScanMatch provides a flexible framework 
for scanpath comparison by incorporating refined adaptations 
of the edit-distance methodology. The process begins with 
the transformation of input scanpaths into character strings, 
achieved through spatial and temporal binning of fixation 
sequences—see Section 2.4 for additional details.

The resulting character sequences are compared 
by maximizing a similarity score calculated using the 
Needleman–Wunsch algorithm. Similar to the Wagner–Fischer 
variants discussed in Section 3.2, Needleman–Wunsch employs 
dynamic programming to align two sequences. However, instead 
of merely penalizing divergent segments as in Wagner–Fischer, 
Needleman–Wunsch introduces matching bonuses for aligned 
segments, while negative matches are permitted when the segments 
exhibit a high degree of dissimilarity. The substitution matrix, central 
to this approach, encodes relationships between specific regions 
of the visual field, thereby tailoring the alignment process to the 
characteristics of the scanpath data.

The primary innovation of the ScanMatch method lies in the 
construction of the substitution matrix used to compare regions 
of the visual field. Traditionally, substitution matrices are based 
on the Euclidean distance between the centers of grid elements. 
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However, Cristino and colleagues used the variability in saccade 
landing positions to determine a cutoff for assigning positive values 
in the substitution matrix—indicating highly related regions—and 
negative values for loosely related regions. The alignment algorithm 
is thus designed to match only those regions whose separation 
falls within the variability of saccade landing positions, with the 
threshold typically set to two standard deviations of the observed 
saccade amplitudes in a given experiment.

Ultimately, this method highlights the importance of carefully 
defining the substitution cost matrix between regions of the visual 
field. By introducing tolerance for variability in the mechanisms 
that control saccadic trajectories, ScanMatch overcomes many 
limitations of traditional editing methods. Additionally, it enables 
the incorporation of higher-order relationships between visual field 
regions. These relationships extend beyond spatial proximity and 
can also be defined by the semantic content of visual regions. This 
adaptability facilitates more nuanced and conceptually enriched 
similarity analyses, allowing for the consideration of a broader 
spectrum of contextual and interpretative factors. 

3.5.2 SubsMatch algorithm
SubsMatch is a string-based scanpath comparison algorithm 

designed by Kübler et al. (2014) to identify repeated patterns in 
visual behavior sequences. The method focuses on the computation 
of an extended transition matrix, which quantifies the occurrences 
of all subsequences of size n within a scanpath. Effectively, this 
approach can be viewed as a histogram-based method, where 
differences in occurrence frequencies serve as the foundation for 
evaluating similarity or dissimilarity between scanpaths.

The algorithm begins with a string-conversion 
process—see Section 2.4 — followed by the application of a sliding 
window of size n, which systematically counts the occurrences 
of all possible sub-sequences within the transformed string. This 
procedure generates a histogram representation, equivalently 
referred to as an n-gram embedding, which captures the frequency 
distribution of patterns of length n in the scanpath. This 
representation provides a detailed characterization of the scanpath’s 
structural features. Finally, the similarity between two scanpaths is 
assessed by evaluating the divergence between their sub-sequence 
frequency distributions.

This method has primarily been applied to compare eye 
movements associated with specific tasks (Braunagel et al., 2017a; 
b; Kübler et al., 2017). It was initially developed and validated in 
dynamic driving scenarios to distinguish between safe and unsafe 
driving behaviors (Kübler et al., 2014). More recently, SubsMatch 
has been utilized in diverse domains, such as identifying viewing 
behaviors that differentiate expert and novice micro-neurosurgeons, 
where it demonstrated significant group-level differences compared 
to other state-of-the-art metrics (Kübler et al., 2015).

An improved version of the algorithm, termed SubsMatch 
2.0, was developed to address notable limitations of the original 
implementation (Kübler et al., 2017). One significant drawback of 
the initial approach was its uniform weighting of all sub-sequences, 
irrespective of their discriminative value. As a result, frequent yet 
non-informative patterns could exert undue influence on similarity 
scores. Furthermore, the initial algorithm relied on exact pattern 
matching, treating sub-sequences that differed by even a single 
substitution as entirely distinct, which limited its robustness in 

certain contexts. To address these issues, SubsMatch 2.0 introduced a 
classification-based methodology wherein sub-sequence frequency 
features were used as inputs to a support vector machine (SVM) with 
a linear kernel. This enhancement enabled the algorithm to assign 
greater importance to sub-sequences with higher discriminative 
value, improving its ability to differentiate between experimental 
conditions. 

3.5.3 MultiMatch algorithm
The MultiMatch algorithm (Dewhurst et al., 2012; Foulsham 

et al., 2012) introduces an alternative representation of scanpaths, 
modeling them as a series of concatenated saccade vectors. Each 
vector connects the coordinates of successive fixation points, 
encapsulating both the fixative and saccadic components of eye 
movements. The primary goal of the method is to achieve 
optimal alignment of these saccade vectors, enabling the extraction 
of meaningful metrics to compare the structural and temporal 
characteristics of scanpaths.

The process begins with a two-fold simplification step designed 
to reduce scanpath complexity through saccade clustering: (i)
by combining into a single vector any two consecutive saccade 
vectors that are nearly collinear and (ii) by combining very short 
vectors with longer adjacent ones. These steps are applied iteratively 
until no further changes are observed, ensuring a progressive 
reduction in scanpath complexity. This approach enables the 
analysis of scanpaths that are too intricate to process directly, 
thereby enhancing computational feasibility. However, meticulous 
parameter selection and careful handling of the simplification 
process are crucial to maintaining the intrinsic characteristics 
of the original trajectories. The sensitivity of the outcomes to 
the chosen parameters underscores the importance of optimizing 
these settings for specific experimental contexts. By mitigating the 
influence of small saccades and localized fixations, the simplification 
step ensures that minor elements do not disproportionately bias 
similarity measurements. Once the scanpaths have been simplified, 
a temporal alignment process is performed to pair corresponding 
saccade vectors, enabling a robust and meaningful comparison of 
the scanpaths.

The alignment process, central to the algorithm, warrants 
further explanation. Initially, the norm of the vector difference 
between each saccade in the first scanpath and each saccade in 
the second scanpath is computed. These values are then stored in 
a weight matrix, which quantifies the shape similarity between all 
possible saccade pairings. Next, an alignment matrix is constructed, 
where the saccade vectors of the first scanpath are placed along 
the horizontal axis and the saccade vectors of the second scanpath 
along the vertical axis. This matrix defines the rules for allowed 
connections between vectors: connections are permitted only to the 
right, downward, or diagonally downward-right. Notably, backward 
connections are excluded, ensuring the alignment respects the 
temporal ordering of the scanpaths.

Together, the weight and alignment matrices form a 
directed, weighted graph. Nodes correspond to alignment 
matrix elements, edges represent permissible connections, and 
edge weights are defined by entries in the weight matrix. The 
optimal alignment is determined by finding the path through 
this graph that minimizes the total alignment cost. This is 
accomplished using Dijkstra’s algorithm (Cormen et al., 2022). 
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Conceptually, this approach resembles derivative dynamic time 
warping (Eamonn and Michael, 2001), as highlighted by 
authors such as French et al. (2017), who suggested achieving 
alignment by minimizing cumulative differences using a vector 
difference matrix.

Once optimal alignment is established, several metrics can be 
extracted from the paired saccade vectors. This alignment allows for 
the comparison of both the saccadic and fixative components of the 
scanpaths—as mentioned earlier, the endpoints of saccade vectors 
correspond to fixation coordinates. More specifically, five commonly 
used similarity metrics can be derived from the alignment: (i)
shape computed by determining the vector difference between 
aligned saccades, (ii) length which measures the similarity in 
saccadic amplitude, (iii) position which calculates the Euclidean 
distance between aligned fixations, (iv) direction which quantifies the 
angular difference between aligned saccade vectors and (v) duration
which measures the difference in fixation durations between 
aligned fixations. Together, these metrics provide a comprehensive 
evaluation of both the saccadic and fixative aspects of the scanpaths, 
and they can be combined or analyzed separately depending on the 
research question. 

3.6 Multi-scanpath comparison: towards 
group-level analyses

A central question, however, is how to interpret and use similarity 
and dissimilarity scores extracted from scanpaths. In practice, these 
scores are rarely meaningful in absolute terms; rather, they acquire 
interpretive value in comparative or inferential contexts. A common 
strategy is to evaluate whether within-participant similarity exceeds 
between-participant similarity, or whether scanpaths collected under 
a given experimental condition are more similar than those observed 
across conditions, typically using classical statistical procedures or 
permutation-based tests (Anderson et al., 2015). Closely related 
approaches rely on pairwise distance matrices computed across 
scanpaths, which can then be processed using clustering algorithms, 
multidimensional scaling, or supervised classification frameworks to 
reveal latent groupings, task-driven viewing strategies, or individual 
differences (Kumar et al., 2019; French et al., 2017; Castner, 2020). In 
all such applications, the interpretability of a metric depends on its 
sensitivity to spatial versus temporal structure, its robustness to noise 
and outliers, and its ability to scale to large collections of scanpaths. 

Beyond pairwise comparison, several methodological traditions 
have emerged for multi-scanpath analysis. Some approaches derive 
group-level representations by aggregating information across 
observers, for instance through consensus-building procedures 
that estimate representative sequences or prototypical trajectories. 
Others emphasize the extraction of recurring subsequences, 
motifs, or transition structures across individuals, thereby shifting 
the analytical focus from global distance measures to shared 
structural patterns. A further class of methods adopts a graph-
based perspective, representing gaze transitions as edges in a 
directed graph and comparing scanpaths through their transition 
dynamics or Markovian properties. Although these families of 
methods are often introduced in the context of raw, continuous 
scanpaths, they are conceptually much closer to the AoI-based 
approaches, where scanpaths are represented as sequences 

of discrete symbolic units. In practice, many of the multi-
scanpath strategies outlined above—such as consensus-sequence 
construction, motif or subsequence extraction, and transition-
based or graph-theoretic analyses—are more naturally, and more 
commonly, implemented on AoI sequences than on continuous 
fixation trajectories. This reflects a broader methodological point: 
most multi-scanpath comparison techniques implicitly rely on 
symbolization, discretization, and pattern extraction, all of which 
are foundational to AoI methodology.

For this reason, and to avoid redundancy, the detailed 
treatment of multi-scanpath approaches is deferred to a separate 
dedicated contribution focused on Areas of Interest and Associated 
Algorithms. There, these families of methods are revisited within 
their natural symbolic framework, allowing their assumptions, 
limitations, and interpretative affordances to be examined more 
thoroughly. By situating multi-scanpath comparison within the AoI 
paradigm, this symbolic perspective provides a more coherent and 
comprehensive account of the analytical tools that underpin group-
level gaze analysis. 

4 Discussion

The present review highlights both the methodological 
richness and the persistent fragmentation of the approaches 
used to characterize and compare scanpaths. Despite several 
decades of active research, scanpath analysis still lacks unified 
conceptual frameworks that clearly indicate when and why specific 
representations or metrics should be preferred. Scanpaths are 
inherently multidimensional entities, jointly embedding spatial, 
temporal, and semantic information. However, most existing 
methods focus on only one or two of these dimensions, and 
genuinely integrative approaches that account for the full complexity 
of the oculomotor signal remain relatively scarce.

A recurring challenge concerns the balance between intuitive, 
visually interpretable representations—such as scanpath plots, 
attention maps, or RQA recurrence plots—and more abstract 
quantitative metrics. Visual representations are accessible and 
powerful tools for exploratory analysis and qualitative comparison, 
particularly when multiple representations are shown side-by-side 
using the same gaze data. However, they provide only coarse-
grained insight without formal quantification, and their interpretive 
value depends strongly on visualization choices, such as scale, 
grid resolution, or temporal sampling. This tension explains why 
many methods have evolved in parallel within the fields of visual 
analytics and information visualisation, a connection not always 
acknowledged in traditional eye-tracking literature but increasingly 
relevant for scanpath research.

From a quantitative perspective, the proliferation of available 
metrics reflects the diversity of research questions, but it also 
contributes to a degree of methodological opacity. Metrics differ 
widely in their sensitivity to spatial configuration, temporal order, 
noise, and outliers, and the interpretation of their absolute values 
is often non-trivial. In particular, certain conceptual interpretations 
require careful contextualization, especially in clinical settings 
where restricted visual exploration may reflect avoidance or 
impairment rather than efficiency or expertise. For these reasons, 
a more explicit discussion of interpretive limitations is essential for 
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guiding both novice and advanced users. In the present review, 
emphasis is therefore placed on understanding most metrics as 
primarily descriptive tools, rather than as normative indicators of 
performance, efficiency, or optimality.

Beyond representational diversity, methodological choices such 
as grid size, discretization resolution, or segmentation parameters 
remain under-discussed in the literature, despite their substantial 
impact on results. For single and multi-scanpath analyses alike, 
these parameters determine whether subtle structure is preserved 
or lost. Similarly, scalability is an increasingly important concern: 
many classical comparison techniques were developed for pairwise 
comparisons and do not generalize efficiently to large datasets. As 
discussed in Section 3, more recent approaches leverage distance 
matrices, clustering algorithms, and supervised models to scale to 
dozens or hundreds of scanpaths, but their performance remains 
closely tied to representation choices and noise sensitivity.

Machine learning and deep learning approaches represent a 
promising response to several of the methodological challenges 
faced by classical scanpath analysis. By embedding scanpaths 
in high-dimensional feature spaces—through convolutional 
neural networks (CNNs), recurrent architectures, or more recent 
transformer-based models—these approaches can capture aspects of 
gaze behaviour that traditional metrics often overlook. For instance, 
Castner (2020) introduced an advanced variant of the string edit 
distance tailored specifically for scanpath analysis, in which the 
alignment cost between two fixations is computed from the norm of 
the difference between feature vectors extracted from the fixated 
image regions. These features are derived from a pre-trained 
CNN—specifically VGG-16 Simonyan and Zisserman (2014) — 
enabling the similarity measure to incorporate rich, high-level visual 
information rather than relying solely on geometric proximity.

In a broader application of deep learning, Ahn et al. (2020) 
investigated the classification of comprehension-related variables, 
including global text comprehension, passage-level understanding, 
and perceived reading difficulty. Their models relied directly on raw 
fixation coordinates and fixation durations, using both CNN and 
recurrent neural network (RNN) architectures to predict cognitive 
states from eye-tracking data. Together, these studies illustrate the 
potential of deep learning to infer complex cognitive variables 
directly from gaze behaviour.

Despite their promise, the performance and generalizability 
of learning-based approaches remain strongly constrained by the 
availability, quality, and diversity of training data. Human gaze 
behaviour exhibits substantial variability across individuals, tasks, 
stimuli, and viewing conditions, which complicates the construction 
of datasets that adequately capture this heterogeneity. Moreover, 
the collection of large-scale, well-annotated eye-tracking datasets 
remains costly and time-consuming, and dataset-specific biases can 
substantially affect model performance and transferability.

Recent advances in transfer learning (Rokni et al., 2018) and 
meta-learning (Gong et al., 2019) have partially alleviated these 
limitations by enabling models to adapt to novel tasks or domains 
from limited data. Nevertheless, their effectiveness still depends on 
the availability of robust and diverse base datasets for pre-training. 
To further mitigate data scarcity, generative modeling approaches 
have recently been proposed to synthesize large-scale, realistic eye-
movement datasets. In particular, Lan et al. (2022) introduced 
a framework for generating synthetic scanpaths from publicly 

available images and videos, aiming to reproduce key statistical 
properties of human gaze while introducing variability across 
observers and experimental conditions. Although such synthetic 
data cannot yet fully replicate the complexity of human visual 
behaviour, they provide a scalable and controllable resource for 
training and benchmarking learning-based models.

Altogether, the integration of machine learning and deep 
learning into scanpath analysis marks a significant methodological 
shift. While these approaches introduce new challenges related 
to data heterogeneity, computational cost, and interpretability, 
ongoing progress in generative modeling, adaptive learning, and 
synthetic data generation offers promising avenues for overcoming 
these limitations. Ultimately, one of the most promising future 
directions lies in the development of hybrid frameworks that 
combine the interpretability of symbolic, AoI-based methods with 
the representational power of continuous, data-driven models, 
thereby enabling both robust quantitative analysis and meaningful 
cognitive interpretation.
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