:' frontiers ‘ Frontiers in Physiology

‘ @ Check for updates

OPEN ACCESS

EDITED BY
Maria Chiara Caschera,
National Research Council (CNR), Italy

REVIEWED BY
Antonio Sarasa-Cabezuelo,
Complutense University of Madrid, Spain
Sarah Goodwin,

Monash University, Australia

Wolfgang Zangemeister,

Montreal General Hospital, Canada

*CORRESPONDENCE
Quentin Laborde,
quentin.laborde@ens-paris-saclay.fr

RECEIVED 09 October 2025
REVISED 17 December 2025
ACCEPTED 26 December 2025
PUBLISHED 27 January 2026

CITATION

Laborde Q, Roques A, Armougum A, Vayatis N,

Bargiotas | and Oudre L (2026) Vision toolkit
part 3. Scanpaths and derived representations
for gaze behavior characterization: a review.
Front. Physiol. 16:1721768.

doi: 10.3389/fphys.2025.1721768

COPYRIGHT

© 2026 Laborde, Roques, Armougum, Vayatis,

Bargiotas and Oudre. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology

TYPE Review
PUBLISHED 27 January 2026
pol 10.3389/fphys.2025.1721768

Vision toolkit part 3. Scanpaths
and derived representations for
gaze behavior characterization: a
review

Quentin Laborde®?*, Axel Roques®?, Allan Armougum?,
Nicolas Vayatis®, loannis Bargiotas* and Laurent Oudre?

*Université Paris Saclay, Université Paris Cité, ENS Paris Saclay, CNRS, SSA, INSERM, Centre Borelli,
Gif-sur-Yvette, France, *Technologies Department, Innovation and Research, SNCF, Saint Denis,
France, *Training and Simulation, Thales AVS France, Osny, France, “Inria, CIAMS, Université
Paris-Saclay, Gif-sur-Yvette, France

Scanpath analysis provides a powerful window into visual behavior by jointly
capturing the spatial organization and temporal dynamics of gaze. By linking
perception, cognition, and oculomotor control, scanpaths offer rich insights
into how individuals explore visual scenes and accomplish task goals. Despite
decades of research, however, the field remains methodologically fragmented,
with a wide diversity of representations and comparison metrics that complicate
interpretation and methodological choice. This article reviews computational
approaches for the characterization and comparison of scanpaths, with an
explicit focus on their underlying assumptions, interpretability, and practical
implications. We first survey representations and metrics designed to describe
individual scanpaths, ranging from geometric descriptors and spatial density
representations to more advanced approaches such as attention maps,
recurrence quantification analysis, and symbolic string encodings that capture
temporal regularities and structural patterns. We then review methods for
comparing scanpaths across observers, stimuli, or tasks, including point-
mapping metrics, elastic alignment techniques, string-edit distances, saliency-
based measures, and hybrid approaches integrating spatial and temporal
information. Across these methods, we highlight their respective strengths,
limitations, and sensitivities to design choices such as discretization, spatial
resolution, and temporal weighting. Rather than promoting a single optimal
metric, this review emphasizes scanpath analysis as a family of complementary
tools whose relevance depends on the research question and experimental
context. Overall, this work aims to provide a unified conceptual framework
to guide methodological selection, foster reproducibility, and support the
meaningful interpretation of gaze dynamics across disciplines.

KEYWORDS

eye-tracking, recurrence quantification analysis, saliency map, scanpath, scanpath
comparison

1 Introduction

Understanding how humans explore their visual environment has been a central topic
in eye-tracking research for nearly a century. The term scanpath was first introduced by
Noton and Stark (1971a) and Noton and Stark (1971b), who proposed that an internal
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cognitive representation guides both visual perception and the
associated mechanism of active eye movements in a top-down
manner. Their pioneering work suggested that gaze behavior
reflects deeper cognitive processes such as expectations, memory,
and task goals. This groundbreaking idea is considered one of
the most influential theories in the study of vision and eye
movements. However, these key concepts were also foreshadowed
in earlier classic works on eye movements. In particular, Yarbus
(1967b) demonstrated that gaze patterns vary systematically with
the observer’s instructions: when viewing the same painting
under distinct task sets, participants produced markedly different
trajectories. These findings revealed that fixation locations, their
temporal ordering, and the overall structure of the scanpath
depend jointly on stimulus properties and the observer’s mental
state. Subsequent influential contributions to scanpath analysis
include the work of Choi et al. (1995), who introduced string-
based representations for visual search, as well as studies by
Zangemeister et al. (1995a) and Zangemeister et al. (1995b), which
demonstrated the existence of global scanpath strategies and high-
level oculomotor control in both healthy observers and patients with
visual field defects.

For the purposes of this review, we define a scanpath
as a sequence of successive eye fixations, each specified by
its spatial location—horizontal and vertical coordinates—and
its associated duration. The process for constructing scanpath
trajectories generally begins by segmenting raw gaze recordings into
slow—fixation—and fast—saccadic—phases. After segmentation,
slow phases are grouped into fixation events, while saccades
are collapsed into transition events between fixations, thereby
producing scanpath time series. It is important to emphasize that this
abstraction captures the essential dynamics of visual exploration:
fixations represent moments of relative perceptual stability, whereas
saccades indicate shifts of attention between loci of interest. Figure 1
provides a schematic representation of this transformation from raw
gaze signals to scanpath trajectories.

The classic scanpath theory posits that scanpaths are
predominantly top-down processes, driven by an observer’s mental
model. In this view, cognitive goals and intentions dictate fixation
locations, adapting to the task at hand. However, alternative
perspectives, such as visual saliency models, emphasize the role of
bottom-up influences, wherein low-level stimulus properties—e.g.,
contrast, color, and motion—capture attention and guide eye
movements. These models argue that salient features in the visual
field dictate gaze trajectories, with cognitive influences acting
secondarily. One key limitation of scanpath theory in its strongest
form is its inability to fully explain variability in eye movements
across different observers and tasks. Similarly, a purely bottom-up
saliency model also struggles to account for the diversity in gaze
patterns during repeated exposures to the same visual stimulus.

Over recent decades, considerable debate has revolved around
the interplay between top-down and bottom-up mechanisms in
the control of visual attention (Theeuwes, 2010). Whereas early
frameworks tended to treat these mechanisms as competing sources
of guidance, more recent accounts emphasize a dynamic and
interactive process unfolding over multiple timescales. According
to this view, initial fixations are predominantly driven by bottom-
up salience—reflecting local stimulus properties such as contrast,
motion, or color—while later stages increasingly reflect top-down
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influences related to task goals, expectations, prior knowledge, and
learned attentional sets (Hochstein and Ahissar, 2002; VanRullen
and Koch, 2003; Wolfe, 2021). These influences interact through
recurrent processing loops linking higher-order cortical areas
with early visual regions, enabling cognitive goals to progressively
reshape fixation patterns during exploration. Contemporary
computational models likewise implement hybrid architectures in
which salience, goal-driven priority maps, and learned attentional
biases jointly contribute to fixation selection (Mengers et al., 2025).
Together, these findings converge toward a multifactorial account
in which bottom-up signals dominate initial orienting but are
rapidly integrated with feedback mechanisms that incorporate task
demands, contextual expectations, and experience-driven biases.

of
methodologically challenging because it requires capturing

Computational ~ characterization scanpaths  is
sequential dependencies, spatial distributions, and temporal
dynamics. Since the early work of Noton and Stark, the field
has grown substantially, producing a diverse array of approaches
(Anderson et al., 2013; Brandt and Stark, 1997; Burmester and
Mast, 2010; Foulsham et al., 2012; Foulsham and Underwood, 2008;
Johansson et al., 2006; Shepherd et al., 2010). This review of scanpath
analysis and representations is organized into two main sections.
First, we outline the geometric and descriptive characteristics
of scanpaths, including representations derived from fixation
sequences and quantitative measures that capture the spatial and
temporal properties of fixation trajectories. Second, we examine the
extensive body of work devoted to comparing scanpath trajectories,
a key aspect of gaze dynamics research.

This article is the third contribution in an ongoing series of
methodological reviews dedicated to the analysis of oculomotor
signals and gaze trajectories. The first article, published in Frontiers
in Physiology (Laborde et al., 2025b), synthesizes current knowledge
on canonical eye movements, with particular emphasis on the
differences between controlled laboratory settings and naturalistic
viewing conditions. The second article (Laborde et al., 2025a)
reviews segmentation algorithms and oculomotor features that
enable the reliable identification and characterization of fixations,
saccades, and smooth pursuits. The present work focuses on
the representations and metrics used to characterize scanpaths, as
well as on the methods for comparing scanpaths across stimuli,
observers, or tasks.

In this review, we distinguish between representations, which
refer to how scanpaths are encoded or transformed into alternative
forms—e.g., geometric trajectories, symbolic strings, attention
maps—and metrics, which define quantitative functions operating
on these representations to summarize, compare, or characterize
gaze behavior. Our goal is not to provide an exhaustive technical
treatment of each approach, but rather to propose a unified
conceptual framework that organizes the diversity of existing
methods and clarifies their assumptions, required inputs, and
interpretability, along with references to formal mathematical
descriptions and implementation details. Importantly, this article
does not address areas of interest (Aols), which fall outside the scope
of the present review and are treated in a separate dedicated work.
As will become apparent, several methods developed for scanpath
analysis are conceptually related to Aol-based approaches, yet the
symbolic nature of Aol representations warrants an independent
treatment.
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FIGURE 1
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Scanpath. This figure illustrates a commonly used representation of scanpath trajectories. Fixations are first extracted from raw gaze data using binary
segmentation algorithms — (a) The scanpath is then visualized (b) — with fixations represented at the centroid of their spatial coordinates. The
temporal aspect of fixations is depicted using blue circles, with the radius proportional to the fixation duration. Purple lines connect successive
fixations, representing saccades—the non-linear trajectory of saccades is thus abandoned in favor of a simplified representation.

600 800 1000 1200
Horizontal position (px)

600 800 1000 1200
Horizontal position (px)

b

2 Single scanpath representation

In this section, scanpaths are analyzed independently by
examining the sequential and spatial properties of fixation

Frontiers in Physiology

sequences. We focus on methods designed to characterize the
structure of a single gaze trajectory, without explicit comparison
across observers or trials. We first introduce foundational
geometrical metrics, which operate directly on fixation coordinates
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to quantify the spatial extent, dispersion, and complexity of
scanpaths.

Beyond such low-level descriptors, a large body of work
relies on higher-level representations that transform scanpaths into
alternative forms in order to emphasize specific dimensions of gaze
behavior. These include spatial density and attention maps, which
support intuitive visual inspection and lie at the intersection of
eye-tracking research and visual analytics, as well as recurrence-
based representations that highlight the temporal organization and
self-similarity of gaze sequences. We also review symbolic string
encodings, which discretize scanpaths into categorical sequences
and form the basis of many sequence-analysis techniques.

For each family of methods, we discuss their underlying
typical
main limitations, with particular attention to sensitivity to

assumptions, parameterizations, interpretability, and
discretization, spatial resolution, and temporal binning. The
metrics and algorithms discussed in this section are systematically
summarized in Table 1, which specifies the required inputs, typical

outputs, and key references for implementation.

2.1 Geometrical approaches

From the earliest studies of eye movement behavior in
observational tasks (Buswell, 1935), it was recognized that simple
descriptive and geometric characterizations of scanpath trajectories
could offer valuable insights into the underlying cognitive processes.
With this in mind, we begin our overview by introducing several
intuitive metrics that capture the spatial and geometric features of
gaze trajectories.

2.1.1 Basic descriptive features

A frequently studied feature in the literature is the scanpath
length, which quantifies the total distance traveled by the eye
during scanning. This metric is typically expressed in degrees
of visual angle or pixels. To ensure meaningful interpretation,
scanpath length is often normalized by time or analyzed within the
framework of specific tasks or sub-tasks. High values of scanpath
length are often associated with less efficient search behavior, as
they reflect extensive eye movement without rapidly converging
toward task-relevant information (Goldberg and Kotval, 1998). This
metric has proven useful in various contexts. For instance, it has
been employed to assess the diagnostic skills of medical students,
pathology residents, and practicing pathologists when analyzing
histopathology slides, revealing differences in scanning strategies
and expertise (Krupinski et al., 2006). In clinical research, scanpath
length has also been interpreted to characterize restricted scanning
behaviors. For example, it has highlighted the limited exploration
strategies observed in patients with schizophrenia, providing
insights into their oculomotor dysfunction (Toh et al., 2011).

In addition to scanpath length, another valuable approach
involves analyzing the angles formed by successive fixations along
the scanpath trajectory. These angles are calculated based on two
consecutive line segments connecting three fixations—previous,
current, and next. They provide a way to characterize the
geometric efficiency of visual search, with smaller and more direct
angles often indicative of more focused behavior (Goldberg and
Kotval, 1998). The analysis of angular distributions within scanpaths
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can be conducted independently or in combination with advanced
modeling techniques. For example, Mao et al. (2022) used angular
distributions to quantify task performance, while Fuhl et al. (2019)
proposed leveraging sequences of saccadic angles for scanpath
comparison. Similarly, Kimmerer et al. (2022) utilized inter-
fixation angles as a validation metric for computational models of
human scanpaths, demonstrating their relevance for benchmarking
algorithms designed to replicate human visual behavior.

Another widely used descriptor is fixation dispersion, also
known as spread, which assesses the spatial distribution of fixations.
Dispersion can be computed in various ways, such as by calculating
the standard deviation of fixation coordinates across a scene
(Guo et al., 2023; Ryerson et al., 2021) or by measuring the deviation
from a central reference point, often referred to as dispersion
from the center (Anliker et al., 1976). This measure offers valuable
insights into spatial viewing strategies and has been applied, for
instance, to differentiate visual search strategies between novice and
expert pathologists (Jaarsma et al., 2014). High fixation dispersion
may reflect exploratory search patterns, whereas low dispersion
can indicate focused attention—or, in some clinical or atypical
populations, restricted exploration that is not necessarily efficient.
This underlines the importance of interpreting these metrics in the
context of the task, stimulus, and population under study.

Finally, many studies complement global scanpath metrics
with descriptive measures of individual fixational and saccadic
components. Examples include the mean saccade amplitude
and the mean fixation duration. These measures help provide
a more detailed characterization of oculomotor behavior and
are particularly useful for comparing performance across tasks
or populations. For a more comprehensive treatment of these
descriptors, readers are referred to the Oculomotor Processing part
of this review series (Laborde et al., 2025a), where the features used
to characterize canonical oculomotor events are examined in detail.

Fundamental scanpath metrics such as scanpath length, angular
analysis, and fixation dispersion provide complementary insights
into the global structure of visual exploration. They are particularly
appropriate in tasks where overall search efficiency, spatial spread, or
exploratory style is of interest, such as visual search, inspection, and
reading. When complemented by detailed measures of individual
fixations and saccades, these metrics enable a more nuanced and
comprehensive understanding of oculomotor behavior across a wide
range of experimental and clinical contexts.

2.1.2 Spatial density

A prominent global search metric, introduced by Kotval and
Goldberg (1998), is the scanpath spatial density. This descriptive
measure, computed independently of the temporal order of
fixations, characterizes how widely the visual field is explored.
A Dbroadly distributed pattern of fixations typically reflects
extensive searching, whereas fixations concentrated within a
limited region suggest a more direct or focused exploration
strategy. Consequently, spatial density has been employed to assess
viewer expertise during complex cognitive tasks, with higher
density often linked to more systematic and skillful performance
(Augustyniak and Tadeusiewicz, 2006). Alternatively, spatial density
can also be interpreted as a measure of scanpath regularity, which
is particularly relevant in reading and comprehension studies
(Méziere et al., 2023; von der Malsburg et al., 2015).
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TABLE 1 Single scanpath metrics and their required input representations.

Feature name

Input

Description

10.3389/fphys.2025.1721768

References

Length Fixation sequence Computes the total distance traveled by the gaze Goldberg and Kotval (1998)
between successive fixation centroids
Dispersion Fixation coordinates Computes the standard deviation of fixation Guo et al. (2023)

coordinates within a scanpath

Successive a.ngles

Fixation sequence

Computes the angles formed by successive saccadic
trajectories between fixations

Goldberg and Kotval (1998)

Spatial density

Fixation coordinates

Computes the proportion of the visual field foveated
during a task using circular filters centered on
fixations

Castelhano et al. (2009)

K-coefficient

Fixation durations + saccade amplitudes

Computes, for each fixation, the difference between
standardized fixation duration and standardized
amplitude of the subsequent saccade

Krejtz et al. (2016)

Nearest neighbor index

Fixation coordinates

Computes the mean minimum inter-fixation
distance normalized by the expected value under
spatial randomness

Di Nocera et al. (2006)

Voronoi cells

Fixation coordinates

Computes statistical parameters — e.g., skewness,
scale — of a gamma distribution fitted to normalized
Voronoi cell areas

Over et al. (2006)

Convex hull

Fixation coordinates

Computes the area of the smallest convex polygon
containing all fixation points of a scanpath

Bhattacharya et al. (2020)

Higuchi fractal dimension

Fixation sequence (Hilbert-transformed)

Computes the Higuchi fractal dimension of the
one-dimensional Hilbert-curve distance series
derived from fixation centroids

Newport et al. (2021)

Saliency map

Fixation coordinates

Computes a fixation density map using Gaussian
kernel smoothing over fixation locations

Bojko (2009)

Saliency map entropy

Saliency map

Computes the Shannon entropy of the normalized
attention map distribution

Gu et al. (2021)

RQA recurrence rate

Fixation sequence

Computes the percentage of recurrence points in the
recurrence matrix

Webber and Zbilut (1994)

RQA determinism Fixation sequence Computes the percentage of recurrence points Webber and Zbilut (1994)
forming diagonal line structures

RQA laminarity Fixation sequence Computes the percentage of recurrence points Webber and Zbilut (1994)
forming vertical or horizontal line structures

RQA CORM Fixation sequence Computes the distance between the center of Anderson et al. (2013)
recurrence mass and the main diagonal of the
recurrence plot

RQA entropy Fixation sequence Computes the Shannon entropy of the diagonal-line Marwan et al. (2007)

length distribution in the recurrence plot

From a computational perspective, the earliest method for
estimating spatial density relied on superimposing a regular grid
over the visual field (Goldberg and Kotval, 1998). Fixations
are mapped onto the grid, and the density is defined as the
proportion of grid cells containing at least one fixation relative
to the total number of cells. While straightforward, this approach
is limited by the arbitrary choice of grid resolution, which
directly influences the resulting density estimate. To alleviate
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this dependency, Castelhano et al. (2009) proposed a continuous
alternative that avoids grid-based discretization. In this method,
the proportion of the visual field foveated during a search
task is computed by centering a circular filter—typically with
a radius of 1° or 2° of visual angle—on each fixation. The
union of the covered areas, normalized by the total visual field
area, provides a smoother and more physiologically grounded
density estimate.
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Recently, Krejtz et al. (2016) and Krejtz et al. (2017) introduced
the K coefficient as an extension of the saccade-fixation ratio.
Developed to explore the dynamics of visual scanning in tasks such
as artwork and map viewing, this metric averages the differences,
for each fixation, between the standardized fixation duration and the
standardized saccade amplitude of the subsequent saccade. The K
coefficient has proven effective in distinguishing between ambient
and focal attention states and serves as an indicator of cognitive
load changes. Its ability to capture subtle shifts in attention dynamics
makes it an effective tool for both experimental and applied research.

Another innovative metric, the nearest neighbor index (NNI),
evaluates the randomness of fixation distribution across the
visual field (DiNocera et al., 2006). The NNI is computed as
the mean of the minimum distances between fixation points,
normalized by the expected mean distance under a random
distribution. This metric has proven useful in assessing the
relationship between fixation patterns and cognitive workload. For
instance, lower workload conditions often correspond to more
regular fixation distributions, suggesting systematic monitoring of
an interface or visual layout.

A more sophisticated density measure, introduced by
Over et al. (2006), utilizes Voronoi diagrams to characterize fixation
uniformity. This method assigns each fixation a unique region
of the visual field, known as a Voronoi cell, which comprises all
points closer to that fixation than to any other—an illustration is
provided in Figure 2a. The size and shape of these cells depend on
factors such as the visual stimulus characteristics, the total number
of fixations, and their spatial arrangement. This approach enables
detailed analysis of fixation density by extracting descriptors from
the distribution of Voronoi cell sizes, such as skewness or parameters
of a gamma distribution. These descriptors provide insights into the
uniformity and clustering of fixations, offering a powerful tool for
understanding how visual attention is distributed during cognitive
processes.

Overall, spatial density approaches are particularly well suited
for research questions concerned with how thoroughly, widely, or
uniformly a stimulus is explored, or for distinguishing between
ambient and focal viewing modes, rather than for capturing the
precise temporal ordering of fixations.

2.1.3 Convex hull

The concept of the convex hull of fixations was introduced
early on as a natural extension to the scanpath length metric
(Kotval and Goldberg, 1998). The convex hull is defined as the
smallest convex polygon encompassing all fixation points for a given
participant under a specific experimental condition. This can be
visualized as the area bounded by a tightened rubber band stretched
around all fixation points until it encloses them completely—see
Figure 2b for an illustration. The convex hull area provides an
estimate of the extent of the peripheral visual field explored
during a task (Bhattacharya et al., 2020). This metric has been
widely employed to assess visual effort and attention distribution
across various tasks and experimental conditions (Fu et al., 2017;
Goldberg and Kotval, 1999; Imants and de Greef, 2011; Moacdieh
and Sarter, 2015; Sharafi et al., 2015a). A consistent observation in
these studies is that smaller convex hull areas correspond to more
concentrated fixations and reduced visual effort, often indicative
of a task-focused approach. For this reason, convex hull area is
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frequently analyzed in conjunction with scanpath length, as the two
metrics together offer complementary insights into the spatial extent
and efficiency of visual search.

While the convex hull area measure is a useful metric, it
has significant limitations. A key drawback is its sensitivity to
outliers and stray fixations, which can significantly distort the
results. For instance, as noted by Bhattacharya et al. (2020), a
scanpath with a few stray fixations near the corners of a region
may produce a convex hull area comparable to that of a scanpath
reflecting concentrated, systematic exploration of the same region.
This highlights the challenge of using convex hull area in isolation,
as it may fail to distinguish between meaningful search patterns
and scattered fixations unrelated to the task—outlier fixations,
even if rare, can disproportionately expand the convex hull and
distort results (Sharafi et al., 2015a; b). Moreover, as an aggregated
metric computed after a visual search sequence, its relevance can
vary depending on the specific visual task, sometimes leading to
misinterpretations.

To address these limitations, researchers have developed refined
convex hull-based measures that incorporate temporal and fixation-
density dimensions. Notably, Bhattacharya et al. (2020) introduced
two refined metrics to enhance the analysis of visual search behavior:
the hull area per time, which combines the dynamic convex hull
area with the elapsed task duration to provide a time-normalized
measure of the search spread, and the fixations per hull area, which
integrates the running count of fixations with the corresponding
convex hull area, offering a quantitative indicator of fixation density
within the explored region. These enhanced features aim to provide
more nuanced insights into visual behavior by addressing the static
and outlier-sensitive nature of the raw convex hull area. Convex-
hull-based metrics are therefore best used as global indicators of
spatial extent or visual effort, and ideally in combination with other
measures that capture fixation density or temporal dynamics.

2.1.4 Fractal dimension

The concept of fractal dimension can be intuitively explained
using the classic problem of measuring the coastline of an island.
As the scale of measurement becomes smaller, the length of the
coastline increases, making it increasingly difficult to measure
accurately at finer scales, such as the granularity of a single
grain of sand. This phenomenon highlights the complexity of
irregular structures, and to quantify such complexity, a powerful
tool was introduced: the box-counting dimension, also known as
the Minkowski-Bouligand dimension. To compute the box-counting
dimension, the fractal structure is overlaid with a grid of evenly
spaced boxes. The number of boxes required to cover the structure
is then counted, and the dimension is determined by observing
how this count changes as the size of the grid cells is reduced.
This approach is useful for quantifying the degree of irregularity in
structures that exhibit fractal properties, which are often self-similar
across scales.

Interestingly, the scanpath formed by connecting successive
eye fixations during scene viewing or visual search tasks can
be treated as a fractal pattern. Fractals are particularly effective
at capturing spatial structures and offer valuable insights into
the geometric organization or generation of scanpaths during
cognitive tasks such as visual search or scene exploration
(Cote et al., 2011). The fractal dimension has been employed to
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Geometrical Analysis. (a) illustrates the Voronoi tessellation derived from the scanpath shown in Figure 1. Each fixation serves as a generator point,
defining a corresponding Voronoi cell whose area reflects the local spatial density of neighboring fixations. (b) depicts the convex hull of the same
scanpath, shown in light blue. The convex hull corresponds to the smallest convex polygon—defined by interior angles not exceeding 180°—that
encloses the entire set of fixation locations, thereby providing a global measure of the spatial extent of visual exploration.
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characterize human visual search behavior in diverse contexts,
including mammography screening (Alamudun et al., 2017; 2015)
and the analysis of brain magnetic resonance imaging (MRI) scans
(Suman et al., 2021), as well as to explore its relationship with task
complexity and reader expertise—for instance Wu et al. (2014)
demonstrated the utility of this metric in quantifying scene
complexity.
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Traditional box-counting methods applied to the two-
dimensional shape of scanpaths do not account for the
temporal aspect of these eye movements. To address this
limitation, Newport et al. (2021) recently introduced an alternative
method that captures the fractal complexity of two-dimensional gaze
patterns while incorporating the temporal dimension. Their method
utilizes the Higuchi fractal dimension (HFD), an approximation of
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the Minkowski-Bouligand method specifically designed for one-
dimensional time series. The primary advantage of HFD lies in its
ability to directly analyze non-periodic, non-stationary data, which
is characteristic of eye movement patterns.

Since the HFD method is applied to one-dimensional time
series, ithe two-dimensional positional data of scanpaths must
first be transformed into a single one-dimensional sequence.
Newport and colleagues addressed this dimensionality reduction
by employing Hilbert curve distances (Bially, 1969), a technique
that maps two-dimensional scanpath coordinates into a one-
dimensional sequence while preserving the spatial order of fixations.
This transformation enables the application of the HFD method to
characterize the fractal complexity of scanpaths, as illustrated in
Figure 3. This two-step approach has proven particularly effective
in filtering out outlier scanpaths that exhibit inconsistent or
meaningless patterns, thereby enhancing the robustness of scanpath
analyses (Newport et al, 2021; 2022). Fractal-based measures
are therefore particularly appropriate when the research focus
lies on the complexity, irregularity, or self-similar structure of
exploration patterns, rather than on precise fixation locations or
exact temporal ordering.

2.2 Saliency maps

The term saliency map can be a source of confusion due to
its broad application across various research domains, where it
encompasses different conceptualizations and uses. It has been
described in multiple, overlapping contexts: as an abstract map for
attentional priority, as a neural mechanism for integrating visual
activity, as a bottom-up predictor of gaze locations, and as any
heatmap-like representation of fixation series (Foulsham, 2019). In
the following sections, we focus on two specific interpretations of
saliency maps. First, we introduce attention maps, or heat maps,
which are commonly used techniques for visualizing gaze data and
naturally extend the concept of scanpath density. Second, we provide
an overview of saliency models, which generate maps that estimate
the likelihood of different image regions attracting an observer’s
attention. These models are typically grounded in computational
neuroscience and computer vision, aiming to predict the areas
where visual attention is most likely to be directed based on image
characteristics.

2.2.1 Attention maps

A viewer’s attention map—often referred to as a heat map—is a
widely used visualization of the spatial distribution of visual fixations
across a stimulus. Conceptually, attention maps are spatial density
plots that indicate how frequently different regions of the visual field
are inspected. They can be understood as a continuous analogue of
a histogram, where fixations, from a single observer or aggregated
across observers, are accumulated on a discretized grid, and the
fixation counts determine the resulting pixel intensities—typically
indicated by color gradients or opacity. Importantly, the resolution
of this grid is chosen by the user and does not necessarily
match the original resolution of the stimulus; it is a modelling
choice that influences the smoothness and spatial precision of
the map. To generate a continuous density field, each fixation is
typically convolved with a Gaussian kernel whose standard deviation
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determines how broadly the fixation spreads across the visual field.
The choice of this parameter is critical, as it should reflect eye-
position uncertainty and foveal extent, and is often set to 1 or
2 degrees of visual angle. As illustrated in Figure 4, varying the
Gaussian dispersion parameter directly affects the granularity and
interpretability of the resulting attention map.

This general description must be nuanced by several
important considerations. While the fixation-count attention map,
which aggregates the number of fixations, is an intuitive and
straightforward representation, it has inherent limitations that can
affect its interpretability and reliability. Most notably, this method
assigns equal weight to all fixations, irrespective of their duration.
Consequently, regions with similar intensity on a fixation-count map
do not necessarily correspond to equivalent total gaze durations. For
example, a brief glance repeated several times in one area may be
indistinguishable from prolonged sustained attention in another,
despite the potentially different cognitive or perceptual implications
of these gaze patterns.

Furthermore, when fixation-count maps are generated from
data collected across multiple observers, they can inadvertently
introduce biases. For instance, observers who are exposed to the
stimulus for longer durations naturally have more opportunities to
produce fixations, disproportionately influencing the overall map.
This effect can skew the representation toward their individual
viewing behavior, especially in datasets where exposure times vary
significantly among participants. It is also important to note that
the idiosyncratic interests of certain observers can introduce bias.
Individuals with particularly high interest in specific items or regions
may contribute a disproportionately large number of fixations to
those areas, overshadowing the collective patterns of the broader
group. As a result, fixation-count maps may over-represent such
idiosyncrasies, reducing their ability to generalize about attention
allocation across a population.

To mitigate these shortcomings, alternative methods have
of
visual behavior (Bojko, 2009). One such approach is the absolute gaze

been proposed that incorporate additional dimensions
duration attention map, which represents the total time observers
spend fixating on different areas of a stimulus. This method
highlights regions that consistently attract sustained attention,
offering insights into areas of prolonged engagement. However,
it may still be influenced by differences in exposure time among
observers or individual variability in attention patterns, potentially
introducing bias into the results.

Another approach is the relative gaze duration attention
map, which normalizes gaze duration data by calculating the
time spent fixating on each area as a proportion of the total
viewing time for each observer. This normalization reduces
biases caused by variations in individual exposure times or
personal viewing tendencies, enabling more equitable comparisons
across participants. Despite its advantages, this method may
obscure absolute differences in gaze duration between regions or
participants, which could be significant for certain analyses.

A third method is the participant-percentage attention map,
which reflects the proportion of observers who fixate on specific
areas of a stimulus. This approach is particularly useful for
identifying regions that consistently attract attention in a population
and highlighting universally salient or compelling features.
However, since it does not account for the frequency or duration
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FIGURE 3
Higuchi Fractal dimension. (a) illustrates dimensionality reduction using the Hilbert curve. Fixations forming the scanpath are mapped onto a Hilbert
curve, a space-filling curve that traverses the entire visual field. In this representation, Cartesian fixation coordinates are reduced to a
single-dimensional coordinate representing their position along the Hilbert curve, starting from the origin at the bottom-left corner of the visual field.
(b) plots the Hilbert curve distances against their temporal indices. Subsequently, the Higuchi method can be applied to estimate fractal dimensions.
Briefly, this approach computes the lengths L(k) of sub-series extracted from the Hilbert distance series for various lags k between consecutive
samples. Assuming a power-law relationship, L(k) o< k™2, the fractal dimension D is estimated using logarithmic regression, as illustrated in Figure (c).

of fixations, it is less effective in assessing the intensity or depth of
attention directed toward specific areas.

Each of these methods has unique strengths and weaknesses,
and their suitability depends on the research objectives and
the experimental paradigm. For example, absolute or relative
gaze-duration maps are often preferred in studies focusing on
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sustained attention, while participant-percentage maps are more
appropriate for understanding population-wide trends in visual
salience. For further discussion on this conceptual topic, we refer
the reader to Bojko (2009), who provide guidelines for avoiding
the misuse and misinterpretation of attention maps. They stress
that attention maps, regardless of the method used to create them,
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Attention Maps. Two attention maps derived from the same scanpath illustrated in Figure 1b. (a,b) specifically illustrate attention maps generated using
Gaussian kernels with low and high standard deviation values, respectively. These examples highlight the significant influence of the Gaussian
dispersion parameter, which must be carefully calibrated to accurately represent the variability and resolution of the visual system. Note that attention
maps are computed on a user-defined grid whose resolution is independent of the original stimulus. As a result, the coordinate axes in these maps

differ from those in Figure 1b

must be interpreted carefully, as the choices made during their
construction can significantly influence the conclusions drawn from
the data. By aligning methodological choices with the specific aims
of a study, researchers can maximize the accuracy and relevance of
their findings.

Owing to their simplicity, intuitive readability, and strong
visual appeal, attention maps have become a widely adopted
tool for illustrating what captures viewers gaze. They offer
a qualitative representation of attentional allocation and are
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employed across numerous domains. In marketing, they are used to
analyze consumer focus, inform strategies for product placement,
and optimize the visual layout of advertisements and interfaces
(Li et al., 2016; Pan et al., 2011). In ergonomics, they guide the
design of more efficient workplace layouts and support usability
improvements in human-machine interaction (Bhoir et al., 2015).
In psycholinguistics, attention maps contribute to the study
of reading patterns and the cognitive mechanisms underlying
language comprehension (Liu and Yuizono, 2020). In cognitive
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assessment, they provide insights into individual differences in
perceptual and attentional processing, shedding light on both typical
and atypical developmental trajectories (Pettersson et al., 2018).
Beyond classical eye-tracking applications, attention maps can be
seen as part of a broader visual analytics framework, in which
interactive visualizations support exploration and interpretation of
complex gaze data.

Conceptually, attention maps have long demonstrated that visual
fixations are not uniformly distributed throughout the viewer’s field
of vision. One key observation, noticed as early as the foundational
studies of gaze behavior in complex scenes (Buswell, 1935), is the
presence of a central bias, where fixations tend to cluster near
the center of the visual field. This phenomenon has since been
consistently confirmed in a variety of experimental paradigms
(Mannan et al,, 1995; 1996; 1997), reinforcing its robustness as a
characteristic of gaze distribution.

Attention maps, however, offer a static visualization of
averaged spatial scanpaths, providing no direct information
about the temporal dynamics of gaze behavior, such as the
sequence or duration of fixations. Additionally, while attention
maps approximate the spatial distribution of visual attention,
they remain largely qualitative in nature. Attempts to quantify
these distributions, such as using metrics like heatmap entropy
(Gu et al, 2021), remain relatively rare. Quantitative analyses
typically necessitate comparative approaches, as outlined in
Sections 3.3.1, 3.3.2, emphasizing the importance of robust
methodological frameworks for interpreting attention maps.
In practice, attention maps are most useful as intuitive visual
summaries or as components of visual analytics pipelines, often
combined with scanpaths or other representations.

2.2.2 Saliency models

Similar to attention maps, saliency models are concerned with
spatial distributions of attention, but they refer specifically to
computational frameworks designed to predict the regions of an
image or scene where individuals are most likely to focus their
visual attention. Rooted in the concept of visuo-spatial attention,
these models aim to explain how humans allocate attention to
areas perceived as most salient or important. While the detailed
development of saliency models falls outside the scope of this
review, which focuses on eye-tracking data analysis, we briefly
outline key aspects of these models and their applications across
diverse domains.

One central function of the human visual system is to direct
attention toward regions of the visual environment that are
perceived as salient—areas likely to contain important information
or require further cognitive processing. Evidence suggests that
specific brain regions, particularly those in the frontal and parietal
lobes responsible for controlling eye movements, may act as a
saliency map (Treue, 2003). These regions are thought to encode
spatial priorities, integrating bottom-up sensory inputs with top-
down cognitive factors such as intentions, expectations, and goals
(Bisley and Goldberg, 2010; Zelinsky and Bisley, 2015). The biased
competition theory of attention (Maunsell and Treue, 2006; Beck and
Kastner, 2009; Schoenfeld et al., 2014) provides a robust framework
for understanding this process. According to the theory, bottom-up
visual features—such as color, contrast, and motion—compete for
attentional resources but are dynamically influenced by top-down
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factors like task goals or expectations. This interaction results in a
competitive process where stimuli that are most relevant or task-
critical ultimately win, directing cognitive and perceptual focus to
areas of highest priority.

From a computational perspective, early saliency models,
such as the influential framework proposed by Koch and
Ullman (1985), introduced the concept of modeling visual
attention as a topographical salience map. In this approach,
regions of the visual field more likely to attract attention are
assigned higher saliency values, producing a two-dimensional
map that encodes the relative prominence of various areas.
The allocation of attention is then governed by a winner-
takes-all mechanism, in which the most significant region is
prioritized as the target for the next fixation. The saliency at each
location reflects its capacity to draw attention, with higher values
indicating an increased likelihood of directing visual processing
to that area.

Building upon this foundational concept, Itti and Koch
(2000) developed a more sophisticated computational model that
incorporated a range of low-level visual features, such as color,
intensity, orientation, and contrast. This model used a parallel
processing architecture where each feature was processed through
separate channels, with each channel contributing to the overall
saliency map. By integrating these diverse features, their model
generated a saliency map that more accurately reflected the complex,
multidimensional nature of visual attention. Specifically, the saliency
value of each pixel was determined by combining the outputs of the
different feature channels.

Over the years, the field of saliency modeling has matured
significantly, with numerous new models being published regularly,
each introducing new features and improvements. Many of these
models focus on detecting visually interesting regions of an image,
with applications in areas such as automated object detection,
autonomous vehicle navigation, and real-time video compression.
The original Itti-Koch model has been refined over time to include
additional features like logspectrum (Hou and Zhang, 2007),
entropy (Wang et al., 2010), histograms of oriented gradients
(Ehinger et al., 2009), and center bias (Tatler, 2007), all of which
help to better approximate human visual attention. Recently,
models have also begun incorporating top-down modulation,
allowing them to account for context or task-specific priorities in
guiding attention.

The success of deep learning approaches has further
revolutionized the field. Today, fully convolutional neural networks
(CNNs) dominate the landscape of saliency models, offering
improved performance through the use of large-scale datasets
and powerful feature-learning algorithms (Wang et al, 2021).
These deep saliency models have significantly advanced the
accuracy of predicting where people will look in complex
scenes, marking a new era in the study of visual attention.
The topic of predicting human scanpaths when viewing
visual stimuli lies beyond the scope of this work. For further
information on this subject, we refer the reader to recent studies,
including Kiimmerer and Bethge (2021), Yang et al. (2024),
Sui et al. (2023), and Li et al. (2024). In the context of this review,
saliency models are primarily relevant as generators of predicted
attention maps that can be compared with empirical scanpath-based
representations.
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2.3 Recurrence quantification analysis

The methods introduced so far have focused primarily on
the spatial structure of scanpaths. However, many aspects of
gaze behavior—such as repeated inspections of the same region,
the ordering of fixations, or the persistence of specific scanning
routines—are inherently temporal. Capturing these temporal
properties requires a different analytical strategy. Recurrence
quantification analysis (RQA), originally developed to study
nonlinear and dynamical systems (Eckmann, 1987; Webber
and Zbilut, 1994), provides such a framework and has proven
particularly effective for analyzing the temporal evolution of eye
movements.

RQA provides a versatile framework for quantifying the
temporal organisation of fixation sequences, offering metrics that
describe how often—and in what manner—a scanpath revisits
previously observed states. In the context of gaze behaviour, these
states correspond to fixation locations, and RQA metrics capture
temporal regularities such as re-inspections, repeated subsequences,
or periods of sustained attention within a given region. The first
formal application of RQA to scanpath analysis was introduced by
Anderson et al. (2013), who demonstrated that recurrence-based
measures reveal meaningful temporal structure across observers
and tasks. Their pioneering work has since inspired a broad range
of studies showing that RQA-derived measures are sensitive to
variations in scene complexity and visual clutter (Wu et al., 2014),
as well as to differences in expertise, cognitive load, and
attentional strategy (Vaidyanathan et al., 2014; Farnand et al., 2016;
Gandomkar et al., 2018; Perez et al., 2018; Gurtner et al., 2019).
Collectively, these findings illustrate how RQA complements spatial
metrics by emphasizing the dynamic unfolding of fixations over
time, thereby enriching our understanding of gaze behaviour and
its relation to visual and cognitive processing.

2.3.1 Towards a recurrence plot

To fully comprehend this approach, it is crucial to first understand
the concept of recurrence plots. These plots, fundamental to recurrence
quantification analysis (RQA) methodologies (Eckmann et al., 1987),
visually represent the recurrent patterns of fixations. Introducing
recurrence plots establishes the foundation for analyzing their role
in interpreting scanpath dynamics.

A recurrence plot is a square array constructed from a scanpath,
where a dot is placed at the (i,)-th entry whenever the i-th fixation
is sufficiently close to the j-th fixation. Each dot, referred to as a
recurrence point, indicates that the scanpath trajectory has returned
to a previously visited location, within a small error tolerance. As
illustrated in Figure 5a, the recurrence plot visualizes the set of all
pairs of time indices where such recurrences occur. Conceptually,
it corresponds to a square recurrence matrix where each element
represents the proximity of two fixations within a predefined cutoff
limit. Typically, recurrence points are binary, with the (i, j)-th entry
assigned a value of 1 to signify recurrence. However, some studies
propose incorporating temporal weighting by adjusting the value of
each recurrence point based on the combined durations of the i-th
and j-th fixations in the scanpath, adding a temporal dimension to
the analysis.
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Recurrence Quantification Analysis. (a) illustrates a recurrence plot,
where the columns and rows correspond to the fixations of the
analyzed scanpath. A dot is placed at position (i,)) if the i-th fixation is
sufficiently close to the j-th fixation, indicating spatial recurrence. (b)
highlights all diagonal lines of at least three points extracted from the
recurrence plot, which represent repeated patterns and are used to
calculate determinism. (c) depicts the horizontal and vertical lines
extracted from the recurrence plot, representing re-scanning

sequences, which are used to compute laminarity.
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One significant challenge in (RQA) is selecting an appropriate
distance threshold to define recurrence. If the threshold is set too
low, the recurrence plot may display few or no recurrence points,
rendering the analysis uninformative. Conversely, an overly high
threshold results in excessive recurrences, where nearly all points are
neighbors, obscuring meaningful patterns. Currently, no universal
threshold is applicable across all experimental paradigms. Instead,
the threshold must be carefully calibrated based on context-specific
rules and heuristics (Zbilut et al., 2002), with particular attention to
the semantic density of the visual field being analyzed.

Recurrence plots are inherently symmetrical about the main
diagonal, allowing all relevant information to be extracted from the
upper triangle while excluding the main diagonal and lower triangle.
Upon qualitative examination, recurrence plots often reveal distinct
short line segments parallel to the main diagonal, representing
clusters of fixations associated with brief periods of consistent
gaze behavior. Additionally, isolated points may appear, reflecting
sporadic or chance recurrences.

To move beyond qualitative visual inspection, researchers
have developed systematic methods for extracting quantitative
characteristics and metrics from recurrence plots. These automated
techniques enable detailed characterization of recurrence patterns,
providing a more rigorous basis for analysis. The next section details
these metrics and their application to scanpath studies.

2.3.2 Recurrence quantitative features

Once a recurrence plot has been constructed, several
quantitative measures can be derived to characterize how a scanpath
unfolds over time. The most direct of these is the recurrence rate,
defined as the percentage of fixation pairs that fall within the
recurrence threshold. This descriptor—introduced to scanpath
analysis by Anderson et al. (2013) following earlier developments
in nonlinear time-series analysis (Eckmann, 1987; Webber and
Zbilut, 1994) — captures how often observers return to locations
previously fixated during exploration.

A second feature, determinism, quantifies the percentage of
recurrence points that align to form diagonal line segments in
the plot, as shown in Figure 5b. These diagonals reflect the
repetition of short subsequences of fixations and therefore index
the predictability or stereotypy of gaze behavior. High determinism
often emerges in tasks involving structured comparisons or
repeated scanning routines, as illustrated in several applied studies
(Vaidyanathan et al., 2014; Farnand et al., 2016; Perez et al., 2018).
Complementary to this, laminarity measures the extent to which
recurrence points form vertical or horizontal lines, as shown in
Figure 5c. These features correspond to prolonged dwell times
or repeated returns to specific regions, and have been shown to
relate to task demands and the semantic structure of the stimulus
(Anderson et al., 2013; Gandomkar et al., 2018; Gurtner et al., 2019).

A more global descriptor, the center of recurrence mass (CORM)
reflects the temporal distribution of recurrent points. It is defined as
the distance between the center of gravity of the recurrence points
and the main diagonal of the recurrence plot—representing self-
recurrence (Anderson et al., 2013). A small CORM value indicates
that re-fixations are closely spaced in time, while a larger CORM
suggests that re-fixations are more spread out. Together with the
recurrence rate, CORM captures the global temporal structure
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of fixation sequences, while determinism and laminarity provide
insights into local gaze patterns.

Finally, entropy characterizes the complexity of the recurrence
structure by computing the Shannon entropy of the distribution
of diagonal line lengths (Shannon, 1948; Lanata et al, 2020).
Although less frequently reported in the gaze literature (Villamor
and Rodrigo, 2017), entropy is informative about the diversity of
repeated patterns: low values reflect highly regular or stereotyped
behavior, whereas high entropy indicates more variable and irregular
recurrence structures.

Together, these quantitative features provide a multidimensional
characterization of the temporal organization of scanpaths,
capturing tendencies toward repetition, revisits, temporal clustering,
and structural complexity. They offer a principled way to summarize
dynamic viewing behavior and have been successfully applied across
a wide range of visual tasks and experimental domains. Several
open-source toolboxes provide implementations of RQA and CRQA
for eye-tracking and time-series data, including the CRP Toolbox for
MATLAB (Marwan et al., 2007) and Python-based libraries such
as pyRQA (Rawald et al,, 2017), which facilitate reproducible and
scalable applications of recurrence-based methods.

Beyond the characterization of a single scanpath, the same
methodological principles extend naturally to the comparison of
two observers or two viewing conditions. This approach, known
as cross-recurrence quantification analysis (CRQA), replaces the self-
comparison of a scanpath with a joint recurrence plot constructed
from two separate gaze sequences. Whereas RQA identifies how
an individual revisits locations over time, CRQA captures how
two scanpaths converge, diverge, or realign as they evolve. This
makes CRQA particularly suitable for studying inter-observer
consistency, shared viewing strategies, or condition-dependent
synchrony in gaze behavior. The specific metrics and methodological
considerations associated with CRQA are detailed in Section 3.4,
where we examine its role within the broader landscape of scanpath
comparison techniques.

Although RQA and areas of interest (Aol) analysis may appear
conceptually related—both seek to identify stable patterns and
revisitations within a scanpath—their objectives and assumptions
differ in important ways. Aol analysis relies on predefined,
semantically meaningful regions of the stimulus, and focuses on how
often, in what order, and for how long these regions are fixated.
RQA, in contrast, operates without any semantic partitioning of
the visual field: it quantifies recurrence directly from the geometry
and temporal structure of the fixation sequence. As a result, RQA
can reveal regularities, cycles, or temporal dependencies that extend
beyond the boundaries of any a priori region definition. Conversely,
Aol methods offer interpretability grounded in stimulus meaning,
which RQA does not provide on its own. These approaches are
therefore complementary rather than interchangeable. A fuller
discussion of Aol techniques and their methodological implications
is provided in a separate dedicated work.

2.4 String sequence representation

A notable way to represent scanpath trajectories relevant to
this discussion is to transform them into string sequences. In this
approach, the visual field is discretized by superimposing a static
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two-dimensional grid onto the stimulus, with each grid cell assigned
a symbolic label, typically an alphabetic character. Each fixation is
then mapped to the corresponding cell, transforming the spatial
progression of gaze points into an ordered sequence of symbols.
This symbolic encoding recasts the scanpath as a string, yielding a
compact and structured representation that preserves the temporal
order of visited regions while deliberately abstracting away fine-
grained spatial detail.

From a qualitative standpoint, this representation is particularly
advantageous because it suppresses low-level geometric variability
while retaining the meaningful organization of the observer’s
visual exploration. By reducing a continuous trajectory to a
sequence of symbolic transitions, recurring patterns become easier
to detect—such as preferred regions of interest, characteristic
scanning strategies, or stimulus-driven exploration pathways. The
resulting strings also lend themselves to intuitive comparisons across
observers: similarities and differences in viewing patterns can often
be perceived at a glance, without the need for detailed geometric
analysis. In this way, string-based representations foreground the
qualitative structure of visual behavior, making complex spatio-
temporal dynamics more interpretable and more amenable to
systematic comparison.

Furthermore, the string-sequence representation provides a
foundational basis for a wide range of string-based scanpath
comparison algorithms, which will be examined in subsequent
sections, particularly in Sections 3.2, 3.5. These methods operate
directly on the symbolic sequences to quantify similarities
or differences between scanpaths, thereby enabling systematic
comparisons across observers, stimuli, or experimental conditions.

While this approach facilitates the conversion of continuous
gaze data into a discrete format, the process of spatial binning
demands careful consideration (Anderson et al., 2015). A fixed grid
resolution may inadequately capture fine-grained fixation details in
high-interest areas if the grid is too coarse; conversely, a grid that is
too fine may introduce unnecessary complexity in low-salience or
uniform regions. For this reason, it is often advantageous to adapt
the grid resolution to the underlying image content, ensuring that
meaningful regions are represented with adequate precision.

In cases where the scene contains large, visually variable but
semantically uninformative areas, grid-based discretization may
fragment these regions excessively, making cognitive interpretation
more difficult. A common alternative is therefore to assign
symbolic representations to predefined areas of interest (Aols)
based on their distinct semantic or functional roles (Josephson
and Holmes, 2002b; West et al., 2006). This strategy aligns the
discretization process with the structure of the scene and the
expected attentional targets of viewers. However, it requires careful
analysis of the image content and the viewer’s attention patterns,
necessitating the use of specialized methodologies, which will be
explored in detail in a separate dedicated contribution.

Beyond spatially defined discretization methods, other strategies
focus on the statistical distribution of fixations rather than
their geometric layout. One such method is percentile mapping,
in which elements of the scanpath are mapped to a discrete
alphabet so that each symbol appears with approximately equal
frequency (Kiibler et al., 2014). This normalization compensates for
spatial offsets that may arise between different recording sessions
or observers, providing a more balanced representation across
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String Sequence. To convert a scanpath trajectory into a sequence of
characters, the visual field is first divided into regions of equal size,
each designated by a character, from A to P. Accordingly, each fixation
is associated with a character to produce, based on the example
trajectory illustrated above, the following sequence: PINOPLKFEAB.
Additionally, if a temporal binning is performed, each character is
repeated in proportion to the corresponding fixation duration, to
produce the following sequence: PPJJJINOPLLKFEAAB.

datasets. Compared with grid-based methods, percentile mapping
can therefore reduce bias introduced by uneven fixation density,
offering improved comparability across heterogeneous stimuli
(Kibler et al., 2017). This technique resembles the discretization
procedure used in the well-known SAX (Symbolic Aggregate
approXimation) representation for time series data (Lin et al., 2007),
where continuous values are transformed into discrete symbols to
facilitate analysis.

One of the key challenges associated with converting scanpaths
into string sequences is the loss of temporal information, particularly
fixation duration, which is an integral component of eye movement
behavior. To address this issue, it is possible to introduce temporal
binning into the string sequence. This process involves repeating
the symbol corresponding to a specific spatial region in proportion
to the duration of the corresponding fixation (Cristino et al., 2010;
Takeuchi and Matsuda, 2012). By encoding the fixation duration
in this manner, the resulting string captures not only the spatial
location and sequence of fixations but also the temporal dimension,
offering a richer depiction of gaze behavior. In summary, the
effectiveness of string-based representations critically depends
on how spatial and temporal aspects of gaze are discretized
and weighted in the resulting sequence. An example of this
representation can be seen in Figure 6.

3 Similarity between scanpaths

As discussed earlier in this review, visual scanpaths are
shaped by a combination of bottom-up and top-down factors,
including the task assigned to viewers (Simola et al, 2008),
the characteristics of the stimuli (Yarbus, 1967a), and individual
variability (Viviani, 1990). Quantifying the differences or similarities
between visual behaviors is therefore critical for understanding
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how these factors influence eye movements and for gaining deeper
insights into the cognitive processes underlying visual attention.

Comparing visual scanpaths also plays a central role in scanpath
theory. While early studies by Noton and Stark (1971a) and
Noton and Stark (1971b) relied on visual inspection to evaluate
scanpath similarity, the development of automated metrics began
approximately two decades later (Brandt and Stark, 1997). Since
then, the growing interest in analyzing eye movement sequences
has led to the creation of numerous methodologies for the
automated comparison of scanpaths. These methods differ in the
representations they operate on—raw fixations, vectors, strings,
saliency maps—in the aspects of behavior they emphasize—spatial
overlap, temporal structure, pattern repetition—and in their
computational demands. The comparison methods presented in
this section are summarized in Table 2, which provides a
concise description of each approach, the required input formats,
and references from the literature that offer guidance for their
implementation.

3.1 Direct comparison

This first class of methods compares pairs of scanpaths
directly in the spatial-temporal domain, without converting them
into alternative symbolic or image-based representations. Such
approaches preserve the original coordinate information and
are particularly attractive when precise spatial relationships are
important or when one wishes to avoid additional preprocessing
steps such as discretization or spatial binning. We distinguish
here simple point-mapping metrics from more sophisticated elastic
alignment methods.

3.1.1 Point mapping metrics

The Euclidean distance—also referred to as the straight-line
distance—is one of the fundamental measures initially employed for
comparing scanpaths. In its simplest form, this metric is calculated
as the sum of the distances between corresponding fixations in
two scanpaths. However, this naive approach was quickly deemed
inadequate, as it implicitly assumes equal-length fixation sequences
and strict one-to-one correspondence between fixations, a condition
rarely met in practical applications.

To address this limitation, Mannan et al. (1995) introduced
a seminal metric based on the weighted mean distance between
each fixation in one scanpath and its nearest neighbor in
the other—a technique often referred to as point-mapping
(Mannan et al., 1995; 1996). Extending this principle, their double-
mapping approach considers bidirectional mappings between two
scanpaths and has inspired a broad family of metrics applicable
to sequences of varying lengths. These methods have found
utility in diverse research contexts, including studies on visual
scanning behavior and scene perception (Pambakian et al., 2000;
Foulsham and Underwood, 2008; Mannan 2009;
Shakespeare et al., 2015; Konstantopoulos, 2009).

Despite their utility, point-mapping techniques have notable

et al,

limitations. A major drawback is their exclusive reliance on spatial
properties, as they disregard the temporal order of fixations.
Consequently, two scanpaths with reversed fixation sequences
but identical spatial configurations will yield identical Mannan
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distances, ignoring the sequencing dynamics that are often
central to interpretation. Additionally, these methods can lead
to disproportionate mappings, where many points from one
scanpath are matched to a small subset of points from the other,
compromising the meaningfulness of the comparison.

Several refinements of the Mannan double-mapping approach
have been proposed. For instance, the EyeAnalysis method (Mathot
et al,, 2012) introduced a simplified and more adaptable similarity
metric. This method calculates the sum of all point-mapping
distances, normalized by the number of points in the longer
sequence, ensuring that scanpaths of differing lengths are treated
equitably. A key innovation in this approach is its incorporation
of additional dimensions—such as timestamps and fixation
durations—when determining optimal point pairings, providing
a more comprehensive measure of similarity across spatial and
temporal domains.

Henderson et al. (2007) further refined the Mannan metric by
implementing a unique assignment procedure, enforcing a one-to-
one mapping between fixation points. While this variant addresses
issues of spatial variability and prevents over-mapping onto a limited
subset of points, it is constrained to sequences of equal length and
still fails to fully account for the temporal dynamics of fixation
order. Paradoxically, this requirement for equal-length sequences
contradicts the original motivation for the Mannan metric, which
was designed to compare sequences of different lengths.

These limitations have motivated the development of more
advanced comparison techniques that explicitly integrate the
temporal dimension of scanpath sequences while maintaining
flexibility in handling differences in length and complexity. Such
methods, often framed as time-series alignment problems, represent
a critical evolution in scanpath analysis, accommodating the
multidimensional nature of eye-tracking data and advancing our
ability to interpret visual behavior more comprehensively.

3.1.2 Elastic alignment metrics

To address the limitations discussed in the previous section,
researchers have increasingly turned to time-series alignment
techniques that offer elastic measures of dissimilarity, such as
dynamic time warping (DTW) and the discrete Fréchet distance. Both
are widely used in time-series analysis across various fields and
are particularly well suited for comparing trajectories that exhibit
similar shapes but are not strictly time-synchronized.

DTW compares two signals by aligning them in the time
domain using dynamic programming. Initially introduced by
Vintsyuk (1968) and Sakoe and Chiba (1978) for speech recognition,
DTW measures the sum of the warps required to align one
scanpath trajectory to another. Specifically, DTW seeks a temporal
alignment—a mapping between time indices in the two series—that
minimizes the Euclidean distance between aligned points. As a
result, DTW provides a global measure of similarity that captures
the overall shape and ordering of the trajectories, as illustrated in
Figure 7. The key advantage of DTW lies in its ability to achieve
robust time alignment between reference and test patterns, even
when there are local accelerations or decelerations in the eye
movement sequence (Brown et al., 2006).

The discrete Fréchet distance represents an alternative measure,
distinct in its explicit penalization of temporal misalignments. The
Fréchet distance can be intuitively understood as the shortest leash
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TABLE 2 Scanpath comparison methods and their required input representations.

Method name

Mannan distance

Input

Fixation coordinates

Description

Computes the weighted mean distance
between each fixation in one scanpath
and its nearest neighbor in the other —
point-mapping

10.3389/fphys.2025.1721768

’ References

Mannan et al. (1995)

EyeAnalysis distance

Fixation coordinates + durations

Computes the sum of all point-mapping
distances normalized by the number of
points in the longer sequence

Mathot et al. (2012)

maximum distances between two
scanpaths under continuous alignment
with preserved ordering

TDE distance Fixation sequences Computes the time-delay embedding Wang et al. (2011)
distance between two scanpaths

DTW distance Fixation sequences Computes the temporal alignment that Berndt and Clifford (1994)
minimizes the Euclidean distance
between aligned fixation points

Fréchet distance Fixation sequences Computes the minimum of the Eiter and Mannila (1994)

Levenshtein distance

String sequences

Computes the minimum number of
edits — insertions, deletions,
substitutions — required to transform
one scanpath into another

‘Wagner and Fischer (1974)

Generalized edit distance

String sequences

Computes the edit distance with
distinct insertion, deletion, and
substitution costs defined by a cost
matrix

‘Wagner and Fischer (1974)

Needleman-Wunsch distance

String sequences

Computes an optimal global alignment
with match bonuses and gap penalties
using dynamic programming

Needleman and Wunsch (1970)

Normalized scanpath saliency

Fixations + saliency map

Computes a z-scored saliency value at
fixation locations relative to the saliency
map

Peters et al. (2005)

Saliency percentile

Fixations + saliency map

Computes the mean percentile rank of
saliency values at fixation locations

Peters and Itti (2008)

Information gain

Fixations + saliency map

Computes the gain in predictive power
of a saliency model relative to a
center-prior baseline

Kiimmerer et al. (2014)

Saliency AUC

Fixations + saliency map

Evaluates how well a saliency map
predicts fixations using ROC curve
analysis across thresholds

Bylinskii et al. (2018)

required to morph one saliency
distribution into another

Kullback-Leibler divergence Saliency maps Computes the information loss when Le Meur et al. (2007)
one saliency map approximates another

Pearson correlation Saliency maps Computes the linear correlation Le Meur et al. (2006)
coefficient between two saliency maps

Earth mover distance Saliency maps Computes the minimum transport cost Riche et al. (2013)

CRQA recurrence rate

Fixation sequences

Computes the percentage of recurrent
fixation pairs in the cross-recurrence
matrix

Marwan et al. (2007)
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TABLE 2 (Continued) Scanpath comparison methods and their required input representations.

Method name Input Description

CRQA determinism Fixation sequences

line structures

Computes the percentage of cross-recurrent points forming diagonal

‘ References

Marwan et al. (2007)

CRQA laminarity Fixation sequences

Computes the percentage of vertically aligned cross-recurrent points

Marwan et al. (2007)

CRQA entropy Fixation sequences Computes the Shannon entropy of the distribution of diagonal line Marwan et al. (2007)
lengths in the cross-recurrence plot
SubsMatch similarity String sequences Computes scanpath similarity from frequency differences of symbolic Kiibler et al. (2014)

subsequences of size n

ScanMatch score String sequences

Computes a similarity score using Needleman-Wunsch alignment
with a spatial substitution matrix

Cristino et al. (2010)

MultiMatch alignment Saccade vectors

Computes similarity across five dimensions: shape, length, position,
direction, and fixation duration after vector alignment

Dewhurst et al. (2012)

length required to connect two points: one moving along the first
trajectory and the other along the second, where the points may
travel at different rates but must move forward along their respective
paths. Figure 7 illustrates this concept. The Fréchet distance provides
a local measure of path similarity, focusing on the location and
order of points while not allowing temporal indices to be arbitrarily
warped. Like DTW, the discrete Fréchet distance is computed using
dynamic programming (Eiter and Mannila, 1994).

Both DTW and the discrete Fréchet distance provide valuable
measures of similarity. However, they also have important
limitations that should guide their use. Unlike the Fréchet distance,
DTW does not satisfy the triangle inequality and is therefore
not a true distance metric. This limitation becomes particularly
apparent when comparing scanpaths of different lengths, as DTW
tends to overestimate the similarity between shorter and longer
trajectories. Conversely, the discrete Fréchet distance is more
sensitive to outliers and local deviations (Ahn et al., 2012). Despite
these drawbacks, both DTW and the Fréchet distance are widely
used in the literature to compare scanpaths without preprocessing
(Le Meur and Liu, 2015; Li and Chen, 2018; Kumar et al., 2019), or
as reference metrics to evaluate new methods (Wang et al., 2023).
In applications involving large datasets, the computational cost of
these alignment methods—and their scaling to pairwise distance
matrices—should also be taken into account.

3.2 String edit distances

More than a single metric, the string edit distance encompasses
a family of measures based on the concept of edit operations,
enabling quantification of dissimilarity between sequences. In the
context of scanpaths, these methods require converting fixation
coordinates into string sequences, as detailed in Section 2.4. Once
this transformation is performed, string edit distances can be applied
to measure the similarity or divergence between scanpaths in a way
that directly incorporates sequence order.

Among the various string edit distance methods, the
Levenshtein distance (Levenshtein, 1966) remains one of the
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most frequently employed due to its simplicity and effectiveness
(Holmqyvist et al., 2011; Le Meur and Baccino, 2013). This approach
calculates the minimum cost required to transform one sequence
into another using three fundamental edit operations: (i) deletion,
which removes an element from the string, (ii) insertion which
adds an element into the string and (iii) substitution which replaces
one element in the string with another. Each operation is assigned
an edit cost, and the total transformation cost—usually computed
using the Wagner-Fischer algorithm (Wagner and Fischer, 1974)
— represents the Levenshtein distance between the two sequences.
The Wagner-Fischer algorithm employs dynamic programming,
iteratively computing a comparison matrix where rows correspond
to the characters of one sequence and columns to those of the other.
The algorithm determines the optimal alignment path through
the matrix, with the distance given by the final matrix value. This
score is often normalized by the length of the longer sequence
to facilitate comparisons across scanpaths of differing lengths.
The principle of scanpath comparison using the Levenshtein edit
distance is illustrated in Figure 8, where two scanpaths are first
converted into symbolic sequences and then optimally aligned
using the Wagner-Fischer algorithm to compute the minimum
transformation cost.

The has
enhancements, with a variety of derivatives developed to improve

Levenshtein  distance undergone  substantial
both its accuracy and adaptability across diverse experimental
contexts (Foulsham et al., 2008; Underwood et al., 2009; Harding
and Bloj, 2010; Foulsham and Kingstone, 2013). While the original
Levenshtein method remains effective, it traditionally assumes
equal costs for all edit operations, disregarding factors such as
the spatial proximity of fixation regions or their varying semantic
significance. To overcome these limitations, recent adaptations have
introduced variable weights for the insertion and deletion operations.
Furthermore, many contemporary approaches incorporate a
substitution cost function—typically represented as a substitution
matrix—that accounts for the spatial relationships between different
regions of the visual field. These enhancements facilitate a more
nuanced and context-sensitive evaluation of scanpath similarity,

allowing for a richer representation of meaningful patterns
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FIGURE 7

Elastic Metrics. Two scanpath trajectories—blue and purple
curves—aligned using DTW and discrete Frechet distance. The DTW
metric is computed by summing the length of all links between aligned
data samples—figured by the black dotted lines. The Frechet distance,
on the other hand, is calculated as the maximum distance—red line in
(b) — between aligned data samples. (a) Dynamic time warping.

in fixation data (Josephson and Holmes, 2002a; Takeuchi and
Habuchi, 2007; Takeuchi and Matsuda, 2012).

Additionally, alternative formulations of the string edit distance
have been proposed. Notably, the Damerau-Levenshtein distance
introduces a fourth operation, transposition, which swaps adjacent
elements. This extension is especially beneficial when transpositions
occur frequently in the data, as it reduces the overall edit distance in
such cases (Foulsham et al., 2008). In contrast, the longest common
subsequence (LCS) method focuses on local alignment by identifying
the longest shared subsequence between two strings. LCS only
considers insertions and deletions, excluding substitutions, providing
a more intuitive measure of similarity based on common segments
within the sequences. This approach is particularly valuable for
detecting shared patterns in scanpaths, even when the sequences
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differ markedly in length or structure (Dewhurst et al., 2018;
Davies et al., 2016; Eraslan and Yesilada, 2015).

Like any analytical method, string-edit distances have inherent
limitations, primarily due to the spatial binning process used to
discretize continuous scanpath trajectories into string sequences.
This discretization can result in the loss of fine-grained spatial
information, potentially limiting the method’s ability to capture
detailed characteristics of the scanpath. The choice of grid resolution
or AOI definition—and its interaction with the spatial structure
of the stimulus—plays a central role in determining the sensitivity
and interpretability of the resulting distances—see Section 2.4.
Despite these limitations, string-edit distance remains a widely used
and popular method for scanpath comparison, largely due to its
simplicity, its clear link to sequence alignment, and the intuitive
manner in which it quantifies dissimilarities between scanpaths.
Furthermore, string-edit distance methods were foundational in
early scanpath comparison research (Brandt and Stark, 1997) and
have since been applied across a wide range of experimental
contexts (Harding and Bloj, 2010; Underwood et al, 2009),
making them particularly valuable for researchers seeking to
compare their findings with previous studies. From a computational
standpoint, classical string-edit distances scale quadratically with
sequence length, which can limit their applicability to very long
scanpaths or large pairwise comparison matrices without additional
optimization.

3.3 Saliency comparison approaches

Saliency models, as discussed in Section 2.2.2, generate saliency
maps that estimate the probability of different regions in an image
attracting attention, thereby enabling automatic prediction of the
most relevant areas. However, to validate these models across various
applications or to quantify individual variations in gaze behavior, it
is essential to analyze scanpaths derived from real data and apply
appropriate comparison metrics.

In a similar vein, a reference saliency map—or reference
attention map—can be constructed from the recorded fixations
of a group of individuals, serving as a ground truth saliency map.
A common task then involves comparing this reference saliency
map with new scanpath recordings. To facilitate this comparison,
we provide an overview of various metrics and analytical
methods—often referred to as hybrid (Le Meur and Baccino, 2013)
— for quantitatively comparing a saliency map with a single
scanpath, and then turn to direct comparisons between pairs of
saliency maps.

3.3.1 Comparing reference saliency maps and
scanpaths

A significant advantage of hybrid metrics is their ability to bypass
the need for generating continuous saliency maps from fixation
data, which often depend on parameterized models (Le Meur
and Baccino, 2013). For instance, the choice of the Gaussian
kernel’s standard deviation used to smooth fixation distributions
introduces subjective decisions that can impact the results. By
avoiding such dependencies, hybrid metrics provide a more direct
and interpretable approach for assessing scanpath saliency when a
reference map is available.
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Levenshtein Edit Distance. The pairs of scanpaths to be compared—the purple and blue trajectories in (a) — are first converted into character
sequences—for instance, in the example shown above, PINOPLKFEAB and OKJINLFAEB. The resulting string sequences are then aligned — (b) — using
the Wagner-Fischer algorithm and the minimum cost necessary to transform one sequence into another, using insertions, deletions and substitutions is
computed. If deletion and insertion have cost of 1 and substitution a cost of 1.5, distance between the two scanpaths is 7.5.

A first popular metric is the normalized scanpath saliency (NSS)
introduced by Peters et al. (2005). To compute NSS, the reference
saliency map is normalized by subtracting the mean saliency
across all map locations and dividing by the standard deviation
of saliency values, yielding a z-score. This z-score represents how
many standard deviations the saliency value at a fixation point is
above or below the average saliency. As human fixations typically do
not align perfectly with individual pixels, NSS values for a fixation
are calculated over a localized neighborhood centered around
the fixation point (Le Meur and Baccino, 2013). This adjustment
accounts for the spatial variability of human gaze, enhancing the
robustness of NSS to minor positional discrepancies.

The percentile metric, introduced a few years later by Peters and
Itti (2008), offers a straightforward yet effective means of quantifying
the similarity between a viewer’s scanpath and a reference saliency
map. For a given fixation, its associated saliency value is expressed
as the proportion of map locations with lower saliency than
at the fixation point. This percentile-based measure intuitively
ranks each fixation’s saliency relative to the entire visual field. To
compute a summary value for an entire scanpath, the individual
saliency percentiles of all fixations are averaged. A key advantage
of this approach lies in its simplicity and computational efficiency.
Moreover, it is inherently invariant to re-parameterizations, as
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it relies on ranking saliency values rather than their absolute
magnitudes, making it robust to monotonic transformations of the
saliency map.

More recently, information gain (IG) was introduced by
Kimmerer et al. (2014) and Kiimmerer et al. (2015) as a robust
metric to assess saliency model performance while accounting
for systematic biases, such as the center prior. The center prior
reflects the natural human tendency to fixate near the center
of a visual scene, a phenomenon that can artificially inflate
performance metrics for saliency models if not properly controlled.
The information gain metric quantifies how much better a saliency
model predicts recorded fixation points compared to a baseline
model, typically the center prior. Mathematically, it measures
the average increase in predictive power that the model offers
over the baseline for the observed fixations. By focusing on the
added predictive value beyond generic biases, IG provides a more
nuanced evaluation of model performance, enabling researchers
to isolate the unique contribution of a saliency model to fixation
prediction.

Finally, it is essential to highlight location-based metrics, which
are among the most extensively utilized measures for evaluating
saliency maps (Bylinskii et al., 2018). These metrics are grounded
in the concept of the area under the receiver operating characteristic
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curve (AUC), a widely applied tool in signal detection theory. AUC-
based metrics evaluate the accuracy of a saliency map in predicting
empirical fixations by interpreting the saliency map as a binary
classifier, where each pixel is classified as either fixated or not fixated.
The evaluation process begins by thresholding the reference saliency
map—or ground truth saliency map—to retain a given percentage
of the most salient pixels. By systematically varying the threshold, a
receiver operating characteristic (ROC) curve is constructed, which
plots the true positive rate—the proportion of correctly predicted
fixated pixels—against the false positive rate—the proportion of non-
fixated pixels incorrectly classified as fixated. The area under the
ROC curve quantifies the overall prediction performance, with
values closer to 1 indicating high predictive accuracy.

Several AUC implementations have been introduced, differing
in how true positives and false positives are defined. A popular,
straightforward approach called AUC-Judd (Judd et al., 2009;
Bylinskii et al., 2014) computes true positive rates by considering
the proportion of fixated pixels with saliency values exceeding a
threshold, while false positive rates are derived from unfixated
pixels exceeding the same threshold. Alternatively, AUC-Borji
(Borji et al, 2012; 2013) employs uniform random sampling
across the image to define false positives, improving robustness
by controlling for uneven pixel distributions. Another variant, the
shuffled AUC (sAUC), addresses the well-known center bias—the
tendency of human observers to fixate near the center of visual
stimuli—by using fixations from other images as the negative
set, effectively sampling false positives predominantly from central
regions of the image space (Zhang et al., 2008). Overall, location-
based metrics provide an intuitive, flexible, and widely accepted
framework for evaluating saliency models, balancing simplicity of
computation with robust interpretability.

3.3.2 Pair saliency comparison

Beyond hybrid approaches that compare fixation sets with
reference saliency maps, a diverse range of methods has been
developed for directly comparing pairs of saliency or attention maps.
These methods provide complementary insights into the structural
and statistical relationships between saliency distributions and are
particularly useful when one wishes to compare two models, or two
groups of observers, rather than individual scanpaths.

First, the Kullback-Leibler divergence (KL) is a key metric
from information theory that quantifies the difference between
two probability distributions (Kullback and Leibler, 1951). In the
context of saliency maps, it evaluates how well an input saliency
map approximates a reference map. Conceptually, it measures the
information loss incurred when using the input distribution as a
proxy for the reference. Lower KL divergence values indicate a
closer match between the distributions. However, the asymmetry of
KL divergence—requiring the designation of a reference map—and
its unbounded upper limit can limit its intuitive interpretability
and complicate comparative analyses across datasets. Despite these
limitations, it remains a powerful tool for evaluating probabilistic
saliency models (Rajashekar et al, 2004; Tatler et al, 2005;
Le Meur et al., 2007) and can be adapted to compare pairs of maps
generated by different models (Le Meur et al., 2006).

Another popular approach consists of using the Pearson
correlation coefficient to quantify the strength of the linear
relationship between two saliency maps. Widely adopted in
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computational models of visual attention (Jost et al., 2005;
Le Meur et al., 2006; Rajashekar et al., 2008), this measure produces
a single scalar value invariant to linear transformations, making it
ideal for assessing overall alignment between maps. Values close
to 1 signify a strong positive correlation, while values near -1
denote an inverse relationship. When a non-linear relationship is
suspected, an alternative is the Spearman rank correlation coefficient,
which assesses the relationship between the ranked values of
two datasets (Toet, 2011). This rank-based approach provides
robustness against non-linearities and outliers.

Finally, the earth movers distance (EMD) offers a spatially
robust method to compare two saliency maps (Judd et al., 2012;
Richeetal.,2013; Bylinskii et al., 2018). Unlike metrics that primarily
assess value overlap, EMD quantifies the minimal effort required to
transform one distribution into the other. This effort is computed
as the product of the amount of density moved and the distance
over which it is moved, effectively capturing spatial discrepancies
between the maps. EMD thus addresses a key limitation of
earlier methods—namely, the inability to account for small spatial
misalignments. By incorporating positional differences into its
calculations, EMD allows for a more nuanced comparison of maps,
particularly in cases where distributions exhibit partial alignment or
slight positional shifts in density. From a computational standpoint,
metrics such as EMD and pixel-wise KL divergence can become
costly for high-resolution maps or large numbers of pairwise
comparisons, which should be considered when scaling saliency
analyses to large datasets.

3.4 Cross recurrence quantification
analysis

Beyond the comparison of single scanpaths or saliency maps,
an increasingly influential line of work focuses on the temporal
coordination between two observers or between an observer and
a stimulus. In recent years, the adaptation of cross recurrence
quantification analysis (CRQA) to scanpath comparison has
generated a surge of research in gaze studies (Richardson and
Dale, 2005; Richardson et al., 2009; 2007; Shockley et al., 2009;
Cherubini et al., 2010; Dale et al, 2011a; b). CRQA extends
the recurrence framework introduced in Section 2.3 to quantify
dynamic coupling between two time series.

A cross-recurrence plot is essentially a matrix that visualizes the
temporal coupling between two sequences of eye fixations. The
vertical axis corresponds to the fixations of the first scanpath, while
the horizontal axis represents the fixations of the second. Recurrence
is indicated when two fixations, one from each sequence, fall within
a predefined proximity radius. In the plot, recurrent pairs of fixations
are represented as points, meaning the two systems exhibit similar
states at corresponding times—see Figure 9. When the scanpaths are
of equal length, points along the main diagonal of the recurrence plot
represent synchronous recurrence—when the two viewers fixate on
the same visual target at the same time. Points or diagonal lines offset
from the main diagonal indicate recurring patterns with a time lag.

CRQA provides several metrics that can be assessed along
the diagonal, horizontal, and vertical dimensions of the cross-
recurrence plot. These metrics are adapted from the traditional
RQA framework, but interpreted in the context of joint behavior
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FIGURE 9

Cross Recurrence Quantification Analysis. A cross-recurrence plot is
illustrated, with fixations from the first scanpath define the row
divisions, while fixations from the second scanpath define the column
divisions. A dot is placed at the (i,j) entry if the i-th fixation from the
first scanpath is sufficiently close to the j-th fixation from the second
scanpath. Similar to Recurrence Quantification Analysis (RQA), sets of
diagonal and vertical lines can be extracted from the cross-recurrence
plot to compute cross-determinism and cross-laminarity, respectively.

(Anderson et al., 2015; Marwan et al., 2007). First, cross-recurrence
quantifies the percentage of fixations that match between the two
scanpaths. In essence, a higher cross-recurrence indicates greater
spatial similarity between the two fixation sequences, reflecting their
degree of spatial overlap in fixation locations.

In a manner similar to traditional RQA, cross-determinism
measures the percentage of cross-recurrent points that form
diagonal lines. These diagonal lines represent fixation trajectories
that are shared by both sequences. This measure captures the overlap
in specific fixation subsequences, preserving the temporal order of
fixations. Cross-determinism is useful for identifying whether small
subsequences of one scanpath are replicated in the other, even when
the overall trajectories differ significantly.

Similarly, cross-laminarity quantifies repeated fixations in
particular regions as the percentage of consecutive recurrence points
in one fixation series that are aligned vertically with recurrence
points in the other series, forming vertical structures in the
combined recurrence plot. This measure is closely related to cross-
determinism, and they are often interpreted together. High values
of both cross-laminarity and cross-determinism suggest that both
scanpaths tend to fixate on a few particular regions, with sustained
fixation over several points in time. Conversely, a high cross-
laminarity value coupled with low cross-determinism indicates that
certain locations are explored in detail in one scanpath, but only
briefly in the other.

Lastly, cross-entropy captures the complexity of the temporal
coupling between two scanpaths by quantifying the variability of
diagonalline lengths in the cross-recurrence plot. Low cross-entropy
values indicate highly regular and stereotyped synchronization
patterns, whereas higher values reflect more irregular, less
predictable alignment between the two gaze sequences. In terms
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of computational complexity, CRQA relies on pairwise comparisons
between complete scanpaths and therefore exhibits quadratic scaling
with respect to scanpath length. As a result, the computational
cost can become substantial for long recordings or large inter-
observer datasets, unless strategies such as temporal windowing,
sub-sampling, or parallelization are employed.

In some studies (Richardson —and Dale, 2005;
Shockley et al., 2009; Dale et al., 2011a; b), gaze data are quantified
in terms of predefined areas of interest (Aols). In this framework,
two fixations are considered recurrent if they occur within the
same Aol. Unlike traditional RQA, no spatial distance threshold
needs to be set, as the cross-recurrence plot is reduced to a dot plot
where fixations are marked as recurrent if they fall within the same
predefined region. This approach emphasizes the semantic structure
of the stimulus and its relation to joint attention. A more extensive
discussion of Aol techniques and their methodological implications
is provided in a separate dedicated contribution.

3.5 Specific comparison algorithms

The literature offers a diverse range of scanpath comparison
algorithms, reflecting the depth and innovation within the field.
Among these, three methodologies have emerged as particularly
influential due to their widespread adoption and substantial
contributions to scanpath analysis: ScanMatch, MultiMatch, and
SubsMatch. These algorithms build on the representations and
metrics discussed above, integrating them into cohesive frameworks
that are well suited for practical applications and for deployment
in software toolkits. The subsequent sections provide an overview
of these approaches, highlighting their theoretical underpinnings,
implementation techniques, and relative strengths.

3.5.1 ScanMatch algorithm

Cristino et al. (2010) introduced the widely used ScanMatch
method, a generalized approach for comparing scanpaths based
on sequence alignment. ScanMatch provides a flexible framework
for scanpath comparison by incorporating refined adaptations
of the edit-distance methodology. The process begins with
the transformation of input scanpaths into character strings,
achieved through spatial and temporal binning of fixation
sequences—see Section 2.4 for additional details.

The
by maximizing a

resulting  character are  compared

the
Needleman-Wunsch algorithm. Similar to the Wagner-Fischer

sequences
similarity score calculated using
variants discussed in Section 3.2, Needleman-Wunsch employs
dynamic programming to align two sequences. However, instead
of merely penalizing divergent segments as in Wagner-Fischer,
Needleman-Wunsch introduces matching bonuses for aligned
segments, while negative matches are permitted when the segments
exhibit a high degree of dissimilarity. The substitution matrix, central
to this approach, encodes relationships between specific regions
of the visual field, thereby tailoring the alignment process to the
characteristics of the scanpath data.

The primary innovation of the ScanMatch method lies in the
construction of the substitution matrix used to compare regions
of the visual field. Traditionally, substitution matrices are based
on the Euclidean distance between the centers of grid elements.
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However, Cristino and colleagues used the variability in saccade
landing positions to determine a cutoft for assigning positive values
in the substitution matrix—indicating highly related regions—and
negative values for loosely related regions. The alignment algorithm
is thus designed to match only those regions whose separation
falls within the variability of saccade landing positions, with the
threshold typically set to two standard deviations of the observed
saccade amplitudes in a given experiment.

Ultimately, this method highlights the importance of carefully
defining the substitution cost matrix between regions of the visual
field. By introducing tolerance for variability in the mechanisms
that control saccadic trajectories, ScanMatch overcomes many
limitations of traditional editing methods. Additionally, it enables
the incorporation of higher-order relationships between visual field
regions. These relationships extend beyond spatial proximity and
can also be defined by the semantic content of visual regions. This
adaptability facilitates more nuanced and conceptually enriched
similarity analyses, allowing for the consideration of a broader
spectrum of contextual and interpretative factors.

3.5.2 SubsMatch algorithm

SubsMatch is a string-based scanpath comparison algorithm
designed by Kiibler et al. (2014) to identify repeated patterns in
visual behavior sequences. The method focuses on the computation
of an extended transition matrix, which quantifies the occurrences
of all subsequences of size n within a scanpath. Effectively, this
approach can be viewed as a histogram-based method, where
differences in occurrence frequencies serve as the foundation for
evaluating similarity or dissimilarity between scanpaths.

The  algorithm  begins  with string-conversion
process—see Section 2.4 — followed by the application of a sliding

a

window of size n, which systematically counts the occurrences
of all possible sub-sequences within the transformed string. This
procedure generates a histogram representation, equivalently
referred to as an n-gram embedding, which captures the frequency
distribution of patterns of length n in the scanpath. This
representation provides a detailed characterization of the scanpath’s
structural features. Finally, the similarity between two scanpaths is
assessed by evaluating the divergence between their sub-sequence
frequency distributions.

This method has primarily been applied to compare eye
movements associated with specific tasks (Braunagel et al., 2017a;
b; Kiibler et al., 2017). It was initially developed and validated in
dynamic driving scenarios to distinguish between safe and unsafe
driving behaviors (Kiibler et al., 2014). More recently, SubsMatch
has been utilized in diverse domains, such as identifying viewing
behaviors that differentiate expert and novice micro-neurosurgeons,
where it demonstrated significant group-level differences compared
to other state-of-the-art metrics (Kiibler et al., 2015).

An improved version of the algorithm, termed SubsMatch
2.0, was developed to address notable limitations of the original
implementation (Kiibler et al., 2017). One significant drawback of
the initial approach was its uniform weighting of all sub-sequences,
irrespective of their discriminative value. As a result, frequent yet
non-informative patterns could exert undue influence on similarity
scores. Furthermore, the initial algorithm relied on exact pattern
matching, treating sub-sequences that differed by even a single
substitution as entirely distinct, which limited its robustness in
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certain contexts. To address these issues, SubsMatch 2.0 introduced a
classification-based methodology wherein sub-sequence frequency
features were used as inputs to a support vector machine (SVM) with
a linear kernel. This enhancement enabled the algorithm to assign
greater importance to sub-sequences with higher discriminative
value, improving its ability to differentiate between experimental
conditions.

3.5.3 MultiMatch algorithm

The MultiMatch algorithm (Dewhurst et al., 2012; Foulsham
etal., 2012) introduces an alternative representation of scanpaths,
modeling them as a series of concatenated saccade vectors. Each
vector connects the coordinates of successive fixation points,
encapsulating both the fixative and saccadic components of eye
movements. The primary goal of the method is to achieve
optimal alignment of these saccade vectors, enabling the extraction
of meaningful metrics to compare the structural and temporal
characteristics of scanpaths.

The process begins with a two-fold simplification step designed
to reduce scanpath complexity through saccade clustering: (i)
by combining into a single vector any two consecutive saccade
vectors that are nearly collinear and (ii) by combining very short
vectors with longer adjacent ones. These steps are applied iteratively
until no further changes are observed, ensuring a progressive
reduction in scanpath complexity. This approach enables the
analysis of scanpaths that are too intricate to process directly,
thereby enhancing computational feasibility. However, meticulous
parameter selection and careful handling of the simplification
process are crucial to maintaining the intrinsic characteristics
of the original trajectories. The sensitivity of the outcomes to
the chosen parameters underscores the importance of optimizing
these settings for specific experimental contexts. By mitigating the
influence of small saccades and localized fixations, the simplification
step ensures that minor elements do not disproportionately bias
similarity measurements. Once the scanpaths have been simplified,
a temporal alignment process is performed to pair corresponding
saccade vectors, enabling a robust and meaningful comparison of
the scanpaths.

The alignment process, central to the algorithm, warrants
further explanation. Initially, the norm of the vector difference
between each saccade in the first scanpath and each saccade in
the second scanpath is computed. These values are then stored in
a weight matrix, which quantifies the shape similarity between all
possible saccade pairings. Next, an alignment matrix is constructed,
where the saccade vectors of the first scanpath are placed along
the horizontal axis and the saccade vectors of the second scanpath
along the vertical axis. This matrix defines the rules for allowed
connections between vectors: connections are permitted only to the
right, downward, or diagonally downward-right. Notably, backward
connections are excluded, ensuring the alignment respects the
temporal ordering of the scanpaths.

Together, the weight and alignment matrices form a
directed, weighted graph. Nodes correspond to alignment
matrix elements, edges represent permissible connections, and
edge weights are defined by entries in the weight matrix. The
optimal alignment is determined by finding the path through
this graph that minimizes the total alignment cost. This is
accomplished using Dijkstra’s algorithm (Cormen et al., 2022).
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Conceptually, this approach resembles derivative dynamic time
warping (Eamonn and Michael, 2001), as highlighted by
authors such as French et al. (2017), who suggested achieving
alignment by minimizing cumulative differences using a vector
difference matrix.

Once optimal alignment is established, several metrics can be
extracted from the paired saccade vectors. This alignment allows for
the comparison of both the saccadic and fixative components of the
scanpaths—as mentioned earlier, the endpoints of saccade vectors
correspond to fixation coordinates. More specifically, five commonly
used similarity metrics can be derived from the alignment: (i)
shape computed by determining the vector difference between
aligned saccades, (ii) length which measures the similarity in
saccadic amplitude, (iii) position which calculates the Euclidean
distance between aligned fixations, (iv) direction which quantifies the
angular difference between aligned saccade vectors and (v) duration
which measures the difference in fixation durations between
aligned fixations. Together, these metrics provide a comprehensive
evaluation of both the saccadic and fixative aspects of the scanpaths,
and they can be combined or analyzed separately depending on the
research question.

3.6 Multi-scanpath comparison: towards
group-level analyses

A central question, however, is how to interpret and use similarity
and dissimilarity scores extracted from scanpaths. In practice, these
scores are rarely meaningful in absolute terms; rather, they acquire
interpretive value in comparative or inferential contexts. A common
strategy is to evaluate whether within-participant similarity exceeds
between-participant similarity, or whether scanpaths collected under
a given experimental condition are more similar than those observed
across conditions, typically using classical statistical procedures or
permutation-based tests (Anderson et al, 2015). Closely related
approaches rely on pairwise distance matrices computed across
scanpaths, which can then be processed using clustering algorithms,
multidimensional scaling, or supervised classification frameworks to
reveal latent groupings, task-driven viewing strategies, or individual
differences (Kumar et al., 2019; French et al., 2017; Castner, 2020). In
all such applications, the interpretability of a metric depends on its
sensitivity to spatial versus temporal structure, its robustness to noise
and outliers, and its ability to scale to large collections of scanpaths.

Beyond pairwise comparison, several methodological traditions
have emerged for multi-scanpath analysis. Some approaches derive
group-level representations by aggregating information across
observers, for instance through consensus-building procedures
that estimate representative sequences or prototypical trajectories.
Others emphasize the extraction of recurring subsequences,
motifs, or transition structures across individuals, thereby shifting
the analytical focus from global distance measures to shared
structural patterns. A further class of methods adopts a graph-
based perspective, representing gaze transitions as edges in a
directed graph and comparing scanpaths through their transition
dynamics or Markovian properties. Although these families of
methods are often introduced in the context of raw, continuous
scanpaths, they are conceptually much closer to the Aol-based
approaches, where scanpaths are represented as sequences
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of discrete symbolic units. In practice, many of the multi-
scanpath strategies outlined above—such as consensus-sequence
construction, motif or subsequence extraction, and transition-
based or graph-theoretic analyses—are more naturally, and more
commonly, implemented on Aol sequences than on continuous
fixation trajectories. This reflects a broader methodological point:
most multi-scanpath comparison techniques implicitly rely on
symbolization, discretization, and pattern extraction, all of which
are foundational to Aol methodology.

For this reason, and to avoid redundancy, the detailed
treatment of multi-scanpath approaches is deferred to a separate
dedicated contribution focused on Areas of Interest and Associated
Algorithms. There, these families of methods are revisited within
their natural symbolic framework, allowing their assumptions,
limitations, and interpretative affordances to be examined more
thoroughly. By situating multi-scanpath comparison within the Aol
paradigm, this symbolic perspective provides a more coherent and
comprehensive account of the analytical tools that underpin group-
level gaze analysis.

4 Discussion

The present review highlights both the methodological
richness and the persistent fragmentation of the approaches
used to characterize and compare scanpaths. Despite several
decades of active research, scanpath analysis still lacks unified
conceptual frameworks that clearly indicate when and why specific
representations or metrics should be preferred. Scanpaths are
inherently multidimensional entities, jointly embedding spatial,
temporal, and semantic information. However, most existing
methods focus on only one or two of these dimensions, and
genuinely integrative approaches that account for the full complexity
of the oculomotor signal remain relatively scarce.

A recurring challenge concerns the balance between intuitive,
visually interpretable representations—such as scanpath plots,
attention maps, or RQA recurrence plots—and more abstract
quantitative metrics. Visual representations are accessible and
powerful tools for exploratory analysis and qualitative comparison,
particularly when multiple representations are shown side-by-side
using the same gaze data. However, they provide only coarse-
grained insight without formal quantification, and their interpretive
value depends strongly on visualization choices, such as scale,
grid resolution, or temporal sampling. This tension explains why
many methods have evolved in parallel within the fields of visual
analytics and information visualisation, a connection not always
acknowledged in traditional eye-tracking literature but increasingly
relevant for scanpath research.

From a quantitative perspective, the proliferation of available
metrics reflects the diversity of research questions, but it also
contributes to a degree of methodological opacity. Metrics differ
widely in their sensitivity to spatial configuration, temporal order,
noise, and outliers, and the interpretation of their absolute values
is often non-trivial. In particular, certain conceptual interpretations
require careful contextualization, especially in clinical settings
where restricted visual exploration may reflect avoidance or
impairment rather than efficiency or expertise. For these reasons,
a more explicit discussion of interpretive limitations is essential for
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guiding both novice and advanced users. In the present review,
emphasis is therefore placed on understanding most metrics as
primarily descriptive tools, rather than as normative indicators of
performance, efficiency, or optimality.

Beyond representational diversity, methodological choices such
as grid size, discretization resolution, or segmentation parameters
remain under-discussed in the literature, despite their substantial
impact on results. For single and multi-scanpath analyses alike,
these parameters determine whether subtle structure is preserved
or lost. Similarly, scalability is an increasingly important concern:
many classical comparison techniques were developed for pairwise
comparisons and do not generalize efficiently to large datasets. As
discussed in Section 3, more recent approaches leverage distance
matrices, clustering algorithms, and supervised models to scale to
dozens or hundreds of scanpaths, but their performance remains
closely tied to representation choices and noise sensitivity.

Machine learning and deep learning approaches represent a
promising response to several of the methodological challenges
faced by classical scanpath analysis. By embedding scanpaths
in high-dimensional feature spaces—through convolutional
neural networks (CNNs), recurrent architectures, or more recent
transformer-based models—these approaches can capture aspects of
gaze behaviour that traditional metrics often overlook. For instance,
Castner (2020) introduced an advanced variant of the string edit
distance tailored specifically for scanpath analysis, in which the
alignment cost between two fixations is computed from the norm of
the difference between feature vectors extracted from the fixated
image regions. These features are derived from a pre-trained
CNN—specifically VGG-16 Simonyan and Zisserman (2014) —
enabling the similarity measure to incorporate rich, high-level visual
information rather than relying solely on geometric proximity.

In a broader application of deep learning, Ahn et al. (2020)
investigated the classification of comprehension-related variables,
including global text comprehension, passage-level understanding,
and perceived reading difficulty. Their models relied directly on raw
fixation coordinates and fixation durations, using both CNN and
recurrent neural network (RNN) architectures to predict cognitive
states from eye-tracking data. Together, these studies illustrate the
potential of deep learning to infer complex cognitive variables
directly from gaze behaviour.

Despite their promise, the performance and generalizability
of learning-based approaches remain strongly constrained by the
availability, quality, and diversity of training data. Human gaze
behaviour exhibits substantial variability across individuals, tasks,
stimuli, and viewing conditions, which complicates the construction
of datasets that adequately capture this heterogeneity. Moreover,
the collection of large-scale, well-annotated eye-tracking datasets
remains costly and time-consuming, and dataset-specific biases can
substantially affect model performance and transferability.

Recent advances in transfer learning (Rokni et al., 2018) and
meta-learning (Gong et al,, 2019) have partially alleviated these
limitations by enabling models to adapt to novel tasks or domains
from limited data. Nevertheless, their effectiveness still depends on
the availability of robust and diverse base datasets for pre-training.
To further mitigate data scarcity, generative modeling approaches
have recently been proposed to synthesize large-scale, realistic eye-
movement datasets. In particular, Lan et al. (2022) introduced
a framework for generating synthetic scanpaths from publicly
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available images and videos, aiming to reproduce key statistical
properties of human gaze while introducing variability across
observers and experimental conditions. Although such synthetic
data cannot yet fully replicate the complexity of human visual
behaviour, they provide a scalable and controllable resource for
training and benchmarking learning-based models.

Altogether, the integration of machine learning and deep
learning into scanpath analysis marks a significant methodological
shift. While these approaches introduce new challenges related
to data heterogeneity, computational cost, and interpretability,
ongoing progress in generative modeling, adaptive learning, and
synthetic data generation offers promising avenues for overcoming
these limitations. Ultimately, one of the most promising future
directions lies in the development of hybrid frameworks that
combine the interpretability of symbolic, AoIl-based methods with
the representational power of continuous, data-driven models,
thereby enabling both robust quantitative analysis and meaningful
cognitive interpretation.
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