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Introduction: This study aimed to develop a methodology for establishing 
the power–duration relationship in cross-country skiers and to investigate the 
influence of incline on critical power (CP) model parameters.
Methods: Twelve trained male cross-country skiers performed four constant 
work-rate predictive trials on a motor-driven treadmill, using the double 
poling sub-technique, to determine their power–duration relationships at 2°
and 8° inclines in a randomized order. The testing protocol also included 
maximum speed tests performed at both inclines. Power-duration relationships 
were modeled using a modified expression of the three-parameter critical 
power model.
Results: The derived power-duration relationships were significantly different 
between the two inclines. At an 8° incline, the estimated work capacity above 
CP (i.e., W′) was more than two times higher than at a 2° incline (24.87±8.75 kJ 
vs. 7.07± 1.61 kJ, respectively; Z = 3.06, P = 0.002, rrb = 0.88), which was partly 
explained by an increased anaerobic power capacity (i.e., Pan = 4.82±0.64 W⋅kg-1

vs. 1.67±0.34 W⋅kg-1, respectively; Z = 3.06, P = 0.002, rrb = 0.88). Although CP
estimates differed by approximately 16% between the two inclines on a group 
level (2.78±0.22 W⋅kg-1 vs. 2.39±0.74 W⋅kg-1 at a 2° and at an 8° incline, 
respectively), a moderate non-significant effect of incline was observed with 
large individual variances (Z = 1.88, P = 0.06, rrb = 0.54). The incline had a non-
significant effect on the time constant parameter estimates (Z = 1.57, P = 0.12, 
rrb = 0.45), yet inter-individual variation remained considerable.
Discussion: The findings demonstrate that in cross-country skiing, both W′

and Pan are highly incline-dependent, showing markedly higher values at 
steeper gradients. Moreover, the variability observed in CP and W′ across 
inclines exceeded the typical sensitivity of these parameters to external 
factors reported in cycling. A large proportion of the incline-related changes 
in model parameters could be explained by accounting for the estimated 
variations in gross efficiency across speeds and inclines. However, the 
persistence of a significant difference in W′ even when expressed in terms 
of estimated metabolic power at steeper inclines suggests the involvement 
of additional physiological mechanisms, potentially a larger amount of
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recruited muscle mass due to differences in muscle fiber recruitment between 
conditions.
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aerobic capacity, anaerobic capacity, critical power, performance prediction, 
performance testing, power output, sports performance, three-parameter critical 
power model 

1 Introduction

Although methods for estimating mechanical power output 
using positional data in cross-country skiing are well-established 
(for details, see, for example, Gløersen et al. (2018b); Swarén 
and Eriksson (2019)) and ski pole-integrated propulsive power 
output measurement is emerging (Johansson et al., 2019; 
Kuylenstierna et al., 2020), power output data inclusion into training 
and performance analysis remains limited in the sport. In contrast, 
cycling has widely adopted power output profiling over the past two 
decades, aided by commercial power meters, which have enabled 
accurate external training load assessment, power-based training 
prescription, and the continuous monitoring of changes in the 
athletes’ performance across racing seasons (Quod et al., 2010; 
Leo et al., 2022; Pinot and Grappe, 2010; Leo et al., 2021). Contrarily, 
training load monitoring in cross-country skiing is primarily based 
on the assessment of physiological and perceptual responses to 
exercise, such as heart rate, blood lactate accumulation, and the rate 
of perceived exertion (Seiler and Kjerland, 2006; Yu et al., 2023). 
Nevertheless, these measures have been shown to underestimate 
fatigue from short-duration anaerobic and neuromuscular efforts 
due to their time lag (e.g., sprints over short climbs, or position 
changes in a sprint race), as well as to struggle accurately capturing 
both the instantaneous magnitude of effort and fatigue accumulation 
during intermittent exercise (Bolger et al., 2015; Sitko et al., 2020).

Under competitive conditions, cross-country skiers frequently 
generate power outputs exceeding those associated with their 
maximal oxygen uptake, particularly during uphill sections, 
followed by flat or downhill segments that typically permit 
partial recovery (Gløersen et al., 2020; Andersson et al., 2017; 
Andersson et al., 2019). In addition to advancements in the available 
technology, this intermittent nature of cross-country ski races, 
characterized by both repetitive high-intensity bouts of effort 
taxing the anaerobic energy systems on climbs, and a continuously 
high demand for aerobic energy turnover along the race course 
(Losnegard, 2019), suggests that if accurate power output assessment 
were feasible, the critical power concept could be introduced into 
cross-country skiing as an alternative approach for investigating the 
energetic demands of the sport (Gløersen et al., 2020; Jones and 
Vanhatalo, 2017). However, given the concept’s physiological basis, 
the influence of external factors, such as incline and speed, on the 
ratio between external work rate and metabolic energy turnover 
(i.e., gross efficiency) must be considered when implementing it in 
cross-country skiing (Sidossis et al., 1992).

The relationship between sustainable power output and exercise 
duration is commonly characterized using critical power models, 
originally formulated by Monod and Scherrer (1965) to describe the 
hyperbolic dependence of work capacity on time to exhaustion. The 
two-parameter critical power model describes power output (P) as 

a function of exercise duration (t) as:

P(t) = CP+ W′

t
, (1)

where CP is the so-called critical power, representing the boundary 
between the heavy- and severe-intensity domains, and W′ is the 
finite work capacity above CP (Poole et al., 2016). To address the 
unrealistic prediction of close to infinite power output at near-zero 
durations, as follows from Equation 1, a negative time asymptote 
(k) was introduced into Equation 1 as a third parameter by Morton 
(1996), formulating the three-parameter critical power model as:

P(t) = CP+ W′

t− k
. (2)

The standard establishment of the power-duration relationship 
typically involves multiple constant work rate tests or time-
based time trials, performed within the severe-intensity domain, 
which methodology results in the typical restriction of the 
accurately modeled exercise duration range to the 2–15 min domain 
(Bergstrom et al., 2014; Ferguson et al., 2010; Poole et al., 2016). 
Nevertheless, recent studies have demonstrated that using the three-
parameter critical power model can extend the exercise duration 
range applicable to the model towards durations as short as 20 s 
(Vinetti et al., 2023; 2019). Furthermore, single-visit protocols have 
been developed and implemented for assessing CP and W′ in cycling 
(Simpson and Kordi, 2017; Spragg et al., 2024).

The present study aimed to develop a methodological 
framework for establishing the power–duration relationship in 
cross-country skiers using a treadmill roller-skiing protocol. 
Furthermore, the study sought to examine how incline influences 
the derived parameter estimates of the used critical power model. 

2 Materials and methods

2.1 Subjects

Twelve trained male cross-country skiers (mean ± SD: age 
32 ± 6 years; body mass 77 ± 6 kg; height 1.82 ± 0.05 m; 
representing Tier 2 and 3 athletes according to McKay et al. (2021)) 
volunteered to participate in this study. To fulfil the inclusion 
criteria, all participants had to possess competition experience in 
either traditional or long-distance cross-country skiing and had to 
be familiar with treadmill roller skiing. Prior to their laboratory 
visit, the participants’ physical performance capacity was evaluated 
through a self-reported questionnaire. Before the testing procedure 
commenced, the subjects provided their written informed consent 
to participate. The study was preapproved by the Swedish Ethical 
Review Board (2023-03470-01) and was conducted according to the 
Declaration of Helsinki. 

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2025.1712475
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Horvath et al. 10.3389/fphys.2025.1712475

2.2 Equipment and testing procedure

The participants visited the laboratory on one occasion, during 
which they completed two incremental maximum speed tests and 
eight constant work rate predictive trials to exhaustion (a total of 
ten tests with target durations ranging from 5-320 s), using the 
double poling (DP) sub-technique. All tests were performed on a 
motorized treadmill (dimensions: 3.5 m ×  2.5 m; Rodby Innovation 
AB, Vänge, Sweden) using the same pair of Swenor Alutech classic 
roller skis (length: 720 mm, mass: 2100 g/pair, wheel type: type 2; 
Swenor, Sarpsborg, Norway) mounted with Rottefella Xcelerator 2.0 
bindings. The rolling friction coefficient (μr) was determined via a 
towing test following the methodology described by Sandbakk et al. 
(2010), measuring a rolling friction coefficient μr = 0.018. The 
participants used ski boots of their choice and ski poles within 
2.5 cm of their approved maximal length (FIS, 2016).

Each participant completed all tests at both 2° and 8° inclines in 
a randomized order. The protocol began with a 10-min standardized 
warm-up. After a 2-min recovery, a maximum speed test was 
initiated following the methodology described by Stöggl et al. 
(2007). At a 2° incline, the maximum speed test started at 
16 km⋅h-1, while the treadmill speed was increased by 1 km⋅h-1

every 6 seconds after the initial stage. Meanwhile, at an 8° incline, 
the test commenced at 7 km⋅h-1, with 0.5 km⋅h-1 increments in a 
similar manner. The first stage of these tests lasted 20 s to account 
for the treadmill belt’s acceleration. The maximum speed tests were 
stopped by the test leader when the participant failed to maintain 
the treadmill speed (i.e., the roller ski front wheels dropped behind 
the midpoint of the treadmill). Maximum speed was defined as the 
speed at the last completed stage. After a 4-min rest, participants 
performed four predictive trials to exhaustion, with target durations 
of 5, 20, 80 and 320 s. Predictive trials with target durations of 5, 20, 
and 80 s were separated by 4 min of active/passive rest. Meanwhile, 
after the 80-s predictive trial, the participants rested for 12 min. After 
completing the predictive trial with a target duration of 320 s, a low-
intensity cool-down and a 1-h recovery period followed. During this 
recovery period, the participants were offered 320 kcal of nutrition 
in the form of sports drinks and carbohydrate gels, and had the 
option to perform low-intensity exercise ad libitum. The same testing 
protocol was then repeated at the remaining incline, depending on 
the order of randomization.

The relatively slow treadmill acceleration (i.e., 0.5 km⋅h−1 ⋅ s−1) 
posed a challenge during the short-duration predictive trials. To 
address this, the protocol was designed such that the participant 
held onto the front bar of the treadmill while it was accelerated to 
80% of the target speed (see Section 2.4). Upon release of the bar, 
the test leader completed the acceleration to the required speed. 
Each trial began once the treadmill reached the target speed and 
concluded when the front wheels of the roller skis dropped behind 
the treadmill midpoint.

Body mass-normalized mean power output (P̂) during roller 
ski tests was calculated as the sum of power against gravity and 
friction as:

P̂ = g(μrcos(α) + sin(α)) ⋅ v, (3)

where g is the gravitational acceleration (i.e., 9.81m/s2), α is the 
incline and v is the velocity of the treadmill. 

2.3 The modified three-parameter critical 
model

Morton introduced an abstract negative time-asymptote into 
the two-parameter critical power model to create a y-intercept for 
the power curve, thereby estimating maximal instantenous power 
output. If τ = − k, Equation 2 can be expressed as:

P(t) = CP+ W′

t+ τ
, (4)

where τ is the time constant governing how quickly power output 
declines toward CP, thus mainly affecting the curvature of the power 
curve. Nevertheless, this model (i.e., Equation 4) lacks uniformity 
in the dimension of considered metrics due to its simultaneous 
consideration of both work and power; a problem that can be 
resolved by defining a new parameter - the anaerobic power capacity 
(Pan) - as follows:

Pan =
W′

τ
. (5)

When introducing Equation 5 into Equation 4, it can be 
reformulated as:

P(t) = CP+
Pan

1+ t/τ
, (6)

standardizing the dimensions of the critical power model 
parameters. This reparametrization dismisses the negative 
time constant from the model, enhancing its physiological 
interpretability. Equation 6 can be further reformulated by defining 
the ratio r = Pan/CP, resulting in:

P(t) = CP(1+ r
1+ t/τ
). (7)

The sigmoid shape of the log-transformed power-duration curve 
is governed by the specific model parameters in distinct ways 
(Figures 1a–d). A change in CP results in the vertical shift of 
the entire curve, thereby modifying power output values across 
all exercise durations (Figure 1b). In contrast, the parameter Pan
primarily affects power output values at shorter durations (i.e., t <
τ) (Figure 1c). Meanwhile, τ influences the power output values 
around the curve’s inflection point (i.e., governing the curvature 
of the hyperbolic power-duration curve), having a pronounced 
effect near τ but minimal impact on values far from this point 
(Figure 1d). These model characteristics were considered in the 
design of target durations for predictive trials. To obtain model 
parameter estimates, Equation 6 was fitted to the power-duration 
data set from the predictive trials using least-square approximation 
in MATLAB (The MathWorks, Inc., Natick, MA, United States).

2.4 Predictive trials

The constant work rate predictive trials for assessing individual 
power-duration relationships aimed to induce complete exhaustion 
around specified target durations of 5, 20, 80 and 320 s, aligning 
with the characteristics of the used three-parameter critical power 
model (see Section 2.3). Due to the instrumental constraints posed 
to treadmill roller-skiing, the power output for each predictive 
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FIGURE 1
Panel (a) Representation of model parameters, including the components of W′ (i.e., Pan and τ), of the used critical power model with a logarithmic 
time scale on the horizontal axis. Panels (b–d) An illustrated effect of ± 25% variation in the critical power (CP), the anaerobic power capacity (Pan) and 
the time constant (τ) model parameters on an arbitrary power-duration curve.

trial had to be estimated in advance of testing. This estimation 
was based on the power output attained during the final stage 
of the maximum speed tests, calculated using Equation 3. Based 
on Equation 7, assuming that power output at level N equals PN, 
the power output at level N+ 1 was expressed using the following 
recurrence relation:

PN+1 = PN −
rτ(tN+1 − tN)

(tN + τ(1+ r))(tN+1 + τ)
PN, (8)

where tN and tN+1 are the respective target durations of predictive 
trials (for derivation see Supplementary Material). Before 
prescribing work rates for levels N ≥ 2, model parameters r and 
τ as well as the required work rate at the shortest test duration 
(i.e., P1) had to be determined. Since there was no knowledge 
available on the magnitude of these parameters before the tests, 
the initial assumptions of these values (i.e., r = 0.52 and τ = 50
sec for a 2° incline and r = 1.55 and τ = 50 sec for an 8° incline) 
for the first participants were set utilizing data from cycling 
(Coggan, 2006; Quod et al., 2010) and publicly accessible data on ski 
ergometry exercise (Concept2, 2024). As the testing proceeded, 
the initially assumed parameters were dynamically adjusted to 
the average values of all participants who had completed the test 
earlier, which made the model effectively “self-trained”. The attained 
maximum speed was utilised to determine the required power 
output for P1 (and, therefore, for all the subsequent levels). Based 
on the authors’ practical insights and preliminary testing, it was 
established that at a 2° incline, the treadmill speed corresponding to 
P1 should be 5% higher than the power output corresponding to the 

attained maximum speed. Meanwhile, at an 8° incline, this speed 
was raised to 120% of this power output. 

2.5 Gross efficiency adjustment 
concerning speed and incline

Gross efficiency (GE) − power output relationships were derived 
concerning incline and speed using previously collected and 
published data by Andersson et al. (2017), assuming linearity for 
data points representing the four highest speeds and inclines. This 
process yielded the following linear regression equations:

GE(v) = −0.0654P(v) + 31.041, (9)

for describing the influence of treadmill speed, and

GE(α) = −0.0048P(α) + 18.989 (10)

for describing the influence of treadmill incline on GE. These 
relationships were used to predict GE values corresponding to mean 
power outputs during the predictive trials at both 2° and 8° inclines, 
enabling the subsequent estimation of metabolic power (MP) in the 
Nth predictive trial as follows (Andersson et al., 2017):

MPN =
PN

GEN
. (11)
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2.6 Statistical analysis

Due to the relatively small sample size (n), the Wilcoxon 
signed-rank test was used to detect differences in power output, 
time-to-exhaustion, and critical power model parameters across 
inclines (Blair and Higgins, 1985). To quantify the effect of 
incline, rank-biserial correlation coefficients (rrb = Z/√n) were 
calculated (Tomczak and Tomczak, 2014). Bland–Altman plots 
were used to assess the mean difference ± 95% limits of 
agreement between model parameters (Bland and Altman, 
1999), while Pearson correlation coefficients (r) were used to 
evaluate relationships between model parameters and power 
output across inclines. Variance in the model parameters 
across inclines was assessed using stepwise multiple linear 
regression, and model performance was quantified by the adjusted 
coefficient of determination (R2

adj). To describe changes in model 
parameters across inclines in detail, the participants were ordered 
and divided into high and low performers based on their 
summed maximum speeds and additional comparisons were 
performed. The power-duration curve's fit was evaluated using 
the coefficient of determination (R2), and parameter precision 
was expressed as the standard error of estimate (SEE) and 
coefficient of variation (CV%) according to Black et al. (2017). 
The precision in model parameter estimates (i.e., CP, Pan and 
τ) was compared between inclines using the Wilcoxon signed-
rank test. Additionally, root mean square error (RMSE) was used 
to quantify model accuracy. Statistical analyses were conducted 
in SPSS v29.0 (IBM Corp., Armonk, NY, United States). Data 
are presented as mean ± SD. Significance level was set to
α ≤ 0.05. 

3 Results

In the final stage of the maximum speed tests, the participants 
reached 27.4 ± 2.0 km⋅h-1 at a 2° incline and 12.7 ±

1.1 km⋅h-1 at an 8° incline, indicating mean test durations 
of 88.5± 11.9 and 88.0± 13.4 seconds, respectively (Z = − 0.28, 
P = 0.78, rrb = 0.08). Corresponding mean power outputs were 
4.01 ± 0.21 W⋅kg-1 and 5.49 ± 0.44 W⋅kg-1, respectively, 
resulting in a significant difference (Z = 3.01, P = 0.002, rrb =
0.88) and a strong correlation across inclines (r = 0.87, P < 0.001). 
Consequently, power output was significantly higher at an 8° incline 
compared to a 2° incline during all predictive trials (Z = 3.06, P =
0.002, rrb = 0.88; Table 1). However, incline manipulation did not 
significantly affect time-to-exhaustion between 2° and 8° trials (P >
0.05 for all).

Pan was almost two times higher at an 8° incline compared to 
a 2° incline (4.82± 0.64 W⋅kg−1 vs. 1.67± 0.34 W⋅kg−1, Z = 3.06, 
P = 0.002, rrb = 0.88). In contrast, CP tended to be higher at the 
2° incline relative to the 8° incline (2.78± 0.22 W⋅kg−1 vs. 2.39±
0.74 W⋅kg−1), although this difference did not reach statistical 
significance (Z = 1.88, P = 0.06, rrb = 0.54). Furthermore, the incline 
had a non-significant effect on τ, with higher values observed at 
an 8° incline (65.5± 17.3 s vs. 56.1± 13.6 s, Z = 1.57, P = 0.12, 
rrb = 0.45). Bland-Altman analyses revealed relatively large limits 
of agreement for all model parameters between incline settings, 
especially concerning CP and τ. The mean difference (i.e., bias) for 

TABLE 1  Power output and time-to-exhaustion during predictive trials 
(P1-P4). The required work rates were prescribed based on the attained 
maximum speed in the maximum speed tests using Equation 8.

Incline Power output 
[W⋅kg-1]

Time-to-exhaustion 
[s]

2° 8° 2° 8°

P1 4.19±0.30 6.62±0.57∗ 9.6±2.7 8.9±2.3

P2 3.94±0.29 5.80±0.51∗ 23.8±3.5 26.2±6.7

P3 3.44±0.25 4.46±0.45∗ 91.9±28.6 96.2±46.9

P4 3.06±0.22 3.41±0.37∗ 405.8±263.3 358.6±266.8

P1, P2, P3, and P4 represent predictive trials with target durations of 5, 20, 80, and 320 s, 
respectively. ∗ significantly different values compared to a 2° incline (P ≤ 0.01).

CP, Pan and τ were 0.26± 0.58 W⋅kg−1 (−0.88–1.41 W⋅kg−1), 3.11±
0.47 W⋅kg−1 (2.19–4.04 W⋅kg−1) and −3.2± 24.8 s (−51.7 to 45.3 s), 
respectively (Figure 2). Furthermore, the demonstrated changes in 
model parameters Pan and τ implied that the elicited W′ values of 
7.07± 1.61 kJ at a 2° incline increased significantly at an 8° incline 
up to 24.87± 8.75 kJ (Z = 3.06, P = 0.002, rrb = 0.88).

The expansion of Pan (i.e., ΔPan) alone accounted 
for approximately 31% of this variance (ΔW′ [J ⋅ kg−1] =
112.73ΔPan [W ⋅ kg−1] − 127.21, R2

adj = 0.31, P = 0.035), whereas 
the difference in τ (i.e., Δτ) across inclines explained 70% of 
the observed variation in W′ (ΔW′ [J ⋅ kg−1] = 3.93Δτ [s] +
189.77, R2

adj = 0.70, P < 0.001). When ΔW′ was modeled as a 
function of both ΔPan and Δτ, the explained variance increased 
further to 86% (ΔW′ [J ⋅ kg−1] = 76.75ΔPan [W ⋅ kg−1] +
3.43Δτ [s] − 46.47, R2

adj = 0.86, P < 0.001). No statistically 
significant linear relationship was found between ΔPan and Δτ
(r = 0.26, p = 0.41). When dividing the sample based on the 
summed maximum speed into high- and low-performing sub-
groups (42.3± 1.8km ⋅ h−1 vs. 37.9± 1.9km ⋅ h−1, respectively), it 
was revealed that CP was significantly different between inclines 
for the low-performing sub-group (Z = 1.99, P = 0.046, rrb = 0.57), 
whereas Pan was significantly different for both sub-groups (Z =
2.20, P = 0.03, rrb = 0.64 for both), and τ showed no difference 
between inclines in any of the sub-groups (P > 0.05 for both;
Table 2).

Predicted GE values for 2° and 8° inclines in the predictive 
trials with target durations of 5, 20, 80 and 320 s were 9.9±
1.5% vs. 16.5± 0.2%, 11.2± 1.5% vs. 16.9± 0.2%, 13.7± 1.3% vs. 
17.3± 0.2%, and 15.6± 1.1% vs. 17.7± 0.1%, respectively (GE values 
were predicted based on Equations 9, 10). Across the predictive 
trials predicted GE increased by 36± 6% at a 2° incline, while 
it rose by 7± 1% at an 8° incline. Fitting Equation 6 to the 
metabolic power values estimated based on Equation 11 decreased 
the difference in derived W′ values between the two inclines 
from ∼ 250% to ∼ 64% compared to mechanical power output 
(i.e., W′ = 68.1± 16.6 kJ vs. 111.5± 49.7 kJ in terms of metabolic 
power at 2° and 8° inclines, respectively). On the other hand, the 
proportional difference in CP between inclines was nearly identical 
regardless of whether mechanical power output or metabolic 
power was considered (i.e., a 0.7% difference in mean values), 
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FIGURE 2
Panel (a,c,e) Linear regressions between critical power (CP), anaerobic power capacity (Pan) and time constant (τ) model parameters at a 2° and an 8°
incline. Panel (b,d,f) Bland-Altman plots representing the bias and 95% Limits of Agreement of model parameters (i.e., CP, Pan and τ) at the 
investigated inclines.

demonstrating approximately 10% higher values at the 2° incline, 
but not a statistically significant difference (P > 0.05 for both;
Figure 4).

Concerning the accuracy and precision of the derived power-
duration relationships, the extracted model parameters resulted 
in an excellent fit (R2 = 0.996± 0.005) and accurate prediction 
of prescribed power outputs at both inclines (RMSE = 0.053±
0.048 W⋅kg−1). On the other hand, the precision in critical 
power model parameter estimates was significantly lower at an 8°
incline compared to a 2° incline (CP:CV%2°= 3.1± 1.4 vs. CV%8°=
9.7± 4.4, Z = 2.67, P = 0.01, rrb = 0.78; Pan:CV%2°= 4.9± 6.7, vs.

CV%8°= 6.7± 4.0, Z = 0.65, P = 0.52, rrb = 0.19; and τ:CV%2°=
26.3± 13.6 vs. CV%8°= 30.6± 20.3, Z = 0.42, P = 0.68, rrb = 0.12).

4 Discussion

This study is the first to apply the critical power concept to 
performance assessment and prediction in cross-country skiing. 
The study introduced a novel testing approach based on the three-
parameter critical power model, and aimed to investigate the effect 
of incline on critical power model parameters during double poling 
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TABLE 2  Model parameters extracted from power-duration relationships at 2° and 8° incline.

Incline CP [W⋅kg-1] Pan [W⋅kg-1] τ [s]

2° 8° 2° 8° 2° 8°

All participantsa 2.78±0.22 2.39±0.74 1.67±0.34 4.82±0.64∗ 56.1±13.6 65.5±17.3

High performersb 2.90±0.18 2.70±0.74 1.82±0.25 4.96±0.42∗ 52.4±15.6 64.4±14.0

Low performersc 2.66±0.2 2.08±0.66∗ 1.53±  0.38 4.68±0.83∗ 59.9±11.4 66.7±21.4

CP, critical power; Pan, anaerobic power capacity; τ, time constant.
aall participants (n = 12).
bfirst six participants based on their summed maximum speed across inclines (i.e., 42.3± 1.8km ⋅ h−1).
clast six participants based on their summed maximum speed across inclines (i.e., 37.9± 1.9km ⋅ h−1).
∗significantly different values compared to a 2° incline (P < 0.05).

FIGURE 3
Critical power (CP) and the work capacity above critical power (W′) in terms of mechanical power output and mechanical work [panel (a,b)], as well as 
metabolic power and metabolic work [panel (c,d)] across inclines. ∗ marks significantly different values (P < 0.01).

on a motorized treadmill. Its main findings were that: 1) W′ and 
Pan showed a substantial increase with a steeper incline, whereas 
2) CP demonstrated a moderate decrease at an 8° incline, although 
this decrease was not statistically significant. Accounting for the 
estimated effect of changes in GE across predictive trial conditions 
lowered the difference in W′ between inclines, but it remained 
statistically significant.

In the current study, the participants demonstrated a 
considerably higher (i.e., ∼ 40%) power output in the maximum 
speed test at an 8° incline compared to a 2° incline, which implied 
the prediction of consistently higher power outputs for predictive 
trials at the former incline, aiming to elicit exhaustion over the 
corresponding target durations (see Sections 2.2, 2.4). In terms 
of the derived critical power model parameters, this increase in 
power output was reflected by a substantial increase in both Pan

and W′, whereas a moderate but non-significant decrease of CP
was also found as the gradient rose (Figure 4). This suggests the 
notable implication that the power-duration relationship is incline 
dependent in cross-country skiing. In contrast, previous research 
investigating the effect of incline on critical power model parameters 
in cycling has found a relatively small but significant difference in W′

but no effect on CP across incline conditions (Hovorka et al., 2022).
The conversion of power output into metabolic power closed 

the distance between data points representing predictive trials 
in the power-duration plane by accounting for the estimated 
effect of changing GE across speed-incline conditions (Figure 4). 
Using metabolic power instead of power output in modeling the 
power-duration relationship resulted in a considerably decreased 
difference in metabolic W′ estimates between inclines, showing 
that the estimated change in GE was one, but likely not the only 
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FIGURE 4
Power-duration [panel (a)] and estimated metabolic power-duration [panel (b)] relationships at 2° and 8° inclines. Metabolic power was estimated using 
power output-gross efficiency relationships derived from data published by Andersson et al. (2017). Shaded areas represent power-duration 
relationships fitted against mean power output values ±SD.

physiological reason behind the observed incline-dependency, as 
W′ was still significantly different across inclines (Figure 3). As W′

has a fundamental anaerobic component (Puchowicz et al., 2018), 
a potential expansion of the anaerobic energy turnover could also 
play a role in the observed increase in this parameter. Previous 
research in treadmill roller skiing and running has shown that 
during maximal intensity exercise, an increase in gradient, and 
thus in mechanical load, results in a greater accumulated O2-deficit 
until the complete utilization of the anaerobic capacity is reached 
(Olesen, 1992; Karlsson et al., 2018). This effect can be partly 
attributed to the increased recruitment of muscle fibers due to 
the increased mechanical resistance (Sloniger et al., 1997); further 
supported by Bangsbo et al. (1993), highlighting the central role 
of active muscle mass in anaerobic energy turnover. In contrast, 
Wakeling et al. (2006) demonstrated that motor unit recruitment 
during locomotion can be adjusted to meet the mechanical demands 
of contraction, supported by the findings of Haase et al. (2024), 
who reported that during 10-s isokinetic cycling sprints the rate 
of blood lactate accumulation increased at higher cadences. Such 
a phenomenon may indicate an altered muscle fiber recruitment 
pattern at near-maximal skiing speeds on low inclines—where 
poling time has been shown to approach 200 ms (Stöggl and 
Holmberg, 2016) — resulting in a relatively greater proportional 
contribution of type II muscle fibers to the total power output.

It is important to highlight that our findings showed greater 
variability in CP than those reported in cycling by Hovorka et al. 
(2022), though the derived CP values (∼ 3.2− 4.2 W⋅kg-1) align with 
data from similarly trained cyclists at both inclines (Chorley et al., 
2020; Rossi et al., 2023), considering the generally ∼30%–40% 
lower GE in double poling compared to cycling (Millet et al., 2002; 
Andersson et al., 2021; 2017). Concerning external power output, 
the magnitude of W′ was considerably smaller at a 2° incline (i.e., 
∼7 kJ) compared to values reported in cycling, but values at an 8°
incline were more representative of those or even slightly higher 
(i.e., ∼25 kJ) than values previously reported for cyclists at similar 
performance levels (Chidnok et al., 2012; Caen et al., 2024). Dividing 

the sample into two subgroups revealed differences in how incline 
affected CP. High performers showed only a slight decline in CP with 
increased incline, while low performers exhibited a more marked 
reduction. However, the declined performance observed in low 
performers may also be attributed to a potentially lower level of 
muscular strength and/or technical adaptations compared to high 
performers, leading to decreased muscular efficiency and GE at an 
8° incline (Barrett-O’Keefe et al., 2012).

Altogether, the power–duration relationship carries implications 
that are more relevant to cross-country skiing than cycling, 
namely, the incline dependence of critical power model parameters, 
especially W′ and Pan. From a technical perspective, this might be 
explained by the fact that in cycling, GE is generally maintained 
across inclines and speeds due to gear shifting (however, it is 
influenced by power output and cadence), which allows riders to 
adjust crank torque, and maintain their optimal cadence irrespective 
of terrain conditions (Millet et al., 2002; Ansley and Cangley, 2009; 
Ettema and Lorås, 2009; Barker et al., 2006). 

5 Methodological considerations

The present study has exclusively focused on the DP sub-
technique. The selected testing gradients were 2° and 8°. Although 
skiers typically employ the diagonal stride sub-technique at the 
steeper incline due to its higher GE (Andersson et al., 2021; 
Løkkeborg and Ettema, 2020; Ettema et al., 2018), the choice of 
inclines was motivated by the known importance of upper-body 
power and strength concerning both sprint and distance skiing 
performance across sub-techniques (Staib et al., 2000; Østerås et al., 
2016; Øfsteng et al., 2018). Furthermore, in long-distance cross-
country ski races, such as the Visma Ski Classics (i.e., typically 
ranging from 50 to 90 km), skiers have adopted the exclusive use 
of the DP sub-technique—even on the steepest climbs of these race 
courses (i.e., representing maximum inclinations > 8°) — which 
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enables the use of skis without grip wax and thereby improves overall 
performance (Stöggl et al., 2018).

Unlike conventional approaches prescribing predictive trial 
intensities relative to power output corresponding to maximal 
oxygen uptake (Bergstrom et al., 2014; Ferguson et al., 2010; 
Vanhatalo et al., 2007), predictive trial intensities in the present study 
were derived using the average power output attained during the 
final stage of the maximum speed tests and the modified three-
parameter critical power model (see Section 2.3). Furthermore, 
the longest predictive trial was designed to remain well within 
the severe-intensity domain. This approach reduced total testing 
time to minimize fatigue accumulation, though it led to the 
inclusion of predictive trial durations representing the extreme-
intensity domain. Concerning the chosen mathematical model, 
the findings of Vinetti et al. (2019) suggested that the three-
parameter critical power model provides a valid approach for 
modeling power output across the chosen target durations, which 
has been applied previously to fit power data in the extreme-intensity 
domain (Vinetti et al., 2023). Nonetheless, based on previous 
findings, the formulation and implementation of a ‘multi-domain’ 
critical power model may offer improved predictions across the 
exercise intensity spectrum (Alexander et al., 2019; Hill et al., 2002; 
Puchowicz et al., 2020; Puchowicz and Skiba, 2025).

Time-to-exhaustion during the predictive trials was not 
significantly different between inclines, which suggests the reliability 
of the developed method for assessing the power-duration 
relationship across inclines during treadmill roller skiing. However, 
the mean deviation from the target durations remained substantial 
(24.3± 14.1%). The participants’ data suggest that this discrepancy 
could be reduced by fine-tuning the parameters of Equation 8, 
setting r = 0.53 and τ = 50.6 s for the 2° predictions, and r =
1.55 and τ = 56.6 s concerning power output prediction at an 8°
incline, while increasing the prescribed power outputs to 108% 
and 126% of the power associated with the attained maximum 
speed for the 5-s predictive trials, respectively. The precision of 
model parameter estimates (i.e., CP, and W′) appeared reasonable 
when compared to previously published data (Black et al., 2017), 
considering that three-parameter critical power models are expected 
to inflate the SEE. On the other hand, direct comparisons of 
parameter estimate precision between the two- and modified three-
parameter models are not feasible concerning either CP or W′. 
Notably, the estimated τ parameters exhibited substantially lower 
relative precision than CP and Pan, which can be explained by the 
nonlinear nature of Equation 6 concerning τ and the relatively low 
number of predictive trials around τ duration.

Derived model parameter estimates, especially CP, should be 
interpreted with caution due to the lack of fatigue assessment 
throughout the predictive trials. There is a potential that fatigue 
has contributed to the observed significant difference in CP in 
the low-performing subjects, but not in high-performing subjects, 
potentially due to their better aerobic fitness/fatigability. Another 
notable limitation of the present metabolic power estimates lies 
in the potential inter-individual variability in gross efficiency 
(GE). Although GE–power output relationships derived from 
an independent sample may provide realistic approximations of 
relative differences between experimental conditions, individual 
deviations are expected due to differences in athletes’ morphological, 
physiological, technical, and training characteristics. Despite these 

limitations, the estimations were essential for contextualizing the 
influence of incline on the establishment of the power–duration 
relationship. An effect particularly relevant in sports such as 
cross-country skiing, where the conversion of metabolic to 
mechanical power output is strongly influenced by environmental 
and biomechanical factors. 

6 Practical applications

The limited availability of power meters for cross-country skiing 
and the potential inaccuracies related to positional data-based power 
output estimation limit the practical applicability of the present 
study, as its findings are primarily relevant to treadmill roller skiing. 
Nevertheless, the presented methodology has direct applications 
for performance testing in a laboratory environment. Monitoring 
changes in cross-country skiers’ power-duration relationship could 
provide more detailed insights into their individual strengths 
and weaknesses. Furthermore, exploring the dependence of the 
power–duration relationship on external factors, such as incline, 
could enhance performance analysis and provide new approaches 
for optimizing performance and pacing strategies in the sport. 

7 Conclusion

This study demonstrated that incline during treadmill roller 
skiing has a substantial effect on the estimates of critical power 
model parameters, particularly W′ and Pan, which increased more 
than twofold at an 8° incline compared with a 2° incline.

Furthermore, the findings highlight the importance of 
accounting for external factors, such as incline and speed, when 
assessing the exercise-induced metabolic demand at a given 
mechanical power output in the context of establishing the 
power–duration relationship. These effects were shown to be 
particularly relevant in cross-country skiing, but may also have 
implications for cycling. Future studies should investigate how 
the accumulated O2 deficit and other physiological parameters, 
including oxygen uptake, the depletion rate of muscular energy 
substrates, and the accumulation of fatigue-related metabolites, are 
affected by variations in speed, incline, and sub-technique selection 
during cross-country skiing, as well as how these factors influence 
critical power model parameters, since such analyses were beyond 
the scope of the present study.
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