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Accurate prediction of asymptomatic small abdominal aortic aneurysm (AAA)
growth is crucial for risk stratification and personalized surveillance. This study
developed an end-to-end deep learning framework to predict rapid expansion
(>0.5 cm/6 months) using computed tomography angiography (CTA) images
from 81 asymptomatic patients with small AAA (30 rapid-growth and 51 stable
patients). The pipeline integrated three core components: a ResNet50 classifier
for identifying aortic images (99.86% accuracy, 99.91% Fl-score), a YOLOv11
detector for localizing aneurysms (precision—recall: 0.902), and a MedMamba-
based feature fusion model that combined imaging features with clinical
metadata via multi-head self-attention. Model robustness was ensured through
stratified 5-fold cross-validation and comprehensive data augmentation. The
fusion model achieved a predictive accuracy of 98.75% and an Fl-score of
97.78, outperforming seven classical deep learning backbones. Furthermore,
explainability analyses confirmed the model's reliance on established clinical
risk factors and highlighted biologically plausible imaging regions for prediction.
The proposed ResNet50-YOLOv1l-MedMamba framework demonstrates the
feasibility of automating AAA growth prediction directly from CTA and shows
promising potential to enhance clinical decision-making.

KEYWORDS

multi-head self-attention, computed tomography angiography, growth prediction,
deep learning, abdominal aortic aneurysm

Introduction

Abdominal aortic aneurysm (AAA) constitutes a pathological dilation of the infrarenal
abdominal aorta and is often subclinical until the time of acute rupture, a complication with
prehospital mortality exceeding 80% (Schanzer et al., 2021; Isselbacher et al., 2022). Current
clinical management relies on serial diameter monitoring, with intervention typically
recommended when the maximum diameter exceeds 50 mm for men or a lower threshold
for women (Wanhainen et al., 2024). The diameter is the most commonly used risk marker in
AAA disease. It is manually measured clinically by ultrasound or multiplanar reconstruction
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of computed tomography angiography (CTA) perpendicular to
the centerline. Current predictions of the AAA rupture risk, and
consequently the indications for preventive treatment, are based on
the maximum anterior-posterior diameter, measured perpendicular
to the centerline with three-dimensional reconstructed CTA
images, and growth rate. However, this size-only paradigm
is an imperfect predictor of risk. A significant proportion of
ruptures occur in aneurysms below this surgical threshold
(Collaborators, 2013; Spanos et al, 2020), with large cohort
studies reporting an annual rupture risk of 0.03% for small
AAAs (Oliver-Williams et al., 2019). This critical limitation
underscores the urgent need for better predictors of aneurysm
behavior. Consequently, accurately forecasting the AAA growth
rate has become a central research priority, as it is crucial for
surgical planning and personalized surveillance, with guidelines
recommending intervention when growth exceeds 0.5 cm per 6
months (Ullery et al., 2018; Isselbacher et al., 2022).

The pursuit of improved prediction has incorporated biological
variables (e.g., C-reactive protein and D-dimers) and morphological
parameters from CTA (Zhu et al, 2020; Cersit et al., 2021;
Fernandez-Alonso et al, 2022; Kontopodis et al., 2022;
Ristl et al, 2023; Vanmaele et al, 2025). Furthermore, the
pathobiology of the perivascular environment is now recognized
as a key contributor to AAA progression (Wang et al, 2022;
Zhang et al, 2023; Lv et al, 2024). Deep learning offers a
powerful approach to automatically extract prognostic features
from images. Previous efforts have largely relied on radiomics
derived from manual segmentations or reconstructed geometries
for hemodynamic modeling. While valuable, this dependence on
manual annotation introduces observer variability, limits scalability,
and confines models to a predefined set of human-engineered
features, potentially overlooking subtler prognostic patterns in the
raw data (Kim et al., 2023; Wang et al., 2023).

To overcome these limitations, we propose a novel, end-to-
end deep learning framework that automates the entire pipeline
from raw CTA images to growth prediction. Our framework,
ResNet50-YOLOv11-MedMambea, is designed to eliminate manual
intervention through a three-stage cascade: it first identifies and
filters relevant aortic images, then precisely localizes the aneurysm
region, and finally fuses the automatically extracted imaging
features with clinical metadata for a holistic assessment. This
study aims to validate whether this fully automated approach
can accurately predict rapid expansion (0.5 cm/6 months) of
small AAAs, thereby offering a scalable, potentially more robust
alternative to existing methods.

Methods

This section provides an overview of the methods employed in
this study, with a particular focus on the feature fusion strategy
and the application of the ResNet50, YOLOv11, and MedMamba
models. We have detailed the data collection process, CTA data
acquisition, definition, and the performance metrics used to evaluate
our method. By integrating clinical data and CTA image feature-
extraction techniques, we aim to improve the accuracy of predicting
AAA growth in asymptomatic patients. Each subsection provides a
comprehensive overview of the process used, ensuring the clarity
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of our research methods and facilitating the reproducibility of this
work. The framework of the proposed algorithm for our prediction
of AAA growth is shown in Figure 1.

Data collection

This retrospective study consecutively screened 289 patients
with small AAAs who were treated in our center from January
2019 to December 2023. Among them, 135 patients who underwent
intervention due to symptoms were excluded, 61 patients who did
not undergo imaging follow-up were excluded, 10 patients were
lost to follow-up, and two patients died. Finally, 81 patients were
included in this study. According to whether the growth rate was >
0.5 cm/6 months, they were divided into the rapid-growth group
(n = 30) and the stable group (n = 51). The CTA images of these
patients were obtained from the institutional Picture Archiving
and Communication Systems at our center for the study, and the
patients’” clinical data were obtained from the electronic medical
record system. This study followed the ethical guidelines of the
Helsinki Declaration and was approved by the ethics committee.
The Ethics Committee of General Hospital of Northern Theater
Command approved this study with an Ethics Batch Number Y
(2024)356. Informed consent was waived due to the retrospective
design and the use of fully anonymized, de-identified data.

CTA data acquisition

CTA examinations were conducted via a 256-slice multidetector
computed tomography system (Brilliance iCT, Philips Healthcare).
included the
specifications: detector collimation of 128 mm x 0.625 mm, a

The scanning protocol following  technical
gantry rotation time of 270 ms, automated tube voltage selection
ranging from 100 kVp to 120 kVp based on body mass index,
and tube current modulation between 500 mAs and 700 mAs.
Image acquisition utilized retrospective electrocardiogram gating
with intravenous administration of iodinated contrast medium
(ioversol 320 mgl/mL) at weight-adjusted doses of 1-1.5 mL/kg
and injection rates of 4-6 mL/s. CTA images were reconstructed at
a window centered at the peak aortic enhancement phase, which
can be determined by a test bolus or bolus-tracking technique. For
most patients, this phase may occur at approximately 20-30 s after
the start of contrast injection, but it can vary depending on the
patient’s cardiovascular status and the injection parameters. CTA
images were reconstructed at a window centered at 75% of the R-R
interval, with a section thickness of 0.625 mm and a reconstruction
increment of 0.5 mm.

Definition

A small AAA is defined as the diameter of the abdominal aorta
between 3 cm and 5 cm in women and between 3 cm and 5.5 cm
in men (Isselbacher et al., 2022), and the maximum diameter was
measured by two radiologists based on multiplanar reconstruction.
The rapid growth of AAA is defined as an increase of more
than 5 mm every 6 months (Ullery et al., 2018). Smoking history
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Framework of our prediction of AAA growth. AAA, abdominal aortic aneurysm; YOLO, You Only Look Once.

was defined as an individual’s lifetime consumption of 100 or
more cigarettes (Rigotti et al., 2024), and drinking history was
defined as daily consumption of at least 50 mL of liquor, at least
once a week, for a duration of at least 6 months, including
current drinkers and those who stopped drinking but met the
aforementioned criteria (Herzog et al., 2024).

Model framework strategy

The CTA data collection adopts the RGB image format, with
variable anatomical semantics. To ensure consistent model input,
we used a classifier based on ResNet50 pre-trained on ImageNet to
automatically identify CTA images containing the abdominal aorta.
182,291 CTA slices were uniformly preprocessed to a resolution
of 224 x 224. The ImageNet standard normalization was applied
(mean = [0.485, 0.456, 0.406], standard deviation = [0.229, 0.224,
0.225]), and the center cropping strategy was adopted to maintain
the integrity of the anatomical structure. This model has undergone
over 100 training epochs using a batch size of 64 and an initial
learning rate of 0.001, and the Adam optimizer was employed with
step-decayed learning rate scheduling (multiplied by 0.1 every 50
epochs), enabling it to reliably perform anatomical filtering for
image selection. The loss function used is the cross-entropy loss.

The CTA images that contain the abdominal aorta were labeled
by LabelMe and used as coordinates for feature extraction by the
You Only Look Once (YOLO) models (Aly et al., 2021; Hechkel and
Helali, 2025), located in the local area of the abdominal aorta, with
labels set as normal aorta and AAA images. The local abdominal
aorta features extracted by YOLO were used for the feature fusion. A
comparative analysis framework was implemented to evaluate four
YOLO variants (v5, v8, v10, and v11) under identical experimental
conditions. Each model was trained for 100 epochs with a batch
size of 16 and an input resolution of 640 pixels x 640 pixels.
The optimizer is Stochastic Gradient Descent (SGD) with Nesterov
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momentum (g = 0.937). The initialized learning rate was set at
0.01 with fixed scheduling and L2 regularization weight decay (A =
5 x 10%). Detection performance was assessed using mean average
precision (mAP) at an intersection over union (IoU) = 0.5 threshold
(mAP@50) and mAP averaged over IoU thresholds 0.5 to 0.95
(mAP@50-95). Computational efficiency was measured by total
training time.

We propose a novel multimodal model that integrates CTA
image slices and clinical features via a feature fusion mechanism,
as shown in Figure 2. The architecture adopts a dual-pipeline
architecture and comprises three innovative components: an image
feature encoder, a clinical feature encoder, and a cross-modal
attention fusion module. The dataset was randomly partitioned into
training, validation, and test sets at an 8:1:1 ratio at the patient
level to ensure independence. For the image feature encoder, the
MedMamba backbone (Yue and Li, 2024) was selected for its
specific design to model long-range dependencies in medical image
sequences, a capability highly relevant to our task. The output of
MedMamba from all slices was then treated as a sequence and
passed into a transformer encoder, which was fed into the image
encoder backbone to extract slice-level feature representations. The
resulting features were then projected into a shared 512-dimensional
latent space via a projection head consisting of linear layers, batch
normalization, and dropout. Mean pooling is applied to produce a
fixed-length image embedding for each patient.

To prevent data leakage, all preprocessing steps were performed
independently on each partition. Clinical features with missing
values exceeding 50% were excluded from the analysis. For the
remaining missing data, four imputation methods were evaluated:
k-nearest neighbors (KNN), median imputation, random forest
imputation, and multiple imputation (Lee and Styczynski, 2018).
KNN imputation (k = 5) was selected because it best preserved
the original data distribution and was subsequently applied to each
subset (training, validation, test) separately. Continuous features
were standardized to a mean of zero and a unit variance using
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the StandardScaler method. The categorical outcome variable
(intact vs. ruptured) was binarized as 0 and 1, respectively.
Prior to feature selection, multicollinearity was addressed by
identifying and eliminating highly correlated features (Pearson’s
[r] > 0.8). We implemented extreme gradient boosting (XGBoost)
to screen clinical features. The top seven most discriminative
features from each method were selected to form candidate feature
subsets. The Shapley Additive exPlanations (SHAP) value is shown
in Figure 3.

The clinical features were analyzed via a two-layer multilayer
perceptron (MLP), with intermediate batch normalization and
dropout layers, to improve generalizability. The final output is
mapped into the same latent space as the image embedding
(i.e., 1,024 dimensions), enabling subsequent multimodal fusion.
A key innovation of our architecture lies in the cross-modal
attention fusion module. Here, we treat the image-derived and
clinical-derived embeddings as two tokens and input them into
a multi-head self-attention (MHA) block. This allows the model
to explicitly learn modality-aware representations by attending
to both intra- and intermodal interactions. The output vectors
from each modality are then concatenated and passed through a
multilayer classifier for binary classification. The thickness of the
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image layer is 5mm, and the 2D images are all 224x224. All
images are preprocessed using the low threshold zero processing
method, with the threshold experimentally set at 200. During
the training process, the Adam optimizer is used. In the training
process, the 5-fold cross-validation method with category balance
weights is used, and robustness and adaptive learning rate
adjustment (initial le—4, reduced by 10% on the platform) are
implemented. The loss function is also the cross-entropy loss.
The batch size is set to 4, adjusted according to memory
requirements for comparing models. Through normalization of

shear (max

= 1.0), supplementation, and maintaining gradient
stability through strict CTA data augmentation, including random
planar rotation (+15°), horizontal flipping (50%), +20% brightness,
contrast, and saturation, it is made applicable to medical data.
To ensure the reduction of overfitting and underfitting of the
model, the early stopping strategy is a common method to prevent
10. We adopted a stratified

5-fold cross-validation for dataset division to ensure that each

model overfitting, with patience =
fold maintains the original class distribution ratio. To address
the class imbalance problem (with a class ratio of 30:51), we
used the weighted cross-entropy loss function based on class
frequency.
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Implementation configurations

Our architecture is implemented on PyTorch 2.7.0, and
experiments are conducted on a workstation equipped with an
NVIDIA GeForce RTX 4090 GPU and providing up to 24 GB of
VRAM, NVIDIA driver version 576.52, and CUDA 12.8.

Comparative experiment

In the comparative experiment, we set up three types of
experiments. The first one is the comparison between the feature-
extraction module MedMamba and the classical models, including
VGG16, ResNet18, ResNet50, ResNet101, DenseNet121, ViT-B/16,
and MedViT. The second one is comparing the results of feature
fusion achieved by combining other attention mechanisms with
the MedMamba model, including the convolutional block attention
module (CBAM), channel attention, cross attention, the squeeze-
and-excitation (SE) module, and the global attention mechanism
(GAM). Additionally, we explored the number of heads in the MHA
mechanism and compared the results of 4 heads, 8 heads, 16 heads,
and 32 heads, respectively.

Model interpretability and visualization

To interpret the predictions of our trained model, we employed
gradient-weighted class activation mapping (Grad-CAM) to
generate visual explanations of its decision-making process
(Wangetal., 2025; Zhao et al., 2025). This technique produces coarse
localization heatmaps by leveraging gradient information flowing
into the final convolutional layer of the network, highlighting
regions of the input image that are most influential for predicting
a specific class while preserving spatial information. A major
advantage of Grad-CAM is that it requires no modifications to the
model architecture and involves no additional training. In this study,
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we applied Grad-CAM to the final convolutional layer to visualize
activation patterns corresponding to the model’s prediction of the
AAA growth.

Statistical analysis

To evaluate the classification results of the deep learning models
for the overall group, we used sensitivity, specificity, accuracy, F1-
score, precision, the mAP@50, and the area under the curve (AUC).
The evaluation formula is available in the supplementary materials.
The statistical analyses were performed using IBM® SPSS® version
26 (IBM, Armonk, NY) and Python 3.12.9.

Results
Baseline characteristics

Overall, we evaluated 81 patients with asymptomatic and
image-monitored small AAA without intervention. Most were men
(90.12%), with a median age of 68 years. Among them, 30 patients
met the criteria for rapid growth (0.5 cm/6 months), and the other 51
patients were of the stable type. The proportion of smoking history
among the patients in the rapid-growth group was significantly
higher than that of the patients in the stable group (P = 0.016). No
statistically significant differences in other baseline characteristics
were found between the two groups (all P > 0.05). Detailed baseline
characteristics are presented in Table 1.

CTA images containing abdominal aorta
classification

The CTA data were randomly split into training, validation, and
test sets in a ratio of 8:1:1 at the patient level, which is displayed in
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TABLE 1 Comparison of baseline characteristics between the stable group and the rapid-growth group.

Characteristic

Stable group (N = 51)

Growth group (N = 30)

10.3389/fphys.2025.1704428

Age, years 68.00 [63.50, 71.50] 66.00 [63.00, 72.00] 0.761
Male 47 (92.16) 26 (86.67) 0.679
Smoking history 11 (21.57) 15 (50.00) 0.016
Drinking history 7 (13.73) 8 (26.67) 0.249
Hypertension 19 (37.25) 8(26.67) 0.464
Diabetes 2(3.92) 2 (6.67) 0.984
CHD 8 (15.69) 9 (30.00) 0.213
Prior IS 4(7.84) 4(13.33) 0.679
Prior surgery 16 (31.37) 8 (26.67) 0.845
SBP, mmHg 134.00 [124.00, 141.00] 137.00 [127.25, 143.75] 0.417
DBP, mmHg 78.00 [70.00, 85.50] 80.00 [69.50, 87.50] 0.534
Fibrinogen, g/L 3.72[2.97, 4.35] 3.77 [3.04, 4.48] 0.899
FBG, mg/dL 99.72[90.36, 111.51] 105.17 [94.16, 113.59] 0.291
Creatinine, mmol/L 74.90 [64.51, 85.11] 76.49 [66.05, 87.34] 0.671
C-reactive protein 3.10 [1.90, 4.38] 3.30[1.77,4.71] 0.833
LDL-C, mmol/L 91.22 [71.82, 113.05] 92.57 [69.59, 105.68] 0.487
D-Dimer, mg/dL 167.59 [107.28, 210.75] 150.18 [116.75, 198.53] 0.973
Aneurysm length, mm 70.60 [56.35, 87.00] 82.40 [70.17, 88.20] 0.07

Neck length, mm 39.10 [23.30, 53.25] 30.90 [25.50, 41.92] 0.246
Maximum diameter of AAA, mm 41.70 [35.45, 45.25] 43.70 [38.05, 48.48] 0.159

Categorical variables are reported as frequency and percentage (n,%).
Continuous variables are reported as median and interquartile range (med [Q1 - Q3]).

CHD, coronary atherosclerotic heart disease; IS, ischemic stroke; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; LDL-C, low-density lipoprotein

cholesterol; AAA, abdominal aortic aneurysm.

the Supplementary Table S1. We compared eight models suitable for
image classification, mainly to identify CTA images containing the
abdominal aorta. The results of the model comparison are shown
in Table 2. Among these models, the ResNet50 model performed
best, with an accuracy (ACC) and F1-score of 99.86% and 99.91%,
respectively. The ResNet50 model classified the CTA images suitable
for the next step, that is, abdominal aorta detection, and the results
of model training and validation are shown in Figure 4.

Detecting and classifying the abdominal
aorta

A total of 31,457 CTA images containing the abdominal

aorta were trained with 100 epochs and were completed in
13.479 h. The YOLOv1l model detected the abdominal aorta

Frontiers in Physiology

and classified the normal aortae and AAAs with the highest
precision (p = 0.902), which indicates that the model has a strong
ability to correctly identify true positives. Its robust performance
across four YOLO models is demonstrated in Table 3. This
implementation demonstrates a high effectiveness in distinguishing
between the normal aorta and the AAA, and the validation
set is shown in Figure 5. The model correctly identifies the
regions of interest and highlights them with bounding boxes in
distinct colors. Figure 6 depicts key performance metrics of the
classification result between the normal aorta and AAA. The
precision-confidence curve (top left) shows how precision varies
with confidence thresholds, indicating consistently high precision
near the threshold of 0.902 for all categories. The precision-recall
curve (top right) illustrates the relationship between precision and
recall, demonstrating stable performance, with the overall mAP50
reaching 0.975. The recall-confidence curve (bottom left) highlights
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TABLE 2 Performance analysis of different models for classifying CTA images containing the abdominal aorta on the test set.

Model Accuracy (%) F1-score (%) Precision (%) Recall (%) AUC (%)
VGG16 82.74 90.55 82.74 100.00 50.00
ResNet18 99.85 99.91 99.93 99.89 99.94
ResNet50 99.86 99.91 99.93 99.89 99.97
ResNet101 99.82 99.89 99.90 99.88 99.92
DenseNet121 99.84 99.90 99.90 99.91 99.95
ViT-B/16 94.97 96.97 96.79 97.14 98.19
MedViT 85.52 91.65 87.66 96.02 82.44
MedMamba 99.82 99.89 99.88 99.91 100.00

CTA, computed tomography angiography; AUC, area under the curve.
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FIGURE 4
Results of the ResNet50 model for classifying CTA images containing the abdominal aorta. CTA, computed tomography angiography.

a gradual decline in recall as confidence thresholds increase,
reflecting the trade-oft between higher confidence and recall. Lastly,
the Fl-confidence curve (bottom right) provides insights into the
harmonic means of precision and recall, maintaining a high F1-
score across confidence levels. These curves collectively validate the
model’s robustness and balanced performance across the different
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classification groups. Figure 7 illustrates how the model performed
during training and validation over 100 epochs. In the top row, we
see the training losses for bounding box regression, classification,
and distribution focal loss. All these losses show a steady decline,
which suggests that the model is being effectively optimized.
Additionally, metrics like precision, recall, mAP50, and mAP50-95
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TABLE 3 Performance comparison of four YOLO models.

10.3389/fphys.2025.1704428

Training time (h) mAP50-95 Precision Recall
YOLOV5 13.626 0.970 0.697 0.895 0.928
YOLOVS 13515 0.971 0.690 0.881 0.926
YOLOV10 14521 0.972 0.692 0.889 0.926
YOLOv11 13.479 0.975 0.704 0.902 0.924

YOLO, You Only Look Once; mAP, mean average precision.

consistently improve, reaching high levels by the end of training.
The results of the other three YOLO models are presented in the
supplementary materials.

Feature fusion model

A total of 15,704 CTA images of the local abdominal aorta
were provided by the YOLOv11 model, which were utilized for the
feature fusion model. Among the eight models, the MedMamba was
considered the most suitable backbone for further feature fusion
to predict AAA growth, which achieved an accuracy of 98.75%
and an F1-score of 97.78%. The training and validation loss curves
in Figure 8 indicate that the model has converged. The confusion
matrices suggest that misclassifications are rare, reinforcing the
models reliability, as shown in Figure 9. Compared with the
VGG16, ResNet18, ResNet50, ResNet101, DenseNet121, ViT-B/16,
and MedViT models, the feature fusion model based on MedMamba
achieved the best performance, detailed in Table 4 and Figure 10.
The training and validation loss curves and confusion matrices of
feature fusion models based on seven other backbones are shown in
the supplementary materials.

Experiments to explore attention modules
on model performance

We compared the prediction performance effects of applying
different attention modules based on the MedMamba model.
From the analysis of Table 5, the MHA mechanism has excellent
performance compared to the other attention modules. When
applying the MHA mechanism for feature fusion, we compared the
effects of 4 heads, 8 heads, 16 heads, and 32 heads on the model
results, as shown in Table 6. The 8-head self-attention mechanism
achieved the optimal balance and resulted in the best prediction of
AAA growth.

Model interpretability and visualization

Grad-CAM was used to generate heatmaps that visually
interpreted the model’s reasoning process by highlighting regions
within the input CTA images that most strongly influenced its
classification decision for ruptured abdominal aortic aneurysm
(RAAA), as shown in Figure 11. These visual results indicate
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that the model consistently focuses on anatomically significant
areas, such as suggesting focal enhancement and activation in the
perivascular regions, which have a strong correlation with the
established imaging markers of AAA growth. Unexpectedly, the
areas of thickened blood vessel walls that might reflect vascular
inflammatory responses and characteristics of atherosclerosis were
not activated.

Discussion

The accurate prediction of small AAA growth remains a
significant challenge in clinical practice. Current management,
guided by consensus guidelines, primarily relies on periodic
surveillance using the maximum aortic diameter as a surrogate
for rupture risk. While practical, this conventional approach often
fails to capture the complex, multifactorial nature of aneurysm
progression, which involves a dynamic interplay of biomechanical
stress, chronic inflammation, and proteolytic degradation. This
study establishes a novel, automated deep learning framework that
integrates ResNet50, YOLOv11, and MedMamba to predict the
rapid expansion of asymptomatic small AAAs directly from CTA
images and clinical data. The end-to-end pipeline achieved an
exceptionally high predictive performance, with an accuracy of
98.75% and an AUC of 99.64% in our cohort of 81 asymptomatic
patients. Critically, despite the cohort size, this performance was
consistent across rigorous internal validation, demonstrating the
substantial potential of leveraging these architectures to automate
the entire workflow, from image screening and precise, bounding-
box-level aneurysm localization to multimodal feature fusion. This
design crucially circumvents the manual segmentation and expert-
dependent feature engineering required by traditional radiomics
and hemodynamic models (Ristl et al., 2021; Kontopodis et al., 2022;
Kim et al., 2023; Wang et al, 2023; Starck et al, 2025). This
performance likely stems from both the architectural synergy
between detection and sequence modeling components and the
frameworK’s capacity to learn discriminative features directly from
raw data, potentially capturing subtle prognostic image patterns
that may serve as surrogates for underlying pathophysiological
processes, such as inflammation or wall stress, which are lost
in manual preprocessing. This study thereby suggests a new
performance benchmark for AAA progression prediction and
highlights a clinically translatable, scalable pathway for future
decision-support tools.
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FIGURE 5
Validation for classifying the normal aorta and abdominal aortic aneurysm of the YOLOv11 model on CTA images. YOLO, You Only Look Once; CTA,

computed tomography angiography.

The strong predictive performance of our framework is
likely attributable to the synergistic design of its constituent
architectures, each addressing specific limitations in conventional
AAA analysis. This integrated design effectively establishes a
fully automated pipeline that progresses from the identification
of aortic images (ResNet50) to precise, bounding-box-level
localization of the aneurysm (YOLOvll), and culminates
in the fusion of imaging features based on the MedMamba
backbone with clinical data. A key advantage of this design
is its circumvention of manual segmentation, a step typically
required in radiomics and biomechanical modeling, which
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can introduce observer variability and hinder scalability. The
choice of YOLOv11 for localization ensures that subsequent
feature extraction is focused exclusively on the pathologically
relevant region, minimizing contamination from adjacent
anatomic structures. However, the most substantial performance
improvements, as evidenced by our comparative ablation
studies, appear to originate from the feature fusion stage. Here,
the MedMamba backbone was selected for its potential to
model long-range dependencies across sequential CTA slices,
potentially capturing a more global spatiotemporal context of

the aneurysms than standard CNNs. This was complemented
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Training and validation losses of the feature fusion model based on the MedMamba backbone.
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by the optimized 8-head MHA mechanism, which acts as a
sophisticated information integrator. Our ablation studies (Table 6)
demonstrate that this specific configuration offered an optimal
balance, enabling the model to integrate multi-scale features,
from local textural variations to broader morphological changes.
The synergy between MedMamba’s sequential processing and
MHA’ cross-modal alignment may allow the model to learn a
hierarchical representation that captures morphological and textural
heterogeneities, which, although recognized in the literature as
markers of progression, are elusive to manual quantification.
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Consequently, by moving beyond the simplistic reliance on
maximum diameter, which is the current cornerstone of clinical
guidelines (Isselbacher et al., 2022), our framework suggests a path
toward a more holistic, pathophysiologically grounded assessment
of AAA progression risk. This could potentially enable more
personalized surveillance strategies, ensuring that high-risk patients
receive timely intervention while reducing unnecessary imaging for
those with stable disease.

When contextualizing our results within the existing landscape
of AAA prediction, our automated deep learning framework
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TABLE 4 Performance analysis of the MedMamba model and the traditional models to predict abdominal aortic aneurysm growth.

Backbone Accuracy (%) F1-score (%) Sensitivity (%) Specificity (%) AUC (%)
VGGI16 86.25 69.33 63.33 100.00 100.00
ResNet18 93.75 89.18 82.00 100.00 96.88
ResNet50 93.75 90.85 90.00 96.36 99.27
ResNet101 92.50 88.66 90.00 94.18 99.33
DenseNet121 91.25 87.19 86.00 94.36 95.45
ViT-B/16 90.00 87.43 93.33 88.00 95.67
MedViT 85.00 85.79 100.00 76.18 96.00
MedMamba 98.75 97.78 96.00 100.00 99.64
AUG, area under the curve.
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FIGURE 10
Performance comparisons of the MedMamba backbone with the traditional models to predict abdominal aortic aneurysm growth.

addresses several persistent methodological challenges. The field
has progressively identified key prognostic indicators underpinned
by specific pathophysiological mechanisms: for instance, the
intraluminal thrombus is not merely a structural feature but an
active source of proteolytic activity and wall inflammation that
fuels progression (Zhu et al.,, 2020); radiomic signatures of the
perivascular adipose tissue (Lv et al., 2024) may reflect a paracrine,
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inflammatory “outside-to-inside” signaling pathway; and the role
of vascular calcification (Klopf et al., 2022) involves complex
biomechanical alterations to wall stress distribution. However,
translating these mechanistic insights into clinical tools has been
constrained by methodology. Extracting these features typically
relies on expert-dependent manual segmentation, a process that
not only introduces variability but may also restrict analysis to a
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TABLE 5 Evaluation of different attention modules on CTA images to predict abdominal aortic aneurysm growth.

10.3389/fphys.2025.1704428

Attention AUC (%) Accuracy (%) F1-score (%) Sensitivity (%) Specificity (%)
MedMamba + MHA 99.64 98.75 97.78 96.00 100.00

MedMamba + CBAM 100.00 93.75 91.32 90.00 96.00

MedMamba + Channel 99.33 91.25 87.49 86.67 94.36

MedMamba + Cross 98.64 86.25 72.51 65.33 98.00

MedMamba + SE 100.00 87.50 74.18 64.00 100.00

MedMamba + GAM 96.52 88.75 78.94 68.00 100.00

CTA, computed tomography angiography; MHA, multi-head self-attention; CBAM, convolutional block attention module; SE, Squeeze-and-Excitation module;

mechanism.

TABLE 6 Evaluating the number of heads of multi-head self-attention for predicting abdominal aortic aneurysm growth.

GAM, global attention

Number of heads AUC (%) Accuracy (%) F1-score (%) Sensitivity (%) Specificity (%)
4 100.00 96.25 93.18 88.67 100.00

8 99.64 98.75 97.78 96.00 100.00

16 100.00 92.50 9113 100.00 88.36

32 100.00 92.50 90.29 93.33 92.00

AUQG, area under the curve.

predefined set of human-engineered features, as seen in radiomics
studies (Kontopodis et al., 2022; Wang et al.,, 2023), potentially
missing subtler, synergistic patterns. Further compounding this,
other approaches seek to integrate more complex data, such as
combining anatomical imaging with hemodynamic simulations
derived from reconstructed geometries to estimate wall stress
(Kim et al.,, 2023). While physiologically insightful, the reliance
on manual segmentation and complex multi-physics modeling
poses a significant barrier to clinical scalability. In contrast,
our ResNet50-YOLOv11-MedMamba framework addresses these
bottlenecks by learning directly from raw data. The pipeline
automatically transitions from CTA images to a prediction.
We hypothesize that by doing so, the model does not merely
“see” thrombus or calcification in a conventional sense but may
learn complex imaging signatures that are surrogate markers for
the underlying inflammatory and biomechanical processes these
established features represent. This end-to-end strategy is posited
to allow the model to learn a rich, hierarchical representation
that can capture the prognostic information contained in the
complex interplay of these mechanisms, without being constrained
to predefined feature sets. This capability is a plausible explanation
for its competitive performance when compared to models
utilizing manually segmented features (Kontopodis et al., 2022;
Wangetal., 2023) or those relying on a more limited set of traditional
parameters (Ristl et al., 2021). Consequently, our work suggests
a scalable pathway that leverages deep learning to integrate the
pathophysiological complexity of AAA progression into a unified
predictive assessment.

Frontiers in Physiology

The biological plausibility of our model’s predictions was further
interrogated using SHAP analysis and Grad-CAM visualizations.
SHAP analysis confirmed that the model’s decision-making aligns
with established clinical knowledge (Ullery et al., 2018), identifying
smoking history, larger baseline aneurysm diameter, and advanced
age as the most influential features, which are all well-documented
risk factors for AAA progression. This concordance lends critical
face validity, demonstrating that the model rationally leverages
clinically pertinent information. The interpretation of Grad-CAM
visualizations, however, must be contextualized within our model’s
architecture. Given that the YOLOvV11 pipeline first precisely
localizes the aneurysm, Grad-CAM does not function in a primary
diagnostic localization role. Instead, it elucidates which sub-
regions within and surrounding the delineated aneurysm most
strongly drive the prediction. A striking and consistent pattern
emerged: in cases of rapid expansion, the model’s attention was
frequently mapped not to the aortic wall itself, but to the adjacent
perivascular adipose tissue (PVAT). We hypothesize that this
pattern may indicate the model’s sensitivity to imaging signatures
of perivascular inflammation. PVAT is a recognized secretory
organ, modulating vascular inflammation, which is a cornerstone of
AAA pathogenesis, via the paracrine release of adipokines and
cytokines. It is plausible that our model detects subtle textural
or radiodensity alterations within this tissue, capturing a novel
imaging biomarker of a pro-inflammatory state. This hypothesis
conceptually bridges the imaging findings with the systemic risk
profiles highlighted by SHAP (e.g., smoking). We emphasize that
this remains a hypothesis-generating observation that warrants
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FIGURE 11

Representative Grad-CAM visualizations for a rapid-growth AAA case (a—c) and a stable AAA case (d—f). (a—d) Original CTA image slices. (b—e)
Gradient-weighted class activation mapping (Grad-CAM) heatmaps. (c—f) Heatmaps superimposed on the original images. The model's attention in the
rapid-growth case is localized to the perivascular region, while such focused activation is absent in the stable case. Grad-CAM, gradient-weighted class
activation mapping; AAA, abdominal aortic aneurysm; CTA, computed tomography angiography.

future validation through direct correlation with histopathological =~ potentially more challenging task, which may partly account
analysis or specific inflammatory serological markers. Collectively, ~ for the differing performance metrics observed. Second, the
these explainability techniques present a coherent, biphasic  feature-extraction paradigms diverge. Their approach relied on
narrative. The model initially anchors its decision in fundamental, = manually segmenting aortic geometries to derive predefined
patient-specific clinical risks (SHAP) and subsequently appears  radiomic features, a methodologically rigorous but inherently
to refine its prognostic assessment by integrating a localized,  limited process. Our fully automated YOLOvI11-based localization,
imaging-based evaluation of the perivascular milieu (Grad-CAM).  while providing less geometrically precise segmentation, preserves
This synergy suggests that our framework transcends a mere  and analyzes the entire periaortic imaging context. This approach
“black-box” predictor, instead synthesizing established clinical = may have enabled our model to capture the prognostic information
wisdom with potential novel imaging biomarkers to enable a  from the perivascular environment (Lv et al., 2024), as directly
more holistic and mechanistically informed risk stratification for  suggested by our Grad-CAM findings, which is typically excluded
AAA progression. during manual contouring. Therefore, our framework explores a
A recent study by Oh et al. (2025) also developed a deep  different trade-off, prioritizing automated, context-aware feature
learning model for predicting AAA progression, providing a  discovery over manual, lesion-specific measurement. When viewed
valuable benchmark for the field. Our work complements and  together, these studies illustrate two parallel and complementary
extends this effort in several key aspects that may contribute  paths forward: one focused on creating robust, manually verified
to the differing performance profiles. First, the clinical targets  models from large cohorts, and the other pushing the boundaries
differ. Our model was trained to predict rapid growth defined as  of fully automated performance.
>0.5 cm per 6 months, a threshold directly aligned with guideline Beyond the methodological comparisons within the domain of
recommendations for considering intervention. In contrast, Oh  CT-based modeling, our study also lays the groundwork for future
etal. employed a threshold of 2.5 mm/year. Predicting this more  integration with emerging, non-invasive biomarkers that probe
abrupt, clinically decisive growth event represents a distinct and  different aspects of AAA pathophysiology. For instance, circulating
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biomarkers such as soluble glycoprotein VI (Benson et al., 2024) and
specific microRNAs (Thanigaimani et al., 2022) have shown promise
in reflecting platelet activity and cellular stress associated with
aneurysm growth. Similarly, advanced MRI techniques, including
MR elastography to assess wall stiffness (Dong et al., 2022) and
4D flow to quantify wall shear stress (Trenti et al., 2022), provide
unique biomechanical and functional insights not directly accessible
by standard CTA. While these modalities are not yet part of routine
clinical practice for AAA surveillance, they represent a rich source of
complementary data. The automated architecture presented in this
study is, in principle, amenable to incorporating such multimodal
inputs in the future. A compelling long-term goal would be to fuse
our automated imaging-derived predictions with these serological
and functional biomarkers, potentially creating a supremely robust,
multi-parametric risk assessment tool that captures the biological,
morphological, and biomechanical drivers of AAA progression
in concert.

Limitations

Our study has several limitations that should be considered.
First, the performance of our fully automated framework was
evaluated on a single-center cohort with a limited sample size.
Although we employed rigorous internal validation strategies,
data
augmentation, to ensure robustness and mitigate overfitting, the

including 5-fold cross-validation and comprehensive
generalizability of the model requires confirmation in larger,
multi-center populations. Our findings may thus be viewed as
complementary to recent large-scale, multi-center efforts, such
as the study by Oh et al. (2025), which established a robust
benchmark for generalizability. While their study exemplifies a
pathway toward clinical deployment, our work explores the potential
performance gains achievable with a novel architecture and full
automation, suggesting a promising direction for future technical
development. Second, our cohort was predominantly male, which
aligns with the epidemiological prevalence of AAA but limits
the model’s applicability to female patients, a population with
recognized differences in rupture risk. Third, the retrospective
design precluded the inclusion of genetic or novel biomarker
data. Finally, while our explainability analyses provide strong,
hypothesis-generating insights into the model’s decision-making,
for instance, by highlighting the role of perivascular tissue, a
comprehensive mapping of the full hierarchy of deep features
to their specific biological correlates remains a key goal for
future research. This includes linking these features to underlying
biological processes such as specific inflammatory cell infiltrates or
proteolytic activity levels. These considerations collectively outline
a clear and logical path for future research. The initial performance
achieved here justifies the next critical step: a prospective, multi-
center validation study. Such an endeavor would be essential to
confirm generalizability and would also provide a platform to
integrate imaging-based predictions with multimodal data. Building
upon the automated architecture presented here, future work that
leverages large, diverse cohorts will be crucial to translating these
technical advances into clinically reliable tools for personalized
AAA management.
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Conclusion

This study developed and validated a novel, end-to-end
deep learning framework, ResNet50-YOLOv11-MedMamba, for
predicting the growth of small asymptomatic AAAs. By integrating
clinical data with automatically extracted imaging features from
CTA, our model achieved a high predictive performance (98.75%
accuracy, 97.78% F1-score) in internal validation, outperforming
several classical benchmarks. The framework’s design, which
leverages YOLOVI11 for precise lesion localization and an 8-head
MHA mechanism for effective feature fusion, demonstrates the
feasibility of fully automating growth prediction. Future work,
focused on multi-center prospective validation and the inclusion
of biomechanical markers, is warranted to confirm these findings
and pave the way for more personalized, image-based surveillance
strategies.
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