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Background: Chronic lower respiratory diseases (CLRDs) remain major 
causes of global mortality. Because conventional inflammatory markers 
have limited prognostic utility, we developed and validated the relative 
neutrophil–monocyte–lymphocyte–albumin ratio (NMLAR), defined as 
(Neutrophil% × Monocyte% × 100)/(Lymphocyte% × Albumin [g/dL]), as a novel 
biomarker to predict CLRD-specific mortality.
Methods: Immune infiltration of CLRDs was analyzed based on GEO datasets. 
We then analyzed 9,236 adults with CLRD from NHANES 1999–2014, excluding 
individuals with missing core variables. Machine learning algorithms (Boruta, 
SVM-RFE, XGBoost) were applied to identify key predictors. Cox proportional 
hazards models and restricted cubic spline (RCS) functions were used to evaluate 
the association between NMLAR and mortality outcomes, and stratified analyses 
were conducted across clinically relevant subgroups. Model performance was 
assessed by Harrell’s C-index, calibration plots, and decision-curve analysis 
(DCA). Findings were externally validated in NHANES 2015–2018 (n = 2,107), the 
MIMIC-IV v3.1 ICU cohort (n = 2,120), and a real-world Zhejiang Provincial ICU 
cohort (n = 161).
Results: Immune profiling showed increased neutrophils/monocytes and 
reduced lymphocytes in CLRD and acute states. Higher baseline NMLAR 
was consistently associated with increased risks of both all-cause and 
CLRD-specific mortality and demonstrated superior predictive performance 
compared with conventional inflammatory markers. In NHANES, fully adjusted 
models indicated an approximately linear dose–response, with each 1-
unit increment in NMLAR corresponding to a ∼7% higher risk of all-
cause mortality and an ∼8% higher risk of CLRD-specific mortality. In the 
MIMIC cohort, NMLAR remained independently associated with 14–365-
day mortality even after adjustment for critical care–specific covariates 
(SOFA score, CRRT, invasive mechanical ventilation, vasopressor use), with 
a threshold effect identified at 12.10. In the Zhejiang ICU cohort, NMLAR

 

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1708302
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1708302&domain=pdf&date_stamp=
2025-12-13
mailto:Kaijiashi@muhn.edu.cn
mailto:Kaijiashi@muhn.edu.cn
mailto:tianxinghan@qdu.edu.cn
mailto:tianxinghan@qdu.edu.cn
https://doi.org/10.3389/fphys.2025.1708302
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1708302/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1708302/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1708302/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1708302/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1708302/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1708302/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1708302

independently predicted 30-day mortality (HR per unit increase ≈1.09), with 
a threshold at 13.32. Notably, models derived from NHANES demonstrated 
moderate discriminatory ability, satisfactory calibration, and clinical net benefit 
when externally validated in both ICU cohorts, underscoring the robustness 
and generalizability of NMLAR as a prognostic biomarker across diverse 
clinical settings.
Conclusion: NMLAR is a simple, robust, and clinically applicable biomarker 
for mortality risk in CLRD, demonstrating consistent prognostic value across 
population-based, critical care, and real-world cohorts.

KEYWORDS

NMLAR, chronic lower respiratory diseases, NHANES, machine learning, prognostic 
biomarker, inflammation 

Introduction

Chronic lower respiratory diseases (CLRDs), including COPD, 
emphysema, chronic bronchitis, and asthma (Lee et al., 2021), 
remain a leading cause of morbidity and mortality worldwide 
(Prevalence and attributable health burden of chronic respiratory 
diseases, 2020). Broadly defined, COPD encompasses emphysema, 
chronic bronchitis, and chronic obstructive asthma, with COPD 
and asthma representing the most prevalent chronic airway diseases 
(Cheng et al., 2021; Li et al., 2024). Despite being classified as distinct 
clinical entities, these conditions are intrinsically linked by their 
common pathological basis—inflammation of the airways. It is 
estimated that approximately 30% of patients with COPD and 26% 
of those with asthma exhibit features of ACO (Dey et al., 2022). 
Accordingly, the present study focuses primarily on these two 
conditions. In 2020, CLRD accounted for one of the five leading 
causes of mortality in the United States (Baral et al., 2024). 
Globally, over 200 million individuals are estimated to have COPD, 
with more than 3 million deaths annually attributed to it (GBD, 
2019 Ch ronic Respiratory Diseases Collaborators, 2023). Despite 
therapeutic advances, effective risk stratification remains 
challenging due to the heterogeneity of CLRD and the 
interplay of inflammatory, environmental, and genetic
factors.

Systemic immune–inflammation plays a crucial role in the 
development and progression of chronic lung diseases (CLRD) 
(Bhatt et al., 2024). In recent years, numerous inflammation-
related indices derived from routine complete blood counts—such 
as the neutrophil–lymphocyte ratio (NLR), platelet–lymphocyte 
ratio (PLR), monocyte–lymphocyte ratio (MLR), and several 
composite hematologic inflammation scores—have demonstrated 
significant prognostic value across a broad spectrum of chronic 
diseases (Cai et al., 2024). These biomarkers are closely associated 
with coronary disease severity, major adverse cardiovascular 
events (MACE), and in-hospital mortality, and they also reflect 
disease activity, exacerbation risk, and survival outcomes in 
COPD and other chronic respiratory disorders, thereby supporting 
their utility in clinical risk stratification (Tudurachi et al., 2023; 
Zhang et al., 2024). Similar predictive performance has been 
reported in oncology, where such inflammation-based indices 
can independently predict overall survival in colorectal cancer 
and, in some studies, even outperform conventional TNM 

staging systems (Yang et al., 2023). Collectively, current evidence 
underscores the strengths of blood cell–derived inflammatory 
markers—rapid availability, low cost, and high reproducibility—as 
practical tools for evaluating systemic inflammation. However, most 
widely used indices, such as NLR, PLR, and MLR, are constructed 
from absolute leukocyte counts. Although useful, they mainly reflect 
quantitative changes and tend to overlook subtle but meaningful 
alterations in relative immune-cell proportions. In CLRD, 
where inflammatory phenotypes are heterogeneous and immune 
regulation is highly dynamic, proportional shifts in neutrophils, 
monocytes, and lymphocytes may provide a more sensitive 
indication of immune dysregulation than absolute counts alone. This 
limitation may partly explain the modest performance of traditional 
indices in disease-specific risk prediction. To address this gap, 
we developed the neutrophil–monocyte to lymphocyte–albumin 
ratio (NMLAR), a percentage-based index designed to better 
capture relative changes in leukocyte composition. NMLAR is 
calculated as (Neutrophil% × Monocyte% × 100)/(Lymphocyte% 
× Albumin [g/dL]).

NHANES, with its nationally representative sampling 
design, standardized measurements, and linkage to the 
National Death Index enabling precise identification of CLRD-
specific mortality, provides an ideal platform for evaluating 
inflammation–nutrition biomarkers in the general population. In 
parallel, machine learning (ML) methods have gained traction in 
large-scale epidemiological research. Compared with traditional 
regression models, ML algorithms are well-suited to capture 
nonlinear relationships and high-dimensional interactions, 
thereby improving predictive accuracy and generalizability 
(Liao et al., 2025). However, their application in predicting CLRD-
specific mortality—particularly within nationally representative 
datasets such as NHANES—remains limited. To fill this gap, 
we leveraged NHANES data from 1999 to 2014 to assess the 
prognostic utility of NMLAR for both CLRD-specific and all-
cause mortality. Three commonly used ML algorithms—Boruta, 
SVM-RFE, and XGBoost—were applied to identify key prognostic 
variables (Hu et al., 2024). We then evaluated the association 
and dose–response relationship between NMLAR and mortality 
outcomes using Cox proportional hazards models and restricted 
cubic splines. Findings were externally validated in three 
independent cohorts: NHANES 2015–2018, the MIMIC-IV ICU 
cohort, and the Zhejiang Provincial ICU cohort. Collectively, 
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this study provides novel evidence supporting NMLAR as 
a clinically meaningful biomarker for risk stratification in 
CLRD populations, applicable to both general and critically 
ill patients.

Methods

Study design and population

We first conducted immune-infiltration analysis to evaluate and 
compare immune cell proportions in chronic lower respiratory 
disease (CLRD), incorporating four GEO datasets: GSE16972 
(alveolar macrophages from COPD patients), GSE27876 (peripheral 
blood cells from asthma patients), GSE60399 (PBMC samples 
from stable COPD and AECOPD patients collected on hospital 
days 1, 3, and 10), and GSE184693 (rat COPD model induced 
by cigarette smoke plus intratracheal LPS, with NaHS or PPG 
interventions). Raw data were processed into gene expression 
matrices; Affymetrix datasets were normalized and annotated 
using RMA, while author-provided matrices were used for PBMC 
samples. CIBERSORT (LM22 signature, 22 immune-cell subsets, 
1,000 permutations) was then applied, and only samples with 
deconvolution P < 0.05 were retained for downstream analyses and 
visualization.

This retrospective cohort study integrated three complementary 
datasets. The primary development cohort was derived from 
NHANES 1999–2014. Participants were included if they self-
reported at least one CLRD, including COPD, emphysema, chronic 
bronchitis, or asthma, or reported persistent cough with sputum 
production for at least 3 months per year. Exclusion criteria were age 
<18 years or missing mortality status and key laboratory variables. 
Missing covariate data were imputed using the K-nearest neighbor 
(KNN) algorithm. A total of 9,236 adults were included for model 
development and internal validation. Mortality outcomes were 
determined by linkage to the National Death Index (NDI) with 
follow-up through December 31, 2019 (Gao et al., 2025). The 
primary outcomes were all-cause mortality and CLRD-specific 
mortality, identified using ICD-10 codes J40–J47 (including asthma, 
chronic bronchitis, emphysema, and COPD). An independent 
temporal validation cohort was established from NHANES 
2015–2018 using the same criteria.

To assess generalizability in patient cohorts, we used the 
MIMIC-IV v3.1 adult ICU database. Eligible patients were those 
with a primary diagnosis of CLRD, including COPD, asthma, 
and emphysema, as well as acute exacerbations identified through 
an a priori ICD-9/10 code set (e.g., J449, J441, J440). Among 
8,716 candidate ICU admissions, 15 patients with hematologic 
malignancies (e.g., ICD-9 20510, 20502, 20401) and 6,581 with 
missing NMLAR data were excluded, leaving 2,120 patients. 
Baseline laboratory measurements were defined as the values closest 
to ICU admission within ±24 h. NMLAR was two-sided trimmed 
at the 1st and 99th percentiles to mitigate outlier effects. Smoking 
status was classified as current, former, or never smoker based on 
ICD-9/10 inpatient codes. The primary endpoints were all-cause 
mortality at 7, 14, 30, 90, and 365 days after ICU admission.

Finally, we constructed an independent real-world validation 
cohort from the Zhejiang Provincial ICU electronic health 

record (EHR) system (Jin et al., 2023). Using the same CLRD 
diagnostic framework, 220 hospitalized patients were screened. 
After excluding 59 cases with missing core exposure or covariates, 
161 patients were included. Baseline laboratory variables 
were defined as the measurements nearest to ICU admission 
within the first 24 h, aligned with the NHANES and MIMIC 
definitions. The primary outcome was 30-day all-cause mortality
(Figure 1).

Covariate definitions

A comprehensive set of covariates associated with CLRD and 
mortality risk were included. Age was analyzed as a continuous 
variable, while sex (male/female) and race/ethnicity (Mexican 
American, other Hispanic, non-Hispanic White, non-Hispanic 
Black, other/multiracial) were categorical. Education was classified 
as < high school, high school graduate, or > high school. 
Socioeconomic status was measured by poverty income ratio (PIR; 
low <1.5, middle 1.5–4.0, high >4.0). Body mass index (BMI) was 
calculated from height and weight and categorized as underweight 
(<18.5 kg/m2), normal (18.5–24.9), overweight (25.0–29.9), and 
obese (≥30.0). Smoking status was defined as current, former, or 
never, and alcohol intake was harmonized into monthly drinking 
frequency (non-drinker, 1–5, 5–10, ≥10 times/month, or uncertain). 
Comorbidities (yes/no) included hypertension, heart failure, 
coronary heart disease, stroke, cancer, liver disease, chronic kidney 
disease, arthritis, gout, asthma, chronic bronchitis, emphysema, 
and COPD. Diabetes was defined by self-report, medication use, or 
laboratory criteria (HbA1c ≥6.5%, fasting glucose ≥126 mg/dL, or 
OGTT ≥200 mg/dL); prediabetes was defined as HbA1c 5.7%–6.4%, 
fasting glucose 100–125 mg/dL, or OGTT 140–199 mg/dL; others 
were normoglycemic. Hyperlipidemia was based on self-report, 
medication use, or labs (total cholesterol ≥240 mg/dL, LDL-C 
≥160 mg/dL, HDL-C <40 mg/dL, or triglycerides ≥200 mg/dL). 
Laboratory covariates included hemoglobin (HGB), white 
blood cell count (WBC), platelet count (PLT), albumin (ALB), 
creatinine (Cr), blood urea nitrogen (BUN), total bilirubin 
(TBIL), sodium (Na), potassium (K), calcium (Ca), alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), lactate 
dehydrogenase (LDH), serum osmolality (OSM), and C-reactive 
protein (CRP). Inflammation-related indices were also derived
and analyzed. 

Definition of inflammatory markers

NMLAR = (Neutrophil% × Monocyte% × 100)/(Lymphocyte% 
× Albumin [g/dL]).

NAPR = Neutrophil%/Albumin [g/dL] (Su et al., 2025).
SIRI = (Neutrophil Count [103/μL] × Monocyte Count 

[103/μL])/Lymphocyte Count [103/μL] (Zhang and Cheng, 2024).
PLR = Platelet Count [103/μL]/Lymphocyte Count 

[103/μL] (Tan et al., 2024).
NLR = Neutrophil Count [103/μL]/Lymphocyte Count 

[103/μL] (Fu et al., 2025).
MLR = Monocyte Count [103/μL]/Lymphocyte Count 

[103/μL] (Fu et al., 2025). 
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FIGURE 1
Flowchart of the study.

Statistical analysis

All statistical analyses were performed using R software 
(version 4.4.0). The proportion of missing values for all included 
variables was <30% and imputed using the KNN algorithm. 
Baseline characteristics were summarized according to NMLAR 
quartiles: continuous variables were expressed as medians with 
interquartile ranges [Q1, Q3] and compared using one-way 
ANOVA or Kruskal–Wallis H tests, while categorical variables 
were presented as frequencies (%) and compared using chi-square 
tests. The discriminatory and predictive ability of NMLAR and 
other inflammatory indices for both CLRD-specific and all-cause 
mortality were assessed using ROC curves, with DeLong’s test 
applied for AUC comparisons. To identify important predictors 
associated with mortality outcomes, three machine-learning 
algorithms—SVM-RFE, XGBoost, and Boruta—were applied 
separately (Fu et al., 2024), and the top 10 predictors from 
each algorithm were combined to form a unified feature set 
(Liao et al., 2025). Cox proportional hazards models were then 
constructed with NMLAR included as both a continuous and 
categorical variable (quartiles): Model 1 was unadjusted, Model 

2 adjusted for age and sex, and Model 3 further adjusted for the 
unified feature set. Restricted cubic splines (RCS) were fitted to 
explore potential nonlinear dose–response relationships between 
NMLAR and mortality risk. The optimal cutoff value of NMLAR 
was determined using the Youden index to stratify participants 
into high- and low-risk groups. Subgroup analyses and sensitivity 
analyses were conducted according to demographic and disease 
characteristics. Model performance was evaluated by discrimination 
(time-dependent C-index), calibration (calibration curves with 
1,000 bootstrap resamples at 60 months), and clinical utility 
(decision curve analysis, DCA) (Liao et al., 2025; Wan et al., 2025). 
Finally, an internal temporal validation was conducted using the 
NHANES 2015–2018 cohort of participants with CLRD to further 
assess model robustness and generalizability.

We externally validated the prognostic value of NMLAR in two 
ICU cohorts with different analytic frameworks. In the MIMIC-IV 
v3.1 cohort, Cox proportional-hazards models were constructed in 
three stages: Model 1 included NMLAR alone; Model 2 additionally 
adjusted for demographic and laboratory covariates aligned with 
NHANES; and Model 3 further incorporated ICU-specific variables 
including SOFA score, continuous renal replacement therapy 
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(CRRT), invasive mechanical ventilation, and vasopressor use. 
Mortality endpoints were assessed at 7, 14, 30, 90, and 365 days after 
ICU admission. In the Zhejiang Provincial ICU cohort, models were 
specified in accordance with the NHANES framework but tailored 
to the available sample size and follow-up horizon. Cox models 
included NMLAR alone (Model 1), adjustment for demographic 
and laboratory covariates (Model 2), and further adjustment for 
comorbidities (Model 3). The primary outcome was 30-day all-cause 
mortality. Model performance was evaluated using AUC, Harrell’s 
C-index, calibration curves, and DCA. RCS was fitted within the Cox 
framework to examine potential nonlinear associations between 
NMLAR and mortality, and subgroup analyses were performed to 
test the robustness of findings across clinically relevant strata. In the 
Zhejiang ICU EHR system, smoking status could not be ascertained; 
therefore, for model evaluation, we introduced an alternative Model 
4 (assuming all patients were smokers) and compared it with Model 
3 (assuming all patients were non-smokers).

Results

Assessment of immune cell infiltration

Using CIBERSORT (LM22) deconvolution (Figure 2), we 
compared relative immune-cell fractions between CLRD cohorts 
and controls. In COPD (Figure 2A), monocyte-lineage fractions 
were significantly higher (p = 0.008), lymphocytes were lower 
(p = 0.007), and neutrophils showed a trend toward increase (p 
= 0.065). In asthma (Figure 2B), both neutrophil and monocyte-
lineage fractions were elevated (p = 0.031 and 0.033), while 
lymphocytes were reduced with borderline significance (p = 
0.050). In the rat CS + LPS model (Figure 2C), innate fractions 
(neutrophils, monocytes) increased and lymphocytes decreased; 
NaHS partially reversed these changes, whereas PPG reinforced 
them. Results in AECOPD (Supplementary Figure S1) showed 
the same directionality. Collectively, these findings indicate that 
immune-cell fraction profiles sensitively reflect CLRD-associated 
disease states.

Baseline characteristics of the study 
population

A total of 9,236 participants with CLRD were included in 
this study. Participants were categorized into quartiles based on 
NMLAR levels, and their baseline characteristics are presented 
in Table 1. As NMLAR increased, the median age rose from 
43 years (IQR: 30–55) in Q1 to 56 years (IQR: 41–71) in Q4 (p < 
0.001). The proportion of females declined across quartiles, from 
63% in Q1 to 48% in Q4 (p < 0.001). Regarding race/ethnicity, 
the proportion of non-Hispanic White participants increased with 
higher NMLAR, while that of Mexican Americans and non-
Hispanic Black participants decreased (p < 0.001). Educational 
attainment differed significantly among groups (p = 0.003), with 
fewer individuals in Q4 having education beyond high school. 
Similarly, the proportion of low PIR was higher in Q4 (p = 0.015). 
A higher NMLAR was associated with increased prevalence of 
comorbidities including CKD, arthritis, COPD, hypertension, HF, 

CHD, and cancer (all p < 0.001). The prevalence of diabetes 
rose from 12% in Q1 to 19% in Q4, whereas the prevalence of 
asthma declined with increasing NMLAR (p < 0.001). In terms 
of health behaviors, the proportions of current and never smokers 
decreased across NMLAR quartiles, while the proportion of former 
smokers increased (p < 0.001). Participants reporting heavy alcohol 
consumption (≥10 times/month) were more common in Q4 (22%) 
compared to Q1 (17%) (p = 0.001). For laboratory findings, levels 
of LDH, WBC, Cr, BUN, and CRP were significantly elevated in 
higher NMLAR quartiles, while Alb levels showed a decreasing 
trend (all p < 0.001). Follow-up duration was shorter in participants 
with higher NMLAR (p < 0.001). Composite inflammatory indices 
including NLR, MLR, SIRI, lgSII, lgPLR, and NAPR increased 
consistently across quartiles (all p < 0.001). Notably, CLRD-specific 
mortality rose from 1.0% in Q1 to 5.4% in Q4 (p < 0.001). In 
the NHANES 2015–2018 cohort (Supplementary Table S1), similar 
baseline characteristics were observed, with deceased participants 
exhibiting significantly higher NMLAR levels (P < 0.001).

ROC curve analysis

In predicting CLRD-specific mortality (Figure 3A), NMLAR 
achieved the highest area under the curve (AUC = 0.675), slightly 
outperforming SIRI (AUC = 0.669, p = 0.573), MLR (AUC = 0.655, 
p = 0.007), and NLR (AUC = 0.646, p = 0.012), and demonstrating 
significantly better discrimination than NAPR (AUC = 0.625, p = 
0.001), CRP (AUC = 0.612, p = 0.006), and lgPLR (AUC = 0.588, 
p < 0.001). Similarly, in predicting all-cause mortality (Figure 3B), 
NMLAR yielded the highest AUC (0.661), exceeding those of MLR 
(0.648), SIRI (0.631), NAPR (0.614), CRP (0.611), NLR (0.611), and 
lgPLR (0.555), all with p-values <0.001. These findings indicate that 
NMLAR demonstrates superior discriminative ability compared 
with most other inflammatory markers for both CLRD-specific and 
all-cause mortality.

Feature selection

Given the complex survey design of the NHANES database, 
we first applied weighted resampling to account for sampling 
weights prior to conducting machine learning analyses. Three 
established algorithms—Boruta, SVM-RFE, and XGBoost—were 
employed to identify the most relevant predictors for CLRD-
specific and all-cause mortality. NMLAR consistently ranked as 
the third most important feature for CLRD-specific mortality 
across all three machine learning algorithms (Figure 4). Specifically, 
it ranked third based on mean Z-score importance in the 
Boruta algorithm (Figure 4A; Supplementary Figure S2), was the 
third-to-last feature eliminated in SVM-RFE (Figure 4C), and 
also held the third position according to both SHAP value 
and Gain-based importance in the XGBoost model (Figure 6A; 
Supplementary Figure S3)—consistently following only age and 
smoking across all methods. For all-cause mortality (Figure 5), 
NMLAR also demonstrated high importance, ranking among 
the top predictors across all three algorithms—fifth by Z-score 
(Figure 5A; Supplementary Figure S4), fourth-to-last in SVM-RFE 
(Figure 5C), and within the top eight by both SHAP value and 
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FIGURE 2
Immune cell infiltration in CLRD. CIBERSORT (LM22) analysis showed higher monocyte-lineage and neutrophil fractions with reduced lymphocytes in 
COPD (A) and asthma (B). In the rat CS + LPS model (C), innate immune fractions increased and lymphocytes decreased; NaHS partly reversed these 
changes, while PPG reinforced them.

Gain in the XGBoost model (Figure 6B; Supplementary Figure S5). 
These findings indicate that NMLAR is one of the key contributors 
to model output across diverse analytical frameworks. Feature 
selection based on SVM-RFE was performed separately for CLRD-
specific and all-cause mortality. As shown in the performance 
curves, for CLRD-specific mortality (Figure 4D), the model reached 
an AUC of 0.882 when the top 10 features were retained, with 

only marginal improvements observed beyond this point (peak 
AUC = 0.906 at 30 features). For all-cause mortality (Figure 5D), 
the AUC increased modestly from 0.797 (5 features) to 0.808 
(10 features), with limited gains afterward (maximum AUC = 
0.840). Considering the trade-off between model performance and 
complexity, we retained the top 10 variables in both models for 
subsequent analyses. The top 10 features identified by each algorithm 
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TABLE 1  Baseline characteristics stratified by NMLAR.

NMLAR (N = 9236)a Quartile 1 (≤2.64) Quartile 2 
(2.64–3.65)

Quartile 3 
(3.65–5.13)

Quartile 4 (≥5.13) p.valueb

Age 43 (30, 55) 45 (31, 57) 48 (35, 62) 56 (41, 71) <0.001

Gender% <0.001

Female 1,419 (63%) 1,294 (55%) 1,229 (54%) 1,095 (48%)

Male 890 (37%) 1,015 (45%) 1,080 (46%) 1,214 (52%)

Race% <0.001

Mexican american 288 (5.2%) 304 (5.1%) 285 (4.2%) 234 (3.8%)

Other hispanic 183 (5.2%) 176 (5.3%) 173 (4.9%) 141 (4.1%)

Non-hispanic white 1,070 (71%) 1,371 (80%) 1,471 (83%) 1,570 (84%)

Non-hispanic black 768 (18%) 458 (9.5%) 380 (7.9%) 364 (8.0%)

Education% 0.003

<high school 692 (22%) 661 (20%) 628 (18%) 713 (23%)

High school 491 (23%) 506 (23%) 555 (26%) 535 (25%)

>high school 1,126 (54%) 1,142 (57%) 1,126 (56%) 1,061 (52%)

PIR% 0.015

low (<1.5) 1,027 (34%) 928 (29%) 905 (28%) 967 (31%)

middle (1.5–4.0) 808 (39%) 872 (40%) 867 (40%) 900 (41%)

high (>4.0) 474 (28%) 509 (31%) 537 (32%) 442 (28%)

BMI% 0.056

underweight (<18.5) 51 (2.7%) 49 (2.0%) 31 (1.3%) 47 (2.1%)

normal (18.5–24.9) 656 (29%) 588 (26%) 599 (28%) 637 (29%)

overweight (25.0–29.9) 674 (30%) 710 (32%) 723 (29%) 744 (32%)

obese (>30.0) 928 (38%) 962 (40%) 956 (41%) 881 (37%)

Smoker% <0.001

Never smoker 1,101 (43%) 1,108 (47%) 1,050 (44%) 884 (37%)

Former smoker 492 (22%) 538 (23%) 625 (26%) 843 (34%)

Current smoker 716 (35%) 663 (30%) 634 (29%) 582 (29%)

Alcohol% 0.001

Non-drinker 602 (20%) 543 (19%) 538 (18%) 536 (20%)

1–5 drinks/month 1,057 (47%) 1,102 (48%) 1,082 (49%) 1,038 (45%)

5–10 drinks/month 168 (8.5%) 212 (10%) 183 (9.1%) 151 (7.9%)

10+ drinks/month 352 (17%) 346 (18%) 408 (20%) 466 (22%)

Wait 130 (7.5%) 106 (4.8%) 98 (3.8%) 118 (4.9%)

(Continued on the following page)
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TABLE 1  (Continued) Baseline characteristics stratified by NMLAR.

NMLAR (N = 9236)a Quartile 1 (≤2.64) Quartile 2 
(2.64–3.65)

Quartile 3 
(3.65–5.13)

Quartile 4 (≥5.13) p.valueb

Comorbidities (YES%)

Liver disease 117 (4.4%) 93 (4.0%) 114 (5.0%) 131 (5.0%) 0.551

Arthritis 753 (30%) 826 (33%) 867 (35%) 1,017 (42%) <0.001

COPD 1,216 (53%) 1,286 (55%) 1,318 (55%) 1,606 (69%) <0.001

Asthma 1,504 (64%) 1,463 (63%) 1,396 (61%) 1,160 (51%) <0.001

Diabetes <0.001

Normal 1,278 (61%) 1,272 (61%) 1,212 (58%) 1,075 (50%)

Prediabetes 645 (27%) 663 (26%) 662 (28%) 702 (31%)

Diabetes 386 (12%) 374 (12%) 435 (14%) 532 (19%)

Hypertension 850 (32%) 842 (33%) 948 (36%) 1,114 (45%) <0.001

Cancer 167 (8.3%) 212 (10.0%) 286 (13%) 408 (17%) <0.001

HFc 74 (2.6%) 87 (2.8%) 130 (4.5%) 270 (9.8%) <0.001

HLPc 1,165 (51%) 1,176 (51%) 1,181 (51%) 1,246 (54%) 0.41

CKDc 61 (2.0%) 64 (2.1%) 77 (2.6%) 158 (5.0%) <0.001

CHDc 90 (3.5%) 100 (4.1%) 149 (5.0%) 245 (9.2%) <0.001

Laboratory test

LDH U/L 127 (112, 143) 126 (112, 142) 129 (114, 144) 132 (118, 150) <0.001

AST U/L 21 (16, 28) 21 (17, 29) 21 (16, 29) 20 (16, 28) 0.087

ALT U/L 23 (19, 27) 23 (19, 27) 23 (19, 27) 23 (19, 27) 0.844

HGB g/dL 14.30 (13.40, 15.10) 14.40 (13.50, 15.40) 14.50 (13.50, 15.40) 14.30 (13.10, 15.40) <0.001

WBC 1000/uL 7.00 (5.70, 8.50) 7.20 (6.00, 8.60) 7.10 (5.90, 8.80) 7.60 (6.30, 9.30) <0.001

PLT 1000/uL 260 (220, 303) 256 (220, 299) 256 (217, 299) 250 (209, 298) 0.005

ALB g/dL 4.30 (4.10, 4.50) 4.30 (4.10, 4.50) 4.30 (4.00, 4.50) 4.10 (3.90, 4.40) <0.001

Cr mg/dL 0.80 (0.70, 0.94) 0.82 (0.70, 0.99) 0.84 (0.70, 1.00) 0.90 (0.72, 1.02) <0.001

Bun mg/dL 12.0 (9.0, 14.0) 12.0 (10.0, 15.0) 12.0 (10.0, 16.0) 13.0 (10.0, 17.0) <0.001

Ga mg/dL 9.50 (9.30, 9.70) 9.50 (9.20, 9.70) 9.40 (9.20, 9.70) 9.40 (9.20, 9.60) <0.001

Na mmol/L 139.0 (138.0, 141.0) 139.0 (138.0, 141.0) 139.0 (138.0, 140.9) 139.0 (137.0, 141.0) 0.149

K mmol/L 4.00 (3.80, 4.20) 4.00 (3.80, 4.20) 4.00 (3.80, 4.20) 4.00 (3.80, 4.30) <0.001

TBIL umol/L 0.60 (0.50, 0.80) 0.70 (0.50, 0.80) 0.70 (0.50, 0.80) 0.70 (0.50, 0.80) 0.003

OSM3 mmol/kg 278.0 (275.0, 280.0) 278.0 (275.0, 281.0) 278.0 (275.0, 281.0) 278.0 (275.0, 282.0) 0.002

CRP mg/dL 0.20 (0.09, 0.41) 0.21 (0.09, 0.44) 0.24 (0.10, 0.49) 0.30 (0.15, 0.65) <0.001

(Continued on the following page)
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TABLE 1  (Continued) Baseline characteristics stratified by NMLAR.

NMLAR (N = 9236)a Quartile 1 (≤2.64) Quartile 2 
(2.64–3.65)

Quartile 3 
(3.65–5.13)

Quartile 4 (≥5.13) p.valueb

Novel inflammatory marker

NLRd 1.33 (1.06, 1.69) 1.83 (1.57, 2.17) 2.29 (1.94, 2.71) 3.25 (2.67, 4.13) <0.001

MLRd 0.18 (0.15, 0.20) 0.24 (0.21, 0.26) 0.30 (0.27, 0.33) 0.41 (0.36, 0.50) <0.001

SIRId 0.62 (0.46, 0.81) 0.97 (0.80, 1.18) 1.31 (1.06, 1.61) 2.14 (1.68, 2.83) <0.001

lgSIId 5.86 (5.56, 6.13) 6.17 (5.92, 6.41) 6.37 (6.12, 6.62) 6.72 (6.44, 7.00) <0.001

lgPLRd 4.59 (4.37, 4.80) 4.75 (4.56, 4.94) 4.89 (4.68, 5.10) 5.09 (4.87, 5.32) <0.001

NAPRd 11.76 (10.43, 13.11) 13.37 (12.20, 14.59) 14.37 (13.24, 15.64) 16.03 (14.81, 17.80) <0.001

Outcome

Follow-up time (months) 139 (96, 193) 144 (98, 188) 136 (94, 188) 119 (75, 174) <0.001

CLRD-specific mortality% 32 (1.0%) 34 (1.2%) 71 (2.7%) 130 (5.4%) <0.001

All-cause mortality% 317 (11%) 414 (15%) 501 (17%) 933 (33%) <0.001

an (unweighted) (%); Median (IQR).
bchi-squared test with Rao & Scott’s second-order correction; Wilcoxon rank-sum test for complex survey samples.
cHF: heart failure, HLP: hyperlipidemia, CKD: chronic kidney disease, CHD: coronary heart disease, OSM:serum osmolality.
dNLR: neutrophil-to-lymphocyte ratio, MLR:monocyte-to-lymphocyte ratio, SIRI:systemic inflammation response index, lgSII:logarithmic systemic immune-inflammation index, 
lgPLR:logarithmic platelet-to-lymphocyte ratio, NPAR: neutrophil percentage to albumin ratio. NMLAR: (Neutrophil% × Monocyte% × 100)/(Lymphocyte% × Albumin [g/dL]).

FIGURE 3
Comparison of the discriminatory ability of NMLAR and other inflammatory markers using ROC curves for mortality outcomes. (A) ROC curves for 
CLRD-specific mortality. (B) ROC curves for all-cause mortality. NMLAR demonstrated the highest area under the curve (AUC) among all tested 
markers in both outcomes (AUC = 0.675 for CLRD-specific mortality; AUC = 0.661 for all-cause mortality). Other markers compared include SIRI, MLR, 
NLR, NAPR, CRP, and lgPLR. P values were calculated using DeLong’s test for comparing AUCs between NMLAR and each of the other markers.

were merged to form the covariate set used in Model 3. For the 
CLRD-specific mortality model, the final covariates included: age, 
smoking status, NMLAR, diabetes, LDH, AST, ALT, WBC, PLT, 
Cr, BUN, K, CRP, NLR, lgPLR, and education level. For the all-
cause mortality model, selected variables included: age, LDH, PLT, 
K, hypertension, NMLAR, BUN, CRP, Cr, NLR, lgPLR, diabetes, 
arthritis, smoking status, and Na.

Cox regression analysis

In the Cox proportional hazards models, NMLAR remained 
significantly associated with both CLRD-specific and all-cause 

mortality across all levels of model adjustment (Table 2). In the 
fully adjusted model (Model 3), which accounted for covariates 
selected via machine learning, the HRs decreased slightly with 
deeper adjustment but retained statistical significance. When 
modeled as a categorical variable, participants in the highest 
NMLAR quartile (Q4) had a significantly elevated risk of CLRD-
specific mortality compared to the lowest quartile (Q1) (HR 
= 2.55, 95% CI: 1.21–5.36). Similarly, Q4 was associated with 
increased all-cause mortality (HR = 1.62, 95% CI: 1.28–2.06). 
When treated as a continuous variable, each one-unit increase 
in NMLAR was associated with a 7% increase in CLRD-specific 
mortality risk (HR = 1.07, 95% CI: 1.01–1.14) and an 8% increase 
in all-cause mortality risk (HR = 1.08, 95% CI: 1.06–1.11). 
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FIGURE 4
Feature selection results for CLRD-specific mortality using Boruta and SVM-RFE algorithms. (A) Importance ranking of features by Boruta, where green 
boxplots represent features classified as “confirmed important.” NMLAR ranked third in terms of mean Z-score importance, following age and smoking 
status. (B) Trajectory plot showing the stability of feature importance scores over 20 iterations in Boruta. The top three consistently important 
features—age, smoking status, and NMLAR—are highlighted in orange. (C) The last 20 features eliminated by SVM-RFE, ranked by overall importance. 
NMLAR was the third-to-last feature eliminated, suggesting high predictive relevance. (D) SVM-RFE performance curve showing AUC values 
corresponding to different numbers of retained features. The model achieved an AUC of 0.882 with the top 10 features, with marginal gains beyond 
this point, supporting the selection of 10 variables for final modeling.

Stratified analyses by disease subtype demonstrated consistent 
positive associations. Among individuals with generalized COPD 
(including emphysema and chronic bronchitis), those in Q4 
had markedly higher risks of CLRD-specific mortality (HR 
= 3.16, 95% CI: 1.34–7.49) and all-cause mortality (HR = 
1.52, 95% CI: 1.17–1.96). In the asthma subgroup, Q4 was 
associated with elevated CLRD-specific mortality (HR = 2.26, 
95% CI: 0.84–6.09) and all-cause mortality (HR = 1.79, 95% CI: 
1.27–2.50). As a continuous predictor, NMLAR was associated 
with a 7% increase in CLRD-specific mortality (HR = 1.07, 
95% CI: 1.01–1.14) and a 9% increase in all-cause mortality 
(HR = 1.09, 95% CI: 1.06–1.12) among the COPD subgroup. 
In the asthma subgroup, the corresponding HRs were 1.11 
(95% CI: 1.02–1.20) for CLRD-specific mortality and 1.10 
(95% CI: 1.06–1.14) for all-cause mortality. These findings 
underscore the robust and independent prognostic value of 
NMLAR across different CLRD phenotypes. In addition, trend 
tests across NMLAR quartiles were statistically significant 
for both CLRD-specific and all-cause mortality in all models 
and subgroups, further supporting a consistent dose–response
association.

Restricted cubic spline analysis

RCS analyses revealed a linear and monotonically increasing 
association between NMLAR and both CLRD-specific and all-
cause mortality, with no apparent nonlinear inflection points or 
plateau phases. This linear trend was consistently observed in the 
overall population as well as in the generalized COPD and asthma 
subgroups. For CLRD-specific mortality, the optimal Youden index 
cutoff was 3.91 across the total cohort, the COPD subgroup, and 
the asthma subgroup. Based on this threshold, individuals were 
stratified into high- and low-risk groups. Compared with the low-
risk group, the high-risk group demonstrated significantly increased 
risks of CLRD-specific death: overall population HR = 2.12 (95% CI: 
1.51–2.96); COPD subgroup HR = 2.16 (95% CI: 1.34–3.47); asthma 
subgroup HR = 2.63 (95% CI: 1.36–5.06). For all-cause mortality, 
the optimal Youden index was 4.57 in the overall population, 
5.05 in the generalized COPD subgroup, and 4.42 in the asthma 
subgroup. Stratified analyses indicated that high-risk individuals 
had significantly greater all-cause mortality: overall HR = 1.28 (95% 
CI: 1.13–1.44); COPD subgroup HR = 1.35 (95% CI: 1.15–1.59); 
asthma subgroup HR = 1.47 (95% CI: 1.22–1.76). These findings 
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FIGURE 5
Feature selection results for all-cause mortality using Boruta and SVM-RFE algorithms. (A) Feature importance ranking based on the Boruta algorithm. 
Green boxplots indicate features confirmed as important, with NMLAR ranking fifth in mean Z-score importance. (B) Feature stability plot across 20 
Boruta iterations, highlighting age, BUN, LDH, and NMLAR as consistently top-ranked features. (C) The last 20 features eliminated in SVM-RFE, where 
NMLAR was the fourth-to-last feature removed, suggesting strong predictive value. (D) SVM-RFE performance curve showing AUC values for different 
numbers of selected features. AUC increased with more variables and plateaued beyond 30 features, reaching 0.840. The top 10 variables (AUC = 
0.808) were retained in the final model to balance performance and simplicity.

further underscore the prognostic utility of NMLAR as a robust, 
continuous inflammatory biomarker for mortality risk stratification 
across diverse CLRD phenotypes (Figure 7).

Subgroup Analysis

Subgroup analyses across demographic characteristics, 
socioeconomic status, smoking status, and comorbidities 
demonstrated that elevated NMLAR was consistently associated 
with increased mortality risk. For all-cause mortality (Figure 8), the 
association was evident in both younger (<60 years: HR = 1.20, 95% 
CI: 1.10–1.31) and older participants (≥60 years: HR = 1.06, 95% CI: 
1.04–1.09), with a significant interaction for age (P for interaction 
= 0.003), indicating a stronger effect in the younger population; 
results were generally stable across sex, education, PIR, smoking, 
and comorbidity subgroups including diabetes, liver disease, CKD, 
hypertension, CHD, and ACO (yes = asthma–COPD overlap; no = 
asthma or COPD alone). For CLRD-specific mortality (Figure 9), 
significant associations were observed in women, participants with 
high school education, low PIR, non-diabetic individuals, those 
without liver disease as well as those with liver disease, and in 

participants with hypertension or CHD, with hazard ratios ranging 
from 1.07 to 1.41. Importantly, a significant interaction was detected 
for ACO (P for interaction = 0.045), with a stronger association in 
the asthma–COPD overlap subgroup (HR = 1.15, 95% CI: 1.04–1.25) 
compared with asthma or COPD alone, while no other interactions 
reached significance.

Model performance evaluation

We comprehensively evaluated the performance of three Cox 
proportional hazards models in predicting both CLRD-specific 
and all-cause mortality, using time-dependent C-index, DCA, 
and bootstrap-based calibration curves. In the training cohort, 
Model 3 demonstrated consistently superior predictive performance 
compared to Model 1 and Model 2. As shown in Figure 10, 
Model 3 achieved the highest C-index throughout the follow-
up period for both outcomes. Specifically, for CLRD-specific 
mortality, the C-index at 3 months, 6 months, 1 year, 3 years, 
and 5 years was 0.87, 0.89, 0.90, 0.90, and 0.92 (Figure 10A), 
respectively. For all-cause mortality, corresponding values were 
0.90, 0.89, 0.90, 0.94, and 0.94 (Figure 10D). DCA curves further 

Frontiers in Physiology 11 frontiersin.org

https://doi.org/10.3389/fphys.2025.1708302
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1708302

FIGURE 6
SHAP summary plots derived from the XGBoost model, illustrating the impact of individual features on the prediction of CLRD-specific and all-cause 
mortality. (A)For CLRD-specific mortality, the most influential predictors were age, smoking status (never smoker), and NMLAR, with higher SHAP 
values indicating greater impact on model predictions. (B)For all-cause mortality, age remained the most impactful variable, followed by smoking 
status, LDH, and CRP. Notably, NMLAR ranked 8th in mean SHAP value among all predictors for all-cause mortality. Each point represents the SHAP 
value of a feature for a single individual, colored by the feature value (yellow = low, purple = high). Features are ranked by their mean absolute SHAP 
value. SHAP values were calculated based on the final XGBoost model to enhance model interpretability.

confirmed that Model 3 provided the greatest net clinical benefit 
in mortality prediction (Figures 10B,E). Bootstrap calibration plots 
demonstrated that Model 3 exhibited the best model calibration 
and goodness-of-fit among all models (Figures 10C,F). In the 
external validation cohort from NHANES 2015–2018, Model 3 
maintained strong generalizability. In predicting all-cause mortality, 
Model 3 consistently achieved the highest C-index, reaching 
0.93 at 5 years of follow-up (Figure 10G). DCA analysis in the 
validation set again showed superior net clinical benefit for Model 3 
(Figure 10H), and calibration plots confirmed the model’s reliability 
and consistency (Figure 10I).

External validation

In the MIMIC cohort, 2,120 patients were included. Crude 
all-cause mortality at 7, 14, 30, 90, and 365 days was 8.6%, 
13.0%, 16.0%, 21.0%, and 31.0%, respectively. The baseline table 
demonstrated a monotonic dose–response: across increasing 
NMLAR quartiles (Q1-Q4), mortality rose for all endpoints 
(Supplementary Table S2). Consistent with NHANES, higher 
NMLAR was positively associated with subsequent mortality and 
remained statistically significant after progressive adjustment at 
14–365 days. When modeled continuously, Model 3 showed that 
per-unit increases in NMLAR were associated with significantly 
higher mortality at 14 days (HR 1.042, 95% CI 1.010–1.075, p < 

0.01), 30 days (HR 1.048, 95% CI 1.012–1.086, p < 0.01), 90 days 
(HR 1.044, 95% CI 1.011–1.078, p < 0.01), and 365 days (HR 
1.040, 95% CI 1.007–1.074, p = 0.016). In contrast, the 7-day 
association was nonsignificant (HR 1.034, p = 0.529). In quartile 
analyses (Q1 reference), Model 3 estimated Q4 vs. Q1 HRs (95% 
CIs) of 2.257 (1.313–3.882) at 14 days, 2.075 (1.284–3.354) at 
30 days, and 1.558 (1.042–2.331) at 90 days (all significant); the 
365-day comparison was borderline (1.353 [0.970–1.889], p = 
0.075), and the 7-day comparison was not significant (1.638 
[0.839–3.201], p = 0.149). P for trend across quartiles was <0.01 
at all horizons, indicating increasing risk with higher NMLAR 
(Table 3). In external validation by transporting the NHANES 
models to MIMIC without refitting, Model 3 achieved C-indices 
of 0.708, 0.721, 0.761, 0.785, and 0.740 at 7, 14, 30, 90, and 365 
days, respectively—consistent with moderate discrimination—with 
good calibration and greater clinical net benefit on decision-curve 
analysis. RCS mirrored NHANES, indicating an approximately 
linear association between NMLAR and mortality in MIMIC 
inpatients. Notably, compared with the NHANES general 
population, the NMLAR distribution in MIMIC was broader 
and right-shifted, reflecting a higher central tendency and greater 
dispersion. Threshold analysis further identified a cutoff at 12.10: 
below this value, each 1-unit increase in NMLAR was not associated 
with a significant change in mortality risk (HR = 1.003, 95% CI: 
1.000–1.007), whereas above this threshold, the risk increased 
significantly (HR = 1.023, 95% CI: 1.008–1.037) (Figure 11; 
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TABLE 2  Cox regression analysis of NMLAR and mortality.

Model Continuous Quartile 1 Quartile 2 Quartile 3 Quartile 4 p for trend

CLRD-specific mortality

Model 1 1.22 (1.18–1.26) <0.001 Reference 1.21 (0.66–2.24) 0.536 2.73 (1.60–4.65) <0.001 6.33 (3.88–10.34) 
<0.001

<0.001

Model 2 1.12 (1.09–1.16) <0.001 Reference 1.02 (0.56–1.85) 0.961 1.73 (1.02–2.93) 0.043 2.89 (1.80–4.66) <0.001 <0.001

Model 3 1.07 (1.01–1.14) 0.021 Reference 1.09 (0.59–2.03) 0.776 1.86 (1.02–3.37) 0.042 2.55 (1.21–5.36) 0.014 0.003

CLRD-specific mortality in COPD

Model 1 1.19 (1.15–1.23) <0.001 Reference 1.62 (0.78–3.37) 0.195 3.67 (2.07–6.52) <0.001 7.32 (4.06–13.21) 
<0.001

<0.001

Model 2 1.12 (1.09–1.16) <0.001 Reference 1.41 (0.71–2.81) 0.322 2.51 (1.42–4.44) 0.001 3.82 (2.15–6.81) <0.001 <0.001

Model 3 1.07 (1.01–1.14) 0.027 Reference 1.54 (0.75–3.18) 0.238 2.67 (1.34–5.34) 0.005 3.16 (1.34–7.49) 0.009 0.002

CLRD-specific mortality in asthma

Model 1 1.26 (1.20–1.32) <0.001 Reference 0.42 (0.14–1.22) 0.110 1.89 (0.93–3.82) 0.079 5.89 (3.00–11.56) 
<0.001

<0.001

Model 2 1.15 (1.09–1.21) <0.001 Reference 0.35 (0.12–1.04) 0.060 1.24 (0.58–2.64) 0.575 2.54 (1.24–5.19) 0.010 <0.001

Model 3 1.11 (1.02–1.20) 0.011 Reference 0.42 (0.14–1.27) 0.126 1.33 (0.55–3.19) 0.524 2.26 (0.84–6.09) 0.105 0.021

All-cause mortality

Model 1 1.19 (1.16–1.21) <0.001 Reference 1.39 (1.13–1.70) 0.001 1.66 (1.36–2.02) <0.001 3.69 (3.06–4.45) <0.001 <0.001

Model 2 1.11 (1.08–1.13) <0.001 Reference 1.21 (0.99–1.49) 0.061 1.13 (0.93–1.38) 0.213 1.89 (1.56–2.29) <0.001 <0.001

Model 3 1.08 (1.06–1.11) <0.001 Reference 1.25 (1.00–1.56) 0.050 1.15 (0.92–1.43) 0.214 1.62 (1.28–2.06) <0.001 <0.001

All-cause mortality in COPD

Model 1 1.16 (1.14–1.19) <0.001 Reference 1.18 (0.94–1.47) 0.145 1.58 (1.30–1.93) <0.001 3.30 (2.75–3.95) <0.001 <0.001

Model 2 1.09 (1.07–1.11) <0.001 Reference 1.03 (0.84–1.27) 0.780 1.10 (0.90–1.35) 0.362 1.73 (1.41–2.13) <0.001 <0.001

Model 3 1.09 (1.06–1.12) <0.001 Reference 1.05 (0.84–1.30) 0.667 1.11 (0.88–1.39) 0.381 1.52 (1.17–1.96) <0.001 <0.001

All-cause mortality in asthma

Model 1 1.21 (1.18–1.24) <0.001 Reference 1.35 (1.01–1.80) 0.044 1.64 (1.26–2.14) <0.001 3.60 (2.83–4.59) <0.001 <0.001

Model 2 1.12 (1.09–1.14) <0.001 Reference 1.21 (0.88–1.65) 0.236 1.27 (0.92–1.75) 0.141 1.95 (1.46–2.60) <0.001 <0.001

Model 3 1.10 (1.06–1.14) <0.001 Reference 1.38 (1.01–1.88) 0.045 1.37 (0.99–1.90) 0.061 1.79 (1.27–2.50) <0.001 <0.001

Model 1 was unadjusted.
Model 2 was adjusted for age and sex.
Model 3 was further adjusted for key predictors identified by three machine learning methods. For the CLRD-specific mortality model, covariates included age, smoking status, NMLAR, 
diabetes, LDH, AST, ALT, WBC, PLT, cr, BUN, K, CRP, NLR, lgPLR, and education level. For the all-cause mortality model, covariates included age, LDH, PLT, K, hypertension, NMLAR, BUN, 
CRP, cr; NLR, lgPLR, diabetes, arthritis, smoking status.

Supplementary Figure S6). Subgroup analyses yielded consistent 
results across all predefined strata (Supplementary Table S3).

In the Zhejiang Provincial ICU cohort (n = 161), higher NMLAR 
levels were significantly associated with increased 30-day mortality, 
with HRs per unit increase of 1.139 (95% CI: 1.063–1.221), 1.136 
(95% CI: 1.060–1.220), and 1.093 (95% CI: 1.012–1.180) in Models 

1–3 (all p < 0.01) (Table 3; Supplementary Table S4). Restricted cubic 
spline analysis confirmed a linear association (p-overall <0.01; p-
nonlinear = 0.287), with a threshold identified at NMLAR = 13.32, 
above which mortality risk increased sharply. Model discrimination 
improved progressively, with AUCs of 0.777, 0.802, and 0.879 for 
Models 1–3, respectively. Decision curve and calibration analyses 
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FIGURE 7
Restricted cubic spline (RCS) analysis of the association between NMLAR and mortality outcomes based on Model 3. (A–C) RCS curves for 
CLRD-specific mortality in the overall population (A), COPD subgroup (B), and asthma subgroup (C). (D–F) RCS curves for all-cause mortality in the 
overall population (D), COPD subgroup (E), and asthma subgroup (F). The blue lines represent the adjusted hazard ratios (HRs) for mortality across 
continuous values of NMLAR, with shaded areas indicating 95% confidence intervals. The red dashed lines indicate the optimal cutoff values identified 
using the maximum Youden index, along with corresponding HRs and 95% confidence intervals for values above the cutoff. P values for the overall 
association and non-linearity are provided in the top left corner of each plot. Gray bars show the distribution of NMLAR. All models were adjusted for 
covariates included in Model 3. cutoff = Youden index.

further demonstrated that the fully adjusted model provided the 
greatest net clinical benefit and the best agreement between 
predicted and observed 30-day mortality (Figure 12).

Discussion

Immune-infiltration analyses across multiple human cohorts 
and experimental models revealed a consistent pattern in both 
disease and acute-exacerbation states, characterized by increased 
proportions of neutrophils and monocyte-lineage cells and 
reduced proportions of lymphocytes. Building on this robust 
immune signature, we mapped the transcriptomic deconvolution 
pattern—marked by innate immune enrichment and adaptive 
lymphocyte depletion—onto clinically accessible but long-
overlooked relative immune-cell proportions in peripheral blood, 
and accordingly developed a composite prognostic index that 
integrates the relative neutrophil–monocyte-to-lymphocyte ratio 
with serum albumin (NMLAR). Its generalizability and clinical 
utility were subsequently validated across multiple population-based 
and critically ill cohorts.

In this nationally representative study based on the 
NHANES 1999–2018 cycles, we were the first to propose 
and systematically evaluate a novel granulocyte ratio–based 
inflammatory biomarker—NMLAR. Previous studies have 
shown that granulocyte alterations are key features of CLRD 
exacerbation (Lopez et al., 2023), and markers such as NLR 
and PLR are cost-effective tools for identifying high-risk COPD 
patients prone to frequent exacerbations in primary care 

settings (Fu et al., 2025). Although these novel inflammation-
related indices involving neutrophils and lymphocytes have 
demonstrated promising predictive value across multiple disease 
states, the considerable heterogeneity and complex inflammatory 
pathways involved in CLRDs necessitate more accurate 
biomarkers to inform clinical intervention (Wang et al., 2021). 
Monocyte–macrophage populations play a central role in restraining 
pulmonary fibrosis, and elevated monocyte levels may reflect 
the progression and exacerbation of lower respiratory tract 
diseases (Ogger et al., 2020). In COPD lung tissue, enrichment 
of pro-inflammatory macrophage/monocyte subsets is believed to 
contribute significantly to the persistence of chronic inflammation 
(Hu et al., 2023). Conversely, in asthma, increased monocyte 
counts have been positively associated with disease severity, 
and reductions in monocytes have been shown to alleviate 
airway inflammation, improve clinical symptoms, and potentially 
slow lung function decline (Alavinezhad et al., 2022). These 
findings underscore the rationale for incorporating monocyte 
parameters into inflammatory indices in chronic respiratory 
disease research. Serum albumin, a major plasma protein involved 
in nutritional metabolism and immune modulation, has also 
been associated with adverse outcomes in chronic conditions. In 
COPD, hypoalbuminemia has been identified as an independent 
risk factor for pulmonary hypertension and poor prognosis 
(Zhou et al., 2024; Feng et al., 2023). Integrating albumin into 
prognostic indices is thus well-supported by prior evidence. For 
example, the neutrophil percentage to albumin ratio (NPAR) has 
been proposed as a dual-purpose biomarker for breast cancer risk 
and prognosis, aiding in early detection and personalized treatment 
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FIGURE 8
Subgroup analysis of the association between NMLAR and all-cause mortality based on Model 3.

planning (Su et al., 2025). NMLAR uniquely incorporates elevated 
neutrophil and monocyte levels—commonly observed in CLRD 
exacerbations (Xu et al., 2024)—into the numerator, while declining 
lymphocyte counts and hypoalbuminemia—reflective of impaired 
immune function and nutritional status—form the denominator. 
Unlike traditional metrics based on absolute granulocyte counts, our 
use of relative proportions allows for the dynamic capture of subtle 
inflammatory shifts. This ratio structure enhances the sensitivity 
and discriminatory capacity of systemic inflammatory markers. 
Building upon these insights, we further compared NMLAR with 
various established and emerging inflammatory indices using ROC 
curve analysis and DeLong tests. Results consistently demonstrated 
that NMLAR outperformed other markers in predicting both 
CLRD-specific and all-cause mortality, reinforcing its clinical utility.

In this study, we used three widely applied machine 
learning algorithms—Boruta, SVM-RFE, and XGBoost—to 
conduct comprehensive feature selection across all candidate 
variables (Liao et al., 2025). These algorithms are well suited 
for high-dimensional data and complex interactions and are 
increasingly used in epidemiologic and clinical prognostic 
modeling (Guan et al., 2024; Lee et al., 2022). For CLRD-
specific mortality, NMLAR consistently ranked among the top 
three predictors across all algorithms—second only to age and 
smoking history—and showed substantially greater importance 
than traditional inflammatory markers such as NLR, PLR, and 
CRP, demonstrating strong robustness and explanatory power. 
NMLAR also ranked highly in all-cause mortality models, 
supporting its broad predictive value across different mortality 
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FIGURE 9
Subgroup analysis of the association between NMLAR and CLRD-specific mortality based on Model 3.

outcomes. These findings highlight NMLAR as a promising 
composite inflammatory–immune biomarker for identifying high-
risk individuals with CLRD. Age remained the strongest predictor 
for both mortality outcomes, consistent with previous prognostic 
research (Chen et al., 2025; Wang F. et al., 2025). Notably, fewer 
variables contributed meaningfully to CLRD-specific mortality 
than to all-cause mortality; SHAP plots showed that lower-ranked 
factors (e.g., alcohol use, CKD, CHD, sex, race) added minimal 
information to the CLRD-specific model, whereas contributions 
in the all-cause model were more diffuse. The relatively higher 
importance of NMLAR in CLRD-specific mortality models further 
suggests that systemic inflammation may play a more central role in 
disease-specific death among CLRD patients (Yousuf et al., 2022).

Importantly, this study did not evaluate NMLAR alone but 
incorporated it into Cox proportional hazards models informed 
by machine-learning–derived feature importance rankings. Using 
AUC to assess SVM-RFE feature subsets, we found that model 
discrimination remained stable when the top 10 predictors were 
retained, whereas further reduction led to a clear decline; therefore, 
these 10 features were selected as covariates. In the CLRD-
specific mortality model, the highest-ranking variables included 
inflammation-related markers (NMLAR, WBC, NLR, lgPLR, CRP), 
hepatic indices (AST, ALT, LDH), renal markers (Cr, BUN), 
electrolytes (K), and smoking and diabetes. The predominance 
of inflammation–nutrition–immune variables suggests that 
systemic inflammation and nutritional status are central to CLRD-
specific mortality. In contrast, the all-cause mortality model 
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FIGURE 10
Evaluation of model performance across three prognostic models for CLRD-specific mortality, all-cause mortality, and external validation using 
NHANES 2015–2018. (A,D,G) Time-dependent concordance index (C-index) curves showing the discrimination ability of Model 1 (red), Model 2 (blue), 
and Model 3 (green) over time for CLRD-specific mortality (A), all-cause mortality (D), and the external validation cohort (G). (B,E,H) Decision curve 
analysis (DCA) plots illustrating the clinical net benefit of each model across a range of threshold probabilities in the same populations. (C,F,I) Bootstrap 
calibration curves (B = 1000) at the 5-year time point evaluating agreement between predicted and observed survival probabilities for each model in 
the corresponding cohorts.

included a broader range of comorbidity-related variables (e.g., 
hypertension, arthritis), while still retaining renal, electrolyte, 
and inflammatory markers, reflecting the multifactorial etiology 
of all-cause mortality and the dilution of respiratory-specific 
mechanisms by non-respiratory causes. Consistent with prior 
evidence, hepatic dysfunction, renal impairment, and electrolyte 
disturbances are well-established mortality determinants across 
clinical cohorts (Liao et al., 2025; Wang F. et al., 2025; Lei et al., 2025). 
Taken together, the shared predictors—particularly inflammatory 
markers, renal indicators, and electrolytes—underscore their 
fundamental prognostic relevance across mortality outcomes, 
with NMLAR emerging as a strong and consistent predictor. The 
additional inflammatory and hepatic variables in the CLRD-specific 
model further indicate that inflammation–immune–nutritional 
dysregulation may play a more prominent role in disease-specific 
mortality (Peng et al., 2025).

In both CLRD-specific and all-cause mortality analyses, the 
HR for NMLAR decreased progressively with model adjustment 
but remained statistically significant, suggesting that NMLAR is 
an independent risk factor for both outcomes in the CLRD 
population. As a continuous variable, each 1-unit increase in 
NMLAR was associated with a 7% higher risk of CLRD-specific 
mortality and an 8% higher risk of all-cause mortality. RCS analysis 
demonstrated a linear dose–response relationship between NMLAR 
and mortality risk. The trend test based on quartile categorization 
further supported this finding, showing a progressive increase in HR 

from Q1 to Q4. The optimal thresholds derived from the Youden 
index were 3.91 for CLRD-specific mortality and 4.57 for all-cause 
mortality. Based on the above thresholds, risk stratification analysis 
revealed that high-risk individuals had substantially elevated 
risks of CLRD-specific mortality compared with their low-risk 
counterparts (overall: 2.12-fold; generalized COPD subgroup: 2.16-
fold; asthma subgroup: 2.63-fold). In contrast, the magnitude of 
increase in all-cause mortality among high-risk individuals was 
relatively smaller (1.28-fold, 1.35-fold, and 1.47-fold, respectively), 
suggesting that NMLAR may have greater discriminatory value 
for CLRD-specific mortality risk stratification than for all-cause 
mortality. This may be because NMLAR aligns more closely 
with the underlying pathophysiological mechanisms of chronic 
lower respiratory diseases, where systemic inflammation and 
nutritional decline play pivotal roles. As a composite index 
integrating inflammatory, immune, and nutritional dimensions, 
NMLAR directly reflects these processes, thereby providing greater 
discriminatory power for stratifying disease-specific mortality risk 
(Mall et al., 2023; Zinellu et al., 2021). In contrast, all-cause mortality 
encompasses a wide spectrum of death causes, many of which are 
only weakly associated with inflammatory status, thus diminishing 
the predictive contribution of NMLAR.

In further subgroup analyses, we additionally stratified 
participants by ACO status, comprising those with ACO and those 
with COPD or asthma alone, to explore potential heterogeneity. 
Overall, the positive association between elevated NMLAR and 

Frontiers in Physiology 17 frontiersin.org

https://doi.org/10.3389/fphys.2025.1708302
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1708302

TABLE 3  Cox regression analysis of NMLAR and mortality in external cohort.

Model Continuous Quartile 1 Quartile 2 Quartile 3 Quartile 4 P For trend

7-day mortality from MIMIC

Model 1 1.012 (1.003–1.022) <0.01 Reference 1.444 (0.756–2.756) 0.265 1.706 (0.931–3.126) 0.083 2.268 (1.253–4.105) <0.01 <0.01

Model 2 1.004 (0.993–1.015) 0.486 Reference 1.417 (0.729–2.754) 0.304 1.434 (0.752–2.736) 0.274 1.658 (0.845–3.255) 0.142 <0.01

Model 3 1.004 (0.992–1.015) 0.529 Reference 1.444 (0.745–2.800) 0.277 1.461 (0.768–2.778) 0.248 1.638 (0.839–3.201) 0.149 <0.01

14-day mortality from MIMIC

Model 1 1.018 (1.011–1.025) <0.01 Reference 1.355 (0.818–2.245) 0.238 1.671 (1.040–2.685) 0.034 2.595 (1.644–4.095) <0.01 <0.01

Model 2 1.013 (1.004–1.022) <0.01 Reference 1.550 (0.910–2.640) 0.107 1.672 (0.983–2.842) 0.058 2.279 (1.320–3.936) <0.01 <0.01

Model 3 1.013 (1.004–1.022) <0.01 Reference 1.563 (0.921–2.654) 0.098 1.654 (0.977–2.802) 0.061 2.257 (1.313–3.882) <0.01 <0.01

30-day mortality from MIMIC

Model 1 1.020 (1.014–1.027) <0.01 Reference 1.163 (0.736–1.837) 0.518 1.644 (1.081–2.501) 0.020 2.506 (1.668–3.766) <0.01 <0.01

Model 2 1.015 (1.007–1.023) <0.01 Reference 1.218 (0.754–1.965) 0.420 1.516 (0.954–2.409) 0.079 2.086 (1.288–3.378) <0.01 <0.01

Model 3 1.015 (1.007–1.022) <0.01 Reference 1.241 (0.770–2.001) 0.375 1.527 (0.962–2.422) 0.073 2.075 (1.284–3.354) 0.003 <0.01

90-day mortality from MIMIC

Model 1 1.014 (1.008–1.020) <0.01 Reference 1.121 (0.770–1.633) 0.551 1.385 (0.977–1.964) 0.067 1.874 (1.330–2.641) <0.01 <0.01

Model 2 1.010 (1.002–1.016) 0.016 Reference 1.131 (0.763–1.675) 0.536 1.259 (0.857–1.850) 0.240 1.541 (1.029–2.307) 0.036 <0.01

Model 3 1.009 (1.002–1.015) 0.015 Reference 1.157 (0.782–1.713) 0.466 1.275 (0.869–1.871) 0.215 1.558 (1.042–2.331) 0.031 <0.01

365-day mortality from MIMIC

Model 1 1.010 (1.005–1.015) <0.01 Reference 1.009 (0.742–1.373) 0.953 1.188 (0.892–1.583) 0.238 1.511 (1.137–2.007) <0.01 <0.01

Model 2 1.007 (1.000–1.012) 0.034 Reference 1.022 (0.741–1.409) 0.896 1.109 (0.810–1.519) 0.519 1.336 (0.956–1.866) 0.088 <0.01

Model 3 1.006 (1.001–1.012) 0.030 Reference 1.045 (0.758–1.441) 0.789 1.115 (0.814–1.526) 0.497 1.353 (0.970–1.889) 0.075 <0.01

30-day mortality from zhejiang provencial ICU

Model 1 1.139 (1.063–1.221) <0.01 Reference 2.050 (0.776–5.415) 0.147 4.366 (1.892–10.083) <0.01 5.837 (2.234–15.007) <0.01 <0.01

Model 2 1.136 (1.060–1.220) <0.01 Reference 1.899 (0.717–5.309) 0.196 4.109 (1.810–9.300) <0.01 5.231 (2.015–13.579) 
<0.001

<0.01

Model 3 1.093 (1.012–1.180) <0.01 Reference 1.400 (0.508–3.872) 0.589 3.116 (1.814–5.360) <0.01 4.556 (1.480–11.007) 
<0.001

<0.01

MIMIC: Model 1: Unadjusted. Model 2: Adjusted for key predictors identified in NHANES, including age, LDH, PLT, K, hypertension, NMLAR, BUN, CRP, creatinine; NLR, lgPLR, diabetes, 
arthritis, smoking status. Model 3: Further adjusted for Model 2 covariates plus MIMIC-specific clinical factors, including SOFA, score, use of CRRT, vasopressor use, and mechanical 
ventilation. EHR:Model 1 was unadjusted. Model 2 was adjusted for age and sex. Model 3 was further adjusted for age, LDH, PLT, hypertension, NMLAR, BUN, CRP, cr; NLR, lgPLR, diabetes, 
arthritis.

mortality risk was consistent across most subgroups, reinforcing 
its robustness as a prognostic indicator. However, significant 
heterogeneity was observed by age: among participants <60 years, 
each 1-unit increase in NMLAR was associated with a 20% higher 
risk of all-cause mortality, whereas the corresponding increase 
in older adults was only 6%. This suggests that NMLAR carries 
greater prognostic relevance in younger individuals, whose lower 
baseline mortality risk may render them more susceptible to 

the adverse effects of systemic inflammation and nutritional 
decline, while in older adults, the higher comorbidity burden 
and baseline risk may attenuate its incremental predictive value 
(Liu et al., 2019). For CLRD-specific mortality, the predictive 
effect of NMLAR was most pronounced in the ACO subgroup, 
with a significant interaction detected. The heightened sensitivity 
of ACO patients to NMLAR may reflect their greater systemic 
inflammatory burden and complex immune-inflammatory 
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FIGURE 11
External validation of NHANES models in the MIMIC cohort (30-day mortality). RCS showed an approximately linear association between NMLAR and 
mortality, consistent with NHANES (A). Model 3 demonstrated moderate discrimination with C-indices of 0.708, 0.721, 0.761, 0.785, and 0.740 at 7, 14, 
30, 90, and 365 days (B), respectively, along with good calibration and greater clinical net benefit (C) on decision-curve analysis (D).

responses, which aligns with prior evidence that ACO patients 
have higher rates of exacerbations and worse outcomes compared 
with those with COPD or asthma alone (Polverino et al., 2024; 
Hashimoto et al., 2023; Wakazono et al., 2025). Taken together, 
these findings indicate that NMLAR provides stable prognostic 
information across diverse populations, but its predictive 
value is particularly notable in younger individuals and in 
patients with ACO.

NMLAR demonstrates considerable clinical value as an 
independent prognostic factor. In Model 1, which included 
only NMLAR, the time-dependent C-index for predicting 1-
year CLRD-specific mortality exceeded 0.80, indicating moderate 
short-term discriminatory capacity. However, when compared to 
multivariable models incorporating NMLAR (Model 2 and Model 
3), its predictive accuracy declined markedly over longer follow-
up durations. This suggests that while NMLAR alone is useful 
for short-term risk assessment, its long-term prognostic utility 
may be limited, particularly in predicting all-cause mortality. 
The performance drop may be attributed to fluctuations in 
NMLAR caused by transient factors such as acute infections or 
nutritional changes, undermining its stability over time. In contrast, 
Model 3—integrating top-ranked machine learning–selected 
features—demonstrated superior accuracy and generalizability for 
both intermediate- and long-term prediction. DCA and bootstrap 

calibration curves confirmed that Model 3 offered the highest net 
clinical benefit and better calibration for both CLRD-specific and all-
cause mortality (Wang S. et al., 2025). It consistently maintained the 
highest C-index, exceeding 0.90 during mid-to long-term follow-up. 
Furthermore, external validation using the NHANES 2015–2018 
cohort substantiated the model’s robustness and generalizability. 
These findings underscore the value of machine learning–based 
feature selection in building clinically effective prognostic tools. 
As a core component of the final model, NMLAR contributed 
uniquely to mortality prediction in CLRD populations, significantly 
enhancing both the model’s discriminative performance and 
clinical utility.

In addition to multi-timepoint validation within NHANES, 
we further evaluated the prognostic performance of NMLAR 
in two ICU cohorts with distinct clinical contexts. In the 
large and heterogeneous MIMIC-IV cohort, NMLAR remained 
independently associated with mortality after adjustment for both 
NHANES-derived covariates and ICU-specific factors, with RCS 
analysis suggesting an overall linear relationship and threshold 
analysis identifying a cutoff of 12.1, above which mortality increased 
markedly. The Zhejiang Provincial ICU cohort, although smaller and 
more homogeneous, provided real-world validation in a Chinese 
single-center setting; despite limited adjustment for smoking status, 
NMLAR retained strong prognostic value for 30-day mortality, 
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FIGURE 12
External validation of NHANES models in the Zhejiang Provincial ICU cohort (30-day mortality). RCS revealed an approximately linear association 
between NMLAR and 30-day mortality, with a threshold identified at NMLAR = 13.32, above which the risk increased markedly (A). ROC curves 
demonstrated that Model 3 achieved the highest discrimination (AUC = 0.879, 95% CI: 0.809–0.930), outperforming Model 1 (AUC = 0.577) and Model 
2 (AUC = 0.702) (B). Decision-curve analysis further confirmed greater net clinical benefit for Models 3 and 4, where Model 3 assumed all patients were 
nonsmokers and Model 4 assumed all patients were smokers (C). Calibration curves indicated good agreement between predicted and observed 
probabilities under both assumptions (D).

with a similar threshold of 13.32. The consistency of these 
thresholds across diverse populations supports the stability of 
NMLAR-based risk stratification, and the moderate discriminative 
performance of NHANES-derived models in both ICU cohorts 
further reinforces the transportability of the framework and the 
clinical utility of NMLAR as a prognostic biomarker in critically ill 
CLRD patients.

Using nationally representative NHANES 1999–2018 data, 
this study benefited from a large sample size, broad variable 
coverage, and standardized measurements. We developed the 
NMLAR index, integrating systemic inflammation and nutritional 
status, and distinguished CLRD-specific mortality through the 
NDI to enable disease-focused risk stratification. Data-driven 
feature selection (Boruta, SVM-RFE, XGBoost) and comprehensive 
model assessment (C-index, calibration, DCA) strengthened 
methodological rigor. External validation across NHANES 
2015–2018, the MIMIC-IV v3.1 ICU cohort, and the real-world 
Zhejiang Provincial ICU cohort further confirmed the robustness 
and generalizability of our findings, including in models that 
transported NHANES-derived coefficients without refitting and 
were additionally adjusted for critical-care–specific variables. 

However, the study’s observational design limits causal inference; 
some variables were self-reported and may introduce bias; and 
findings from U.S. NHANES data may not fully generalize to 
other populations. Larger prospective cohorts are needed to further 
validate the CLRD-specific mortality model.

Conclusion

NMLAR, a composite indicator reflecting systemic 
inflammation and nutritional status, was an independent predictor 
of mortality among adults with CLRD and demonstrated an 
approximately linear dose–response relationship. Its prognostic 
value was consistently validated across multiple cohorts, supporting 
NMLAR as a robust and broadly applicable tool for individualized 
risk stratification in CLRD, including critically ill populations. 
Moreover, this study provides important evidence supporting the 
utility of relative blood-cell proportions in risk assessment for 
chronic diseases. Collectively, these findings provide a conceptual 
reference for applying relative immune–cell proportion metrics to 
inflammatory disease risk assessment.
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SUPPLEMENTARY FIGURE S1
Immune cell fractions in the AECOPD cohort (GSE60399). PBMC samples from 
stable COPD and AECOPD patients were analyzed by CIBERSORT at hospital days 
1, 3, and 10.

SUPPLEMENTARY FIGURE S2
Boruta algorithm–derived variable importance for CLRD-specific mortality. The 
x-axis represents the mean importance score (mean Z-score), and the y-axis lists 
the retained features, ranked in descending order of importance. All features 
shown were confirmed as significant predictors of CLRD-specific mortality.

SUPPLEMENTARY FIGURE S3
Top 20 important features for CLRD-specific mortality identified by the XGBoost 
algorithm. The x-axis shows the mean gain, representing each variable’s relative 
contribution to the model, while the y-axis lists the ranked features in descending 
order of importance.

SUPPLEMENTARY FIGURE S4
Boruta algorithm–derived variable importance for all-cause mortality. The x-axis 
represents the mean importance score (mean Z-score), and the y-axis lists the 
retained features, ranked in descending order of importance. All features shown 
were confirmed as significant predictors of all-cause mortality.

SUPPLEMENTARY FIGURE S5
Top 20 important features for all-cause mortality identified by the XGBoost 
algorithm. The x-axis shows the mean gain, representing each variable’s relative 
contribution to the model, while the y-axis lists the ranked features in descending 
order of importance.

SUPPLEMENTARY FIGURE S6
External validation of NHANES models in the MIMIC cohort (7-,14-,30-,365-day 
mortality). RCS analysis demonstrated an approximately linear association 
between NMLAR and mortality, accompanied by good calibration and greater 
clinical net benefit on decision-curve analysis.
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