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Effect of chronic heat stress on 
duodenal epithelial barrier 
integrity in low- and 
high-water-efficient broiler 
chickens

Lulu Liu, Elizabeth S. Greene, Brooklee Roach, Sara Orlowski 
and Sami Dridi*

Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, 
AR, United States

 Heat stress (HS) has long posed a significant challenge to the poultry 
industry due to its adverse effects, such as depressed feed intake, decreased 
growth performance, and increased water consumption. Water efficiency (WE, 
conversion of water intake into body weight gain), although often neglected, 
is a key economic and production trait that is significantly affected by HS. 
Recently, we selected two broiler lines for high WE (HWE) and low WE 
(LWE) and showed a differential hypothalamic expression of genes involved in 
water homeostasis regulation. As the gut also plays a significant role in water 
absorption, the present study aimed to determine the effect of chronic HS on 
duodenal barrier integrity in LWE and HWE broilers. Male HWE and LWE chicks 
(240 chicks/line) were individually wing-banded for line identification, weighed, 
and placed in 12 controlled environmental chambers (2 pens/chambers). On 
day 29, birds were subjected to thermoneutral conditions (TN, 25 °C) or 
cyclic HS conditions (HS, 36 °C for 9 h/day from 9:00 a.m. to 6:00 p.m.) 
(120 birds/line/environment) for 3 weeks. On day 49, duodenal tissues were 
collected for histological, biochemical, and molecular analyses. Hematoxylin 
and eosin (H&E) staining revealed that HS significantly reduced villus height in 
the duodenum. Further analysis using qPCR showed that the mRNA expressions 
of intestinal barrier integrity-related genes, including claudins (CLDN1, 4, 5, 8, 16, 
and 22), PALS1-associated tight junction protein (PATJ), gap junction alpha 1 and 
3 (GJA1/3), cadherin 2 (CDH2), and catenin alpha 2 (CTNNA2), were significantly 
upregulated by HS, and this effect was more pronounced in the HWE line 
than in its LWE counterpart. The findings of this study indicate that HS induces 
duodenal morphometric alterations. Based on the reduced serum fluorescein 
isothiocyanate-dextran (FITC-D) levels previously reported in the HWE line, the 
increased abundances of CLDN, PATJ, GJA1, CDH2, and CTNNA2 mRNAs in the 
HWE line suggest an enhancement of its duodenal barrier integrity for better 
nutrient and water absorption and, consequently, better growth efficiency.
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1 Introduction

Due to its nutritious characteristics (high protein content, 
low fat levels, and richness in vitamins) (Marcincak et al., 2023), 
poultry meat is highly regarded and widely consumed globally. 
To meet requirements of an ever-increasing human population 
of approximately 10 billion by 2050, it is required that global 
poultry meat production reach 181 million tons (Kikusato and 
Toyomizu, 2023) This high demand for high-quality animal proteins 
also necessitates rapid growth and increased broiler production 
efficiency, which will be very challenging because of many obstacles, 
particularly global warming (Oke et al., 2024). Heat stress (HS) 
is one of the most significant economic, production, and welfare 
burdens that adversely impact the poultry industry. According to 
a study on the world agricultural economy, HS results in $2.36 
billion in economic losses annually to the U.S. poultry industry 
(Abbas et al., 2025) due to depressed feed intake, diminished 
production performance, suppressed immune function, heightened 
disease outbreaks, increased water consumption, and elevated 
mortality rates (Nawab et al., 2018; Liu et al., 2020). Depending on its 
duration, intensity, and severity, the adverse effects of HS can range 
from discomfort to organ damage and, in grave cases, to death.

Among the organs that are sensitive to HS is the gut. HS 
increases peripheral blood circulation and reduces blood flow in 
the intestinal epithelium, leading to hypoxia. This hypoxic condition 
compromises intestinal mucosal damage by disrupting tight junctions 
(TJs) and increasing intestinal paracellular permeability (Lambert, 
2009). Furthermore, HS impairs various physiological functions of 
the gastrointestinal tract, such as digestive enzyme activity, nutrient 
transport, and intestinal development (Kikusato and Toyomizu, 2023), 
leading to increased inflammation (Varasteh et al., 2015; Wang et al., 
2022) and leaky gut syndrome (Ncho, 2025). 

Under homeostatic conditions, the intestinal epithelial cells 
form physical and biochemical barriers to prevent pathogens, 
toxins, and allergens from entering the intestinal lumen 
(Alhota et al., 2021). This intestinal epithelial barrier is formed 
by several complex components, including the adhesive mucus 
gel layer, immunoglobulin A, antibacterial peptides, and the 
apical junctional complex (AJC). The AJC is composed of 
TJs, adherens junctions (AJs), and desmosomes, together with 
gap junctions, which reside below AJC, conferring intestinal 
structural integrity (Suzuki, 2020; Garcia-Hernandez et al., 2017; 
Kuo et al., 2022; Gierynska et al., 2022).

The gut, called the second brain, plays a pivotal role in regulating 
water consumption, and both, as described above, are affected by 
HS. Two chicken lines were divergently selected for high water 
efficiency (HWE) and low water efficiency (LWE) (Aloui et al., 
2024), with the HWE line being more thermo-resistant, exhibiting 
lower leaky gut syndrome under HS conditions (Greene et al., 2025), 
and differential hypothalamic expressions of genes involved in thirst 
and water homeostasis regulation (Aloui et al., 2024). Recently, we 
have also shown that HS affects ileal barrier integrity in a line-
dependent manner (Greene et al., 2025). To deepen our understanding, 
the present study was undertaken to determine the effect of chronic HS 
on duodenal barrier integrity, which plays a crucial role in digestion 
and nutrient absorption, in HWE and LWE lines.

2 Materials and methods

2.1 Animal experiments and tissue 
collection

The LWE and HWE lines and the experimental design used 
in this study were previously described (Aloui et al., 2024). In 
brief, on day 1, male HWE and LWE chicks were randomly 
allocated in body weight-matched groups into 12 controlled 
environmental chambers (2 floor pens/chamber, 6 chambers/line, 
20 birds/pen). On day 29, birds were exposed to two environmental 
conditions: thermoneutral (TN, 25 °C) or chronic cyclic HS (36 °C 
for 9 h/day) in a 2 × 2 factorial design. On day 49, the duodenum 
tissues (3–5 cm central portion of the duodenal loop) (n = 
12/group) were rinsed twice in cold PBS 1X and snap-frozen 
in liquid nitrogen and stored at −80 °C for later use. Segments 
of the duodenum tissue were fixed in 4% paraformaldehyde for 
histological analysis. Animal care complied with the requirements 
of the Guide for the Care and Use of Laboratory Animals from 
the National Institutes of Health. All animal experiments were 
performed in accordance with the procedures approved by the 
University of Arkansas Animal Care and Use Committee (protocol
# 23015). 

2.2 RNA extraction, cDNA synthesis, and 
quantitative real-time PCR

Total RNA was extracted from duodenum tissues using TRIzol 
reagent (Thermo Fisher Scientific, Waltham, MA), according 
to the manufacturer’s instructions. RNA integrity and quality 
were assessed using 1% agarose gel electrophoresis, and RNA 
concentrations and purity were determined for each sample using 
a Take3 Microvolume Plate with a BioTek Synergy HT Multimode 
Microplate Reader (BioTek Instruments, Inc., Winooski, VT). Total 
RNAs (1 µg) were reverse-transcribed to cDNA using qScript cDNA 
SuperMix (Quanta Biosciences, Gaithersburg, MD) and subjected 
to quantitative real-time PCR with SYBR Green Master Mix on 
a 7500 Real-Time PCR System (Applied Biosystems, Waltham, 
MA) as previously described (Aloui et al., 2024). The qPCR 
reaction mixture consisted of 2.5 μL of cDNA, 5 μL of SYBR 
Green Master Mix (ABclonal, Woburn, MA), and 0.5 μL of each 
forward and reverse primer to make a final reaction mixture 
of 12.5 μL. Melting curve analysis was performed at the end of 
the amplification, following the dissociation protocol (Sequence 
Detection System) to exclude contamination with nonspecific PCR 
products. The PCR products were also confirmed through 2% 
agarose gel electrophoresis, which exhibited only one definite band 
of the predicted size, and by sequencing the amplified amplicons. 
There were no gel-detected bands for the negative controls where 
the RT products were omitted. The relative quantification of 
target gene expression was calculated using the 2−△△CT method 
(Schmittgen and Livak, 2008), with the ribosomal 18S gene as 
the housekeeping gene. The specific primer sequences used in 
this study were identical to those described in the previous study
(Greene et al., 2025).
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2.3 Western blot

Proteins were extracted from duodenum tissues using lysis 
buffer supplemented with protease and phosphatase inhibitors, 
as previously described (Greene et al., 2025). In brief, protein 
concentrations were determined using a Bradford Assay Kit 
(Bio-Rad, Hercules, CA), according to the manufacturer’s 
instructions. Equal amounts of protein (70 µg) were separated 
using 4%–12% Bis-Tris gels (Life Technologies, Carlsbad, CA) 
and transferred into PVDF membranes. The membranes were 
blocked at room temperature for 1 h with 5% non-fat milk 
in TBS-T and then incubated overnight at 4 °C with primary 
anti-CLDN4 antibody (1; 1,000, bs-2790R, Bioss, Woburn, 
MA) and anti-GAPDH (1:1,000, NB300-327, Novus Biologicals, 
Centennial, CO). After washing, the membranes were incubated 
with HRP-conjugated secondary antibodies (goat anti-rabbit IgG 
#7074, 1:5,000, Cell Signaling, Danvers, MA) for 1 h at room 
temperature. Protein bands were visualized using enhanced 
chemiluminescence (ECL) reagents (SuperSignal West Femto 
Maximum Sensitivity Substrate, Thermo Fisher Scientific, Waltham, 
MA) and captured using the FluorChem M MultiFluor System 
(ProteinSimple, Santa Clara, CA). Band intensities were quantified 
using AlphaView software (version 3.4.0.0, ProteinSimple, Santa
Clara, CA). 

2.4 Immunohistochemical and intestinal 
morphometry measurement

Duodenum segments were fixed in freshly prepared 4% 
paraformaldehyde for 24 h at 4 °C, dehydrated through a graded 
ethanol series, cleared in xylene, and embedded in paraffin. Paraffin 
blocks were sectioned at a thickness of 5 μm using a microtome 
and mounted on glass slides. Hematoxylin and eosin (H&E) (1%) 
staining was performed for duodenal morphology examination 
and measurement. Tissue sections were deparaffinized in xylene (3 
× 15 min) and rehydrated through descending concentrations of 
ethanol (100%, 95%, 70%, and 50%, 3 min each). After rinsing in 
distilled water, tissue sections were stained with hematoxylin (VWR, 
Radnor, PA) for 20 min, briefly differentiated in 1% acid alcohol, 
and blued for 10 min. Tissue sections were then counterstained 
with eosin (VWR, Radnor, PA) for 20 min, dehydrated in ascending 
ethanol concentrations (95% and 100%, 3 min for each), cleared 
in xylene, and cover-slipped using mounting medium. Tissue 
morphometry was examined under a Nikon light microscope 
and using NIS-Elements software F (5.22.00, Nikon Instruments 
Inc., Melville, NY). The morphometric measurements on the 
duodenum included villus height (VH, from the top of the villi 
to the villus-crypt junction) and crypt depth (CD, from the base 
of the villi to the mucosa). All measurements were taken from 20 
random villi and 20 random crypts from the duodenal segment 
of each bird and were expressed as the average villus height and 
crypt depth. The villi/crypt ratio was determined by dividing 
the villus height by the crypt depth (VH/CD) (Prakatur et al., 
2019). ImageJ software was used to analyze all the
measurements.

2.5 Statistical analysis

Data are shown as the mean ± SEM. Statistical analyses 
were conducted using GraphPad Prism version 10 for 
Windows (GraphPad Software, La Jolla, California, United 
States). For experiments involving line, environment, and their 
interaction, two-way ANOVA was performed, followed by 
Tukey’s honestly significant difference (HSD) multiple comparison 
test. If no significant interaction was detected, the main 
effects of the line or environment were evaluated separately 
using Student’s t-test. p < 0.05 was considered statistically
significant. 

3 Results

3.1 Morphometric analysis

Morphometric parameters of the duodenum from LWE and 
HWE lines reared under TN and HS conditions are shown in 
Figure 1. There was no significant line-by-environmental interaction 
effect for any of the measured parameters (Figures 1B,D,E). Heat 
stress significantly decreased the duodenal villus height compared 
to the TN condition (Figures 1B,C), but it did not affect crypt depth 
(Figure 1D) or the villus/crypt ratio (Figure 1E).

3.2 Effect of HS on the duodenal 
expression of tight junction proteins in 
HWE and LWE lines

Heat stress exposure affects the duodenal expression of barrier-
forming claudins. In particular, mRNA abundances of duodenal 
CLDN1, CLDN5, CLDN8, and CLDN22 were significantly increased 
by HS compared to TN conditions (Figures 2A–H), and this 
induction was more pronounced in HWE than in their LWE 
counterparts (Figures 2A–H). The expressions of the CLDN9, 
CLDN25, and CLDN34 genes remained unchanged between both 
lines under both environmental conditions (Table 1).

The duodenal expression of pore-forming claudins was 
also affected in LWE and HWE broiler chickens. There were 
significant line-by-environment interaction effects for duodenal 
CLDN4 protein levels (Figures 3A,B) and CLDN2 gene expression 
(Figure 3D) but not for CLDN4, CLDN16, CLDN19, and CLDN23 
mRNAs (Figures 3C,E; Table 1). Protein levels of CLDN4 were 
significantly higher in HWE under both TN and HS conditions 
than in the LWE line (Figures 3A,B). Heat stress increased 
mRNA abundances of CLDN2 and CLDN16 only in the HWE 
line (Figures 3D–F). Neither HS nor line affected the duodenal 
expression of CLDN19 or CLDN23 (Table 1).

Heat stress also significantly upregulated the duodenal 
expression of PALS1-associated tight junction protein (PATJ), 
and this effect was more obvious in HWE than in the 
LWE line (Figures 4A,B). Although the difference was not 
statistically discernible, the expressions of zonula occludens 
ZO-2 and ZO-3 were also induced by HS only in the HWE 
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FIGURE 1
Duodenal histological morphology in LWE and HWE broiler chickens. (A) Representative H&E-stained sections of duodenum from LWE and HWE lines 
under TN and HS conditions. (B,C) Quantification of villus height (VH), (D) crypt depth (CD), and (E) the VH:CD ratio. Data are presented as the means ± 
SEM. Scale bar, 100 μm.∗indicates a significant difference at p < 0.05. E, environment; HS, heat stress; HWE, high-water-efficient; L, line; L × E, 
line-by-environment interaction; LWE, low-water-efficient; TN, thermoneutral. A bold p-value indicates a significant difference.

line (p = 0.07 and p = 0.08 for ZO-2 and ZO-3, respectively) 
(Figures 4C,D). The duodenal expressions of cingulin (CGN), 
occludin (OCLN), and junctional adhesion molecule alpha 
(JAMA) were not affected by either HS or the bird line
(Table 1). 

3.3 Effect of HS on the duodenal 
expression of gap junction proteins in HWE 
and LWE birds

There was no significant interaction (line x environment) 
effect for gap junction protein alpha (GJA1 and 3), gap 
junction beta 1 (GJB1), gap junction gamma 2 (GJC2), and 
gap junction delta 2 (GJD2) (Figures 5A,C,E; Table 1). Heat 
stress significantly induced duodenal mRNA abundances of 
GJA1 and GJA3, and this effect was more notable in HWE 
than in the LWE line (Figures 5B,D). The water-efficient (HWE) 
broilers exhibited a significantly higher duodenal expression 
of GJB1 than their LWE counterparts (Figures 5E,F). The 
duodenal expressions of GJC2 and GJD2 remained unchanged 
between both lines under both environmental conditions
(Table 1).

3.4 Effect of HS on the duodenal 
expression of adherens junctions in HWE 
and LWE birds

There was no significant line-by-environment interaction effect 
on the duodenal expression of cadherins (CDH1/2), catenins 
(CTNNA2 and B1), afadin (AFDN), and nectin 1 (Figure 6; Table 1). 
As shown in Figures 6A–D, HS caused a significant upregulation in 
the duodenal expressions of CDH2 and CTNNA2, and this effect was 
stronger in HWE than in LWE birds. The duodenal expressions of 
CDH1, CTNNB1, AFDN, and nectin 1, however, were not affected 
by either HS or line (Table 1).

3.5 Effect of HS on the duodenal 
expression of desmosomes in HWE and 
LWE birds

There was no significant line-by-environment interaction effect 
on the duodenal expression of desmoglein 2 and 4 (DSG2 and 
4) (Table 1). The expressions of DSG2 and 4 remained unchanged 
between the HWE and LWE lines under both environmental (TN 
and HS) conditions (Table 1).
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FIGURE 2
Effect of HS on the duodenal expression of barrier-forming claudins in HWE and LWE lines. Duodenal expressions of CLDN1 (A,B), CLDN5 (C,D), 
CLDN8 (E,F), and CLDN22 (G,H) were determined using qPCR and 2−ΔΔCt, with 18S rRNA as a housekeeping gene and LWE-TN or TN as a calibrator. 
Data are presented as the means ± SEM (n = 6/line/environmental condition).∗indicates a significant difference at p < 0.05. CLDN, claudin; E, 
environment; HS, heat stress; HWE, high-water-efficient; L, line; L × E, line-by-environment interaction; LWE, low-water-efficient; TN, thermoneutral. 
A bold p-value indicates a significant difference.

4 Discussion

The small intestine plays a vital physiological role in digestion 
and nutrient absorption from ingested food. TJs hold the single 
layer of polarized columnar cells in the intestinal tract together 
and form a physical barrier in the organism. The intestinal tract 
is vulnerable to HS. Previous studies have shown that HS disrupts 
intestinal barrier integrity, leading to inflammation and leaky gut 
syndrome (Ncho, 2025; González-Mariscal, 2022; Brugaletta et al., 
2022). In this study, morphometric analysis using H&E staining 
revealed a marked reduction in villus height under the HS condition, 
which is in agreement with the findings described by Mazzoni et al. 
(2022). Although no differences in crypt depth were observed in 
the duodenum in LWE and HWE under the HS condition, the 
crypt depth of HWE was slightly increased relative to that of 
LWE. The intestinal crypt presents stem cells, which proliferate and 
differentiate to maintain the self-renewal of the villus (Santos et al., 
2019). This increase in crypt depth was probably attributed to a 
higher generation of new epithelial cells in HWE lines.

Intestinal epithelial cells interact with each other through TJs, 
gap junctions, adherens junctions, and desmosomes and form 

a functional physical barrier that maintains gut integrity and 
homeostasis (González-Mariscal, 2022). In this study, several tight 
junction genes (CLDN1, CLDN5, CLDN8, CLDN16, PATJ, and 
CLDN22), gap junction genes (GJA1 and GJA3), and adherens 
junction genes (CDH2 and CTNNA2), along with CLDN4 proteins, 
were significantly upregulated in response to HS exposure with 
higher amplitude in the HWE line. Although CLDN1 contributes 
to forming the tight junction network and regulating paracellular 
permeability, its upregulation is often associated with both increased 
intestinal permeability and enhanced integrity, depending on the 
(patho)physiological context (Wang et al., 2012; Pope et al., 2014; 
Iraha et al., 2013). Moreover, CLDN1’s role in inflammation is 
complex and can vary depending on the context and location. 
For instance, increased expression of CLDN1 was observed in 
ulcerative colitis and Crohn’s disease and has been found to be 
associated with inflammation (Poritz et al., 2011). However, other 
studies reported that increasing CLDN1 expression might improve 
barrier function and decrease inflammation in atopic dermatitis 
(Be et al., 2020). Similarly, in poultry, although the exact function 
of CLDN1 needs to be defined, studies reported inconsistent 
(upregulation, downregulation, or no effect) results regarding HS 
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TABLE 1  Effect of HS on the duodenal expression of barrier integrity-related genes in HWE and LWE lines.

Environment (E)a TN HS p-value

Geneb/Line (L)c LWE HWE LWE HWE L E L × E

CLDN9 1 ± 0.25 1.78 ± 0.56 1.01 ± 0.17 2.94 ± 1.13 0.06 0.39 0.39

CLDN25 1 ± 0.32 1.03 ± 0.26 0.90 ± 0.30 2.98 ± 1.11 0.11 0.16 0.12

CLDN34 1 ± 0.22 1.00 ± 0.21 1.10 ± 0.22 2.48 ± 0.80 0.14 0.09 0.14

CLDN19 1 ± 0.30 1.00 ± 0.22 1.06 ± 0.30 2.92 ± 0.98 0.11 0.09 0.11

CLDN23 1 ± 0.15 1.16 ± 0.05 1.20 ± 0.39 2.04 ± 0.58 0.20 0.16 0.38

CGN 1 ± 0.16 1.35 ± 0.34 1.37 ± 0.17 1.83 ± 0.39 0.17 0.14 0.84

OCLN 1 ± 0.20 1.06 ± 0.16 1.11 ± 0.19 1.69 ± 0.36 0.21 0.14 0.30

JAMA 1 ± 0.15 1.07 ± 0.15 0.85 ± 0.09 1.15 ± 0.16 0.21 0.82 0.42

GJC2 1 ± 0.28 1.34 ± 0.32 1.42 ± 0.40 2.36 ± 0.78 0.55 0.17 0.22

GJD2 1 ± 0.27 1.14 ± 0.26 1.22 ± 0.35 3.23 ± 1.13 0.11 0.09 0.16

CDH1 1 ± 0.33 0.96 ± 0.31 0.99 ± 0.30 2.25 ± 0.79 0.23 0.20 0.20

CTNNB1 1 ± 0.11 1.06 ± 0.10 1.18 ± 0.21 2.28 ± 0.63 0.12 0.06 0.16

AFDN 1 ± 0.25 0.66 ± 0.10 1.27 ± 0.36 2.00 ± 0.66 0.64 0.06 0.21

Nectin1 1 ± 0.28 0.90 ± 0.24 0.61 ± 0.04 1.07 ± 0.18 0.40 0.60 0.18

DSG2 1 ± 0.33 0.67 ± 0.24 0.96 ± 0.25 1.26 ± 0.27 0.95 0.32 0.26

DSG4 1 ± 0.37 0.76 ± 0.37 0.91 ± 0.28 1.36 ± 0.30 0.74 0.45 0.30

aHS, heat stress; TN, thermoneutral.
bAFDN, afadin; CDH, cadherin; CGN, cingulin; CLDN, claudin; CTNNA/B, catenin; DSG, desmoglein; GJC2, gap junction gamma 2; GJD2, gap junction delta 2; JAMA, junctional adhesion 
molecule alpha; OCLN, occludin.
cHWE, high-water-efficient; LWE, low-water-efficient.

effects (Greene et al., 2025; Thi Dung et al., 2023; Del Ve et al., 
2020). In contrast to the duodenum here, we have shown in 
a previous study that HS did not affect CLDN1 expression in 
the ileum, which suggests a tissue-specific regulation of CLDN1, 
adding another layer of complexity to its function. Interestingly, 
CLDN1 has been found to play a role in trans-epithelial water 
retention and loss (Barmeyer et al., 2017). It is, therefore, reasonable 
to speculate that the upregulation of CLDN1 might enhance 
duodenal barrier integrity and lower duodenal trans-epithelial 
water loss in HWE birds that exhibited lower serum fluorescein 
isothiocyanate (FITC) levels and overall better gut integrity under 
HS conditions (Greene et al., 2025).

Claudin 5 has been predominantly studied in the context of 
the blood–brain barrier (BBB) as a gatekeeper of neurological 
function, but an increasing number of studies have demonstrated its 
important role in intestinal barrier integrity. It has been shown 
that the upregulation of CLDN5 prevents inflammation and 
protects intestinal epithelial cells from tumorigenesis (Zhang et al., 
2022). Watari et al. (2016) showed that increased expression 
of CLDN5 by checkpoint kinase 1 (Chk1) activation enhances 
intestinal epithelial function in Caco-2 cells. Additionally, 

it has been shown in Campylobacter jejuni-infected IL10 
knockout mice and in an in vitro model that resveratrol 
reduced leaky gut syndrome by upregulating CLDN5 expression 
(Lobo de Sa et al., 2021). Barmeyer et al. (2017) showed that 
epithelial barrier dysfunction and leaky gut in lymphocytic 
colitis occur through downregulation and redistribution
of CLDN5.

Claudin 8 mRNA and proteins were found to be moderately 
expressed in the ileum and colon but were absent in the jejunum 
and duodenum in rodents and humans (Lameris et al., 2013; 
Holmes et al., 2006). In this study, we showed that the CLDN8
gene is expressed in the chicken duodenum, which indicates a 
species-specific expression, localization, or function. It has been 
shown that pro-inflammatory cytokines, such as TNF-α and IL-15, 
alter CLDN8 expression and distribution, resulting in lymphocytic 
colitis, which is characterized by epithelial barrier impairment, 
leak-flux diarrhea, and abnormal fluid absorption (Barmeyer et al., 
2017). Furthermore, it has been shown that CLDN8 expression was 
downregulated and redistributed off the tight junction in patients 
with active Crohn’s disease that is typified by impaired intestinal 
barrier function (Zeissig et al., 2007). Marincola Smith et al. 
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FIGURE 3
Effect of HS on the duodenal expression of pore-forming claudins in HWE and LWE lines. Protein levels of CLDN4 (A,B) were determined using Western 
blot. mRNA abundances of CLDN4 (C), CLDN2 (D), and CLDN16 (E,F) were measured using qPCR and 2−ΔΔCt, with 18S rRNA as a housekeeping gene 
and LWE-TN or TN as a calibrator. Data are presented as the means ± SEM (n = 6/line/environmental condition). Different superscript letters 
and∗indicate significant differences at p < 0.05. CLDN, claudin; E, environment; HS, heat stress; HWE, high-water-efficient; L, line; L × E, 
line-by-environment interaction; LWE, low-water-efficient; TN, thermoneutral. A bold p-value indicates a significant difference.

(2021) further demonstrated a decreased expression of CLDN8 in 
inflammatory bowel disease, which is denoted by a defective barrier 
function. Although CLDN22 contributes to the general function 
of claudins in regulating intestinal paracellular permeability and 
barrier integrity (Wang et al., 2016), existing published research 
and scholarly materials are scarce, and its specific functions are 
still unknown.

Heat stress also induced the expression of pore-forming 
proteins, including CLDN2, CLDN4, and CLDN16, mainly in the 
HWE line. There appears to be conflicting evidence regarding the 
precise roles of these proteins in gut integrity, which are complex and 
context-dependent (Luettig et al., 2015; Liu et al., 2013; Ahmad et al., 
2023; von Buchholz et al., 2021). For instance, Oami et al. (2024) 
reported that CLDN2 upregulation induces intestinal permeability 
and dysbiosis in sepsis. Ahmad et al. (2014), however, showed 
that increasing CLDN2 expression confers resistance to epithelial 
injury and protects mice from colitis. Similarly, CLDN4 plays a 
complex and often paradoxical role in intestinal barrier integrity, 
acting as a component of TJs that maintain the barrier integrity 
but also being upregulated in some gastrointestinal diseases, 
which can induce intestinal permeability (Okamoto et al., 2023; 
Boschetti et al., 2019; Assimakopoulos et al., 2006). CLDN16, also 
known as paracellin-1, is primarily known for its role in kidney 
magnesium and calcium reabsorption (Hou et al., 2009; Negri, 
2015; Deluque et al., 2025; Hou et al., 2007); however, emerging 
studies suggest that it may play a role in the gut. Ozden et al. 

(2010) reported a co-localization of CLDN16 and goblet cells in 
developing chick embryo intestine, indicating a potential role in 
mucus secretion and/or membrane remodeling. As CLDN2, 4, and 
16 form paracellular channels (Wilmes et al., 2014), it is possible that 
they enhance, as in the kidney, water reabsorption in the intestine 
and thereby ameliorate water homeostasis in HWE birds. Of 
particular interest, duodenal CLDN4 protein levels, but not mRNA, 
were higher in HWE than in the LWE line under both environmental 
conditions, and they were induced by HS only in HWE birds. 
This suggests that, although further in-depth investigations are 
needed, CLDN4 might play a role in cellular stress response, such 
as hypertonic, ER, and/or oxidative stresses (Lanaspa et al., 2008; 
Pao et al., 2021; Campos-Blazquez et al., 2023), which seem to 
be enhanced in the HWE line. The discordance between CLDN4 
mRNA and protein levels is a known phenomenon and is, therefore, 
not surprising. This discordance could be driven by complex 
post-transcriptional, post-translational, and epigenetic regulatory 
mechanisms. For instance, CLDN4 is post-transcriptionally 
regulated by long non-coding RNAs, leading to increased protein 
levels even without a significant change in its mRNA expression 
(Song et al., 2017). Furthermore, CLDN4’s stability can be affected 
by interaction with other proteins, including CLDN2, 3, and 
8 (Van Itallie and Anderson, 2013), or by proteolytic cleavage
(Gong et al., 2014).

Heat stress induced the duodenal expression of PATJ, 
particularly in HWE birds. The crumbs/PALS1/PATJ complex 
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FIGURE 4
Effect of HS on the duodenal expression of PALS1-associated tight junction protein and zonula occludens in HWE and LWE lines. Duodenal expressions 
of PATJ (A,B), ZO-2 (C), and ZO-3 (D) were determined using qPCR and 2−ΔΔCt, with 18S rRNA as a housekeeping gene and LWE-TN or TN as a 
calibrator. Data are presented as the means ± SEM (n = 6/line/environmental condition).∗indicates a significant difference at p < 0.05. E, environment; 
HS, heat stress; HWE, high-water-efficient; L, line; L × E, line-by-environment interaction; LWE, low-water-efficient; PATJ, PALS1-associated tight 
junction protein; TN, thermoneutral; ZO, zonula occludens. A bold p-value indicates a significant difference.

plays a critical role in maintaining intestinal epithelial cell 
polarity (Penalva and Mirouse, 2012), and PATJ binds to 
other tight junction proteins, such as claudins, to stabilize 
tight junction formation (Michel et al., 2005). Blocking PATJ 
induces an increase in the transepithelial flux of mannitol 
from the basolateral to the apical compartment in the human 
intestinal epithelial cell line (Lunardi et al., 2009). Together, 
this result indicates that the increased expression of PATJ 
might enhance tight junction formation and stability in 
heat-stressed HWE birds, resulting in better gut integrity
(Greene et al., 2025).

In addition to tight junctions, intestinal homeostasis is also 
dictated by intercellular communication, which is typically governed 
by gap junctions composed of two hemichannels of neighboring 
cells that control the diffusion of small and hydrophilic chemical 
substances between adjacent cells (Alexander and Goldberg, 2003). 
The gap junction is composed of two systems: connexins with 

more than 21 different protein variants and pannexin with 3 
types that have been identified over the years (Panchin et al., 
2000; Diezmos et al., 2016). In this study, our data showed that 
HS induced the expression of the GJA1/3 and GJB1 genes, which 
encode connexins 43, 46, and 32, respectively, and this induction 
was more pronounced in HWE, similar to the abovementioned tight 
junction proteins. Although their roles in the chicken gut remain 
unknown, connexins 32, 43, and 46 are believed to play key roles 
not only in maintaining epithelial barrier function by affecting tight 
junction protein production (Nagasawa et al., 2006; Johnson et al., 
2018; Murata et al., 2005) but also in regulating intestinal nerve 
transmission, motility, transit, and pacing (Doring et al., 2007; 
McClain et al., 2014). It is worth noting that in contrast to the 
duodenum segment, the expression of the ileal GJA1 gene was not 
affected by HS, but it was upregulated in HWE birds (Greene et al., 
2025), suggesting tissue/cell-specific regulation of annexins
(Maes et al., 2015).
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FIGURE 5
Effect of HS on the duodenal expression of gap junction proteins in HWE and LWE birds. Duodenal expressions of GJA1 (A,B), GJA3 (C,D), and GJB1
(E,F) were determined using qPCR and 2−ΔΔCt, with 18S rRNA as a housekeeping gene and LWE-TN, TN, or LWE as a calibrator. Data are presented as the 
means ± SEM (n = 6/line/environmental condition).∗indicates a significant difference at p < 0.05. E, environment; GJA, gap junction protein alpha; 
GJB1, gap junction protein beta 1; HS, heat stress; HWE, high-water-efficient; L, line; L × E, line-by-environment interaction; LWE, low-water-efficient; 
TN, thermoneutral. A bold p-value indicates a significant difference.
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FIGURE 6
Effect of HS on the duodenal expression of adherens junction proteins in HWE and LWE birds. Duodenal expressions of CDH2 (A,B) and CTNNA2 (C,D)
were determined using qPCR and 2−ΔΔCt, with r18S as a housekeeping gene and LWE-TN or TN as a calibrator. Data are presented as the means ± SEM 
(n = 6/line/environmental condition).∗indicates a significant difference at p < 0.05. CDH2, cadherin; CTNNA2, catenin alpha 2; E, environment; HS, heat 
stress; HWE, high-water-efficient; L, line; L x E, line-by-environment interaction; LWE, low-water-efficient; TN, thermoneutral. A bold p-value indicates 
a significant difference.

AJ plays a crucial role in initiating and maintaining intercellular 
adhesion, orchestrating the organization of the actin cytoskeleton 
beneath the membrane, and serving as a signaling hub for cell 
transduction and regulation of gene transcription (Garcia et al., 
2018). The adherens junction is primarily composed of cadherins 

(CDH1 and CDH2), β-catenin, and α-catenin. In our experimental 
condition, HS upregulated the duodenal expressions of CDH2 and 
CTNNA2 only in the HWE line. Cadherins are pivotal for cell-to-cell 
adhesion and, thereby, play a vital role in maintaining the structural 
integrity of the intestinal epithelial layer and, consequently, intestinal
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barrier integrity (Schneider et al., 2010; Baumgartner, 2013). 
Through Wnt signaling, catenins regulate intestinal stem cell 
renewal and proliferation, repair and regeneration of injured gut 
tissue, prevent inflammation and mucosal damage, and maintain 
intestinal barrier integrity (Smalley-Freed et al., 2010; Fevr et al., 
2007; Mehta et al., 2015; Eum et al., 2023). It is also worth 
mentioning that CTNNA2 was induced by HS in a similar way 
in the ileum; however, CDH2 was not affected, suggesting again a 
tissue-specific regulation.

In conclusion, this is the first report, to our knowledge, 
showing that chronic HS modulates the duodenal expression of 
tight junction, gap junction, and adherens junction proteins in 
an environmental condition- and/or line-dependent manner. The 
upregulation of claudins (CLDN1, 2, 4, 5, 8, 16, and 22), PATJ, 
GJA1/3, GJB1, CDH2, and CTNNA2 in HS suggests an improvement 
in gut integrity in HWE birds, which was evidenced by lower serum 
FITC levels (Greene et al., 2025), better water efficiency, and better 
growth performances (Aloui et al., 2024). It is important to mention 
here that we measured only mRNA and acknowledge the limitation 
of not measuring protein levels due to the lack of specific antibodies 
that cross-react with chicken proteins. Proteins are the workhorses 
of the cells, and it is probable that their regulation by HS and/or 
the chicken line is not coordinated with the mRNA levels, as is the 
case for CLDN4.
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