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Accurate prediction of asymptomatic small abdominal aortic aneurysm (AAA) 
growth is crucial for risk stratification and personalized surveillance. This study 
developed an end-to-end deep learning framework to predict rapid expansion 
(≥0.5 cm/6 months) using computed tomography angiography (CTA) images 
from 81 asymptomatic patients with small AAA (30 rapid-growth and 51 stable 
patients). The pipeline integrated three core components: a ResNet50 classifier 
for identifying aortic images (99.86% accuracy, 99.91% F1-score), a YOLOv11 
detector for localizing aneurysms (precision–recall: 0.902), and a MedMamba-
based feature fusion model that combined imaging features with clinical 
metadata via multi-head self-attention. Model robustness was ensured through 
stratified 5-fold cross-validation and comprehensive data augmentation. The 
fusion model achieved a predictive accuracy of 98.75% and an F1-score of 
97.78, outperforming seven classical deep learning backbones. Furthermore, 
explainability analyses confirmed the model’s reliance on established clinical 
risk factors and highlighted biologically plausible imaging regions for prediction. 
The proposed ResNet50–YOLOv11–MedMamba framework demonstrates the 
feasibility of automating AAA growth prediction directly from CTA and shows 
promising potential to enhance clinical decision-making.

KEYWORDS

multi-head self-attention, computed tomography angiography, growth prediction, 
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Introduction

Abdominal aortic aneurysm (AAA) constitutes a pathological dilation of the infrarenal 
abdominal aorta and is often subclinical until the time of acute rupture, a complication with 
prehospital mortality exceeding 80% (Schanzer et al., 2021; Isselbacher et al., 2022). Current 
clinical management relies on serial diameter monitoring, with intervention typically 
recommended when the maximum diameter exceeds 50 mm for men or a lower threshold 
for women (Wanhainen et al., 2024). The diameter is the most commonly used risk marker in 
AAA disease. It is manually measured clinically by ultrasound or multiplanar reconstruction
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of computed tomography angiography (CTA) perpendicular to 
the centerline. Current predictions of the AAA rupture risk, and 
consequently the indications for preventive treatment, are based on 
the maximum anterior-posterior diameter, measured perpendicular 
to the centerline with three-dimensional reconstructed CTA 
images, and growth rate. However, this size-only paradigm 
is an imperfect predictor of risk. A significant proportion of 
ruptures occur in aneurysms below this surgical threshold 
(Collaborators, 2013; Spanos et al., 2020), with large cohort 
studies reporting an annual rupture risk of 0.03% for small 
AAAs (Oliver-Williams et al., 2019). This critical limitation 
underscores the urgent need for better predictors of aneurysm 
behavior. Consequently, accurately forecasting the AAA growth 
rate has become a central research priority, as it is crucial for 
surgical planning and personalized surveillance, with guidelines 
recommending intervention when growth exceeds 0.5 cm per 6 
months (Ullery et al., 2018; Isselbacher et al., 2022).

The pursuit of improved prediction has incorporated biological 
variables (e.g., C-reactive protein and D-dimers) and morphological 
parameters from CTA (Zhu et al., 2020; Cersit et al., 2021; 
Fernandez-Alonso et al., 2022; Kontopodis et al., 2022; 
Ristl et al., 2023; Vanmaele et al., 2025). Furthermore, the 
pathobiology of the perivascular environment is now recognized 
as a key contributor to AAA progression (Wang et al., 2022; 
Zhang et al., 2023; Lv et al., 2024). Deep learning offers a 
powerful approach to automatically extract prognostic features 
from images. Previous efforts have largely relied on radiomics 
derived from manual segmentations or reconstructed geometries 
for hemodynamic modeling. While valuable, this dependence on 
manual annotation introduces observer variability, limits scalability, 
and confines models to a predefined set of human-engineered 
features, potentially overlooking subtler prognostic patterns in the 
raw data (Kim et al., 2023; Wang et al., 2023).

To overcome these limitations, we propose a novel, end-to-
end deep learning framework that automates the entire pipeline 
from raw CTA images to growth prediction. Our framework, 
ResNet50–YOLOv11–MedMamba, is designed to eliminate manual 
intervention through a three-stage cascade: it first identifies and 
filters relevant aortic images, then precisely localizes the aneurysm 
region, and finally fuses the automatically extracted imaging 
features with clinical metadata for a holistic assessment. This 
study aims to validate whether this fully automated approach 
can accurately predict rapid expansion (≥0.5 cm/6 months) of 
small AAAs, thereby offering a scalable, potentially more robust 
alternative to existing methods.

Methods

This section provides an overview of the methods employed in 
this study, with a particular focus on the feature fusion strategy 
and the application of the ResNet50, YOLOv11, and MedMamba 
models. We have detailed the data collection process, CTA data 
acquisition, definition, and the performance metrics used to evaluate 
our method. By integrating clinical data and CTA image feature-
extraction techniques, we aim to improve the accuracy of predicting 
AAA growth in asymptomatic patients. Each subsection provides a 
comprehensive overview of the process used, ensuring the clarity 

of our research methods and facilitating the reproducibility of this 
work. The framework of the proposed algorithm for our prediction 
of AAA growth is shown in Figure 1.

Data collection

This retrospective study consecutively screened 289 patients 
with small AAAs who were treated in our center from January 
2019 to December 2023. Among them, 135 patients who underwent 
intervention due to symptoms were excluded, 61 patients who did 
not undergo imaging follow-up were excluded, 10 patients were 
lost to follow-up, and two patients died. Finally, 81 patients were 
included in this study. According to whether the growth rate was > 
0.5 cm/6 months, they were divided into the rapid-growth group 
(n = 30) and the stable group (n = 51). The CTA images of these 
patients were obtained from the institutional Picture Archiving 
and Communication Systems at our center for the study, and the 
patients’ clinical data were obtained from the electronic medical 
record system. This study followed the ethical guidelines of the 
Helsinki Declaration and was approved by the ethics committee. 
The Ethics Committee of General Hospital of Northern Theater 
Command approved this study with an Ethics Batch Number Y 
(2024)356. Informed consent was waived due to the retrospective 
design and the use of fully anonymized, de-identified data. 

CTA data acquisition

CTA examinations were conducted via a 256-slice multidetector 
computed tomography system (Brilliance iCT, Philips Healthcare). 
The scanning protocol included the following technical 
specifications: detector collimation of 128 mm × 0.625 mm, a 
gantry rotation time of 270 ms, automated tube voltage selection 
ranging from 100 kVp to 120 kVp based on body mass index, 
and tube current modulation between 500 mAs and 700 mAs. 
Image acquisition utilized retrospective electrocardiogram gating 
with intravenous administration of iodinated contrast medium 
(ioversol 320 mgI/mL) at weight-adjusted doses of 1–1.5 mL/kg 
and injection rates of 4–6 mL/s. CTA images were reconstructed at 
a window centered at the peak aortic enhancement phase, which 
can be determined by a test bolus or bolus-tracking technique. For 
most patients, this phase may occur at approximately 20–30 s after 
the start of contrast injection, but it can vary depending on the 
patient’s cardiovascular status and the injection parameters. CTA 
images were reconstructed at a window centered at 75% of the R‒R 
interval, with a section thickness of 0.625 mm and a reconstruction 
increment of 0.5 mm. 

Definition

A small AAA is defined as the diameter of the abdominal aorta 
between 3 cm and 5 cm in women and between 3 cm and 5.5 cm 
in men (Isselbacher et al., 2022), and the maximum diameter was 
measured by two radiologists based on multiplanar reconstruction. 
The rapid growth of AAA is defined as an increase of more 
than 5 mm every 6 months (Ullery et al., 2018). Smoking history 
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FIGURE 1
Framework of our prediction of AAA growth. AAA, abdominal aortic aneurysm; YOLO, You Only Look Once.

was defined as an individual’s lifetime consumption of 100 or 
more cigarettes (Rigotti et al., 2024), and drinking history was 
defined as daily consumption of at least 50 mL of liquor, at least 
once a week, for a duration of at least 6 months, including 
current drinkers and those who stopped drinking but met the 
aforementioned criteria (Herzog et al., 2024). 

Model framework strategy

The CTA data collection adopts the RGB image format, with 
variable anatomical semantics. To ensure consistent model input, 
we used a classifier based on ResNet50 pre-trained on ImageNet to 
automatically identify CTA images containing the abdominal aorta. 
182,291 CTA slices were uniformly preprocessed to a resolution 
of 224 × 224. The ImageNet standard normalization was applied 
(mean = [0.485, 0.456, 0.406], standard deviation = [0.229, 0.224, 
0.225]), and the center cropping strategy was adopted to maintain 
the integrity of the anatomical structure. This model has undergone 
over 100 training epochs using a batch size of 64 and an initial 
learning rate of 0.001, and the Adam optimizer was employed with 
step-decayed learning rate scheduling (multiplied by 0.1 every 50 
epochs), enabling it to reliably perform anatomical filtering for 
image selection. The loss function used is the cross-entropy loss.

The CTA images that contain the abdominal aorta were labeled 
by LabelMe and used as coordinates for feature extraction by the 
You Only Look Once (YOLO) models (Aly et al., 2021; Hechkel and 
Helali, 2025), located in the local area of the abdominal aorta, with 
labels set as normal aorta and AAA images. The local abdominal 
aorta features extracted by YOLO were used for the feature fusion. A 
comparative analysis framework was implemented to evaluate four 
YOLO variants (v5, v8, v10, and v11) under identical experimental 
conditions. Each model was trained for 100 epochs with a batch 
size of 16 and an input resolution of 640 pixels × 640 pixels. 
The optimizer is Stochastic Gradient Descent (SGD) with Nesterov 

momentum (μ = 0.937). The initialized learning rate was set at 
0.01 with fixed scheduling and L2 regularization weight decay (λ = 
5 × 104). Detection performance was assessed using mean average 
precision (mAP) at an intersection over union (IoU) = 0.5 threshold 
(mAP@50) and mAP averaged over IoU thresholds 0.5 to 0.95 
(mAP@50–95). Computational efficiency was measured by total 
training time.

We propose a novel multimodal model that integrates CTA 
image slices and clinical features via a feature fusion mechanism, 
as shown in Figure 2. The architecture adopts a dual-pipeline 
architecture and comprises three innovative components: an image 
feature encoder, a clinical feature encoder, and a cross-modal 
attention fusion module. The dataset was randomly partitioned into 
training, validation, and test sets at an 8:1:1 ratio at the patient 
level to ensure independence. For the image feature encoder, the 
MedMamba backbone (Yue and Li, 2024) was selected for its 
specific design to model long-range dependencies in medical image 
sequences, a capability highly relevant to our task. The output of 
MedMamba from all slices was then treated as a sequence and 
passed into a transformer encoder, which was fed into the image 
encoder backbone to extract slice-level feature representations. The 
resulting features were then projected into a shared 512-dimensional 
latent space via a projection head consisting of linear layers, batch 
normalization, and dropout. Mean pooling is applied to produce a 
fixed-length image embedding for each patient.

To prevent data leakage, all preprocessing steps were performed 
independently on each partition. Clinical features with missing 
values exceeding 50% were excluded from the analysis. For the 
remaining missing data, four imputation methods were evaluated: 
k-nearest neighbors (KNN), median imputation, random forest 
imputation, and multiple imputation (Lee and Styczynski, 2018). 
KNN imputation (k = 5) was selected because it best preserved 
the original data distribution and was subsequently applied to each 
subset (training, validation, test) separately. Continuous features 
were standardized to a mean of zero and a unit variance using 

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1704428
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Cheng et al. 10.3389/fphys.2025.1704428

FIGURE 2
Overall framework of the feature fusion model. CTA, computed tomography angiography; FC, fully connected; MLP, multilayer perceptron; MHA, 
multi-head self-attention.

the StandardScaler method. The categorical outcome variable 
(intact vs. ruptured) was binarized as 0 and 1, respectively. 
Prior to feature selection, multicollinearity was addressed by 
identifying and eliminating highly correlated features (Pearson’s 
|r| > 0.8). We implemented extreme gradient boosting (XGBoost) 
to screen clinical features. The top seven most discriminative 
features from each method were selected to form candidate feature 
subsets. The Shapley Additive exPlanations (SHAP) value is shown
in Figure 3.

The clinical features were analyzed via a two-layer multilayer 
perceptron (MLP), with intermediate batch normalization and 
dropout layers, to improve generalizability. The final output is 
mapped into the same latent space as the image embedding 
(i.e., 1,024 dimensions), enabling subsequent multimodal fusion. 
A key innovation of our architecture lies in the cross-modal 
attention fusion module. Here, we treat the image-derived and 
clinical-derived embeddings as two tokens and input them into 
a multi-head self-attention (MHA) block. This allows the model 
to explicitly learn modality-aware representations by attending 
to both intra- and intermodal interactions. The output vectors 
from each modality are then concatenated and passed through a 
multilayer classifier for binary classification. The thickness of the 

image layer is 5 mm, and the 2D images are all 224×224. All 
images are preprocessed using the low threshold zero processing 
method, with the threshold experimentally set at 200. During 
the training process, the Adam optimizer is used. In the training 
process, the 5-fold cross-validation method with category balance 
weights is used, and robustness and adaptive learning rate 
adjustment (initial 1e−4, reduced by 10% on the platform) are 
implemented. The loss function is also the cross-entropy loss. 
The batch size is set to 4, adjusted according to memory 
requirements for comparing models. Through normalization of 
shear (max = 1.0), supplementation, and maintaining gradient 
stability through strict CTA data augmentation, including random 
planar rotation (±15°), horizontal flipping (50%), ±20% brightness, 
contrast, and saturation, it is made applicable to medical data. 
To ensure the reduction of overfitting and underfitting of the 
model, the early stopping strategy is a common method to prevent 
model overfitting, with patience = 10. We adopted a stratified 
5-fold cross-validation for dataset division to ensure that each 
fold maintains the original class distribution ratio. To address 
the class imbalance problem (with a class ratio of 30:51), we 
used the weighted cross-entropy loss function based on class
frequency. 
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FIGURE 3
Feature importance ranking obtained through feature selection based on extreme gradient boosting. MaxDiameter, maximum diameter of abdominal 
aortic aneurysm; SBP, systolic blood pressure; CHD, coronary atherosclerotic heart disease.

Implementation configurations

Our architecture is implemented on PyTorch 2.7.0, and 
experiments are conducted on a workstation equipped with an 
NVIDIA GeForce RTX 4090 GPU and providing up to 24 GB of 
VRAM, NVIDIA driver version 576.52, and CUDA 12.8. 

Comparative experiment

In the comparative experiment, we set up three types of 
experiments. The first one is the comparison between the feature-
extraction module MedMamba and the classical models, including 
VGG16, ResNet18, ResNet50, ResNet101, DenseNet121, ViT-B/16, 
and MedViT. The second one is comparing the results of feature 
fusion achieved by combining other attention mechanisms with 
the MedMamba model, including the convolutional block attention 
module (CBAM), channel attention, cross attention, the squeeze-
and-excitation (SE) module, and the global attention mechanism 
(GAM). Additionally, we explored the number of heads in the MHA 
mechanism and compared the results of 4 heads, 8 heads, 16 heads, 
and 32 heads, respectively. 

Model interpretability and visualization

To interpret the predictions of our trained model, we employed 
gradient-weighted class activation mapping (Grad-CAM) to 
generate visual explanations of its decision-making process 
(Wang et al., 2025; Zhao et al., 2025). This technique produces coarse 
localization heatmaps by leveraging gradient information flowing 
into the final convolutional layer of the network, highlighting 
regions of the input image that are most influential for predicting 
a specific class while preserving spatial information. A major 
advantage of Grad-CAM is that it requires no modifications to the 
model architecture and involves no additional training. In this study, 

we applied Grad-CAM to the final convolutional layer to visualize 
activation patterns corresponding to the model’s prediction of the 
AAA growth. 

Statistical analysis

To evaluate the classification results of the deep learning models 
for the overall group, we used sensitivity, specificity, accuracy, F1-
score, precision, the mAP@50, and the area under the curve (AUC). 
The evaluation formula is available in the supplementary materials. 
The statistical analyses were performed using IBM® SPSS® version 
26 (IBM, Armonk, NY) and Python 3.12.9.

Results

Baseline characteristics

Overall, we evaluated 81 patients with asymptomatic and 
image-monitored small AAA without intervention. Most were men 
(90.12%), with a median age of 68 years. Among them, 30 patients 
met the criteria for rapid growth (0.5 cm/6 months), and the other 51 
patients were of the stable type. The proportion of smoking history 
among the patients in the rapid-growth group was significantly 
higher than that of the patients in the stable group (P = 0.016). No 
statistically significant differences in other baseline characteristics 
were found between the two groups (all P > 0.05). Detailed baseline 
characteristics are presented in Table 1.

CTA images containing abdominal aorta 
classification

The CTA data were randomly split into training, validation, and 
test sets in a ratio of 8:1:1 at the patient level, which is displayed in 
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TABLE 1  Comparison of baseline characteristics between the stable group and the rapid-growth group.

Characteristic Stable group (N = 51) Growth group (N = 30) p-value

Age, years 68.00 [63.50, 71.50] 66.00 [63.00, 72.00] 0.761

Male 47 (92.16) 26 (86.67) 0.679

Smoking history 11 (21.57) 15 (50.00) 0.016

Drinking history 7 (13.73) 8 (26.67) 0.249

Hypertension 19 (37.25) 8 (26.67) 0.464

Diabetes 2 (3.92) 2 (6.67) 0.984

CHD 8 (15.69) 9 (30.00) 0.213

Prior IS 4 (7.84) 4 (13.33) 0.679

Prior surgery 16 (31.37) 8 (26.67) 0.845

SBP, mmHg 134.00 [124.00, 141.00] 137.00 [127.25, 143.75] 0.417

DBP, mmHg 78.00 [70.00, 85.50] 80.00 [69.50, 87.50] 0.534

Fibrinogen, g/L 3.72 [2.97, 4.35] 3.77 [3.04, 4.48] 0.899

FBG, mg/dL 99.72 [90.36, 111.51] 105.17 [94.16, 113.59] 0.291

Creatinine, mmol/L 74.90 [64.51, 85.11] 76.49 [66.05, 87.34] 0.671

C-reactive protein 3.10 [1.90, 4.38] 3.30 [1.77, 4.71] 0.833

LDL-C, mmol/L 91.22 [71.82, 113.05] 92.57 [69.59, 105.68] 0.487

D-Dimer, mg/dL 167.59 [107.28, 210.75] 150.18 [116.75, 198.53] 0.973

Aneurysm length, mm 70.60 [56.35, 87.00] 82.40 [70.17, 88.20] 0.07

Neck length, mm 39.10 [23.30, 53.25] 30.90 [25.50, 41.92] 0.246

Maximum diameter of AAA, mm 41.70 [35.45, 45.25] 43.70 [38.05, 48.48] 0.159

Categorical variables are reported as frequency and percentage (n,%).
Continuous variables are reported as median and interquartile range (med [Q1 − Q3]).
CHD, coronary atherosclerotic heart disease; IS, ischemic stroke; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; LDL-C, low-density lipoprotein 
cholesterol; AAA, abdominal aortic aneurysm.

the Supplementary Table S1. We compared eight models suitable for 
image classification, mainly to identify CTA images containing the 
abdominal aorta. The results of the model comparison are shown 
in Table 2. Among these models, the ResNet50 model performed 
best, with an accuracy (ACC) and F1-score of 99.86% and 99.91%, 
respectively. The ResNet50 model classified the CTA images suitable 
for the next step, that is, abdominal aorta detection, and the results 
of model training and validation are shown in Figure 4.

Detecting and classifying the abdominal 
aorta

A total of 31,457 CTA images containing the abdominal 
aorta were trained with 100 epochs and were completed in 
13.479 h. The YOLOv11 model detected the abdominal aorta 

and classified the normal aortae and AAAs with the highest 
precision (p = 0.902), which indicates that the model has a strong 
ability to correctly identify true positives. Its robust performance 
across four YOLO models is demonstrated in Table 3. This 
implementation demonstrates a high effectiveness in distinguishing 
between the normal aorta and the AAA, and the validation 
set is shown in Figure 5. The model correctly identifies the 
regions of interest and highlights them with bounding boxes in 
distinct colors. Figure 6 depicts key performance metrics of the 
classification result between the normal aorta and AAA. The 
precision–confidence curve (top left) shows how precision varies 
with confidence thresholds, indicating consistently high precision 
near the threshold of 0.902 for all categories. The precision–recall 
curve (top right) illustrates the relationship between precision and 
recall, demonstrating stable performance, with the overall mAP50 
reaching 0.975. The recall–confidence curve (bottom left) highlights 
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TABLE 2  Performance analysis of different models for classifying CTA images containing the abdominal aorta on the test set.

Model Accuracy (%) F1-score (%) Precision (%) Recall (%) AUC (%)

VGG16 82.74 90.55 82.74 100.00 50.00

ResNet18 99.85 99.91 99.93 99.89 99.94

ResNet50 99.86 99.91 99.93 99.89 99.97

ResNet101 99.82 99.89 99.90 99.88 99.92

DenseNet121 99.84 99.90 99.90 99.91 99.95

ViT-B/16 94.97 96.97 96.79 97.14 98.19

MedViT 85.52 91.65 87.66 96.02 82.44

MedMamba 99.82 99.89 99.88 99.91 100.00

CTA, computed tomography angiography; AUC, area under the curve.

FIGURE 4
Results of the ResNet50 model for classifying CTA images containing the abdominal aorta. CTA, computed tomography angiography.

a gradual decline in recall as confidence thresholds increase, 
reflecting the trade-off between higher confidence and recall. Lastly, 
the F1–confidence curve (bottom right) provides insights into the 
harmonic means of precision and recall, maintaining a high F1-
score across confidence levels. These curves collectively validate the 
model’s robustness and balanced performance across the different 

classification groups. Figure 7 illustrates how the model performed 
during training and validation over 100 epochs. In the top row, we 
see the training losses for bounding box regression, classification, 
and distribution focal loss. All these losses show a steady decline, 
which suggests that the model is being effectively optimized. 
Additionally, metrics like precision, recall, mAP50, and mAP50-95 
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TABLE 3  Performance comparison of four YOLO models.

Model Training time (h) mAP50 mAP50-95 Precision Recall

YOLOv5 13.626 0.970 0.697 0.895 0.928

YOLOv8 13.515 0.971 0.690 0.881 0.926

YOLOv10 14.521 0.972 0.692 0.889 0.926

YOLOv11 13.479 0.975 0.704 0.902 0.924

YOLO, You Only Look Once; mAP, mean average precision.

consistently improve, reaching high levels by the end of training. 
The results of the other three YOLO models are presented in the 
supplementary materials.

Feature fusion model

A total of 15,704 CTA images of the local abdominal aorta 
were provided by the YOLOv11 model, which were utilized for the 
feature fusion model. Among the eight models, the MedMamba was 
considered the most suitable backbone for further feature fusion 
to predict AAA growth, which achieved an accuracy of 98.75% 
and an F1-score of 97.78%. The training and validation loss curves 
in Figure 8 indicate that the model has converged. The confusion 
matrices suggest that misclassifications are rare, reinforcing the 
model’s reliability, as shown in Figure 9. Compared with the 
VGG16, ResNet18, ResNet50, ResNet101, DenseNet121, ViT-B/16, 
and MedViT models, the feature fusion model based on MedMamba 
achieved the best performance, detailed in Table 4 and Figure 10. 
The training and validation loss curves and confusion matrices of 
feature fusion models based on seven other backbones are shown in 
the supplementary materials.

Experiments to explore attention modules 
on model performance

We compared the prediction performance effects of applying 
different attention modules based on the MedMamba model. 
From the analysis of Table 5, the MHA mechanism has excellent 
performance compared to the other attention modules. When 
applying the MHA mechanism for feature fusion, we compared the 
effects of 4 heads, 8 heads, 16 heads, and 32 heads on the model 
results, as shown in Table 6. The 8-head self-attention mechanism 
achieved the optimal balance and resulted in the best prediction of 
AAA growth.

Model interpretability and visualization

Grad-CAM was used to generate heatmaps that visually 
interpreted the model’s reasoning process by highlighting regions 
within the input CTA images that most strongly influenced its 
classification decision for ruptured abdominal aortic aneurysm 
(RAAA), as shown in Figure 11. These visual results indicate 

that the model consistently focuses on anatomically significant 
areas, such as suggesting focal enhancement and activation in the 
perivascular regions, which have a strong correlation with the 
established imaging markers of AAA growth. Unexpectedly, the 
areas of thickened blood vessel walls that might reflect vascular 
inflammatory responses and characteristics of atherosclerosis were 
not activated.

Discussion

The accurate prediction of small AAA growth remains a 
significant challenge in clinical practice. Current management, 
guided by consensus guidelines, primarily relies on periodic 
surveillance using the maximum aortic diameter as a surrogate 
for rupture risk. While practical, this conventional approach often 
fails to capture the complex, multifactorial nature of aneurysm 
progression, which involves a dynamic interplay of biomechanical 
stress, chronic inflammation, and proteolytic degradation. This 
study establishes a novel, automated deep learning framework that 
integrates ResNet50, YOLOv11, and MedMamba to predict the 
rapid expansion of asymptomatic small AAAs directly from CTA 
images and clinical data. The end-to-end pipeline achieved an 
exceptionally high predictive performance, with an accuracy of 
98.75% and an AUC of 99.64% in our cohort of 81 asymptomatic 
patients. Critically, despite the cohort size, this performance was 
consistent across rigorous internal validation, demonstrating the 
substantial potential of leveraging these architectures to automate 
the entire workflow, from image screening and precise, bounding-
box-level aneurysm localization to multimodal feature fusion. This 
design crucially circumvents the manual segmentation and expert-
dependent feature engineering required by traditional radiomics 
and hemodynamic models (Ristl et al., 2021; Kontopodis et al., 2022; 
Kim et al., 2023; Wang et al., 2023; Starck et al., 2025). This 
performance likely stems from both the architectural synergy 
between detection and sequence modeling components and the 
framework’s capacity to learn discriminative features directly from 
raw data, potentially capturing subtle prognostic image patterns 
that may serve as surrogates for underlying pathophysiological 
processes, such as inflammation or wall stress, which are lost 
in manual preprocessing. This study thereby suggests a new 
performance benchmark for AAA progression prediction and 
highlights a clinically translatable, scalable pathway for future 
decision-support tools.
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FIGURE 5
Validation for classifying the normal aorta and abdominal aortic aneurysm of the YOLOv11 model on CTA images. YOLO, You Only Look Once; CTA, 
computed tomography angiography.

The strong predictive performance of our framework is 
likely attributable to the synergistic design of its constituent 
architectures, each addressing specific limitations in conventional 
AAA analysis. This integrated design effectively establishes a 
fully automated pipeline that progresses from the identification 
of aortic images (ResNet50) to precise, bounding-box-level 
localization of the aneurysm (YOLOv11), and culminates 
in the fusion of imaging features based on the MedMamba 
backbone with clinical data. A key advantage of this design 
is its circumvention of manual segmentation, a step typically 
required in radiomics and biomechanical modeling, which 

can introduce observer variability and hinder scalability. The 
choice of YOLOv11 for localization ensures that subsequent 
feature extraction is focused exclusively on the pathologically 
relevant region, minimizing contamination from adjacent 
anatomic structures. However, the most substantial performance 
improvements, as evidenced by our comparative ablation 
studies, appear to originate from the feature fusion stage. Here, 
the MedMamba backbone was selected for its potential to 
model long-range dependencies across sequential CTA slices, 
potentially capturing a more global spatiotemporal context of 
the aneurysms than standard CNNs. This was complemented 
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FIGURE 6
Performance curves of the YOLOv11 model for detecting and classifying the abdominal aorta. YOLO, You Only Look Once.

FIGURE 7
Training and validation losses with performance metrics of the YOLOv11 model for detecting and classifying the abdominal aorta. YOLO, You 
Only Look Once.

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2025.1704428
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Cheng et al. 10.3389/fphys.2025.1704428

FIGURE 8
Training and validation losses of the feature fusion model based on the MedMamba backbone.

FIGURE 9
Confusion matrices for the feature fusion model based on the MedMamba backbone.

by the optimized 8-head MHA mechanism, which acts as a 
sophisticated information integrator. Our ablation studies (Table 6) 
demonstrate that this specific configuration offered an optimal 
balance, enabling the model to integrate multi-scale features, 
from local textural variations to broader morphological changes. 
The synergy between MedMamba’s sequential processing and 
MHA’s cross-modal alignment may allow the model to learn a 
hierarchical representation that captures morphological and textural 
heterogeneities, which, although recognized in the literature as 
markers of progression, are elusive to manual quantification. 

Consequently, by moving beyond the simplistic reliance on 
maximum diameter, which is the current cornerstone of clinical 
guidelines (Isselbacher et al., 2022), our framework suggests a path 
toward a more holistic, pathophysiologically grounded assessment 
of AAA progression risk. This could potentially enable more 
personalized surveillance strategies, ensuring that high-risk patients 
receive timely intervention while reducing unnecessary imaging for 
those with stable disease.

When contextualizing our results within the existing landscape 
of AAA prediction, our automated deep learning framework 
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TABLE 4  Performance analysis of the MedMamba model and the traditional models to predict abdominal aortic aneurysm growth.

Backbone Accuracy (%) F1-score (%) Sensitivity (%) Specificity (%) AUC (%)

VGG16 86.25 69.33 63.33 100.00 100.00

ResNet18 93.75 89.18 82.00 100.00 96.88

ResNet50 93.75 90.85 90.00 96.36 99.27

ResNet101 92.50 88.66 90.00 94.18 99.33

DenseNet121 91.25 87.19 86.00 94.36 95.45

ViT-B/16 90.00 87.43 93.33 88.00 95.67

MedViT 85.00 85.79 100.00 76.18 96.00

MedMamba 98.75 97.78 96.00 100.00 99.64

AUC, area under the curve.

FIGURE 10
Performance comparisons of the MedMamba backbone with the traditional models to predict abdominal aortic aneurysm growth.

addresses several persistent methodological challenges. The field 
has progressively identified key prognostic indicators underpinned 
by specific pathophysiological mechanisms: for instance, the 
intraluminal thrombus is not merely a structural feature but an 
active source of proteolytic activity and wall inflammation that 
fuels progression (Zhu et al., 2020); radiomic signatures of the 
perivascular adipose tissue (Lv et al., 2024) may reflect a paracrine, 

inflammatory “outside-to-inside” signaling pathway; and the role 
of vascular calcification (Klopf et al., 2022) involves complex 
biomechanical alterations to wall stress distribution. However, 
translating these mechanistic insights into clinical tools has been 
constrained by methodology. Extracting these features typically 
relies on expert-dependent manual segmentation, a process that 
not only introduces variability but may also restrict analysis to a 
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TABLE 5  Evaluation of different attention modules on CTA images to predict abdominal aortic aneurysm growth.

Attention AUC (%) Accuracy (%) F1-score (%) Sensitivity (%) Specificity (%)

MedMamba + MHA 99.64 98.75 97.78 96.00 100.00

MedMamba + CBAM 100.00 93.75 91.32 90.00 96.00

MedMamba + Channel 99.33 91.25 87.49 86.67 94.36

MedMamba + Cross 98.64 86.25 72.51 65.33 98.00

MedMamba + SE 100.00 87.50 74.18 64.00 100.00

MedMamba + GAM 96.52 88.75 78.94 68.00 100.00

CTA, computed tomography angiography; MHA, multi-head self-attention; CBAM, convolutional block attention module; SE, Squeeze-and-Excitation module; GAM, global attention 
mechanism.

TABLE 6  Evaluating the number of heads of multi-head self-attention for predicting abdominal aortic aneurysm growth.

Number of heads AUC (%) Accuracy (%) F1-score (%) Sensitivity (%) Specificity (%)

4 100.00 96.25 93.18 88.67 100.00

8 99.64 98.75 97.78 96.00 100.00

16 100.00 92.50 91.13 100.00 88.36

32 100.00 92.50 90.29 93.33 92.00

AUC, area under the curve.

predefined set of human-engineered features, as seen in radiomics 
studies (Kontopodis et al., 2022; Wang et al., 2023), potentially 
missing subtler, synergistic patterns. Further compounding this, 
other approaches seek to integrate more complex data, such as 
combining anatomical imaging with hemodynamic simulations 
derived from reconstructed geometries to estimate wall stress 
(Kim et al., 2023). While physiologically insightful, the reliance 
on manual segmentation and complex multi-physics modeling 
poses a significant barrier to clinical scalability. In contrast, 
our ResNet50-YOLOv11-MedMamba framework addresses these 
bottlenecks by learning directly from raw data. The pipeline 
automatically transitions from CTA images to a prediction. 
We hypothesize that by doing so, the model does not merely 
“see” thrombus or calcification in a conventional sense but may 
learn complex imaging signatures that are surrogate markers for 
the underlying inflammatory and biomechanical processes these 
established features represent. This end-to-end strategy is posited 
to allow the model to learn a rich, hierarchical representation 
that can capture the prognostic information contained in the 
complex interplay of these mechanisms, without being constrained 
to predefined feature sets. This capability is a plausible explanation 
for its competitive performance when compared to models 
utilizing manually segmented features (Kontopodis et al., 2022; 
Wang et al., 2023) or those relying on a more limited set of traditional 
parameters (Ristl et al., 2021). Consequently, our work suggests 
a scalable pathway that leverages deep learning to integrate the 
pathophysiological complexity of AAA progression into a unified 
predictive assessment.

The biological plausibility of our model’s predictions was further 
interrogated using SHAP analysis and Grad-CAM visualizations. 
SHAP analysis confirmed that the model’s decision-making aligns 
with established clinical knowledge (Ullery et al., 2018), identifying 
smoking history, larger baseline aneurysm diameter, and advanced 
age as the most influential features, which are all well-documented 
risk factors for AAA progression. This concordance lends critical 
face validity, demonstrating that the model rationally leverages 
clinically pertinent information. The interpretation of Grad-CAM 
visualizations, however, must be contextualized within our model’s 
architecture. Given that the YOLOv11 pipeline first precisely 
localizes the aneurysm, Grad-CAM does not function in a primary 
diagnostic localization role. Instead, it elucidates which sub-
regions within and surrounding the delineated aneurysm most 
strongly drive the prediction. A striking and consistent pattern 
emerged: in cases of rapid expansion, the model’s attention was 
frequently mapped not to the aortic wall itself, but to the adjacent 
perivascular adipose tissue (PVAT). We hypothesize that this 
pattern may indicate the model’s sensitivity to imaging signatures 
of perivascular inflammation. PVAT is a recognized secretory 
organ, modulating vascular inflammation, which is a cornerstone of 
AAA pathogenesis, via the paracrine release of adipokines and 
cytokines. It is plausible that our model detects subtle textural 
or radiodensity alterations within this tissue, capturing a novel 
imaging biomarker of a pro-inflammatory state. This hypothesis 
conceptually bridges the imaging findings with the systemic risk 
profiles highlighted by SHAP (e.g., smoking). We emphasize that 
this remains a hypothesis-generating observation that warrants 
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FIGURE 11
Representative Grad-CAM visualizations for a rapid-growth AAA case (a–c) and a stable AAA case (d–f). (a–d) Original CTA image slices. (b–e)
Gradient-weighted class activation mapping (Grad-CAM) heatmaps. (c–f) Heatmaps superimposed on the original images. The model’s attention in the 
rapid-growth case is localized to the perivascular region, while such focused activation is absent in the stable case. Grad-CAM, gradient-weighted class 
activation mapping; AAA, abdominal aortic aneurysm; CTA, computed tomography angiography.

future validation through direct correlation with histopathological 
analysis or specific inflammatory serological markers. Collectively, 
these explainability techniques present a coherent, biphasic 
narrative. The model initially anchors its decision in fundamental, 
patient-specific clinical risks (SHAP) and subsequently appears 
to refine its prognostic assessment by integrating a localized, 
imaging-based evaluation of the perivascular milieu (Grad-CAM). 
This synergy suggests that our framework transcends a mere 
“black-box” predictor, instead synthesizing established clinical 
wisdom with potential novel imaging biomarkers to enable a 
more holistic and mechanistically informed risk stratification for
AAA progression.

A recent study by Oh et al. (2025) also developed a deep 
learning model for predicting AAA progression, providing a 
valuable benchmark for the field. Our work complements and 
extends this effort in several key aspects that may contribute 
to the differing performance profiles. First, the clinical targets 
differ. Our model was trained to predict rapid growth defined as 
≥0.5 cm per 6 months, a threshold directly aligned with guideline 
recommendations for considering intervention. In contrast, Oh 
et al. employed a threshold of 2.5 mm/year. Predicting this more 
abrupt, clinically decisive growth event represents a distinct and 

potentially more challenging task, which may partly account 
for the differing performance metrics observed. Second, the 
feature-extraction paradigms diverge. Their approach relied on 
manually segmenting aortic geometries to derive predefined 
radiomic features, a methodologically rigorous but inherently 
limited process. Our fully automated YOLOv11-based localization, 
while providing less geometrically precise segmentation, preserves 
and analyzes the entire periaortic imaging context. This approach 
may have enabled our model to capture the prognostic information 
from the perivascular environment (Lv et al., 2024), as directly 
suggested by our Grad-CAM findings, which is typically excluded 
during manual contouring. Therefore, our framework explores a 
different trade-off, prioritizing automated, context-aware feature 
discovery over manual, lesion-specific measurement. When viewed 
together, these studies illustrate two parallel and complementary 
paths forward: one focused on creating robust, manually verified 
models from large cohorts, and the other pushing the boundaries 
of fully automated performance.

Beyond the methodological comparisons within the domain of 
CT-based modeling, our study also lays the groundwork for future 
integration with emerging, non-invasive biomarkers that probe 
different aspects of AAA pathophysiology. For instance, circulating 
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biomarkers such as soluble glycoprotein VI (Benson et al., 2024) and 
specific microRNAs (Thanigaimani et al., 2022) have shown promise 
in reflecting platelet activity and cellular stress associated with 
aneurysm growth. Similarly, advanced MRI techniques, including 
MR elastography to assess wall stiffness (Dong et al., 2022) and 
4D flow to quantify wall shear stress (Trenti et al., 2022), provide 
unique biomechanical and functional insights not directly accessible 
by standard CTA. While these modalities are not yet part of routine 
clinical practice for AAA surveillance, they represent a rich source of 
complementary data. The automated architecture presented in this 
study is, in principle, amenable to incorporating such multimodal 
inputs in the future. A compelling long-term goal would be to fuse 
our automated imaging-derived predictions with these serological 
and functional biomarkers, potentially creating a supremely robust, 
multi-parametric risk assessment tool that captures the biological, 
morphological, and biomechanical drivers of AAA progression 
in concert.

Limitations

Our study has several limitations that should be considered. 
First, the performance of our fully automated framework was 
evaluated on a single-center cohort with a limited sample size. 
Although we employed rigorous internal validation strategies, 
including 5-fold cross-validation and comprehensive data 
augmentation, to ensure robustness and mitigate overfitting, the 
generalizability of the model requires confirmation in larger, 
multi-center populations. Our findings may thus be viewed as 
complementary to recent large-scale, multi-center efforts, such 
as the study by Oh et al. (2025), which established a robust 
benchmark for generalizability. While their study exemplifies a 
pathway toward clinical deployment, our work explores the potential 
performance gains achievable with a novel architecture and full 
automation, suggesting a promising direction for future technical 
development. Second, our cohort was predominantly male, which 
aligns with the epidemiological prevalence of AAA but limits 
the model’s applicability to female patients, a population with 
recognized differences in rupture risk. Third, the retrospective 
design precluded the inclusion of genetic or novel biomarker 
data. Finally, while our explainability analyses provide strong, 
hypothesis-generating insights into the model’s decision-making, 
for instance, by highlighting the role of perivascular tissue, a 
comprehensive mapping of the full hierarchy of deep features 
to their specific biological correlates remains a key goal for 
future research. This includes linking these features to underlying 
biological processes such as specific inflammatory cell infiltrates or 
proteolytic activity levels. These considerations collectively outline 
a clear and logical path for future research. The initial performance 
achieved here justifies the next critical step: a prospective, multi-
center validation study. Such an endeavor would be essential to 
confirm generalizability and would also provide a platform to 
integrate imaging-based predictions with multimodal data. Building 
upon the automated architecture presented here, future work that 
leverages large, diverse cohorts will be crucial to translating these 
technical advances into clinically reliable tools for personalized 
AAA management.

Conclusion

This study developed and validated a novel, end-to-end 
deep learning framework, ResNet50–YOLOv11–MedMamba, for 
predicting the growth of small asymptomatic AAAs. By integrating 
clinical data with automatically extracted imaging features from 
CTA, our model achieved a high predictive performance (98.75% 
accuracy, 97.78% F1-score) in internal validation, outperforming 
several classical benchmarks. The framework’s design, which 
leverages YOLOv11 for precise lesion localization and an 8-head 
MHA mechanism for effective feature fusion, demonstrates the 
feasibility of fully automating growth prediction. Future work, 
focused on multi-center prospective validation and the inclusion 
of biomechanical markers, is warranted to confirm these findings 
and pave the way for more personalized, image-based surveillance 
strategies.
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