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Background: Chronic lower respiratory diseases (CLRDs) remain major
causes of global mortality. Because conventional inflammatory markers
have limited prognostic utility, we developed and validated the relative
neutrophil-monocyte—lymphocyte—albumin ratio (NMLAR), defined as
(Neutrophil’% x Monocyte% x 100)/(Lymphocyte% x Albumin [g/dLl), as a novel
biomarker to predict CLRD-specific mortality.

Methods: Immune infiltration of CLRDs was analyzed based on GEO datasets.
We then analyzed 9,236 adults with CLRD from NHANES 1999-2014, excluding
individuals with missing core variables. Machine learning algorithms (Boruta,
SVM-RFE, XGBoost) were applied to identify key predictors. Cox proportional
hazards models and restricted cubic spline (RCS) functions were used to evaluate
the association between NMLAR and mortality outcomes, and stratified analyses
were conducted across clinically relevant subgroups. Model performance was
assessed by Harrell's C-index, calibration plots, and decision-curve analysis
(DCA). Findings were externally validated in NHANES 2015-2018 (n = 2,107), the
MIMIC-IV v3.1 ICU cohort (n = 2,120), and a real-world Zhejiang Provincial ICU
cohort (n = 161).

Results: Immune profiling showed increased neutrophils/monocytes and
reduced lymphocytes in CLRD and acute states. Higher baseline NMLAR
was consistently associated with increased risks of both all-cause and
CLRD-specific mortality and demonstrated superior predictive performance
compared with conventional inflammatory markers. In NHANES, fully adjusted
models indicated an approximately linear dose-response, with each 1-
unit increment in NMLAR corresponding to a ~7% higher risk of all-
cause mortality and an ~8% higher risk of CLRD-specific mortality. In the
MIMIC cohort, NMLAR remained independently associated with 14-365-
day mortality even after adjustment for critical care—specific covariates
(SOFA score, CRRT, invasive mechanical ventilation, vasopressor use), with
a threshold effect identified at 12.10. In the Zhejiang ICU cohort, NMLAR
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independently predicted 30-day mortality (HR per unit increase =1.09), with
a threshold at 13.32. Notably, models derived from NHANES demonstrated
moderate discriminatory ability, satisfactory calibration, and clinical net benefit
when externally validated in both ICU cohorts, underscoring the robustness
and generalizability of NMLAR as a prognostic biomarker across diverse

clinical settings.

Conclusion: NMLAR is a simple, robust, and clinically applicable biomarker
for mortality risk in CLRD, demonstrating consistent prognostic value across
population-based, critical care, and real-world cohorts.

NMLAR, chronic lower respiratory diseases, NHANES, machine learning, prognostic
biomarker, inflammation

Introduction

Chronic lower respiratory diseases (CLRDs), including COPD,
emphysema, chronic bronchitis, and asthma (Lee et al, 2021),
remain a leading cause of morbidity and mortality worldwide
(Prevalence and attributable health burden of chronic respiratory
diseases, 2020). Broadly defined, COPD encompasses emphysema,
chronic bronchitis, and chronic obstructive asthma, with COPD
and asthma representing the most prevalent chronic airway diseases
(Chengetal.,2021; Liet al., 2024). Despite being classified as distinct
clinical entities, these conditions are intrinsically linked by their
common pathological basis—inflammation of the airways. It is
estimated that approximately 30% of patients with COPD and 26%
of those with asthma exhibit features of ACO (Dey et al., 2022).
Accordingly, the present study focuses primarily on these two
conditions. In 2020, CLRD accounted for one of the five leading
causes of mortality in the United States (Baral et al, 2024).
Globally, over 200 million individuals are estimated to have COPD,
with more than 3 million deaths annually attributed to it (GBD,
2019 Ch ronic Respiratory Diseases Collaborators, 2023). Despite
therapeutic advances, effective risk stratification remains
challenging due to the heterogeneity of CLRD and the
interplay of inflammatory, environmental, and genetic
factors.

Systemic immune-inflammation plays a crucial role in the
development and progression of chronic lung diseases (CLRD)
(Bhatt et al., 2024). In recent years, numerous inflammation-
related indices derived from routine complete blood counts—such
as the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte
ratio (PLR), monocyte-lymphocyte ratio (MLR), and several
composite hematologic inflammation scores—have demonstrated
significant prognostic value across a broad spectrum of chronic
diseases (Cai et al., 2024). These biomarkers are closely associated
with coronary disease severity, major adverse cardiovascular
events (MACE), and in-hospital mortality, and they also reflect
disease activity, exacerbation risk, and survival outcomes in
COPD and other chronic respiratory disorders, thereby supporting
their utility in clinical risk stratification (Tudurachi et al., 2023;
Zhang et al, 2024). Similar predictive performance has been
reported in oncology, where such inflammation-based indices
can independently predict overall survival in colorectal cancer

and, in some studies, even outperform conventional TNM
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staging systems (Yang et al., 2023). Collectively, current evidence
underscores the strengths of blood cell-derived inflammatory
markers—rapid availability, low cost, and high reproducibility—as
practical tools for evaluating systemic inflammation. However, most
widely used indices, such as NLR, PLR, and MLR, are constructed
from absolute leukocyte counts. Although useful, they mainly reflect
quantitative changes and tend to overlook subtle but meaningful
In CLRD,
where inflammatory phenotypes are heterogeneous and immune

alterations in relative immune-cell proportions.

regulation is highly dynamic, proportional shifts in neutrophils,
monocytes, and lymphocytes may provide a more sensitive
indication of immune dysregulation than absolute counts alone. This
limitation may partly explain the modest performance of traditional
indices in disease-specific risk prediction. To address this gap,
we developed the neutrophil-monocyte to lymphocyte—albumin
ratio (NMLAR), a percentage-based index designed to better
capture relative changes in leukocyte composition. NMLAR is
calculated as (Neutrophil% x Monocyte% x 100)/(Lymphocyte%
x Albumin [g/dL]).
NHANES, with
design,

its nationally representative sampling

the
National Death Index enabling precise identification of CLRD-

standardized measurements, and linkage to
specific mortality, provides an ideal platform for evaluating
inflammation—-nutrition biomarkers in the general population. In
parallel, machine learning (ML) methods have gained traction in
large-scale epidemiological research. Compared with traditional
regression models, ML algorithms are well-suited to capture
nonlinear relationships and high-dimensional interactions,
thereby improving predictive accuracy and generalizability
(Liao et al., 2025). However, their application in predicting CLRD-
specific mortality—particularly within nationally representative
datasets such as NHANES—remains limited. To fill this gap,
we leveraged NHANES data from 1999 to 2014 to assess the
prognostic utility of NMLAR for both CLRD-specific and all-
cause mortality. Three commonly used ML algorithms—Boruta,
SVM-RFE, and XGBoost—were applied to identify key prognostic
variables (Hu et al., 2024). We then evaluated the association
and dose-response relationship between NMLAR and mortality
outcomes using Cox proportional hazards models and restricted
cubic splines. Findings were externally validated in three
independent cohorts: NHANES 2015-2018, the MIMIC-IV ICU

cohort, and the Zhejiang Provincial ICU cohort. Collectively,
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this study provides novel evidence supporting NMLAR as
a clinically meaningful biomarker for risk stratification in
CLRD populations, applicable to both general and critically
ill patients.

Methods
Study design and population

We first conducted immune-infiltration analysis to evaluate and
compare immune cell proportions in chronic lower respiratory
disease (CLRD), incorporating four GEO datasets: GSE16972
(alveolar macrophages from COPD patients), GSE27876 (peripheral
blood cells from asthma patients), GSE60399 (PBMC samples
from stable COPD and AECOPD patients collected on hospital
days 1, 3, and 10), and GSE184693 (rat COPD model induced
by cigarette smoke plus intratracheal LPS, with NaHS or PPG
interventions). Raw data were processed into gene expression
matrices; Affymetrix datasets were normalized and annotated
using RMA, while author-provided matrices were used for PBMC
samples. CIBERSORT (LM22 signature, 22 immune-cell subsets,
1,000 permutations) was then applied, and only samples with
deconvolution P < 0.05 were retained for downstream analyses and
visualization.

This retrospective cohort study integrated three complementary
datasets. The primary development cohort was derived from
NHANES 1999-2014. Participants were included if they self-
reported at least one CLRD, including COPD, emphysema, chronic
bronchitis, or asthma, or reported persistent cough with sputum
production for at least 3 months per year. Exclusion criteria were age
<18 years or missing mortality status and key laboratory variables.
Missing covariate data were imputed using the K-nearest neighbor
(KNN) algorithm. A total of 9,236 adults were included for model
development and internal validation. Mortality outcomes were
determined by linkage to the National Death Index (NDI) with
follow-up through December 31, 2019 (Gao et al., 2025). The
primary outcomes were all-cause mortality and CLRD-specific
mortality, identified using ICD-10 codes J40-J47 (including asthma,
chronic bronchitis, emphysema, and COPD). An independent
temporal validation cohort was established from NHANES
2015-2018 using the same criteria.

To assess generalizability in patient cohorts, we used the
MIMIC-IV v3.1 adult ICU database. Eligible patients were those
with a primary diagnosis of CLRD, including COPD, asthma,
and emphysema, as well as acute exacerbations identified through
an a priori ICD-9/10 code set (e.g., J449, J441, J440). Among
8,716 candidate ICU admissions, 15 patients with hematologic
malignancies (e.g., ICD-9 20510, 20502, 20401) and 6,581 with
missing NMLAR data were excluded, leaving 2,120 patients.
Baseline laboratory measurements were defined as the values closest
to ICU admission within +24 h. NMLAR was two-sided trimmed
at the 1st and 99th percentiles to mitigate outlier effects. Smoking
status was classified as current, former, or never smoker based on
ICD-9/10 inpatient codes. The primary endpoints were all-cause
mortality at 7, 14, 30, 90, and 365 days after ICU admission.

Finally, we constructed an independent real-world validation
cohort from the Zhejiang Provincial ICU electronic health
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record (EHR) system (Jin et al, 2023). Using the same CLRD
diagnostic framework, 220 hospitalized patients were screened.
After excluding 59 cases with missing core exposure or covariates,
161 patients were included. Baseline laboratory variables
were defined as the measurements nearest to ICU admission
within the first 24 h, aligned with the NHANES and MIMIC
definitions. The primary outcome was 30-day all-cause mortality

(Figure 1).

Covariate definitions

A comprehensive set of covariates associated with CLRD and
mortality risk were included. Age was analyzed as a continuous
variable, while sex (male/female) and race/ethnicity (Mexican
American, other Hispanic, non-Hispanic White, non-Hispanic
Black, other/multiracial) were categorical. Education was classified
as < high school, high school graduate, or > high school.
Socioeconomic status was measured by poverty income ratio (PIR;
low <1.5, middle 1.5-4.0, high >4.0). Body mass index (BMI) was
calculated from height and weight and categorized as underweight
(<18.5 kg/mz), normal (18.5-24.9), overweight (25.0-29.9), and
obese (230.0). Smoking status was defined as current, former, or
never, and alcohol intake was harmonized into monthly drinking
frequency (non-drinker, 1-5, 5-10, 210 times/month, or uncertain).
Comorbidities (yes/no) included hypertension, heart failure,
coronary heart disease, stroke, cancer, liver disease, chronic kidney
disease, arthritis, gout, asthma, chronic bronchitis, emphysema,
and COPD. Diabetes was defined by self-report, medication use, or
laboratory criteria (HbAlc 26.5%, fasting glucose =126 mg/dL, or
OGTT 2200 mg/dL); prediabetes was defined as HbAlc 5.7%-6.4%,
fasting glucose 100-125 mg/dL, or OGTT 140-199 mg/dL; others
were normoglycemic. Hyperlipidemia was based on self-report,
medication use, or labs (total cholesterol >240 mg/dL, LDL-C
2160 mg/dL, HDL-C <40 mg/dL, or triglycerides >200 mg/dL).
Laboratory covariates included hemoglobin (HGB), white
blood cell count (WBC), platelet count (PLT), albumin (ALB),
creatinine (Cr), blood urea nitrogen (BUN), total bilirubin
(TBIL), sodium (Na), potassium (K), calcium (Ca), alanine
aminotransferase (ALT), aspartate aminotransferase (AST), lactate
dehydrogenase (LDH), serum osmolality (OSM), and C-reactive
protein (CRP). Inflammation-related indices were also derived
and analyzed.

Definition of inflammatory markers

NMLAR = (Neutrophil% x Monocyte% x 100)/(Lymphocyte%
x Albumin [g/dL]).

NAPR = Neutrophil%/Albumin [g/dL] (Su et al., 2025).

SIRI (Neutrophil Count [10°/uL] x Monocyte Count
[10%/uL])/Lymphocyte Count [10°/uL] (Zhang and Cheng, 2024).

PLR Platelet [10%/uL]/Lymphocyte
[10%/uL] (Tan et al., 2024).

NLR Neutrophil Count [10*/uL]/Lymphocyte Count
[10%/uL] (Fu et al., 2025).

MLR Monocyte Count [10°/uL]/Lymphocyte Count
[10*/uL] (Fu et al., 2025).

Count Count
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FIGURE 1
Flowchart of the study.

Statistical analysis

All statistical analyses were performed using R software
(version 4.4.0). The proportion of missing values for all included
variables was <30% and imputed using the KNN algorithm.
Baseline characteristics were summarized according to NMLAR
quartiles: continuous variables were expressed as medians with
interquartile ranges [Ql, Q3] and compared using one-way
ANOVA or Kruskal-Wallis H tests, while categorical variables
were presented as frequencies (%) and compared using chi-square
tests. The discriminatory and predictive ability of NMLAR and
other inflammatory indices for both CLRD-specific and all-cause
mortality were assessed using ROC curves, with DeLong’s test
applied for AUC comparisons. To identify important predictors
associated with mortality outcomes, three machine-learning
algorithms—SVM-RFE, XGBoost, and Boruta—were applied
separately (Fu et al, 2024), and the top 10 predictors from
each algorithm were combined to form a unified feature set
(Liao et al., 2025). Cox proportional hazards models were then
constructed with NMLAR included as both a continuous and
categorical variable (quartiles): Model 1 was unadjusted, Model
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2 adjusted for age and sex, and Model 3 further adjusted for the
unified feature set. Restricted cubic splines (RCS) were fitted to
explore potential nonlinear dose-response relationships between
NMLAR and mortality risk. The optimal cutoff value of NMLAR
was determined using the Youden index to stratify participants
into high- and low-risk groups. Subgroup analyses and sensitivity
analyses were conducted according to demographic and disease
characteristics. Model performance was evaluated by discrimination
(time-dependent C-index), calibration (calibration curves with
1,000 bootstrap resamples at 60 months), and clinical utility
(decision curve analysis, DCA) (Liao et al., 2025; Wan et al., 2025).
Finally, an internal temporal validation was conducted using the
NHANES 2015-2018 cohort of participants with CLRD to further
assess model robustness and generalizability.

We externally validated the prognostic value of NMLAR in two
ICU cohorts with different analytic frameworks. In the MIMIC-IV
v3.1 cohort, Cox proportional-hazards models were constructed in
three stages: Model 1 included NMLAR alone; Model 2 additionally
adjusted for demographic and laboratory covariates aligned with
NHANES; and Model 3 further incorporated ICU-specific variables
including SOFA score, continuous renal replacement therapy
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(CRRT), invasive mechanical ventilation, and vasopressor use.
Mortality endpoints were assessed at 7, 14, 30, 90, and 365 days after
ICU admission. In the Zhejiang Provincial ICU cohort, models were
specified in accordance with the NHANES framework but tailored
to the available sample size and follow-up horizon. Cox models
included NMLAR alone (Model 1), adjustment for demographic
and laboratory covariates (Model 2), and further adjustment for
comorbidities (Model 3). The primary outcome was 30-day all-cause
mortality. Model performance was evaluated using AUC, Harrell’s
C-index, calibration curves, and DCA. RCS was fitted within the Cox
framework to examine potential nonlinear associations between
NMLAR and mortality, and subgroup analyses were performed to
test the robustness of findings across clinically relevant strata. In the
Zhejiang ICU EHR system, smoking status could not be ascertained;
therefore, for model evaluation, we introduced an alternative Model
4 (assuming all patients were smokers) and compared it with Model
3 (assuming all patients were non-smokers).

Results
Assessment of immune cell infiltration

Using CIBERSORT (LM22) deconvolution (Figure 2), we
compared relative immune-cell fractions between CLRD cohorts
and controls. In COPD (Figure 2A), monocyte-lineage fractions
were significantly higher (p = 0.008), lymphocytes were lower
(p = 0.007), and neutrophils showed a trend toward increase (p
= 0.065). In asthma (Figure 2B), both neutrophil and monocyte-
lineage fractions were elevated (p = 0.031 and 0.033), while
lymphocytes were reduced with borderline significance (p =
0.050). In the rat CS + LPS model (Figure 2C), innate fractions
(neutrophils, monocytes) increased and lymphocytes decreased;
NaHS partially reversed these changes, whereas PPG reinforced
them. Results in AECOPD (Supplementary Figure S1) showed
the same directionality. Collectively, these findings indicate that
immune-cell fraction profiles sensitively reflect CLRD-associated
disease states.

Baseline characteristics of the study
population

A total of 9,236 participants with CLRD were included in
this study. Participants were categorized into quartiles based on
NMLAR levels, and their baseline characteristics are presented
in Table 1. As NMLAR increased, the median age rose from
43 years (IQR: 30-55) in QI to 56 years (IQR: 41-71) in Q4 (p <
0.001). The proportion of females declined across quartiles, from
63% in Q1 to 48% in Q4 (p < 0.001). Regarding race/ethnicity,
the proportion of non-Hispanic White participants increased with
higher NMLAR, while that of Mexican Americans and non-
Hispanic Black participants decreased (p < 0.001). Educational
attainment differed significantly among groups (p = 0.003), with
fewer individuals in Q4 having education beyond high school.
Similarly, the proportion of low PIR was higher in Q4 (p = 0.015).
A higher NMLAR was associated with increased prevalence of
comorbidities including CKD, arthritis, COPD, hypertension, HE,
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CHD, and cancer (all p < 0.001). The prevalence of diabetes
rose from 12% in Q1 to 19% in Q4, whereas the prevalence of
asthma declined with increasing NMLAR (p < 0.001). In terms
of health behaviors, the proportions of current and never smokers
decreased across NMLAR quartiles, while the proportion of former
smokers increased (p < 0.001). Participants reporting heavy alcohol
consumption (>10 times/month) were more common in Q4 (22%)
compared to Q1 (17%) (p = 0.001). For laboratory findings, levels
of LDH, WBC, Cr, BUN, and CRP were significantly elevated in
higher NMLAR quartiles, while Alb levels showed a decreasing
trend (all p < 0.001). Follow-up duration was shorter in participants
with higher NMLAR (p < 0.001). Composite inflammatory indices
including NLR, MLR, SIRI, IgSII, IgPLR, and NAPR increased
consistently across quartiles (all p < 0.001). Notably, CLRD-specific
mortality rose from 1.0% in QI to 5.4% in Q4 (p < 0.001). In
the NHANES 2015-2018 cohort (Supplementary Table S1), similar
baseline characteristics were observed, with deceased participants
exhibiting significantly higher NMLAR levels (P < 0.001).

ROC curve analysis

In predicting CLRD-specific mortality (Figure 3A), NMLAR
achieved the highest area under the curve (AUC = 0.675), slightly
outperforming SIRI (AUC = 0.669, p = 0.573), MLR (AUC = 0.655,
p =0.007), and NLR (AUC = 0.646, p = 0.012), and demonstrating
significantly better discrimination than NAPR (AUC = 0.625, p =
0.001), CRP (AUC = 0.612, p = 0.006), and IgPLR (AUC = 0.588,
p < 0.001). Similarly, in predicting all-cause mortality (Figure 3B),
NMLAR vyielded the highest AUC (0.661), exceeding those of MLR
(0.648), SIRI (0.631), NAPR (0.614), CRP (0.611), NLR (0.611), and
1gPLR (0.555), all with p-values <0.001. These findings indicate that
NMLAR demonstrates superior discriminative ability compared
with most other inflammatory markers for both CLRD-specific and
all-cause mortality.

Feature selection

Given the complex survey design of the NHANES database,
we first applied weighted resampling to account for sampling
weights prior to conducting machine learning analyses. Three
established algorithms—Boruta, SVM-RFE, and XGBoost—were
employed to identify the most relevant predictors for CLRD-
specific and all-cause mortality. NMLAR consistently ranked as
the third most important feature for CLRD-specific mortality
across all three machine learning algorithms (Figure 4). Specifically,
it ranked third based on mean Z-score importance in the
Boruta algorithm (Figure 4A; Supplementary Figure S2), was the
third-to-last feature eliminated in SVM-RFE (Figure 4C), and
also held the third position according to both SHAP value
and Gain-based importance in the XGBoost model (Figure 6A;
Supplementary Figure S3)—consistently following only age and
smoking across all methods. For all-cause mortality (Figure 5),
NMLAR also demonstrated high importance, ranking among
the top predictors across all three algorithms—fifth by Z-score
(Figure 5A; Supplementary Figure S4), fourth-to-last in SVM-RFE
(Figure 5C), and within the top eight by both SHAP value and
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changes, while PPG reinforced them.

Immune cell infiltration in CLRD. CIBERSORT (LM22) analysis showed higher monocyte-lineage and neutrophil fractions with reduced lymphocytes in
COPD (A) and asthma (B). In the rat CS + LPS model (C), innate immune fractions increased and lymphocytes decreased; NaHS partly reversed these

Gain in the XGBoost model (Figure 6B; Supplementary Figure S5).
These findings indicate that NMLAR is one of the key contributors
to model output across diverse analytical frameworks. Feature
selection based on SVM-RFE was performed separately for CLRD-
specific and all-cause mortality. As shown in the performance
curves, for CLRD-specific mortality (Figure 4D), the model reached
an AUC of 0.882 when the top 10 features were retained, with
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only marginal improvements observed beyond this point (peak
AUC = 0.906 at 30 features). For all-cause mortality (Figure 5D),
the AUC increased modestly from 0.797 (5 features) to 0.808
(10 features), with limited gains afterward (maximum AUC =
0.840). Considering the trade-off between model performance and
complexity, we retained the top 10 variables in both models for
subsequent analyses. The top 10 features identified by each algorithm
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TABLE 1 Baseline characteristics stratified by NMLAR.

NMLAR (N = 9236)° Quartile 1 (<2.64) | Quartile 2 Quartile 3 Quartile 4 (>5.13)  p.value®
(2.64-3.65) (3.65-5.13)

Age 43 (30, 55) 45 (31, 57) 48 (35, 62) 56 (41,71) <0.001

Gender% <0.001

Female 1,419 (63%) 1,294 (55%) 1,229 (54%) 1,095 (48%)

Male 890 (37%) 1,015 (45%) 1,080 (46%) 1,214 (52%)

Race% <0.001

Mexican american 288 (5.2%) 304 (5.1%) 285 (4.2%) 234 (3.8%)

Other hispanic 183 (5.2%) 176 (5.3%) 173 (4.9%) 141 (4.1%)

Non-hispanic white 1,070 (71%) 1,371 (80%) 1,471 (83%) 1,570 (84%)

Non-hispanic black 768 (18%) 458 (9.5%) 380 (7.9%) 364 (8.0%)

Education% 0.003

<high school 692 (22%) 661 (20%) 628 (18%) 713 (23%)

High school 491 (23%) 506 (23%) 555 (26%) 535 (25%)

>high school 1,126 (54%) 1,142 (57%) 1,126 (56%) 1,061 (52%)

PIR% 0.015

low (<1.5) 1,027 (34%) 928 (29%) 905 (28%) 967 (31%)

middle (1.5-4.0) 808 (39%) 872 (40%) 867 (40%) 900 (41%)

high (>4.0) 474 (28%) 509 (31%) 537 (32%) 442 (28%)

BMI% 0.056

underweight (<18.5) 51 (2.7%) 49 (2.0%) 31(1.3%) 47 (2.1%)

normal (18.5-24.9) 656 (29%) 588 (26%) 599 (28%) 637 (29%)

overweight (25.0-29.9) 674 (30%) 710 (32%) 723 (29%) 744 (32%)

obese (>30.0) 928 (38%) 962 (40%) 956 (41%) 881 (37%)

Smoker% <0.001

Never smoker 1,101 (43%) 1,108 (47%) 1,050 (44%) 884 (37%)

Former smoker 492 (22%) 538 (23%) 625 (26%) 843 (34%)

Current smoker 716 (35%) 663 (30%) 634 (29%) 582 (29%)

Alcohol% 0.001

Non-drinker 602 (20%) 543 (19%) 538 (18%) 536 (20%)

1-5 drinks/month 1,057 (47%) 1,102 (48%) 1,082 (49%) 1,038 (45%)

5-10 drinks/month 168 (8.5%) 212 (10%) 183 (9.1%) 151 (7.9%)

10+ drinks/month 352 (17%) 346 (18%) 408 (20%) 466 (22%)

Wait 130 (7.5%) 106 (4.8%) 98 (3.8%) 118 (4.9%)

(Continued on the following page)
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TABLE 1 (Continued) Baseline characteristics stratified by NMLAR.

10.3389/fphys.2025.1708302

NMLAR (N = 9236)2 Quartile 1 (<2.64) | Quartile 2 Quartile 3 Quartile 4 (>5.13) p.value®
(2.64-3.65) (3.65-5.13)
Comorbidities (YES%)
Liver disease 117 (4.4%) 93 (4.0%) 114 (5.0%) 131 (5.0%) 0.551
Arthritis 753 (30%) 826 (33%) 867 (35%) 1,017 (42%) <0.001
COPD 1,216 (53%) 1,286 (55%) 1,318 (55%) 1,606 (69%) <0.001
Asthma 1,504 (64%) 1,463 (63%) 1,396 (61%) 1,160 (51%) <0.001
Diabetes <0.001
Normal 1,278 (61%) 1,272 (61%) 1,212 (58%) 1,075 (50%)
Prediabetes 645 (27%) 663 (26%) 662 (28%) 702 (31%)
Diabetes 386 (12%) 374 (12%) 435 (14%) 532 (19%)
Hypertension 850 (32%) 842 (33%) 948 (36%) 1,114 (45%) <0.001
Cancer 167 (8.3%) 212 (10.0%) 286 (13%) 408 (17%) <0.001
HE* 74 (2.6%) 87 (2.8%) 130 (4.5%) 270 (9.8%) <0.001
HLP® 1,165 (51%) 1,176 (51%) 1,181 (51%) 1,246 (54%) 0.41
CKD¢ 61 (2.0%) 64 (2.1%) 77 (2.6%) 158 (5.0%) <0.001
CHD* 90 (3.5%) 100 (4.1%) 149 (5.0%) 245 (9.2%) <0.001
Laboratory test
LDH U/L 127 (112, 143) 126 (112, 142) 129 (114, 144) 132 (118, 150) <0.001
AST U/L 21 (16, 28) 21(17,29) 21 (16,29) 20 (16, 28) 0.087
ALT U/L 23(19,27) 23(19,27) 23(19,27) 23(19,27) 0.844
HGB g/dL 14.30 (13.40, 15.10) 14.40 (13.50, 15.40) 14.50 (13.50, 15.40) 14.30 (13.10, 15.40) <0.001
WBC 1000/uL 7.00 (5.70, 8.50) 7.20 (6.00, 8.60) 7.10 (5.90, 8.80) 7.60 (6.30, 9.30) <0.001
PLT 1000/uL. 260 (220, 303) 256 (220, 299) 256 (217, 299) 250 (209, 298) 0.005
ALB g/dL 4.30 (4.10, 4.50) 4.30 (4.10, 4.50) 4.30 (4.00, 4.50) 4.10 (3.90, 4.40) <0.001
Cr mg/dL 0.80 (0.70, 0.94) 0.82 (0.70, 0.99) 0.84 (0.70, 1.00) 0.90 (0.72, 1.02) <0.001
Bun mg/dL 12.0 (9.0, 14.0) 12.0 (10.0, 15.0) 12.0 (10.0, 16.0) 13.0 (10.0, 17.0) <0.001
Ga mg/dL 9.50 (9.30, 9.70) 9.50 (9.20, 9.70) 9.40 (9.20, 9.70) 9.40 (9.20, 9.60) <0.001
Na mmol/L 139.0 (138.0, 141.0) 139.0 (138.0, 141.0) 139.0 (138.0, 140.9) 139.0 (137.0, 141.0) 0.149
K mmol/L 4.00 (3.80, 4.20) 4.00 (3.80, 4.20) 4.00 (3.80, 4.20) 4.00 (3.80, 4.30) <0.001
TBIL umol/L 0.60 (0.50, 0.80) 0.70 (0.50, 0.80) 0.70 (0.50, 0.80) 0.70 (0.50, 0.80) 0.003
OSM3 mmol/kg 278.0 (275.0, 280.0) 278.0 (275.0, 281.0) 278.0 (275.0, 281.0) 278.0 (275.0, 282.0) 0.002
CRP mg/dL 0.20 (0.09, 0.41) 0.21 (0.09, 0.44) 0.24 (0.10, 0.49) 0.30 (0.15, 0.65) <0.001
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TABLE 1 (Continued) Baseline characteristics stratified by NMLAR.
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NMLAR (N = 9236)2 Quartile 1 (<2.64) | Quartile 2 Quartile 3 Quartile 4 (>5.13) p.value®
(2.64-3.65) (3.65-5.13)

Novel inflammatory marker

NLRY 1.33 (1.06, 1.69) 1.83 (1.57,2.17) 2.29 (1.94,2.71) 3.25(2.67, 4.13) <0.001

MLRY 0.18 (0.15, 0.20) 0.24 (0.21, 0.26) 0.30 (0.27, 0.33) 0.41 (0.36, 0.50) <0.001

SIRI¢ 0.62 (0.46, 0.81) 0.97 (0.80, 1.18) 1.31 (1.06, 1.61) 2.14 (1.68, 2.83) <0.001

1gstd 5.86 (5.56, 6.13) 6.17 (5.92, 6.41) 6.37 (6.12, 6.62) 6.72 (6.44, 7.00) <0.001

IgPLR? 4.59 (4.37, 4.80) 4.75 (4.56, 4.94) 4.89 (4.68, 5.10) 5.09 (4.87, 5.32) <0.001

NAPRY 11.76 (10.43,13.11) 13.37 (12.20, 14.59) 14.37 (13.24, 15.64) 16.03 (14.81,17.80) <0.001

Outcome

Follow-up time (months) 139 (96, 193) 144 (98, 188) 136 (94, 188) 119 (75, 174) <0.001

CLRD-specific mortality% 32 (1.0%) 34 (1.2%) 71 (2.7%) 130 (5.4%) <0.001

All-cause mortality% 317 (11%) 414 (15%) 501 (17%) 933 (33%) <0.001

“n (unweighted) (%); Median (IQR).

bchi-squared test with Rao & Scott’s second-order correction; Wilcoxon rank-sum test for complex survey samples.

“HF: heart failure, HLP: hyperlipidemia, CKD: chronic kidney disease, CHD: coronary heart disease, OSM:serum osmolality.

INLR: neutrophil-to-lymphocyte ratio, MLR:monocyte-to-lymphocyte ratio, SIRI:systemic inflammation response index, lgSIL:logarithmic systemic immune-inflammation index,
IgPLR:logarithmic platelet-to-lymphocyte ratio, NPAR: neutrophil percentage to albumin ratio. NMLAR: (Neutrophil% x Monocyte% x 100)/(Lymphocyte% x Albumin [g/dL]).

ROC Curves for CLRD-Related Mortality

ROC Curves for All-Cause Mortality
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FIGURE 3

Comparison of the discriminatory ability of NMLAR and other inflammatory markers using ROC curves for mortality outcomes. (A) ROC curves for
CLRD-specific mortality. (B) ROC curves for all-cause mortality. NMLAR demonstrated the highest area under the curve (AUC) among all tested
markers in both outcomes (AUC = 0.675 for CLRD-specific mortality; AUC = 0.661 for all-cause mortality). Other markers compared include SIRI, MLR,
NLR, NAPR, CRP, and IgPLR. P values were calculated using DelLong’s test for comparing AUCs between NMLAR and each of the other markers.
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were merged to form the covariate set used in Model 3. For the
CLRD-specific mortality model, the final covariates included: age,
smoking status, NMLAR, diabetes, LDH, AST, ALT, WBC, PLT,
Cr, BUN, K, CRP, NLR, IgPLR, and education level. For the all-
cause mortality model, selected variables included: age, LDH, PLT,
K, hypertension, NMLAR, BUN, CRP, Cr, NLR, IgPLR, diabetes,
arthritis, smoking status, and Na.

Cox regression analysis

In the Cox proportional hazards models, NMLAR remained
significantly associated with both CLRD-specific and all-cause
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mortality across all levels of model adjustment (Table 2). In the
fully adjusted model (Model 3), which accounted for covariates
selected via machine learning, the HRs decreased slightly with
deeper adjustment but retained statistical significance. When
modeled as a categorical variable, participants in the highest
NMLAR quartile (Q4) had a significantly elevated risk of CLRD-
specific mortality compared to the lowest quartile (Q1) (HR
= 2.55, 95% CI: 1.21-5.36). Similarly, Q4 was associated with
increased all-cause mortality (HR = 1.62, 95% CI: 1.28-2.06).
When treated as a continuous variable, each one-unit increase
in NMLAR was associated with a 7% increase in CLRD-specific
mortality risk (HR = 1.07, 95% CI: 1.01-1.14) and an 8% increase
in all-cause mortality risk (HR = 1.08, 95% CI: 1.06-1.11).
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this point, supporting the selection of 10 variables for final modeling.

Feature selection results for CLRD-specific mortality using Boruta and SVM-RFE algorithms. (A) Importance ranking of features by Boruta, where green
boxplots represent features classified as “confirmed important.” NMLAR ranked third in terms of mean Z-score importance, following age and smoking
status. (B) Trajectory plot showing the stability of feature importance scores over 20 iterations in Boruta. The top three consistently important
features—age, smoking status, and NMLAR—are highlighted in orange. (C) The last 20 features eliminated by SVM-RFE, ranked by overall importance.
NMLAR was the third-to-last feature eliminated, suggesting high predictive relevance. (D) SVM-RFE performance curve showing AUC values
corresponding to different numbers of retained features. The model achieved an AUC of 0.882 with the top 10 features, with marginal gains beyond
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Stratified analyses by disease subtype demonstrated consistent
positive associations. Among individuals with generalized COPD
(including emphysema and chronic bronchitis), those in Q4
had markedly higher risks of CLRD-specific mortality (HR
3.16, 95% CI: 1.34-7.49) and all-cause mortality (HR
1.52, 95% CIL: 1.17-1.96). In the asthma subgroup, Q4 was
associated with elevated CLRD-specific mortality (HR = 2.26,
95% CI: 0.84-6.09) and all-cause mortality (HR = 1.79, 95% CI:
1.27-2.50). As a continuous predictor, NMLAR was associated
with a 7% increase in CLRD-specific mortality (HR 1.07,
95% CI: 1.01-1.14) and a 9% increase in all-cause mortality
(HR = 1.09, 95% CI: 1.06-1.12) among the COPD subgroup.
In the asthma subgroup, the corresponding HRs were 1.11
(95% CI: 1.02-1.20) for CLRD-specific mortality and 1.10
(95% CI: 1.06-1.14) for all-cause mortality. These findings
underscore the robust and independent prognostic value of
NMLAR across different CLRD phenotypes. In addition, trend
tests across NMLAR quartiles were statistically significant
for both CLRD-specific and all-cause mortality in all models
and subgroups, further supporting a consistent dose-response

association.
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Restricted cubic spline analysis

RCS analyses revealed a linear and monotonically increasing
association between NMLAR and both CLRD-specific and all-
cause mortality, with no apparent nonlinear inflection points or
plateau phases. This linear trend was consistently observed in the
overall population as well as in the generalized COPD and asthma
subgroups. For CLRD-specific mortality, the optimal Youden index
cutoff was 3.91 across the total cohort, the COPD subgroup, and
the asthma subgroup. Based on this threshold, individuals were
stratified into high- and low-risk groups. Compared with the low-
risk group, the high-risk group demonstrated significantly increased
risks of CLRD-specific death: overall population HR = 2.12 (95% CI:
1.51-2.96); COPD subgroup HR =2.16 (95% CI: 1.34-3.47); asthma
subgroup HR = 2.63 (95% CI: 1.36-5.06). For all-cause mortality,
the optimal Youden index was 4.57 in the overall population,
5.05 in the generalized COPD subgroup, and 4.42 in the asthma
subgroup. Stratified analyses indicated that high-risk individuals
had significantly greater all-cause mortality: overall HR = 1.28 (95%
CI: 1.13-1.44); COPD subgroup HR = 1.35 (95% CI: 1.15-1.59);
asthma subgroup HR = 1.47 (95% CI: 1.22-1.76). These findings
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FIGURE 5
Feature selection results for all-cause mortality using Boruta and SVM-RFE algorithms. (A) Feature importance ranking based on the Boruta algorithm.
Green boxplots indicate features confirmed as important, with NMLAR ranking fifth in mean Z-score importance. (B) Feature stability plot across 20
Boruta iterations, highlighting age, BUN, LDH, and NMLAR as consistently top-ranked features. (C) The last 20 features eliminated in SVM-RFE, where
NMLAR was the fourth-to-last feature removed, suggesting strong predictive value. (D) SVM-RFE performance curve showing AUC values for different
numbers of selected features. AUC increased with more variables and plateaued beyond 30 features, reaching 0.840. The top 10 variables (AUC =
0.808) were retained in the final model to balance performance and simplicity.

further underscore the prognostic utility of NMLAR as a robust,
continuous inflammatory biomarker for mortality risk stratification
across diverse CLRD phenotypes (Figure 7).

Subgroup Analysis
Subgroup analyses across demographic characteristics,
socioeconomic status, smoking status, and comorbidities

demonstrated that elevated NMLAR was consistently associated
with increased mortality risk. For all-cause mortality (Figure 8), the
association was evident in both younger (<60 years: HR = 1.20, 95%
CI: 1.10-1.31) and older participants (=60 years: HR = 1.06, 95% CI:
1.04-1.09), with a significant interaction for age (P for interaction
= 0.003), indicating a stronger effect in the younger population;
results were generally stable across sex, education, PIR, smoking,
and comorbidity subgroups including diabetes, liver disease, CKD,
hypertension, CHD, and ACO (yes = asthma-COPD overlap; no =
asthma or COPD alone). For CLRD-specific mortality (Figure 9),
significant associations were observed in women, participants with
high school education, low PIR, non-diabetic individuals, those
without liver disease as well as those with liver disease, and in
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participants with hypertension or CHD, with hazard ratios ranging
from 1.07 to 1.41. Importantly, a significant interaction was detected
for ACO (P for interaction = 0.045), with a stronger association in
the asthma-COPD overlap subgroup (HR =1.15, 95% CI: 1.04-1.25)
compared with asthma or COPD alone, while no other interactions
reached significance.

Model performance evaluation

We comprehensively evaluated the performance of three Cox
proportional hazards models in predicting both CLRD-specific
and all-cause mortality, using time-dependent C-index, DCA,
and bootstrap-based calibration curves. In the training cohort,
Model 3 demonstrated consistently superior predictive performance
compared to Model 1 and Model 2. As shown in Figure 10,
Model 3 achieved the highest C-index throughout the follow-
up period for both outcomes. Specifically, for CLRD-specific
mortality, the C-index at 3 months, 6 months, 1 year, 3 years,
and 5years was 0.87, 0.89, 0.90, 0.90, and 0.92 (Figure 10A),
respectively. For all-cause mortality, corresponding values were
0.90, 0.89, 0.90, 0.94, and 0.94 (Figure 10D). DCA curves further

frontiersin.org


https://doi.org/10.3389/fphys.2025.1708302
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Chen et al. 10.3389/fphys.2025.1708302
CLRD-specific mortality All-cause mortality

Ago [2205 e e e ee @ emeoer mibe e ee— Age [2250 x 0
‘Smokernever smoker | 0.609 00006 ammn Smokernever smoker | 0.419
NMLAR | 0.588 | mme LDH | 0.340
AST | 0441 oo K |0.253
PLT [0.275 = CRP | 0.241
Bun | 0.255 ce=wgm Na [0221
K 0202 q&—.. . PIRhigh [ 0216
NLR | 0195 e NMLAR [0211
Cr|0.180 1 Bun [0.201
IgPLR 0474 o or [0485
CRP | 0.161 . ALT [0478
WBC | 050 F. PLT | 0160
ALT | 0.142 HGB | 0.153
0SM | 0428 - HBP | 0.151
HF |01 — Sex | 0.441
i bottd = TBIL [ 0437
BmiGroupobese | 0.107 NLR | 0133
ALB | 0098 1gPLR | 0.129
TBIL [0.097 > ART | 0426
o [o0es “ AST | 0:125
DiabetesPreDM | 0.070 DiabetesDiabetes | 0.116
Education>high school | 0.066 WBG | 0111
Na | 0.054 R

a [0,

s"‘“”"’"““"‘:"ﬁ,’ oim ‘Smokerformer smoker | 0.076
BriGroupoveweight [0.034 PiRaiddo 0058
a'; ggfi Education>high school | 0.053
Educationhigh schoat | 5ot Alcohol10+ drinks/month | 0.053
e o 0:09 DiabetesPreDM | 0.050
- Liver [ 0048
Alcoholwait | 0.009 » tr [ots
PIRmiddle | 0.008 b BmiGroupoverweight | 0.034
DiabetesDiabetes | 0.007 % Educationhigh school | 0.031
_ Liver | 0.006 BmiGroupobese | 0.022
Alcohols-10 drinksimonth | 0.005 RaceMexican American | 0014
RaceNon-Hispanic White | 0.004 CA | 0014
RaceNon-Hispanic Black | 0.004 s AlooholNon-drinker | 0.013
Alcohol10+ drnksimonih |0.004 Alcoholwalt | 0.013
AlcoholNon-drinker [ 0.004 RaceNon-Hispanic White | 0.013
Sex | 0.000 HLP [0.011
CKD 0000 BriGroupunderwelght | 0.008
CHD [0.000 CKD [0.007
RaceMexican American | 0.000 i Alcohol5-10 drinks/month | 0005
RaceOther Hispanic | 0.000 v RaceOther Hispanic | 0.005
PIRhigh | 0000 . RaceNon-Hispanic Black | 0.004
i 0.000 4 CHD | 0.002

) 3 0 3 6
'SHAP value (impact on model output)
L ——
Feature value |, High

FIGURE 6

SHAP summary plots derived from the XGBoost model, illustrating the impact of individual features on the prediction of CLRD-specific and all-cause
mortality. (A)For CLRD-specific mortality, the most influential predictors were age, smoking status (never smoker), and NMLAR, with higher SHAP
values indicating greater impact on model predictions. (B)For all-cause mortality, age remained the most impactful variable, followed by smoking
status, LDH, and CRP. Notably, NMLAR ranked 8th in mean SHAP value among all predictors for all-cause mortality. Each point represents the SHAP
value of a feature for a single individual, colored by the feature value (yellow = low, purple = high). Features are ranked by their mean absolute SHAP
value. SHAP values were calculated based on the final XGBoost model to enhance model interpretability.

0
SHAP value (impact on model output)

Feature value |, High

confirmed that Model 3 provided the greatest net clinical benefit
in mortality prediction (Figures 10B,E). Bootstrap calibration plots
demonstrated that Model 3 exhibited the best model calibration
and goodness-of-fit among all models (Figures 10C,F). In the
external validation cohort from NHANES 2015-2018, Model 3
maintained strong generalizability. In predicting all-cause mortality,
Model 3 consistently achieved the highest C-index, reaching
0.93 at 5years of follow-up (Figure 10G). DCA analysis in the
validation set again showed superior net clinical benefit for Model 3
(Figure 10H), and calibration plots confirmed the model’s reliability
and consistency (Figure 10I).

External validation

In the MIMIC cohort, 2,120 patients were included. Crude
all-cause mortality at 7, 14, 30, 90, and 365 days was 8.6%,
13.0%, 16.0%, 21.0%, and 31.0%, respectively. The baseline table
demonstrated a monotonic dose-response: across increasing
NMLAR quartiles (Q1-Q4), mortality rose for all endpoints
(Supplementary Table S2). Consistent with NHANES, higher
NMLAR was positively associated with subsequent mortality and
remained statistically significant after progressive adjustment at
14-365 days. When modeled continuously, Model 3 showed that
per-unit increases in NMLAR were associated with significantly
higher mortality at 14 days (HR 1.042, 95% CI 1.010-1.075, p <
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0.01), 30 days (HR 1.048, 95% CI 1.012-1.086, p < 0.01), 90 days
(HR 1.044, 95% CI 1.011-1.078, p < 0.01), and 365 days (HR
1.040, 95% CI 1.007-1.074, p = 0.016). In contrast, the 7-day
association was nonsignificant (HR 1.034, p = 0.529). In quartile
analyses (QI reference), Model 3 estimated Q4 vs. Q1 HRs (95%
Cls) of 2.257 (1.313-3.882) at 14 days, 2.075 (1.284-3.354) at
30 days, and 1.558 (1.042-2.331) at 90 days (all significant); the
365-day comparison was borderline (1.353 [0.970-1.889], p =
0.075), and the 7-day comparison was not significant (1.638
[0.839-3.201], p = 0.149). P for trend across quartiles was <0.01
at all horizons, indicating increasing risk with higher NMLAR
(Table 3). In external validation by transporting the NHANES
models to MIMIC without refitting, Model 3 achieved C-indices
of 0.708, 0.721, 0.761, 0.785, and 0.740 at 7, 14, 30, 90, and 365
days, respectively—consistent with moderate discrimination—with
good calibration and greater clinical net benefit on decision-curve
analysis. RCS mirrored NHANES, indicating an approximately
linear association between NMLAR and mortality in MIMIC
inpatients. Notably, compared with the NHANES general
population, the NMLAR distribution in MIMIC was broader
and right-shifted, reflecting a higher central tendency and greater
dispersion. Threshold analysis further identified a cutoff at 12.10:
below this value, each 1-unit increase in NMLAR was not associated
with a significant change in mortality risk (HR = 1.003, 95% CI:
1.000-1.007), whereas above this threshold, the risk increased
1.023, 95% CI: 1.008-1.037) (Figure 11;

significantly (HR
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TABLE 2 Cox regression analysis of NMLAR and mortality.

Model Continuous Quiartile 1 Quartile 2 Quartile 4 p for trend

CLRD-specific mortality

Model 1 1.22 (1.18-1.26) <0.001 Reference 1.21 (0.66-2.24) 0.536 2.73 (1.60-4.65) <0.001 6.33 (3.88-10.34) <0.001
<0.001

Model 2 1.12 (1.09-1.16) <0.001 Reference 1.02 (0.56-1.85) 0.961 1.73 (1.02-2.93) 0.043 2.89 (1.80-4.66) <0.001 <0.001

Model 3 1.07 (1.01-1.14) 0.021 Reference 1.09 (0.59-2.03) 0.776 1.86 (1.02-3.37) 0.042 2.55(1.21-5.36) 0.014 0.003

CLRD-specific mortality in COPD

Model 1 1.19 (1.15-1.23) <0.001 Reference 1.62 (0.78-3.37) 0.195 3.67 (2.07-6.52) <0.001 7.32(4.06-13.21) <0.001
<0.001

Model 2 1.12 (1.09-1.16) <0.001 Reference 1.41 (0.71-2.81) 0.322 2.51 (1.42-4.44) 0.001 3.82 (2.15-6.81) <0.001 <0.001

Model 3 1.07 (1.01-1.14) 0.027 Reference 1.54 (0.75-3.18) 0.238 2.67 (1.34-5.34) 0.005 3.16 (1.34-7.49) 0.009 0.002

CLRD-specific mortality in asthma

Model 1 1.26 (1.20-1.32) <0.001 Reference 0.42 (0.14-1.22) 0.110 1.89 (0.93-3.82) 0.079 5.89 (3.00-11.56) <0.001
<0.001

Model 2 1.15 (1.09-1.21) <0.001 Reference 0.35 (0.12-1.04) 0.060 1.24 (0.58-2.64) 0.575 2.54 (1.24-5.19) 0.010 <0.001

Model 3 1.11 (1.02-1.20) 0.011 Reference 0.42 (0.14-1.27) 0.126 1.33 (0.55-3.19) 0.524 2.26 (0.84-6.09) 0.105 0.021

All-cause mortality

Model 1 1.19 (1.16-1.21) <0.001 Reference 1.39 (1.13-1.70) 0.001 1.66 (1.36-2.02) <0.001 3.69 (3.06-4.45) <0.001 <0.001

Model 2 1.11 (1.08-1.13) <0.001 Reference 1.21 (0.99-1.49) 0.061 1.13 (0.93-1.38) 0.213 1.89 (1.56-2.29) <0.001 <0.001

Model 3 1.08 (1.06-1.11) <0.001 Reference 1.25 (1.00-1.56) 0.050 1.15 (0.92-1.43) 0.214 1.62 (1.28-2.06) <0.001 <0.001

All-cause mortality in COPD

Model 1 1.16 (1.14-1.19) <0.001 Reference 1.18 (0.94-1.47) 0.145 1.58 (1.30-1.93) <0.001 3.30 (2.75-3.95) <0.001 <0.001

Model 2 1.09 (1.07-1.11) <0.001 Reference 1.03 (0.84-1.27) 0.780 1.10 (0.90-1.35) 0.362 1.73 (1.41-2.13) <0.001 <0.001

Model 3 1.09 (1.06-1.12) <0.001 Reference 1.05 (0.84-1.30) 0.667 1.11 (0.88-1.39) 0.381 1.52 (1.17-1.96) <0.001 <0.001

All-cause mortality in asthma

Model 1 1.21 (1.18-1.24) <0.001 Reference 1.35 (1.01-1.80) 0.044 1.64 (1.26-2.14) <0.001 3.60 (2.83-4.59) <0.001 <0.001

Model 2 1.12 (1.09-1.14) <0.001 Reference 1.21 (0.88-1.65) 0.236 1.27 (0.92-1.75) 0.141 1.95 (1.46-2.60) <0.001 <0.001

Model 3 1.10 (1.06-1.14) <0.001 Reference 1.38 (1.01-1.88) 0.045 1.37 (0.99-1.90) 0.061 1.79 (1.27-2.50) <0.001 <0.001

Model 1 was unadjusted.

Model 2 was adjusted for age and sex.

Model 3 was further adjusted for key predictors identified by three machine learning methods. For the CLRD-specific mortality model, covariates included age, smoking status, NMLAR,
diabetes, LDH, AST, ALT, WBC, PLT, cr, BUN, K, CRP, NLR, IgPLR, and education level. For the all-cause mortality model, covariates included age, LDH, PLT, K, hypertension, NMLAR, BUN,
CRP, cr; NLR, IgPLR, diabetes, arthritis, smoking status.

Supplementary Figure S6). Subgroup analyses yielded consistent — 1-3(allp<0.01) (Table 3; Supplementary Table S4). Restricted cubic
spline analysis confirmed a linear association (p-overall <0.01; p-
nonlinear = 0.287), with a threshold identified at NMLAR = 13.32,
above which mortality risk increased sharply. Model discrimination
improved progressively, with AUCs of 0.777, 0.802, and 0.879 for

Models 1-3, respectively. Decision curve and calibration analyses

results across all predefined strata (Supplementary Table S3).

In the Zhejiang Provincial ICU cohort (n = 161), higher NMLAR
levels were significantly associated with increased 30-day mortality,
with HRs per unit increase of 1.139 (95% CI: 1.063-1.221), 1.136
(95% CI: 1.060-1.220), and 1.093 (95% CI: 1.012-1.180) in Models
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covariates included in Model 3. cutoff = Youden index.
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NMLAR

Restricted cubic spline (RCS) analysis of the association between NMLAR and mortality outcomes based on Model 3. (A—C) RCS curves for
CLRD-specific mortality in the overall population (A), COPD subgroup (B), and asthma subgroup (C). (D—F) RCS curves for all-cause mortality in the
overall population (D), COPD subgroup (E), and asthma subgroup (F). The blue lines represent the adjusted hazard ratios (HRs) for mortality across
continuous values of NMLAR, with shaded areas indicating 95% confidence intervals. The red dashed lines indicate the optimal cutoff values identified
using the maximum Youden index, along with corresponding HRs and 95% confidence intervals for values above the cutoff. P values for the overall
association and non-linearity are provided in the top left corner of each plot. Gray bars show the distribution of NMLAR. All models were adjusted for

further demonstrated that the fully adjusted model provided the
greatest net clinical benefit and the best agreement between
predicted and observed 30-day mortality (Figure 12).

Discussion

Immune-infiltration analyses across multiple human cohorts
and experimental models revealed a consistent pattern in both
disease and acute-exacerbation states, characterized by increased
proportions of neutrophils and monocyte-lineage cells and
reduced proportions of lymphocytes. Building on this robust
immune signature, we mapped the transcriptomic deconvolution
pattern—marked by innate immune enrichment and adaptive
lymphocyte
overlooked relative immune-cell proportions in peripheral blood,

depletion—onto clinically accessible but long-
and accordingly developed a composite prognostic index that
integrates the relative neutrophil-monocyte-to-lymphocyte ratio
with serum albumin (NMLAR). Its generalizability and clinical
utility were subsequently validated across multiple population-based
and critically ill cohorts.

In this nationally representative study based on the
NHANES 1999-2018 cycles, we were the first to propose
and systematically evaluate a novel granulocyte ratio-based
inflammatory =~ biomarker—NMLAR. Previous studies have
shown that granulocyte alterations are key features of CLRD
exacerbation (Lopez et al, 2023), and markers such as NLR
and PLR are cost-effective tools for identifying high-risk COPD

patients prone to frequent exacerbations in primary care
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settings (Fu et al, 2025). Although these novel inflammation-
related indices involving neutrophils and lymphocytes have
demonstrated promising predictive value across multiple disease
states, the considerable heterogeneity and complex inflammatory
in CLRDs
biomarkers to inform clinical intervention (Wang et al., 2021).
Monocyte-macrophage populations play a central role in restraining
pulmonary fibrosis, and elevated monocyte levels may reflect

pathways  involved necessitate more accurate

the progression and exacerbation of lower respiratory tract
diseases (Ogger et al, 2020). In COPD lung tissue, enrichment
of pro-inflammatory macrophage/monocyte subsets is believed to
contribute significantly to the persistence of chronic inflammation
(Hu et al, 2023). Conversely, in asthma, increased monocyte
counts have been positively associated with disease severity,
and reductions in monocytes have been shown to alleviate
airway inflammation, improve clinical symptoms, and potentially
slow lung function decline (Alavinezhad et al, 2022). These
findings underscore the rationale for incorporating monocyte
parameters into inflammatory indices in chronic respiratory
disease research. Serum albumin, a major plasma protein involved
in nutritional metabolism and immune modulation, has also
been associated with adverse outcomes in chronic conditions. In
COPD, hypoalbuminemia has been identified as an independent
risk factor for pulmonary hypertension and poor prognosis
(Zhou et al., 2024; Feng et al.,, 2023). Integrating albumin into
prognostic indices is thus well-supported by prior evidence. For
example, the neutrophil percentage to albumin ratio (NPAR) has
been proposed as a dual-purpose biomarker for breast cancer risk
and prognosis, aiding in early detection and personalized treatment
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Subgroup analysis of the association between NMLAR and all-cause mortality based on Model 3.

planning (Su et al., 2025). NMLAR uniquely incorporates elevated
neutrophil and monocyte levels—commonly observed in CLRD
exacerbations (Xu et al., 2024)—into the numerator, while declining
lymphocyte counts and hypoalbuminemia—reflective of impaired
immune function and nutritional status—form the denominator.
Unlike traditional metrics based on absolute granulocyte counts, our
use of relative proportions allows for the dynamic capture of subtle
inflammatory shifts. This ratio structure enhances the sensitivity
and discriminatory capacity of systemic inflammatory markers.
Building upon these insights, we further compared NMLAR with
various established and emerging inflammatory indices using ROC
curve analysis and DeLong tests. Results consistently demonstrated
that NMLAR outperformed other markers in predicting both
CLRD-specific and all-cause mortality, reinforcing its clinical utility.
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In this study, we used three widely applied machine
SVM-RFE, and XGBoost—to

conduct comprehensive feature selection across all candidate

learning  algorithms—Boruta,

variables (Liao et al, 2025). These algorithms are well suited
for high-dimensional data and complex interactions and are
increasingly used in epidemiologic and clinical prognostic
modeling (Guan et al., 2024; Lee et al, 2022). For CLRD-
specific mortality, NMLAR consistently ranked among the top
three predictors across all algorithms—second only to age and
smoking history—and showed substantially greater importance
than traditional inflammatory markers such as NLR, PLR, and
CRP, demonstrating strong robustness and explanatory power.
NMLAR also ranked highly in all-cause mortality models,
supporting its broad predictive value across different mortality
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outcomes. These findings highlight NMLAR as a promising
composite inflammatory-immune biomarker for identifying high-
risk individuals with CLRD. Age remained the strongest predictor
for both mortality outcomes, consistent with previous prognostic
research (Chen et al,, 2025; Wang E et al., 2025). Notably, fewer
variables contributed meaningfully to CLRD-specific mortality
than to all-cause mortality; SHAP plots showed that lower-ranked
factors (e.g., alcohol use, CKD, CHD, sex, race) added minimal
information to the CLRD-specific model, whereas contributions
in the all-cause model were more diffuse. The relatively higher
importance of NMLAR in CLRD-specific mortality models further
suggests that systemic inflammation may play a more central role in
disease-specific death among CLRD patients (Yousuf et al., 2022).
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Importantly, this study did not evaluate NMLAR alone but
incorporated it into Cox proportional hazards models informed
by machine-learning-derived feature importance rankings. Using
AUC to assess SVM-RFE feature subsets, we found that model
discrimination remained stable when the top 10 predictors were
retained, whereas further reduction led to a clear decline; therefore,
these 10 features were selected as covariates. In the CLRD-
specific mortality model, the highest-ranking variables included
inflammation-related markers (NMLAR, WBC, NLR, IgPLR, CRP),
hepatic indices (AST, ALT, LDH), renal markers (Cr, BUN),
electrolytes (K), and smoking and diabetes. The predominance
of suggests that
systemic inflammation and nutritional status are central to CLRD-

inflammation—nutrition-immune variables

specific mortality. In contrast, the all-cause mortality model
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FIGURE 10
Evaluation of model performance across three prognostic models for CLRD-specific mortality, all-cause mortality, and external validation using
NHANES 2015-2018. (A,D,G) Time-dependent concordance index (C-index) curves showing the discrimination ability of Model 1 (red), Model 2 (blue),
and Model 3 (green) over time for CLRD-specific mortality (A), all-cause mortality (D), and the external validation cohort (G). (B,E,H) Decision curve
analysis (DCA) plots illustrating the clinical net benefit of each model across a range of threshold probabilities in the same populations. (C,F,l) Bootstrap
calibration curves (B = 1000) at the 5-year time point evaluating agreement between predicted and observed survival probabilities for each model in
the corresponding cohorts.

included a broader range of comorbidity-related variables (e.g.,
hypertension, arthritis), while still retaining renal, electrolyte,
and inflammatory markers, reflecting the multifactorial etiology
of all-cause mortality and the dilution of respiratory-specific
mechanisms by non-respiratory causes. Consistent with prior
evidence, hepatic dysfunction, renal impairment, and electrolyte
disturbances are well-established mortality determinants across
clinical cohorts (Liao et al., 2025; Wang E. etal., 2025; Lei et al., 2025).
Taken together, the shared predictors—particularly inflammatory
markers, renal indicators, and electrolytes—underscore their
fundamental prognostic relevance across mortality outcomes,
with NMLAR emerging as a strong and consistent predictor. The
additional inflammatory and hepatic variables in the CLRD-specific
model further indicate that inflammation-immune-nutritional
dysregulation may play a more prominent role in disease-specific
mortality (Peng et al., 2025).

In both CLRD-specific and all-cause mortality analyses, the
HR for NMLAR decreased progressively with model adjustment
but remained statistically significant, suggesting that NMLAR is
an independent risk factor for both outcomes in the CLRD
population. As a continuous variable, each 1-unit increase in
NMLAR was associated with a 7% higher risk of CLRD-specific
mortality and an 8% higher risk of all-cause mortality. RCS analysis
demonstrated a linear dose-response relationship between NMLAR
and mortality risk. The trend test based on quartile categorization
further supported this finding, showing a progressive increase in HR
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from QI to Q4. The optimal thresholds derived from the Youden
index were 3.91 for CLRD-specific mortality and 4.57 for all-cause
mortality. Based on the above thresholds, risk stratification analysis
revealed that high-risk individuals had substantially elevated
risks of CLRD-specific mortality compared with their low-risk
counterparts (overall: 2.12-fold; generalized COPD subgroup: 2.16-
fold; asthma subgroup: 2.63-fold). In contrast, the magnitude of
increase in all-cause mortality among high-risk individuals was
relatively smaller (1.28-fold, 1.35-fold, and 1.47-fold, respectively),
suggesting that NMLAR may have greater discriminatory value
for CLRD-specific mortality risk stratification than for all-cause
mortality. This may be because NMLAR aligns more closely
with the underlying pathophysiological mechanisms of chronic
lower respiratory diseases, where systemic inflammation and
nutritional decline play pivotal roles. As a composite index
integrating inflammatory, immune, and nutritional dimensions,
NMLAR directly reflects these processes, thereby providing greater
discriminatory power for stratifying disease-specific mortality risk
(Mall etal., 2023; Zinellu et al., 2021). In contrast, all-cause mortality
encompasses a wide spectrum of death causes, many of which are
only weakly associated with inflammatory status, thus diminishing
the predictive contribution of NMLAR.

In further subgroup analyses, we additionally stratified
participants by ACO status, comprising those with ACO and those
with COPD or asthma alone, to explore potential heterogeneity.
Overall, the positive association between elevated NMLAR and
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TABLE 3 Cox regression analysis of NMLAR and mortality in external cohort.

10.3389/fphys.2025.1708302

Model Continuous Quartile 1 | Quartile 2 Quartile 3 P For trend

7-day mortality from MIMIC

Model 1 1.012 (1.003-1.022) <0.01 | Reference 1.444 (0.756-2.756) 0.265 | 1.706 (0.931-3.126) 0.083 2.268 (1.253-4.105) <0.01 <0.01

Model 2 1.004 (0.993-1.015) 0.486 | Reference 1.417 (0.729-2.754) 0.304 | 1.434 (0.752-2.736) 0.274 1.658 (0.845-3.255) 0.142 <0.01

Model 3 1.004 (0.992-1.015) 0.529 | Reference 1.444 (0.745-2.800) 0.277 | 1.461 (0.768-2.778) 0.248 1.638 (0.839-3.201) 0.149 <0.01

14-day mortality from MIMIC

Model 1 1.018 (1.011-1.025) <0.01 | Reference 1.355 (0.818-2.245) 0.238 | 1.671 (1.040-2.685) 0.034 2.595 (1.644-4.095) <0.01 <0.01

Model 2 1.013 (1.004-1.022) <0.01 | Reference 1.550 (0.910-2.640) 0.107 | 1.672 (0.983-2.842) 0.058 2.279 (1.320-3.936) <0.01 <0.01

Model 3 1.013 (1.004-1.022) <0.01 | Reference 1.563 (0.921-2.654) 0.098 | 1.654 (0.977-2.802) 0.061 2.257 (1.313-3.882) <0.01 <0.01

30-day mortality from MIMIC

Model 1 1.020 (1.014-1.027) <0.01 | Reference 1.163 (0.736-1.837) 0.518 | 1.644 (1.081-2.501) 0.020 2.506 (1.668-3.766) <0.01 <0.01

Model 2 1.015 (1.007-1.023) <0.01 | Reference 1.218 (0.754-1.965) 0.420 | 1.516 (0.954-2.409) 0.079 2.086 (1.288-3.378) <0.01 <0.01

Model 3 1.015 (1.007-1.022) <0.01 | Reference 1.241 (0.770-2.001) 0.375 | 1.527 (0.962-2.422) 0.073 2.075 (1.284-3.354) 0.003 <0.01

90-day mortality from MIMIC

Model 1 1.014 (1.008-1.020) <0.01 | Reference 1.121 (0.770-1.633) 0.551 | 1.385 (0.977-1.964) 0.067 1.874 (1.330-2.641) <0.01 <0.01

Model 2 1.010 (1.002-1.016) 0.016 | Reference 1.131 (0.763-1.675) 0.536 | 1.259 (0.857-1.850) 0.240 1.541 (1.029-2.307) 0.036 <0.01

Model 3 1.009 (1.002-1.015) 0.015 | Reference 1.157 (0.782-1.713) 0.466 | 1.275 (0.869-1.871) 0.215 1.558 (1.042-2.331) 0.031 <0.01

365-day mortality from MIMIC

Model 1 1.010 (1.005-1.015) <0.01 | Reference 1.009 (0.742-1.373) 0.953 | 1.188 (0.892-1.583) 0.238 1.511 (1.137-2.007) <0.01 <0.01

Model 2 1.007 (1.000-1.012) 0.034 | Reference 1.022 (0.741-1.409) 0.896 | 1.109 (0.810-1.519) 0.519 1.336 (0.956-1.866) 0.088 <0.01

Model 3 1.006 (1.001-1.012) 0.030 | Reference 1.045 (0.758-1.441) 0.789 | 1.115 (0.814-1.526) 0.497 1.353 (0.970-1.889) 0.075 <0.01

30-day mortality from zhejiang provencial ICU

Model 1 1.139 (1.063-1.221) <0.01 | Reference 2.050 (0.776-5.415) 0.147 | 4.366 (1.892-10.083) <0.01 | 5.837 (2.234-15.007) <0.01 | <0.01

Model 2 1.136 (1.060-1.220) <0.01 | Reference 1.899 (0.717-5.309) 0.196 | 4.109 (1.810-9.300) <0.01 5.231 (2.015-13.579) <0.01
<0.001

Model 3 1.093 (1.012-1.180) <0.01 | Reference 1.400 (0.508-3.872) 0.589 | 3.116 (1.814-5.360) <0.01 4.556 (1.480-11.007) <0.01
<0.001

MIMIC: Model 1: Unadjusted. Model 2: Adjusted for key predictors identified in NHANES, including age, LDH, PLT, K, hypertension, NMLAR, BUN, CRP, creatinine; NLR, IgPLR, diabetes,
arthritis, smoking status. Model 3: Further adjusted for Model 2 covariates plus MIMIC-specific clinical factors, including SOFA, score, use of CRRT, vasopressor use, and mechanical
ventilation. EHR:Model 1 was unadjusted. Model 2 was adjusted for age and sex. Model 3 was further adjusted for age, LDH, PLT, hypertension, NMLAR, BUN, CRP, cr; NLR, IgPLR, diabetes,

arthritis.

mortality risk was consistent across most subgroups, reinforcing
its robustness as a prognostic indicator. However, significant
heterogeneity was observed by age: among participants <60 years,
each 1-unit increase in NMLAR was associated with a 20% higher
risk of all-cause mortality, whereas the corresponding increase
in older adults was only 6%. This suggests that NMLAR carries
greater prognostic relevance in younger individuals, whose lower
baseline mortality risk may render them more susceptible to
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the adverse effects of systemic inflammation and nutritional
decline, while in older adults, the higher comorbidity burden
and baseline risk may attenuate its incremental predictive value
(Liu et al, 2019). For CLRD-specific mortality, the predictive
effect of NMLAR was most pronounced in the ACO subgroup,
with a significant interaction detected. The heightened sensitivity
of ACO patients to NMLAR may reflect their greater systemic
inflammatory burden and

complex immune-inflammatory
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FIGURE 11

External validation of NHANES models in the MIMIC cohort (30-day mortality). RCS showed an approximately linear association between NMLAR and
mortality, consistent with NHANES (A). Model 3 demonstrated moderate discrimination with C-indices of 0.708, 0.721, 0.761, 0.785, and 0.740 at 7, 14,
30, 90, and 365 days (B), respectively, along with good calibration and greater clinical net benefit (C) on decision-curve analysis (D).

responses, which aligns with prior evidence that ACO patients
have higher rates of exacerbations and worse outcomes compared
with those with COPD or asthma alone (Polverino et al., 2024;
Hashimoto et al., 2023; Wakazono et al., 2025). Taken together,
these findings indicate that NMLAR provides stable prognostic
information across diverse populations, but its predictive
value is particularly notable in younger individuals and in
patients with ACO.

NMLAR demonstrates considerable clinical value as an
independent prognostic factor. In Model 1, which included
only NMLAR, the time-dependent C-index for predicting 1-
year CLRD-specific mortality exceeded 0.80, indicating moderate
short-term discriminatory capacity. However, when compared to
multivariable models incorporating NMLAR (Model 2 and Model
3), its predictive accuracy declined markedly over longer follow-
up durations. This suggests that while NMLAR alone is useful
for short-term risk assessment, its long-term prognostic utility
may be limited, particularly in predicting all-cause mortality.
The performance drop may be attributed to fluctuations in
NMLAR caused by transient factors such as acute infections or
nutritional changes, undermining its stability over time. In contrast,
Model 3—integrating top-ranked machine learning-selected
features—demonstrated superior accuracy and generalizability for
both intermediate- and long-term prediction. DCA and bootstrap
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calibration curves confirmed that Model 3 offered the highest net
clinical benefit and better calibration for both CLRD-specific and all-
cause mortality (Wang S. et al., 2025). It consistently maintained the
highest C-index, exceeding 0.90 during mid-to long-term follow-up.
Furthermore, external validation using the NHANES 2015-2018
cohort substantiated the model’s robustness and generalizability.
These findings underscore the value of machine learning-based
feature selection in building clinically effective prognostic tools.
As a core component of the final model, NMLAR contributed
uniquely to mortality prediction in CLRD populations, significantly
enhancing both the model’s discriminative performance and
clinical utility.

In addition to multi-timepoint validation within NHANES,
we further evaluated the prognostic performance of NMLAR
in two ICU cohorts with distinct clinical contexts. In the
large and heterogeneous MIMIC-IV cohort, NMLAR remained
independently associated with mortality after adjustment for both
NHANES-derived covariates and ICU-specific factors, with RCS
analysis suggesting an overall linear relationship and threshold
analysis identifying a cutoff of 12.1, above which mortality increased
markedly. The Zhejiang Provincial ICU cohort, although smaller and
more homogeneous, provided real-world validation in a Chinese
single-center setting; despite limited adjustment for smoking status,
NMLAR retained strong prognostic value for 30-day mortality,
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probabilities under both assumptions (D).

External validation of NHANES models in the Zhejiang Provincial ICU cohort (30-day mortality). RCS revealed an approximately linear association
between NMLAR and 30-day mortality, with a threshold identified at NMLAR = 13.32, above which the risk increased markedly (A). ROC curves
demonstrated that Model 3 achieved the highest discrimination (AUC = 0.879, 95% Cl: 0.809-0.930), outperforming Model 1 (AUC = 0.577) and Model
2 (AUC = 0.702) (B). Decision-curve analysis further confirmed greater net clinical benefit for Models 3 and 4, where Model 3 assumed all patients were
nonsmokers and Model 4 assumed all patients were smokers (C). Calibration curves indicated good agreement between predicted and observed

with a similar threshold of 13.32. The consistency of these
thresholds across diverse populations supports the stability of
NMLAR-based risk stratification, and the moderate discriminative
performance of NHANES-derived models in both ICU cohorts
further reinforces the transportability of the framework and the
clinical utility of NMLAR as a prognostic biomarker in critically ill
CLRD patients.

Using nationally representative NHANES 1999-2018 data,
this study benefited from a large sample size, broad variable
coverage, and standardized measurements. We developed the
NMLAR index, integrating systemic inflammation and nutritional
status, and distinguished CLRD-specific mortality through the
NDI to enable disease-focused risk stratification. Data-driven
feature selection (Boruta, SVM-RFE, XGBoost) and comprehensive
model assessment (C-index, calibration, DCA) strengthened
methodological rigor. External validation across NHANES
2015-2018, the MIMIC-IV v3.1 ICU cohort, and the real-world
Zhejiang Provincial ICU cohort further confirmed the robustness
and generalizability of our findings, including in models that
transported NHANES-derived coefficients without refitting and
were additionally adjusted for critical-care-specific variables.

Frontiers in Physiology

However, the study’s observational design limits causal inference;
some variables were self-reported and may introduce bias; and
findings from U.S. NHANES data may not fully generalize to
other populations. Larger prospective cohorts are needed to further
validate the CLRD-specific mortality model.

Conclusion

NMLAR, a indicator

inflammation and nutritional status, was an independent predictor

composite reflecting  systemic
of mortality among adults with CLRD and demonstrated an
approximately linear dose-response relationship. Its prognostic
value was consistently validated across multiple cohorts, supporting
NMLAR as a robust and broadly applicable tool for individualized
risk stratification in CLRD, including critically ill populations.
Moreover, this study provides important evidence supporting the
utility of relative blood-cell proportions in risk assessment for
chronic diseases. Collectively, these findings provide a conceptual
reference for applying relative immune-cell proportion metrics to
inflammatory disease risk assessment.
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SUPPLEMENTARY FIGURE S1

Immune cell fractions in the AECOPD cohort (GSE60399). PBMC samples from
stable COPD and AECOPD patients were analyzed by CIBERSORT at hospital days
1, 3, and 10.

SUPPLEMENTARY FIGURE S2

Boruta algorithm—derived variable importance for CLRD-specific mortality. The
x-axis represents the mean importance score (mean Z-score), and the y-axis lists
the retained features, ranked in descending order of importance. All features
shown were confirmed as significant predictors of CLRD-specific mortality.

SUPPLEMENTARY FIGURE S3

Top 20 important features for CLRD-specific mortality identified by the XGBoost
algorithm. The x-axis shows the mean gain, representing each variable’s relative
contribution to the model, while the y-axis lists the ranked features in descending
order of importance.

SUPPLEMENTARY FIGURE S4

Boruta algorithm—derived variable importance for all-cause mortality. The x-axis
represents the mean importance score (mean Z-score), and the y-axis lists the
retained features, ranked in descending order of importance. All features shown
were confirmed as significant predictors of all-cause mortality.

SUPPLEMENTARY FIGURE S5

Top 20 important features for all-cause mortality identified by the XGBoost
algorithm. The x-axis shows the mean gain, representing each variable’s relative
contribution to the model, while the y-axis lists the ranked features in descending
order of importance.

SUPPLEMENTARY FIGURE S6

External validation of NHANES models in the MIMIC cohort (7-,14-,30-,365-day
mortality). RCS analysis demonstrated an approximately linear association
between NMLAR and mortality, accompanied by good calibration and greater
clinical net benefit on decision-curve analysis.
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