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Aging is accompanied by reduced skeletal muscle insulin sensitivity, abnormal 
fat redistribution, and a gradual decline in pancreatic β-cell function, leading 
to impaired glucose homeostasis and an increased risk of type 2 diabetes 
mellitus and related complications. Exercise is widely recognized as a core non-
pharmacological strategy to improve glucose metabolism in older adults. This 
is a narrative review based on a comprehensive search of PubMed and Web 
of Science databases up to September 2025. We summarize current evidence 
on the effectiveness of different exercise modalities—including aerobic, 
resistance, high-intensity interval, and combined training—in ameliorating age-
related glucose metabolism disorders. Evidence suggests that, in the long 
term, combined training yields more comprehensive improvements in insulin 
secretion and multiple metabolic markers compared with single-modality 
interventions. Particular attention is given to the intensity, frequency, and 
duration of exercise interventions to discuss dose–response characteristics 
and practical implications for older adults. Mechanistic insights indicate that 
exercise exerts its benefits through multiple pathways, including enhanced 
skeletal muscle GLUT4 expression and mitochondrial function, reduced visceral 
and ectopic adiposity, suppression of chronic low-grade inflammation, and 
improved β-cell insulin secretion. Future research should focus on large-scale, 
long-term clinical trials and mechanistic studies to refine exercise prescriptions, 
clarify dose–response relationships, and characterize the unique metabolic 
adaptations of the elderly population.
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 1 Introduction

The accelerating pace of population aging has made age-related metabolic 
diseases an urgent global public health challenge. Among these, disorders of glucose 
metabolism—including insulin resistance, elevated fasting glucose, impaired glucose 
tolerance, and type 2 diabetes (T2D)—are particularly prevalent in older adults
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(Amorim et al., 2022). These conditions not only exacerbate 
the progression of aging-related diseases such as cardiovascular 
disease, cognitive decline, and sarcopenia, but also substantially 
increase healthcare costs and mortality risk. Epidemiological studies 
indicate that more than one-third of older adults exhibit some 
degree of impaired glucose metabolism, and this proportion 
continues to rise (Bellary et al., 2021).

Among non-pharmacological interventions, exercise is widely 
recognized as a cornerstone strategy for improving glucose 
homeostasis, slowing the progression of diabetes, and enhancing 
quality of life (Bellary et al., 2021). Regular physical activity 
enhances insulin sensitivity and β-cell function by increasing 
skeletal muscle glucose uptake, improving insulin signaling 
pathways, augmenting mitochondrial function, and modulating 
fat distribution (Zhang T. et al., 2025; Zhang Q. et al., 2025). 
However, in older adults, the presence of multiple chronic 
conditions, age-related functional decline, and reduced exercise 
tolerance complicate the choice of optimal exercise modalities 
and dosing parameters. In accordance with the World Health 
Organization, “older adults” are defined as individuals aged ≥65 
years. Aging, however, is a progressive process, characterized by 
gradual declines in multiple physiological functions, including 
insulin sensitivity, mitochondrial efficiency, muscle mass, and β-
cell capacity. Consequently, physiological responses to exercise 
may vary substantially between individuals at the younger 
end of this spectrum and those at the older end (Gomez-
Bruton et al., 2020; Lohne-Seiler et al., 2016).

This review compares the programs and effects of aerobic 
training, resistance training, high-intensity interval training 
(HIIT), and combined training interventions in improving age-
related glucose metabolism disorders. Furthermore, it analyzes the 
dose–response relationships and targeted effects of different exercise 
modalities with respect to intensity, frequency, and duration, 
with the aim of providing evidence-based guidance for exercise 
prescription in older adults with impaired glucose metabolism. 

2 Multi-organ mechanisms of 
aging-associated disorders of glucose 
metabolism

Normal glucose homeostasis requires proper insulin secretion 
from pancreatic β-cells and effective peripheral glucose utilization 
by insulin-sensitive tissues. It is estimated that 30% of individuals 
over the age of 60 are affected by T2D (Cowie et al., 2009). This 
age-related disruption in glucose metabolism is not caused by a 
single factor but results from the synergistic decline of various 
physiological functions across multiple organs and tissues. 

2.1 Skeletal muscle

Skeletal muscle, being the primary target for insulin-mediated 
glucose uptake, plays a crucial role in the pathogenesis of insulin 
resistance in the elderly. Age-related alterations in the structure and 
metabolism of this tissue are thought to significantly contribute 
to this condition (Whytock and Goodpaster, 2025). The decline in 
muscle mass and function is a hallmark of the aging process, with 

muscle atrophy beginning as early as 25 years of age and accelerating 
thereafter, so that by the age of 80, approximately 40% of the lateral 
femoral muscles (thigh muscles) are lost (Consitt et al., 2019). 
Importantly, sarcopenia is considered detrimental to glucose uptake 
as it reduces the muscle mass available for insulin-stimulated glucose 
processing (Nishikawa et al., 2021). In addition to muscle mass 
loss, age-related metabolic and cellular changes in skeletal muscle 
are thought to play a more prominent role and have been a focal 
point for researchers investigating the intracellular mechanisms 
underlying age-related insulin resistance.

At the molecular level, the expression of glucose transporter 
protein 4 (GLUT4) declines with age in skeletal muscle. In human 
studies, GLUT4 was reduced by approximately 25% in type II 
fibers of the lateral femoral muscle in older (mean age: 64 years) 
compared to younger (mean age: 29 years) subjects, while no 
significant difference was observed in type I fibers (Gaster et al., 
2000). This finding was further corroborated by animal studies in 
which glucose uptake rates in the soleus muscle of 4, 10, 22, and 
42-week-old rats showed lower GLUT4 expression in older animals, 
with a negative correlation to age, while no such relationship was 
observed for GLUT1 expression (Dos Santos et al., 2012). More 
importantly, the ability of GLUT4 to translocate to the plasma 
membrane in response to insulin is impaired in the gastrocnemius 
muscle of aging mice (Deng et al., 2024). Furthermore, aging 
negatively impacts insulin-stimulated phosphorylation of AS160 
at serine-588 and threonine-642, which are thought to have a 
significant combined effect on GLUT4 translocation (Consitt et al., 
2013; Sano et al., 2003). In the elderly, skeletal muscle Akt 
activity is diminished at an early age during hyperinsulinemia, 
contributing to insulin resistance (Petersen et al., 2015). These 
studies suggest that age-related impairments in insulin signaling 
may reduce GLUT4 translocation from intracellular storage vesicles 
to the plasma membrane, ultimately leading to skeletal muscle 
insulin resistance. Additionally, intramuscular lipid accumulation 
and reduced mitochondrial function are also key contributors to 
insulin resistance (Kim et al., 2008). 

2.2 Adipose tissue

Adipose tissue serves as an essential energy reservoir and 
endocrine organ, maintaining glycolipid and energy homeostasis 
throughout the body. It undergoes significant changes with aging, 
many of which contribute to metabolic dysfunction. Specifically, 
aging is associated with alterations in body fat distribution, marked 
by a decrease in subcutaneous fat and an increase in visceral 
fat, and this redistribution has been linked to heightened insulin 
resistance (Kuk et al., 2009). Mechanistically, the accumulation 
of visceral fat during aging leads to altered lipid metabolism, 
characterized by increased lipolysis and elevated free fatty acid levels, 
which may reduce peripheral insulin sensitivity (Guilherme et al., 
2008). Moreover, lipid redistribution and chronic inflammation 
resulting from aging adipose tissue induce metabolic disorders, 
including insulin resistance, impaired glucose tolerance, and 
diabetes (Mi et al., 2019; Xiao et al., 2025). Elevated levels of pro-
inflammatory cytokines, such as members of the IL-1 family, in 
dysfunctional adipose tissue may directly interfere with insulin 
signaling pathways (Stienstra et al., 2010; Ballak et al., 2015). 
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Recent findings also suggest that cellular senescence in adipose 
tissue is linked to metabolic dysfunction, as inhibition of p53 
activity in adipose tissue significantly alleviates insulin resistance 
(Minamino et al., 2009). Growing evidence indicates that age-
related changes in adipose tissue contribute to insulin resistance 
in the elderly. Age-related defects in insulin signaling cascades, 
such as reduced insulin-stimulated tyrosine phosphorylation, are 
more pronounced in adipose tissue than in liver or muscle, 
suggesting that adipose tissue may be central to the development 
of insulin resistance with aging (Serrano et al., 2009). Additionally, 
age-related alterations in immune cells within adipose tissue, 
such as T-cell accumulation, may further contribute to insulin 
resistance (Bapat et al., 2015). 

2.3 Pancreatic β-cells

T2D accounts for 90%–95% of all diabetes. This 
form encompasses individuals who generally have relative 
(rather than absolute) insulin deficiency and have insulin 
resistance (i.e., decreased biological responses to insulin) 
(American Diabetes Association Professional Practice Committee, 
2025). Pancreatic β-cells in the islets of Langerhans maintain 
circulating normoglycemia within a narrow range through insulin 
secretion. To meet ongoing metabolic demands, β-cells exist 
in a dynamic state, undergoing turnover through replication, 
neogenesis, and apoptosis. In healthy individuals, β-cells exhibit 
a long lifespan. β-cell clusters are established during the first 
few years of life, and thereafter, β-cells age in parallel with the 
body (Saisho et al., 2013). Although age is a significant risk 
factor for T2D, the changes that occur in human pancreatic 
islets during aging have not been extensively studied. Lower β-
cell proliferation rates have been reported with age (Dai et al., 
2017; Aguayo-Mazzucato, 2020). Several studies indicate that β- 
and α-cell volumes are largely maintained in elderly non-diabetic 
individuals, despite the higher prevalence of diabetes in this 
population (Mizukami et al., 2014; Moin et al., 2020). However, 
the ability of β-cells to adapt to stress and metabolic demands 
may be impaired with age (Kushner, 2013). Aging is associated 
with a 0.7% annual decline in insulin secretion, attributed to a 
combination of β-cell dysfunction and increased β-cell apoptosis, 
with glucose-intolerant individuals experiencing a 50% reduction in 
β-cell mass (Szoke et al., 2008). Additionally, β-cell autoimmunity 
may contribute to the activation of the acute phase response in 
elderly diabetic patients (Dehghan et al., 2007). In genetically 
predisposed individuals, chronic overproduction of interleukins, 
C-reactive protein, and tumor necrosis factor-α may impair β-cell 
insulin secretion and contribute to insulin resistance (Dehghan et al., 
2007). Thus, the diabetogenic effects of aging are characterized by 
increased insulin resistance and reduced insulin secretion. People 
with T2D early in the disease course may have insulin levels that 
appear normal or elevated, yet the failure to normalize blood glucose 
reflects a relative defect in glucose-stimulated insulin secretion 
that is insufficient to compensate for insulin resistance. Insulin 
resistance may improve with weight reduction, physical activity, 
and/or pharmacologic treatment of hyperglycemia but is seldom 
restored to normal (American Diabetes Association Professional 
Practice Committee, 2025). This dynamic process begins with 

insulin resistance in a prediabetic state, with β-cells compensating 
by increasing insulin secretion. Over time, however, β-cell insulin 
secretion becomes insufficient due to both the decreased capacity of 
β-cells to compensate for insulin resistance and further reductions 
in insulin sensitivity in peripheral tissues, ultimately progressing to 
persistent hyperglycemia, glucose intolerance, and diabetes. 

3 Effects of different exercise 
modalities on glucose metabolism in 
the elderly

3.1 Aerobic exercise

Aerobic exercise is typically defined as continuous, 
rhythmic physical activity that predominantly engages large 
muscle groups and relies primarily on aerobic (oxidative 
phosphorylation) energy metabolism to generate ATP over 
sustained periods; common examples include walking, cycling, 
swimming, and jogging (Chamari and Padulo, 2015). A large 
body of evidence demonstrates that aerobic exercise is an 
effective strategy for improving glucose metabolism and insulin 
sensitivity in the elderly. Notably, its metabolic benefits can be 
observed across long-term, moderate-term, and even short-term
interventions.

Long-duration programs (≥6 months) have consistently shown 
benefits. In overweight or obese older adults, both aerobic exercise 
and dietary weight loss improve insulin sensitivity, although 
through different mechanisms. Six months of aerobic exercise 
reduced the area under the insulin curve during the late oral 
glucose tolerance test (OGTT) phase (120–180 min), suggesting 
enhanced β-cell secretory capacity and improved tissue insulin 
sensitivity (Ryan et al., 2021). By contrast, dietary weight loss 
alone produced broader effects, including reductions in fasting 
glucose, glucose and insulin levels across the OGTT, and a 
16% reduction in total body fat (visceral and subcutaneous), 
though with some muscle loss. Exercise, however, improved body 
composition by increasing lean mass, reducing intramuscular fat, 
and enhancing cardiorespiratory fitness despite minimal weight loss 
(Ryan et al., 2021). These findings indicate that diet and exercise 
confer complementary advantages: diet reduces fat load, whereas 
exercise preserves muscle and improves fitness. Their combination 
yields maximal metabolic benefits. Supporting this, another study 
demonstrated that dietary weight loss combined with aerobic 
exercise produced greater improvements in insulin sensitivity 
than diet alone, with a higher proportion of “high responders” 
(83% vs. 46%) and greater weight loss (−10.6 kg vs. −7.1 kg), 
strongly correlated with metabolic improvements (Brennan et al., 
2020). Other evidence shows that aerobic exercise without caloric 
restriction still enhances peripheral insulin sensitivity by improving 
skeletal muscle glucose uptake and utilization. However, combining 
exercise with moderate energy restriction (∼500 kcal/day) amplifies 
the benefits, especially in fasting glucose and postprandial responses
(Erickson et al., 2019).

Moderate-duration interventions (8–12 weeks) can yield 
benefits comparable to long-term training. For instance, 12 weeks 
of individualized maximal fat oxidation rate (FATmax) training 
in older women with T2Dreduced body fat, including visceral fat, 
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improved insulin resistance, lowered glycemic and lipid levels, and 
enhanced cardiorespiratory fitness (Tan et al., 2018). Similarly, a 12-
week program in prediabetic adults improved Glycated Hemoglobin 
(HbA1c), fasting insulin, HOMA-IR, and ambulatory glucose 
monitoring, while decreasing body fat and preserving lean mass 
(Konopka et al., 2019). However, findings are not always consistent. 
For example, 12 weeks of moderate-intensity walking (50%–60% 
VO2max) failed to reduce fasting glucose in older women (Li et al., 
2025), and in older breast cancer survivors, benefits were limited 
to reductions in postprandial insulin levels (Viskochil et al., 
2020). These discrepancies suggest that the most consistent 
effects of aerobic exercise are observed in the postprandial 
state (i.e., improved glucose load handling), rather than fasting
measures.

Hypoxic training has also been examined. In sedentary 
older adults, 8 weeks of cycling under normobaric hypoxia or 
normoxia improved insulin sensitivity and glycemic indices in 
both groups, with no significant differences between them. This 
indicates that exercise itself is the primary determinant of 
metabolic improvements, while hypoxia provides no additional 
advantage (Chobanyan-Jürgens et al., 2019).

Even short-term aerobic exercise (≤2 weeks) can provide 
detectable benefits. Two weeks of cycling (interval or continuous) 
reduced postprandial glucose, improved systemic and adipose tissue 
insulin resistance, and increased VO2max, suggesting that total 
energy expenditure, rather than exercise intensity pattern, is the 
critical determinant of short-term improvement (Gilbertson et al., 
2018). Similarly, low-intensity walking rapidly improved pancreatic 
β-cell function and reduced daily glucose within 2 weeks 
(Karstoft et al., 2017). Recent randomized controlled evidence 
indicates that short-term exercise can markedly decrease pancreatic 
ectopic fat and that improvement in β-cell function often co-occurs 
with reduced pancreatic fat (Heiskanen et al., 2018), suggesting that 
alleviation of glucotoxicity/lipotoxicity and ectopic pancreatic fat 
reduction may underlie early recovery of β-cell function after short
interventions.

To summarize, aerobic exercise produces significant 
improvements in glucose metabolism across different intervention 
durations. In the short term, it enhances postprandial glucose 
tolerance and β-cell function; in the medium term, it lowers HbA1c, 
reduces insulin resistance, and improves body composition; and in 
the long term, it enhances insulin sensitivity, preserves muscle mass, 
and produces sustained metabolic benefits. Dietary weight loss and 
energy restriction further amplify these effects, while environmental 
modifiers such as hypoxia appear to have minimal additional
impact. 

3.2 Resistance exercise

Resistance exercise, which involves the active contraction of 
muscles against external resistance, requires less cardiorespiratory 
endurance than aerobic exercise and is an effective approach for 
improving muscle strength, mass, and endurance. In the elderly 
population, resistance training is widely applied as a primary 
intervention to counteract sarcopenia, and several studies have 
also reported beneficial effects on glucose metabolism and insulin 
sensitivity. However, the available evidence is not entirely consistent, 

suggesting that the metabolic outcomes of resistance exercise 
may depend on multiple factors, including intervention duration, 
training intensity, baseline metabolic status, and dietary context.

Evidence from medium-term interventions (8–12 weeks) more 
consistently supports the metabolic benefits of resistance training. 
For example, 12 weeks of elastic band training achieved high 
adherence rates (95%) among obese older women and led to 
significant reductions in blood glucose, insulin, HOMA-IR, body fat, 
and waist circumference, while simultaneously increasing lean body 
mass (Son and Park, 2021). Similarly, progressive resistance training 
improved not only muscle strength but also waist circumference, 
fasting glucose, basal insulin levels, and insulin resistance in 
older women (Oliveira et al., 2015), with additional reductions in 
glucose and waist circumference observed in women with metabolic 
syndrome (Tomeleri et al., 2018). In older adults with T2D, 
12 weeks of resistance training reduced intermuscular fat, increased 
muscle mass, and improved β-cell function and early-phase insulin 
secretory response (Tang et al., 2024). Resistance training has also 
been shown to reverse metabolic impairments caused by physical 
inactivity. For instance, older adults who experienced marked 
declines in insulin sensitivity following short-term bed rest regained 
baseline insulin sensitivity after an eight-week eccentric exercise 
program, accompanied by improvements in muscle strength and 
hypertrophy (Reidy et al., 2018). Collectively, these findings indicate 
that resistance training can improve both glucose metabolism and 
body composition, particularly in older individuals without severe 
comorbid metabolic disease.

Findings from long-term interventions (≥6 months) are less 
consistent. Some studies have reported that 6 months of moderate-
intensity resistance training significantly enhanced β-cell secretory 
function and reduced intermuscular fat in patients with T2D 
(Tang et al., 2024). However, other trials found no significant 
improvements: 6 months of strength training failed to enhance 
insulin sensitivity or muscle glycogen content in older men 
(Jensen et al., 2018), and 12 months of continuous high-intensity 
resistance training in patients with T2Ddid not significantly 
improve glycemia, HbA1c, or HOMA2-IR. These null results may 
be partly explained by relatively good baseline glycemic control 
(HbA1c ∼7.1%) and the confounding effects of medication use in 
these cohorts (Mosalman Haghighi et al., 2021).

The influence of dietary context and population heterogeneity 
further complicates interpretation. In a five-month randomized 
trial, the addition of caloric restriction (∼600 kcal/day) to resistance 
training resulted in significant reductions in body weight and fat 
mass but did not produce additional improvements in glycemia 
or insulin sensitivity beyond those achieved by resistance training 
alone (Normandin et al., 2017). Population-specific responses have 
also been reported. In older men with and without T2D, resistance 
training significantly improved muscle strength in both groups, but 
reductions in HOMA-IR were observed only in the non-diabetic 
participants. This suggests that individuals with diabetes may 
require multimodal interventions, combining resistance training 
with other exercise modalities or therapies, to achieve optimal 
metabolic outcomes (Shabkhiz et al., 2021).

Overall, resistance training consistently improves muscle 
strength and body composition in older adults and has 
demonstrated beneficial effects on glucose regulation and insulin 
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sensitivity in some studies. Nevertheless, results from longer-
term interventions are more variable, particularly in patients with 
diabetes, and appear to be influenced by baseline glycemic control, 
pharmacological treatment, training intensity, and individual 
variability. Further research is needed to optimize resistance 
training prescriptions and to evaluate combined protocols—such 
as resistance training integrated with dietary strategies or other 
exercise modalities—to maximize improvements in glucose 
metabolism among elderly populations. 

3.3 HIIT

HIIT can be characterized as intermittent exercise bouts 
performed above the heavy-intensity domain, interspersed with 
short recovery periods at low intensity or complete rest (Coates et al., 
2023). This domain boundaries are demarcated by indicators 
that primarily include the critical power or critical speed, or 
other indices, including the second lactate threshold, maximal 
metabolic steady state, or lactate turnpoint (Coates et al., 2023). 
By markedly increasing exercise intensity while reducing total 
duration, HIIT provides a time-efficient alternative to traditional 
endurance training. The intermittent structure can delay the onset 
of discomfort and improve tolerability and adherence among older 
adults. However, achieving true high-intensity workloads may be 
difficult for elderly individuals, especially those with cardiovascular, 
orthopedic, or frailty-related limitations. This highlights the 
importance of individualized exercise prescription, gradual 
progression, and medical supervision to ensure safety. Despite these 
considerations, accumulating evidence indicates that appropriately 
tailored HIIT protocols can effectively improve cardiorespiratory 
fitness, body composition, and glucose metabolism in elderly 
populations, although findings across studies are not fully consistent.

Several intervention trials support the efficacy of HIIT in 
improving glucose regulation and related risk factors within 
relatively short timeframes. For example, a 12-week program 
consisting of two HIIT sessions per week significantly reduced 
blood glucose and waist circumference in older adults, with a 
75% reduction in diabetes prevalence among women, highlighting 
its potential to reverse glucose metabolism abnormalities 
(De Matos et al., 2021). Importantly, the benefits may extend 
beyond insulin sensitivity alone. Acute HIIT protocols—such 
as four 4-minute intervals or ten 1-minute intervals—have 
been shown to significantly enhance β-cell insulin secretory 
function in postmenopausal women, suggesting that HIIT 
directly improves β-cell responsiveness to glucose stimulation 
and thus provides a critical physiological mechanism for diabetes 
management (Low et al., 2025).

Comparisons with moderate-intensity continuous training 
(MICT) further illustrate the potential advantages of HIIT. An 
8-week non-weight-bearing HIIT program in sedentary older 
adults significantly reduced HOMA-IR and improved insulin 
sensitivity, whereas no comparable changes were observed with 
MICT. Additionally, improvements in maximal oxygen uptake were 
accompanied by parallel increases in cardiac ejection fraction, with 
a strong correlation between the two outcomes (r = 0.57, P < 0.0001) 
(Hwang et al., 2016). In older patients undergoing post-myocardial 
infarction rehabilitation, HIIT produced greater reductions in waist 

circumference, fasting glucose (−25.8 vs. −3.9 mg/dL, P < 0.001), 
triglycerides (−67.8 vs. −10.4 mg/dL, P < 0.001), and diastolic 
blood pressure compared to MICT, while simultaneously reducing 
adiposity and increasing lean mass (Dun et al., 2019).

Nonetheless, not all studies have demonstrated clear superiority 
of HIIT over MICT. In a 2-week trial, HIIT produced greater 
improvements in weight loss and aerobic capacity but yielded 
comparable benefits in postprandial glycemic control and insulin 
sensitivity relative to MICT (Malin and Syeda, 2024). Similarly, in 
a 16-week intervention in older adults with metabolic syndrome, 
HIIT three times per week (17 or 38 min per session) improved 
maximal oxygen uptake and reduced central obesity more effectively 
than MICT, but did not significantly affect fasting insulin, HOMA-
IR, glycemia, or lipid profiles. The investigators suggested that 
the absence of dietary and energy intake restrictions may have 
attenuated the metabolic benefits of training (Von Korn et al., 2021).

HIIT shows strong potential for improving glucose metabolism, 
β-cell function, and body composition in older adults, particularly 
in the short term. Compared with MICT, HIIT often demonstrates 
superior benefits for cardiovascular fitness and certain metabolic 
outcomes, although results vary across studies. Differences may 
reflect heterogeneity in intervention duration, dietary control, 
baseline metabolic status, and sample size. Large-scale, long-term 
trials with standardized dietary control are needed to better define 
the role of HIIT in managing glucose metabolism disorders in 
the elderly. 

3.4 Combined exercise training

3.4.1 Effects of combined exercise training
Numerous studies have shown that combined exercise training 

improves glucose metabolism in older adults across different 
populations and intervention periods. In both healthy and 
metabolically impaired individuals, 12 weeks of combined exercise 
training (e.g., elastic band exercises with walking) effectively 
reduced blood glucose levels and insulin resistance (Ha and Son, 
2018). The underlying mechanism may involve exercise-induced 
reductions in circulating free fatty acids and the activation of glucose 
metabolism–related enzymes and receptors, thereby facilitating 
glucose uptake and utilization (Ha and Son, 2018).

In older women with diabetes, 12 weeks of combined exercise 
training reduced body weight and fat percentage while increasing 
muscle mass. However, the improvements in HbA1c and HOMA-
IR were modest, suggesting that long-term glycemic markers 
such as glycated hemoglobin may require longer interventions 
for significant changes (Jeon et al., 2020). Similarly, in obese 
older men, 12 weeks of combined exercise training (elastic band 
plus moderate-intensity aerobic exercise) reduced insulin levels 
and HOMA-IR, while also improving erythrocyte deformability, 
decreasing aggregation, and enhancing aerobic capacity. These 
results indicate that combined exercise training may also promote 
glucose metabolism indirectly by improving microcirculation and 
peripheral glucose utilization (Kim et al., 2019).

Even in the context of reduced insulin sensitivity caused 
by bed rest, combined exercise training composed of aerobic, 
resistance, and high-intensity interval sessions maintained 
stable Matsuda index values, highlighting its protective effect 
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against bed rest–related metabolic decline (Mastrandrea et al., 
2025). Other studies have shown that 4–6 months of combined 
exercise training improves glycemia, insulin resistance, body 
fat distribution, maximal oxygen uptake, and cardiovascular 
function in older women and patients with multiple sclerosis, 
demonstrating both metabolic and cardiovascular benefits 
(Čížková et al., 2020; Braggio et al., 2025).

Mechanistic studies suggest that the enhancement of insulin 
sensitivity by combined exercise training is primarily mediated by 
reductions in abdominal fat, especially subcutaneous fat, rather 
than improvements in cardiorespiratory fitness alone. Abdominal 
fat and body mass index serve as important mediators between 
exercise and insulin sensitivity (Ko et al., 2016). In addition, whether 
exercise was performed in a fasted or postprandial state did not 
alter the benefits: 8 weeks of combined exercise training significantly 
reduced HbA1c, fasting insulin, and HOMA-IR, while improving 
cardiorespiratory fitness and body composition in both conditions, 
underscoring the robustness of this intervention (Brinkmann et al., 
2019). The training schedule also influences outcomes. When 
resistance and HIIT were performed on the same day, the benefits 
were smaller compared to split-day training, which produced greater 
improvements in insulin resistance, fasting glucose, HbA1c, lipid 
profiles, and cardiorespiratory fitness (Ghodrat et al., 2022). 

3.4.2 Combined exercise training versus 
single-modality exercise

Compared with single-modality exercise, combined exercise 
training often produces broader and more comprehensive 
improvements in glucose metabolism; however, this superiority is 
outcome-dependent and influenced by program composition, total 
training load, and adherence. For example, while HIIT combined 
with daily walking improved mitochondrial function and glucose 
utilization beyond HIIT alone (Mensberg et al., 2025), direct 
comparisons show that all three modalities (aerobic, resistance, 
combined) can improve insulin sensitivity, with combined training 
showing particular advantages for insulin secretory function 
and reductions in visceral and intermuscular fat—effects that 
have been linked mechanistically to modulation of CNTFRα 
and IGF-1 (Colleluori et al., 2025).

The relative contribution of aerobic and resistance components 
also affects efficacy. In older adults with multiple sclerosis, both 
aerobic-dominant and resistance-dominant combinations improved 
glucose metabolism, but aerobic-dominant training yielded greater 
improvements in blood glucose and lipid levels (Zhou et al., 2022). 
Other studies have confirmed that combined exercise training is 
more effective than resistance training alone in reducing fasting 
insulin and HOMA-IR, even without major changes in body 
composition (Kim et al., 2018). In women with metabolic syndrome, 
20 weeks of combined exercise training (balance, strength, and 
aerobic exercise) and elastic band resistance training both improved 
glycemia, lipid profiles, body composition, and physical function. 
However, combined exercise training provided additional benefits 
in balance and inflammation reduction, whereas resistance training 
was more effective in improving lower-limb strength and reducing 
fat percentage (Gargallo et al., 2024).

These observations highlight two important considerations. 
First, some apparent advantages of combined training may reflect 
higher total exercise volume or a greater cumulative physiological 

stimulus when modalities are added rather than a unique synergistic 
effect per se; studies that match total energy expenditure or 
time between arms are therefore critical to disentangle modality 
synergy from volume effects. Second, feasibility and adherence 
represent critical factors: because combined training often demands 
more time and coordination, it may be less sustainable for older 
adults, ultimately limiting its practical impact. Thus, exercise 
prescriptions for older individuals should be goal-oriented and 
pragmatic—selecting combined training when the objective is 
broad metabolic restoration (including β-cell secretory function 
and ectopic fat reduction), but prioritizing modality choice, 
intensity, or time-matched designs when resources, adherence, 
or specific outcomes (such as lower-limb strength) dictate. An 
overview of the effects of different exercise modalities on glucose 
metabolism, body composition, and oxygen uptake in older adults 
is summarized in Table 1. Future trials should report time-
matched comparisons and adherence metrics to clarify whether 
combined training confers intrinsic superiority beyond volume 
and to determine optimal, implementable regimens for older 
populations.

4 Exercise dose and prescription for 
different intervention types in glucose 
metabolism in older adults

4.1 Aerobic exercise

Several studies have quantified aerobic exercise intensity using 
either percentage of heart rate reserve (HRR) or maximum heart 
rate (HRmax). For older adults, intensity should be prescribed 
progressively, with low to moderate levels as the most tolerable and 
safe starting point.

Walking or jogging for 30–40 min, three times per week 
at 50%–60% HRR—gradually increasing to 65%–75% HRR over 
4 weeks—has been shown to significantly reduce the late-phase 
insulin secretion curve during OGTT (120–180 min), indicating 
improvements in both β-cell function and tissue insulin sensitivity 
(Ryan et al., 2021). Similarly, fitness walking at 50%–60% VO2max 
(60 min, five times per week) did not significantly alter fasting 
glucose or Body Mass Index (BMI) (Li et al., 2025), but it provided 
an adaptive foundation for progressing to higher-intensity exercise. 
Notably, insufficient intensity can limit efficacy, as observed in the 
low-intensity walking program described above (Li et al., 2025).

Moderate-to-high intensity exercise appears to be the key 
driver of substantial metabolic benefits. For example, a tapering 
protocol beginning at 60%–65% HRmax and progressing to 
80%–85% HRmax over 4 weeks (50–60 min, five times per 
week) significantly improved peripheral insulin sensitivity and 
VO2max (Erickson et al., 2019). Another study using 45-minute 
sessions three times per week—15 min at 60% HRmax followed 
by 30 min at target intensity (progressively increased from 65% 
to 85% HRmax)—led to significant reductions in HbA1c, fasting 
insulin, whole-body adiposity, and postprandial glucose fluctuations 
after 12 weeks (Konopka et al., 2019).

Individualized prescriptions can further optimize outcomes. 
For instance, a protocol based on FATmax, determined via gas 
exchange analysis, produced significant reductions in visceral 
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adiposity and insulin resistance in older women with T2Dafter 
12 weeks. The intervention consisted of 60 min of training three 
times per week, including 20–40 min at target intensity (Tan et al., 
2018). This suggests that tailoring exercise dose to physiological 
metrics may be more effective than applying fixed percentage-
based prescriptions. Beyond protocols based on FATmax, recent 
methodological advances emphasize the limitations of percentage-
based intensity prescriptions. Studies have shown that the large 
ranges in both sexes at which lactate threshold and maximal lactate 
steady-state occurred on the basis of %VO2max, %WRpeak, and 
%HRmax elicited large variability in the number of individuals 
distributed in each domain at the fixed-percentages examined 
(Iannetta et al., 2020). Consequently, there is a shift toward domain-
based prescription, in which exercise intensity is defined by directly 
measured physiological boundaries such as lactate thresholds 
(Inglis et al., 2024). Application of this approach would optimize 
health-related outcomes of participants and better characterize the 
molecular and system-level adaptations related to acute and chronic 
exercise trainings (Iannetta et al., 2020). For older adults, this 
strategy can improve both precision and safety in exercise dosing.

In most studies, aerobic exercise is prescribed at a frequency 
of 3–5 sessions per week. Three 45-min sessions per week, with 
intensity tapering from 65% to 85% HRmax, significantly improved 
HbA1c, fasting insulin, and adiposity in pre-diabetic older adults 
(Konopka et al., 2019). By contrast, low-intensity walking (50%–60% 
VO2max, 60 min, five times per week) did not significantly change 
fasting glucose or BMI, indicating that frequency and duration 
cannot compensate for insufficient intensity (Li et al., 2025).

Finally, for older adults, exercise prescription should also 
consider variety and feasibility. Treadmill walking/jogging, 
stationary cycling, and elliptical training are commonly 
used modalities (Ryan et al., 2021; Konopka et al., 2019; 
Viskochil et al., 2020). Allowing participants to alternate between 
these options based on preference has been shown to improve 
adherence (Konopka et al., 2019). 

4.2 Resistance exercise

Resistance training has been widely demonstrated to improve 
glucose metabolism abnormalities in older adults, but its effects 
vary depending on training intensity. Using the percentage of 
one-repetition maximum (1RM) as a criterion, interventions 
can be categorized into low-intensity (<50% 1RM), moderate-
intensity (50%–70% 1RM), and high-intensity (≥70% 1RM), which 
provides clearer insight into the dose–response relationship between 
resistance training and improvements in glucose metabolism.

From the perspective of feasibility and adherence, resistance 
training with elastic bands represents a safe, executable, and 
effective entry-level option for older adults, particularly those 
with obesity or metabolic syndrome. For example, older women 
training at 40%–50% 1RM for approximately 60 min, three times 
per week, achieved significant reductions in blood glucose, insulin 
resistance, and body fat percentage, alongside increases in lean 
body mass after 12 weeks (Son and Park, 2021). Similarly, a 6-
month program starting at 45% 1RM and progressively increasing in 
intensity reduced intermuscular fat deposition and improved β-cell 
function (Tang et al., 2024). These findings suggest that although 

low-intensity training produces slower-onset benefits, when 
performed over sufficient duration it can positively influence glucose 
metabolism and body composition, making it particularly suitable 
for individuals with low baseline fitness or limited initial exercise 
compliance. Moreover, for older adults unable to tolerate moderate-
to high-intensity resistance training, blood flow restriction training 
(BFRT) represents a promising alternative. Meta-analytic evidence 
in overweight/obese adults indicates that BFRT combined with 
low-load RT significantly improves FBG and HOMA-IR compared 
with RT alone (Chen et al., 2025). Thus, BFRT may serve as 
a safe, feasible entry-level resistance training strategy for frail 
older adults or those with comorbidities, offering meaningful 
metabolic benefits when conventional moderate-intensity RT is not
feasible.

Evidence for moderate-intensity resistance training is the most 
consistent. Typical protocols involve three sessions per week, 
covering 8–10 full-body exercises, with 8–12 repetitions per set, 
performed at 55%–70% 1RM for 12–24 weeks (Oliveira et al., 2015; 
Tomeleri et al., 2018; Normandin et al., 2017; Shabkhiz et al., 
2021). These interventions generally report reductions in blood 
glucose, fasting insulin, and HOMA-IR, alongside decreases 
in waist circumference and body fat, as well as gains in 
muscle strength. Importantly, while non-diabetic older adults 
can show improvements in insulin resistance after as little 
as 12 weeks, patients with T2Doften require longer training 
durations (≥6 months) or higher loads to achieve comparable 
metabolic benefits (Shabkhiz et al., 2021). Thus, moderate-intensity 
training provides an optimal balance of safety, adherence, and 
efficacy, explaining why it is often recommended as the preferred 
intensity range for older adults with impaired glucose metabolism.

Findings for high-intensity resistance training are more 
heterogeneous. On one hand, eccentric resistance training combined 
with protein supplementation fully restored insulin sensitivity in 
older adults after just 8 weeks of rehabilitation following 5 days 
of bed rest, and was accompanied by muscle hypertrophy and 
strength gains (Reidy et al., 2018). On the other hand, long-term 
high-intensity protocols (70%–80% 1RM for 6–12 months) failed to 
significantly improve blood glucose, HbA1c, or HOMA-IR in some 
trials (Jensen et al., 2018; Mosalman Haghighi et al., 2021). Potential 
explanations include participants’ already well-controlled baseline 
glucose metabolism, which left little room for improvement, or 
confounding factors such as concurrent medication use masking 
the effects of training. These findings suggest that while high-
intensity training is uniquely valuable for restoring function and 
rapidly enhancing muscle strength, its glycometabolic benefits are 
less consistent. 

4.3 HIIT

In older adults, HIIT is emerging as a particularly effective 
modality for improving glucose metabolism, showing a clear 
gradient effect of “intensity dosage.” Programs that reach near-
maximal effort (≥85% HRmax or HRpeak) have consistently 
demonstrated substantial benefits. For example, a 12-week, twice-
weekly treadmill HIIT protocol (40 min per session, consisting of 10 
sets of 1-minute sprints at 85%–90% HRmax with 1-minute walking 
recovery intervals) significantly reduced blood glucose levels and 
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waist circumference, and decreased the prevalence of diabetes by 
approximately 75% in older men and women (De Matos et al., 
2021). Similarly, a non-weight-bearing, whole-limb cycling HIIT 
program (four sessions per week, each consisting of 4 × 4 min at 90% 
HRpeak with 3-minute intervals at 70% HRpeak; ∼25 min total) 
produced significant reductions in HOMA-IR, improved insulin 
sensitivity, and increased VO2max, which was strongly correlated 
with improvements in cardiac ejection fraction (Hwang et al., 
2016). These findings suggest that high-intensity intervals (≥85% 
HRmax/HRpeak) are effective for enhancing both insulin sensitivity 
and cardiorespiratory fitness, and are closely linked to improved 
glucose metabolism. Importantly, even acute sessions of HIIT 
have shown effects: single bouts of 4 × 4-minute or 10 × 1-
minute protocols significantly improved β-cell glucose sensitivity in 
postmenopausal women with T2D, with increases of 15–16 mmol/L
(Low et al., 2025).

By contrast, when HIIT is performed at relatively lower 
intensities or with insufficient total training load, its metabolic 
benefits are less consistent. For instance, a 2-week high-frequency 
protocol (12 sessions over 13 days, alternating intervals at 90% 
HRpeak and 50% HRpeak, ∼60 min per session) significantly 
improved body weight and aerobic capacity but failed to produce 
superior effects on fasting glucose or insulin sensitivity compared 
with higher-intensity regimens (Malin and Syeda, 2024). Similarly, a 
16-week intervention with two HIIT formats (17 min or 38 min per 
session, three times per week, alternating 4-minute intervals 
at 80%–90% HRR with 3-minute recovery at 35%–50% HRR) 
improved VO2max and central adiposity but did not significantly 
alter fasting insulin, HOMA-IR, or glycemia (Von Korn et al., 
2021). These outcomes suggest that metabolic improvements may 
require not only sufficient intensity but also adequate overall training 
volume and, in some cases, dietary control to reinforce exercise-
induced adaptations.

Notably, when prescribing exercise for older adults, baseline 
frailty, mobility limitations, and common co-morbidities such as 
obesity, osteoarthritis, or metabolic syndrome can substantially 
influence both the choice and effectiveness of exercise modalities. 
Low-intensity aerobic exercise, such as walking at 50%–60% HRR 
for 30–60 min, 3–5 times per week, can improve β-cell function 
and insulin sensitivity even in participants with limited fitness or 
mobility (Ryan et al., 2021), while providing a safe foundation for 
progressing to moderate-to-high intensity protocols (Li et al., 2025). 
Similarly, resistance training using elastic bands at low-to-moderate 
intensity (40%–50% 1RM, 3 sessions/week) offers a feasible 
entry point for frail older adults or those with joint limitations 
(Son and Park, 2021). HIIT confers substantial improvements 
in insulin sensitivity and cardiorespiratory fitness when ≥85% 
HRmax/HRpeak is achieved (De Matos et al., 2021; Hwang et al., 
2016), but for frail or orthopedic/cardiac-impaired individuals, 
lower-intensity or shorter-interval protocols may be safer. 
Overall, exercise prescriptions should be carefully tailored 
to individual functional capacity, co-morbidities, and 
tolerance, with progression guided by adaptation, safety, and
adherence. 

4.4 Exercise combined with 
pharmacotherapy

Exercise and pharmacotherapy are two cornerstone 
interventions for managing diabetes in older adults and are 
frequently used in combination (Xiao et al., 2025). However, the 
interactions between medications and exercise are complex, and 
their effects are not simply additive.

Research indicates that both exercise and metformin 
enhance insulin sensitivity by activating the AMPK signaling 
pathway in skeletal muscle, making them effective strategies 
for preventing the progression from prediabetes to diabetes. 
However, their combined use can yield complex outcomes. A 
12-week intervention study found that although both exercise 
training and metformin significantly improved insulin sensitivity 
in individuals with prediabetes, data from the combined group 
suggested that metformin may attenuate the full beneficial effects 
of exercise training alone (Malin et al., 2012). Subsequent research 
further confirmed that metformin antagonizes exercise-induced 
improvements in insulin sensitivity and cardiorespiratory fitness 
(e.g., VO2max) (Konopka et al., 2019). At the molecular level, 
metformin attenuates resistance training-induced activation of 
the mTORC1 signaling pathway, potentially impairing the muscle 
hypertrophy response in older adults (Walton et al., 2019). 
Concurrently, it abolishes exercise-mediated enhancements in 
skeletal muscle mitochondrial respiratory function (Konopka et al., 
2019). Therefore, although metformin is a first-line diabetes 
treatment and a potential anti-aging agent, these adverse effects 
on exercise adaptations necessitate careful evaluation of its impact 
before widespread use in older adults.

In contrast to metformin, SGLT-2 inhibitors exhibit synergistic 
potential when combined with exercise. Both exercise and SGLT2i 
independently improve glycemic parameters, and their combination 
leads to further significant improvements in glucose tolerance 
and insulin response (Linden et al., 2019). Regarding exercise 
capacity, the combined therapy not only caused no deterioration 
but also resulted in superior submaximal exercise capacity in animal 
models, evidenced by a significantly increased running distance to 
fatigue, alongside notable weight reduction (Linden et al., 2019). 
The underlying mechanism may involve SGLT2i promoting greater 
reliance on fat as an energy source during exercise. Furthermore, as 
an adjunct to diet and exercise, the bile acid sequestrant colesevelam 
exhibits both glucose- and lipid-lowering effects, with a good safety 
profile in older patients that does not increase hypoglycemia risk and 
may reduce the burden of polypharmacy (Marrs, 2012).

In summary, different drug classes produce distinct effects when 
combined with exercise. When developing treatment plans for older 
adults with diabetes, it is essential to consider their hepatic and renal 
function, comorbidities, and potential drug interactions to ensure an 
individualized approach. 

5 Possible mechanisms of exercise to 
improve glucose metabolism 
disorders in the elderly

As a non-pharmacological strategy to improve glucose 
metabolism disorders in the elderly, the mechanism of exercise 
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FIGURE 1
Schematic illustration of the multi-organ mechanism by which exercise ameliorates aging-associated disorders of glucose metabolism. Exercise 
effectively improves glucose metabolism disorders by acting on three key organs and tissues, namely skeletal muscle, adipose tissue and pancreatic 
β-cells, and integrating multiple physiological and biochemical pathways, which ultimately work together to enhance insulin sensitivity and maintain 
glucose homeostasis.

intervention involves the synergistic regulation of multiple organs 
and systems. Specifically, exercise enhances insulin sensitivity and 
glucose homeostasis by targeting key organs, such as skeletal muscle, 
adipose tissue, and pancreatic β-cells, and by integrating multiple 
pathways, including energy metabolism, endocrine regulation, and 
inflammatory response (Figure 1). The specific mechanisms by 
which exercise affects each tissue are outlined below.

5.1 Skeletal muscle

Deterioration of skeletal muscle mass, metabolic fitness, and 
contractile vigor is fundamental to the progression of metabolic 
disease and age-associated loss of independence. Skeletal muscle 
insulin resistance is a common feature of aging and a strong 
predictor of metabolic disease progression and muscle strength 
and mass (St-Jean-Pelletier et al., 2017; Distefano et al., 2017; 
Okamura et al., 2019). Muscle is the primary target tissue for 
insulin-stimulated glucose disposal and a key regulator of whole-
body glucose homeostasis. Thus, reduced muscle mass is also 
associated with reduced energy expenditure (Fealy et al., 2021). A 
central mechanism by which exercise improves glucose metabolism 
disorders is through its direct modulation of glucose transport and 
processing in skeletal muscle. Studies have shown that exercise 
training improves glucose regulation in older men by enhancing 
both the capacity and acute regulation of glucose uptake, as well as 

by promoting intracellular glucose removal for glycogen synthesis 
rather than glucose oxidation (Biensø et al., 2015). Furthermore, 
exercise, particularly aerobic and resistance training, increases 
the expression of GLUT4 and promotes its translocation to the 
cell membrane, thereby enhancing both insulin-dependent and 
non-insulin-dependent glucose uptake in muscle. Notably, lifelong 
physical activity may prevent age-related insulin resistance in human 
skeletal muscle by increasing glucose transporter protein expression 
(Bunprajun et al., 2013). Although exercise can increase GLUT4 
expression, this is insufficient to improve insulin-stimulated glucose 
transport in aged rats (Youngren and Barnard, 1985). This suggests 
the importance of enhancing insulin signaling integrity in the 
context of aging.

Aged skeletal muscle exhibits impaired mitochondrial energy 
production (Braggio et al., 2025) and increased mitochondrial-
mediated apoptosis (Gouspillou et al., 2014; Chabi et al., 2008). 
Exercise-induced activation of AMPK signaling plays a critical 
role, not only as a catalyst for mitochondrial biogenesis, glucose 
processing, and fatty acid catabolism, but also by temporally 
coordinating mTOR activity to support muscle maintenance without 
exacerbating insulin resistance (Mingzheng and You, 2025). In aged, 
sedentary rats, exercise training significantly improved impairments 
in anabolic pathways, including insulin signaling, in a dose-
dependent manner (Pasini et al., 2012). Additionally, endurance 
exercise enhances muscle glycogen storage capacity and non-
oxidative glucose processing, and strengthens glucose transport and 
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intracellular fixation by increasing the expression of GLUT4 and 
hexokinase (Wasserman, 2022).

For older adults, exercise training holds particular significance 
in increasing muscle mass, as it directly targets sarcopenia—a core 
feature of aging. Maintaining muscle mass is not only crucial 
for preserving glucose disposal capacity but also serves as a 
fundamental strategy to counteract age-related declines in metabolic 
rate and physical function. As a key metabolic organ accounting 
for 40%–50% of body weight, skeletal muscle plays a major role 
in glucose processing. Its contraction stimulates glucose uptake 
independent of insulin and continues to enhance insulin sensitivity 
post-exercise (Thyfault, 2008). Specifically, resistance training has 
proven effective in combating sarcopenia and improving muscle 
mass and metabolic health (Fragala et al., 2019). A meta-
analysis showed that resistance training generally enhances strength, 
body composition, and insulin sensitivity in older adults, despite 
variations across studies (Chen et al., 2021). Aerobic exercise has also 
shown benefits: for instance, 6 months of walking/running increased 
thigh cross-sectional area by 9% in older men (Schwartz et al., 1991). 
Additionally, regular endurance exercise enhances muscle oxidative 
capacity and lipid metabolic efficiency by promoting mitochondrial 
biogenesis, remodeling, and autophagy, optimizing the coordinated 
utilization of glucose and lipids (Kim et al., 2017). Overall, exercise 
mitigates disturbances in glucose metabolism and slows the age-
related decline in metabolic function through multiple mechanisms, 
both before and after the onset of sarcopenia. 

5.2 Adipose tissue

Age-related changes in adipose tissue involve redistribution of 
deposits and composition, in parallel with the functional decline 
of adipocyte progenitors and accumulation of senescent cells 
(Ou et al., 2022). The mechanism by which exercise reduces 
visceral fat is particularly important for older adults, since ageing 
is an independent risk factor for its accumulation. Visceral 
fat is closely associated with insulin resistance in the elderly 
population (Tchernof and Després, 2013). Studies have shown 
that approximately 70 min of moderate-intensity exercise per day 
is effective in preventing long-term weight gain and progression 
to obesity in older men. Randomized trials have also shown that 
visceral fat is negatively correlated with aerobic capacity and that 
exercise-related reductions in total body fat and abdominal fat are 
strongly associated with a reduced risk of T2Dand cardiovascular 
disease (Shiroma et al., 2012; Nicklas et al., 2009).

In addition to overall fat loss, exercise promotes intrinsic 
metabolic changes in adipose tissue. While fat mobilization may be 
impaired in older adults due to decreased sympathetic responses 
and β-adrenergic sensitivity, endurance training enhances fatty 
acid oxidation, likely due to metabolic adjustments in skeletal 
muscle rather than direct alterations in lipolysis rates. Exercise 
also significantly reduces ectopic fat deposition, with both high-
intensity and resistance training reducing epicardial fat mass 
and improving pericardial fat accumulation in patients with 
abdominal obesity (Christensen et al., 2019). Furthermore, long-
term endurance exercise increases mitochondrial respiration and 
reduces macrophage infiltration in adipose tissue (Sahl et al., 2024), 
while 12 months of combined training induces adipose tissue 

remodeling (Zaidi et al., 2019). These changes collectively reduce 
low-grade inflammation, decrease adipogenesis, and improve 
insulin sensitivity, alleviating glucose metabolism disorders, 
although the precise mechanisms are not fully understood. 

5.3 Pancreatic β-cells

Aging progressively impairs insulin secretion by inducing β-cell 
senescence, downregulating functional genes, losing proliferative 
capacity, and activating the senescence-associated secretory 
pattern. However, the specific alterations in insulin secretion 
are regulated by complex mechanisms and may undergo a 
compensatory enhancement phase (Lee and Lee, 2022). Exercise 
significantly improves pancreatic β-cell function, particularly in 
elderly individuals with impaired glucose tolerance (IGT). Although 
normal aging is often accompanied by insulin resistance and 
decreased insulin secretion, short-term exercise has been found to 
not only improve insulin sensitivity but also enhance β-cell function 
in elderly IGT patients (Bloem and Chang, 2008). It is important 
to note that older adults often compensate for insulin resistance in 
skeletal muscle, liver, and adipose tissue by secreting more insulin 
and are more prone to lipid metabolism abnormalities than younger 
individuals.

In terms of specific mechanisms, exercise can regulate insulin 
secretion in different tissues, promoting glucose-stimulated insulin 
secretion (GSIS) and favoring the reduction of circulating glucose. 
However, older adults tend to exhibit adipose insulin resistance and 
a lack of compensatory elevation of GSIS after exercise, suggesting 
they are more prone to concurrent dyslipidemia (Malin et al., 
2023). Animal studies have demonstrated that exercise improves 
serum insulin levels and pancreatic morphology in aging rats 
(Reaven and Reaven, 1981), and a 12-month exercise intervention 
prevents age-related islet pathology. Clinical studies have also 
shown that, in obese older adults, exercise therapy improves β-
cell function, reduces plasma glucagon levels, and enhances insulin 
action, thereby effectively reducing the risk of T2D (Villareal et al., 
2008). In summary, exercise, as a non-pharmacological intervention, 
can effectively counteract age-related β-cell dysfunction through 
multiple mechanisms and improve systemic glucose metabolism. 
Therefore, maintaining regular physical activity is crucial for 
preventing and managing T2D in older adults. 

6 Conclusion

Aging-related glucose metabolism disorder is a progressive, 
multi-organ, and multifactorial condition caused by reduced 
skeletal muscle insulin sensitivity, adipose tissue redistribution and 
inflammation, and gradual decline in β-cell secretory capacity. 
Evidence shows that aerobic training, resistance training, HIIT, 
and combined training can all ameliorate these disorders, but 
with distinct dose–response characteristics and target outcomes. 
Moderate to high intensity appears essential for aerobic training 
to achieve meaningful metabolic benefits, while moderate-intensity 
resistance training (50%–70% 1RM) is generally preferred for older 
adults with glucose abnormalities, as it balances safety with efficacy. 
HIIT has strong potential to enhance β-cell function and reduce
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blood glucose, particularly in the short term, whereas combined 
training demonstrates the most consistent long-term improvements 
across multiple metabolic markers and is recommended as the 
optimal strategy for this population. Mechanistic studies in both 
clinical and experimental settings indicate that exercise improves 
glucose metabolism by upregulating GLUT4 expression and 
translocation in skeletal muscle, enhancing mitochondrial function 
and autophagy, reducing visceral and ectopic adiposity, suppressing 
chronic low-grade inflammation, and directly augmenting β-cell 
glucose-stimulated insulin secretion.

Future studies are warranted to refine the dose–response 
relationships of different modalities, optimize exercise prescriptions, 
and elucidate the underlying pathways to maximize the therapeutic 
benefits of exercise for aging-associated glucose metabolism 
disorders. Specifically, future trials should directly compare 
isocaloric doses of aerobic, resistance, interval, and combined 
training to delineate their relative metabolic efficiency in older 
adults. Mechanistic investigations employing stable isotope tracer 
techniques are also needed to precisely quantify hepatic versus 
peripheral insulin sensitivity in response to different training 
paradigms, thereby advancing the mechanistic understanding of 
exercise-induced glucose regulation in aging.
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