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Lower-limb asymmetries in jump
athletes during single-leg drop
jump

Yunman Li%, Xinxin Zhang?', Yong Zhou?* and Yuliang Sun'*

!School of Physical Education, Shaanxi Normal University, Xi'an, China, 2College of physical education
and health, Guilin Institute of Information Technology, Guilin, China

Background: This study investigated lower-limb biomechanical asymmetries
during single-leg drop jumps (SLDJ) in elite male long and high jumpers.
Methods: Twenty athletes performed SLDJ from 30-cm and 40-cm heights
using dominant and non-dominant legs. Three-dimensional kinematic and
kinetic data were collected using a motion capture system and force platforms.
Measured variables included joint angles, moments, peak vertical ground
reaction force (Peak vGRF), loading rate, reactive strength index (RSI), and
absolute symmetry index (AS1%). Data were analyzed using a two-way repeated-
measures ANOVA.

Results: The dominant leg exhibited significantly greater ankle range of motion
(p < 0.05), hip joint moment (p < 0.05), ankle joint moment (p < 0.001),
and peak vGRF (p < 0.001) compared to the non-dominant leg. Furthermore,
knee joint moments (p < 0.05) and RSI (p < 0.001) were significantly greater
at the 40 cm height than at the 30 cm height. The ASI% for the peak vGRF
(30 cm: 10.74% + 9.24%, 40 cm: 14.87% + 13.75%) and the loading rate
(30 cm: 1547% + 14.81%, 40 cm: 20.27% + 9.80%) exceeded 10%, which
indicated asymmetry between the two legs during the single-leg drop jump
impact.

Conclusion: These findings suggest a trend wherein inter-limb asymmetry
during the single-leg drop jump appeared to become more pronounced
with increasing drop height. This observation may offer valuable
insight for sport-specific performance assessment and targeted injury
prevention.
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1 Introduction

Lower limb asymmetry is defined as measurable bilateral differences in function
or performance (Sun et al., 2025). It is typically characterized by differences between
limbs in strength, explosive power, and range of motion (Bishop et al, 2016;
Willwacher et al., 2017). In competitive sports, such asymmetry arises from sport-
specific demands—such as repeated unilateral kicking in soccer (Bishop et al, 2021),
directional changes in basketball (Mainer-Pardos et al., 2024), and accumulated single-
leg takeoff effects in long jump (dos Santos Silva et al, 2023). In addition, when
the degree of asymmetry exceeds 10%, the risk of lower-limb injury increases
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2006; Pardos-

Mainer et al., 2020). In rehabilitation contexts, an asymmetry level

approximately fourfold (Gustavsson et al,
below 10% is often considered a reference standard for satisfactory
functional recovery (Kyritsis et al., 2016), indicating that the effects
of such asymmetries on performance should be interpreted from
multiple perspectives (Bishop et al., 2016).

Jumping movements typically have four phases: approach,
takeoff, flight, and landing (Hay, 1986). From a biomechanical
perspective, athletes often rely on a unilateral takeoff strategy
during training and competition (Hay, 1993), which may easily
lead to side-to-side differences in lower limb muscle strength,
stability, and flexibility (Bishop et al., 2016; Moreno-Villanueva et al.,
2025). Consequently, accurately detecting and quantifying these
asymmetries has become a central focus in biomechanics research
(Bishop et al.,, 2016). Current assessment methods are generally
categorized into bilateral tests (e.g., back squat (Newton et al., 2006;
Flanagan and Salem, 2007; Hodges et al., 2011; Sato and Heise, 2012),
countermovement jump (Impellizzeri et al., 2007; Yoshioka et al.,
20105 Bell et al., 2014), drop jump (Bishop et al,, 2019; Lim et al.,
2020) and unilateral tests (e.g., single-leg countermovement jump
(Jones and Bampouras, 2010; Keeley et al.,, 2011; Ceroni et al,
2012), single-leg hop (Barber et al, 1990; Noyes et al., 1991;
Myers et al., 2014)), with key metrics including jump height,
distance, and reactive strength index (RSI) (Bishop et al., 2019).
However, traditional bilateral tests may not fully capture the
biomechanical demands of sport-specific movements. In contrast,
the SLDJ test not only closely replicates the technical features of
real-world sport movements (Ross et al., 2005; Richardson et al.,
2020) but also effectively activates the stretch-shortening cycle (SSC)
mechanism (Bobbert et al., 1987a). It is particularly advantageous
in identifying inter-limb asymmetries and functional deficits that
bilateral tests may overlook (Huurnink et al., 2019; Lem et al., 2022).
Notably, in SLD]J testing, different drop heights significantly alter
the mechanical load imposed on muscles, joints, and connective
tissues (Hollville et al., 2019), which may further influence the
expression of asymmetry in the lower limbs. Despite growing
attention to inter-limb asymmetries, most existing studies have
concentrated on anterior cruciate ligament (ACL) injury risk and
postoperative recovery (Kotsifaki et al., 2023; Shibata et al., 2023),
with relatively little emphasis on how such asymmetries manifest in
jumping athletes under varying drop heights—a topic that remains
underexplored.
this

asymmetries between the dominant and non-dominant legs in

Therefore, study aims to quantify biomechanical
male jump athletes during single-leg drop jumps at different
heights. Specifically, we will examine limb-specific differences in
kinematic and kinetic parameters, joint work distribution at the
hip, knee, and ankle, peak ground reaction forces (vGRF), and
symmetry indices. We hypothesize that the dominant leg would
exhibit greater hip and ankle joint moments, higher reactive
strength index (RSI), and greater peak ground reaction forces
(VGRF) compared with the non-dominant leg, and that these inter-
limb differences would be more pronounced at the higher drop
height.
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2 Materials and methods
2.1 Participants

Twenty elite male jump athletes from the College of Physical
Education at Shaanxi Normal University participated in this study.
All participants were certified as Chinese National Grade II Athletes,
including ten high jumpers and ten long jumpers (age = 20.41
+ 1.11 years; height = 183.17 + 5.14 cm; body mass = 71.28 +
4.18kg). A priori power analysis using G*Power 3.1 (effect size f
= 0.30, a = 0.05, power = 0.80) indicated a required sample size
of 17 participants (Cohen, 1988; Alanazi et al, 2021; Yi et al,
2024). Considering the sample sizes commonly reported in previous
single-leg drop jump studies (Walsh et al., 2004; Lem et al., 2022;
Pilanthananond et al, 2023) and to ensure adequate statistical
power, we recruited 20 athletes to enhance the robustness of our
findings. Participants had an average of 7.8 + 2.3 years of competitive
experience and trained at least five times weekly (=2 h per session),
with no lower limb injuries in the preceding 6 months. Before
formal testing, baseline assessments of anthropometrics and single-
leg drop jump performance were conducted. Independent-samples
t-tests revealed no significant differences between high jumpers and
long jumpers in any of these baseline measures (all p > 0.05), thus
justifying their treatment as a homogeneous elite population for
subsequent analysis (Table 1). All provided written informed consent,
and the study was approved by the Ethics Committee of Shaanxi
Normal University (202416044) per the Declaration of Helsinki.

2.2 Apparatus and measurement

This study used ten infrared motion capture cameras
(Oqus700+, Qualisys AB, Sweden, 200 Hz) and two force plates
(Model 9260AA6, Kistler Instrument, Switzerland, 1000 Hz) to
synchronously collect biomechanical data of the hip, knee, and ankle
joints during single-leg drop jump tasks performed from 30 cm to
40 cm platforms. The selection of the drop height is primarily based
on the findings of previous studies (Wang and Peng, 2014).

Before formal testing, participants first identified their dominant
leg by performing a ball-kicking task—the leg used to kick
was defined as the dominant leg, while the supporting leg was
classified as the non-dominant leg (Edwards et al., 2012; Pappas
and Carpes, 2012). For all jump athletes in this study, the kicking
leg corresponded to their takeoff leg used during training and
competition. Thereafter, all participants completed a standardized
warm-up consisting of 5 min of treadmill running at 6.5 km/h
followed by dynamic stretching, after which reflective markers were
placed according to the calibrated anatomical systems technique
(CAST), with 57 markers attached to anatomical landmarks on the
upper limbs, trunk, pelvis, and lower limbs, and four rigid marker
clusters fixed to the mid-lateral regions of the thighs and shanks
bilaterally (Cappozzo et al., 1995); Participants then performed
SLDJ from 30 cm to 40 cm heights using both legs, stepping off
the platform and immediately jumping upward upon landing with
maximal effort (Bobbert et al., 1987a; 1987b). A trial was considered
successful only if: (1) the participant maintained hands on the
waist throughout the entire movement; (2) the entire foot of the
testing leg landed squarely within a central 5-cm tolerance zone of
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TABLE 1 Anthropometrics and Single-leg drop jump height in High Jump and Long Jump Athletes.

Parameter High jump Long jump
Height (cm) 183.166 + 6.203 183.173 + 4.158 0.003 >0.05
Body mass (kg) 72.570 + 3.705 69.993 + 4.411 1.415 >0.05
Age (years) 20.715 + 1.256 20.108 + 0.904 1.241 >0.05
Baseline SLDJ height (DL)(cm) 0.193 + 0.056 0.199 + 0.062 0.228 >0.05
Baseline SLDJ height (NDL)(cm) 0.191 +0.025 0.190 + 0.027 0.120 >0.05

NDL: Non-dominant leg; DL: dominant leg; SLDJ: Single-leg drop jump.

FIGURE 1
Experimental environment.

the force plate; and (3) no loss of balance or extra steps occurred
after the final landing, with a stable position held until instructed
to step off (Ambegaonkar et al., 2011; Tamura et al., 2016). The
selection of 30 cm and 40 cm drop heights was guided by previous
research (Wang and Peng, 2014). Before data collection, participants
practiced to familiarize themselves with the protocol. During the
experiment, an average of approximately 3.5 trials were attempted
per condition per participant, with an 85% success rate. A 1-min rest
was provided between trials. The mean of the three valid trials
per condition was used for subsequent analysis to minimize intra-
session variability (Figure 1).

2.3 Data analysis

In this study, drop jump phases were determined based on both
kinetic and kinematic criteria. Initial ground contact was identified
when the peak VGRF exceeded 10 N. The ground contact phase
was then divided into two segments to distinguish muscle action
patterns: the braking phase, from initial contact to maximum knee
flexion, representing eccentric loading; and the push-oft phase,
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from maximum knee flexion to toe-off, representing concentric
propulsion (Olaf et al., 2013).

Visual 3D biomechanical analysis software (v5, C-Motion, Inc.,
Germantown, MD, United States) was used to compute the 3D
kinematic and kinetic variables of both sides of the lower extremities
in the single-leg drop jump. Segmental rotations were described
using an X-Y-Z Cardan sequence (right-hand rule) (Lu et al,
2024). Kinematic and kinetic signals were both low-pass filtered
with a fourth-order Butterworth filter, using cutoff frequencies of
14 Hz and 50 Hz, respectively (Sun et al., 2015). Hip flexion, knee
extension, and ankle dorsiflexion are positive values (+), and the
corresponding hip extension, knee flexion, and ankle plantar flexion
are negative values (-).

The main kinematic variables included the following: (1) Joint
angles of the hip, knee, and ankle in the sagittal plane and
ranges of motion (ROM); (2) Joint moment; (3) Drop jump
height and contact time; (4) Reactive Strength Index (RSI) =
% (Prieske et al., 2019).

In addition, the main kinetic variables included the following:
(1) Peak vertical GRF, which was normalized to body mass; (2)
The GRF loading rate, which was calculated from the maximum
GRF value and time to the maximum GRF; (3) Normalized
joint moments; (4) Joint work generation was calculated as the
net joint power integrated over time in regions with positive
internal power, and work absorption in regions with negative
internal power. The contribution of each joint was determined
as a percentage of the sum of all three lower-limb joints during
each phase (Kotsifaki et al., 2022).

Meanwhile, the absolute symmetry index (ASI) was used to
analyse the landing impact symmetry between the dominant and
non-dominant legs during the single-leg drop jump (Herzog et al.,
1989; Bishop et al., 2016; Bjorklund et al., 2017), with a focus on
the peak vertical ground reaction force (vGRF) and the loading rate,
as these are key kinetic parameters for assessing impact loads and
injury risk (Wang and Fu, 2019).

oy (D=N)
ASI(%) = o= o N)><100

where D = dominant leg, N = non-dominant leg; ASI <10%
indicates acceptable symmetry (Bosch and Rosenbaum, 2010; Wang

and Fu, 2019).
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2.4 Statistical analysis

All statistical analyses were performed using SPSS Statistics
(version 27.0, IBM Corporation, United States). Independent-
samples t-tests confirmed no significant baseline differences
between high-jump and long-jump athletes in anthropometric
characteristics and single-leg drop jump height (all p > 0.05),
thus justifying the treatment of all participants as a homogeneous
elite jumping-athlete group for subsequent analyses. A two-way
repeated-measures ANOVA examined the main and interaction
effects of leg dominance (dominant vs. non-dominant) and drop
height (30 cm vs. 40 cm). The assumption of sphericity was tested
using Mauchly’s test, and when violated, the Greenhouse-Geisser
correction was applied to adjust the degrees of freedom. Continuous
variables are reported as means + standard deviations (Mean +
SD). The Shapiro-Wilk test was used to assess the normality of
the distribution for each variable across both leg conditions before
statistical testing. For significant interactions, simple-effects analyses
were performed using the Bonferroni method. All tests were two-
tailed, with the significance level set at a = 0.05. Only statistically
significant p-values (p < 0.05) are reported.

3 Results
3.1 Kinematics and kinetics

The complete dataset is available in Tables 2-4. Analysis revealed
no significant differences in lower-limb joint angle variables were
observed between the dominant and non-dominant legs across the
different drop heights at initial foot contact. For joint ROM, a
significant main effect of leg dominance was found for the ankle
[F (1, 20) = 8.062, p = 0.010, n*p = 0.288], with the dominant leg
demonstrating significantly greater ROM than the non-dominant
leg (p < 0.05). Analysis of knee joint ROM revealed a significant leg
dominance x height interaction [F (1, 20) = 11.112, p = 0.003, r]zp
= 0.369], showing that for the dominant leg, knee joint ROM was
significantly greater at 40 cm than at 30 cm (p < 0.05).

Peak joint moment analysis revealed that hip moments exhibited
significant main effects of leg dominance [F (1, 20) = 5.363, p = 0.033,
n2p = 0.240], where the dominant leg generated significantly greater
moments than the non-dominant leg (p < 0.05). Knee moments
showed a significant main effect of landing height [F (1, 20) = 6.204,
p = 0.023, n’p = 0.25], with significantly greater moments at the
30 cm height than at the 40 cm height (p < 0.05). Ankle moments
displayed a significant main effect of leg dominance [F (1, 20) =
17.278, p < 0.001, n’p = 0.504], where the dominant leg generated
significantly greater moments than the non-dominant leg (p < 0.05).

Additionally, although contact time and jump height did
not differ significantly, their mean #* SD values were: contact
time—30 cm: non-dominant leg 0.293 + 0.037 s, dominant leg
0.278 + 0.048 s; 40 cm: non-dominant leg 0.294 + 0.046 s, dominant
leg 0.284 + 0.063 s; jump height—30 cm: non-dominant leg 0.183
+ 0.048 m, dominant leg 0.200 + 0.061 m; 40 cm: non-dominant
leg 0.195 + 0.058 m, dominant leg 0.196 + 0.051 m. In contrast,
the reactive strength index (RSI) showed a significant main effect
of landing height [F (1, 20) = 6.595, p = 0.019, n’p = 0.258], with
significantly greater RSI values at the 40 cm height compared to the
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30 cm height (p < 0.05). Peak vGRF analysis revealed a significant
main effect of leg dominance [F (1, 20) = 31.456, p < 0.001, n’p =
0.623], with the dominant leg demonstrating significantly greater
peak vGRF than the non-dominant leg (p < 0.001). However, no
significant differences existed between legs in the time to peak vGRF
or the GRF loading rate.

3.2 Symmetry

The ASI for peak vGRF was 10.74% + 9.24% at the 30 cm drop
height and 14.87% =+ 13.75% at the 40 cm drop height (a difference
of 4.13 percentage points). For loading rate, the ASI was 15.47% +
14.81% at 30 cm and 20.27% + 9.80% at 40 cm (a difference of 4.80
percentage points) (Figure 2).

3.3 Joint work and contribution

During the absorption phase of the single-leg drop jump, the
dominant leg exhibited a redistribution of joint work compared
to the non-dominant leg, characterized by an increased hip
contribution (from 60% to 62%), a decreased ankle contribution
(from 29% to 26%), and minimal change in knee work. A similar
pattern was observed during the generation phase, where hip
contribution increased from 52% to 56% and ankle contribution
decreased from 34% to 30%, with knee work remaining similar or
slightly lower. These consistent redistribution patterns across both
30 cm and 40 cm drop heights indicate that the direction of these
leg-specific strategies was not altered by drop height (Figure 3).

4 Discussion

This study systematically analyzed lower limb biomechanics
in jumping athletes during single-leg drop jumps from different
heights, focusing on the relationship between inter-limb asymmetry
and drop height. The results revealed significant kinetic differences
between limbs and across heights. A proximal compensation
strategy was observed in joint work distribution, characterized by
greater contributions from the hip and ankle joints with relatively
reduced knee involvement. Furthermore, the asymmetry index
for peak vertical ground reaction force and average loading rate
exceeded the 10% threshold, with values increasing at higher
drop heights. These findings suggest the presence of inter-limb
asymmetry during single-leg drop jumps. The observed trend of
height-dependent exacerbation appears to align with the study’s
initial hypothesis.

4.1 Joint kinematics and kinetics

Examination of sagittal-plane knee ROM during the landing
phase revealed significant differences between the dominant and
non-dominant legs and across drop heights. These findings mirror
those of a previous study (Wang and Fu, 2019). However, joint
angles at initial contact showed no statistical differences, suggesting
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TABLE 2 Summary of two-way repeated measures ANOVA.

Parameters Height effect Leg dominance effect Interaction effect

F P F P F Jo)
Hip flexion angle (°) 0.654 0.431 1.223 0.443 0.093 0.764
Knee flexion angle (°) 0.488 0.495 0.570 0.460 1.112 0.053
Ankle dorsiflexion angle (°) 0.027 0.871 4.091 0.061 3.432 0.084
Hip ROM (°) 0.174 0.681 3.365 0.083 0.088 0.770
Knee ROM (°) 0.170 0.685 0.045 0.835 11.112 0.003
Ankle ROM (°) 0.639 0.434 8.062 0.010 0.280 0.603
Peak hip moment (Nm/kg) 1.705 0.209 5.363 0.033 0.597 0.450
Peak knee moment (Nm/kg) 6.204 0.023 1.486 0.239 0.051 0.825
Peak ankle moment (Nm/kg) 0.083 0.777 17.278 <0.001 0.227 0.640
RSI (m/s) 6.595 0.019 1.449 0.244 0.009 0.952
Contact time (s) 2.108 0.163 0.236 0.633 0.209 0.653
Jump height (cm) 0.397 0.536 0.310 0.584 1.247 0.278
Peak vGRF (BW) 1.170 0.293 31.456 <0.001 1.063 0.315
Loading rate (BW/s) 4.092 0.057 2.605 0.123 0.354 0.559
Time to peak vGRF (ms) 3.088 0.095 0.451 0.510 0.863 0.365

TABLE 3 Post Hoc multiple comparisons for main effects.

Parameters i Leg dominance

Ankle ROM (°) 46.294 + 8.185 47.106 + 5.036 0.434 45.243 +£7.529 48.157 + 6.175" 0.010

Peak hip moment (Nm/kg) —5.749 £ 2.159 —6.664 + 4.410 0.209 —5.334 +2.726 —7.080 £ 4.217" 0.033
Peak knee moment (Nm/kg) 5.464 +2.276 6.857 +3.653" 0.023 5.839 £2.710 6.481 +3.234 0.239
Peak ankle moment (Nm/kg) —3.149 £ 0.679 —-3.093 +£0.942 0.777 -2.723 £ 0.690 -3.519 + 1.090™* <0.001
RSI (m/s) 0.601 + 0.254 0.717 + 0.209* 0.019 0.685 + 0.196 0.632 +0.253 0.244

Peak VGRF (BW) 4.199 +0.653 4.407 + 1.083 0.293 3.901 +0.862 4.704 +1.084™" <0.001

TABLE 4 Post Hoc multiple comparisons for interaction effects.

Parameter 30 cm-NDL 40 cm-NDL 30 cm-DL 40 cm-DL

Knee ROM (°) 48.661 £ 1.970 44.613 +2.304 0.157 46.567 + 2.057 48.531 +1.924" 0.024

#p < 0.05;%#p < 0.001; NDL: Non-dominant leg; DL: dominant leg; ROM: joint range of motion; RSI: reactive strength index; Peak vGRF: peak vertical ground reaction force.
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FIGURE 2
Absolute symmetry index (ASI) for the peak vGRF and loading rate

during single-leg drop jump.

that athletes adopted a similar landing posture regardless of leg
dominance.

Our data demonstrated significant leg dominance effects at both
the hip and ankle, with the dominant legs consistently producing
higher peak moments, a pattern consistent with Ren et al. (2025) in
isokinetic strength assessments. Although the knee showed a similar
trend, the interlimb difference was not statistically significant despite
peak moments increasing with drop height, which aligns with
Nelson et al. (2018) reporting minimal interlimb differences in knee
joint kinetics during landing in healthy individuals. Collectively,
these findings support the proximal-to-distal torque gradient
described by Dufek and Bates (1991), whereby proximal joints,
especially the hip, bear greater mechanical demands during vertical
impacts. This joint-specific loading strategy and pronounced hip
and ankle dominance underscore the importance of systematically
monitoring asymmetries in both proximal and distal joints to
optimise force transmission, enhance performance, and mitigate
injury risk in unilateral jumping tasks. Furthermore, the limb
dominance observed at the hip and ankle in our male collegiate
jump athletes parallels the limb- and sex-based joint moment
differences reported by Decker et al. (2003), and likely reflects long-
term unilateral loading adaptations to the mechanical demands
of high jump and long jump (Hay, 1993). Practically, this pattern
suggests that strengthening the non-dominant hip and ankle
through targeted unilateral eccentric and plyometric training may
help restore kinetic balance and reduce injury susceptibility.

Similarly, while neither ground contact time nor flight height
differed significantly between legs, mean values consistently
favoured the dominant leg, in agreement with earlier research
(Kuromaru et al,, 2025). Finally, athletes require longer ground
contact times to dissipate impact as drop height increases, thereby
lengthening ground contact time. Since plyometric jump training
(PJT) enhances reactive strength index (RSI) through the stretch-
shortening cycle (SSC) mechanism—with jump height serving as
a direct indicator of SSC efficiency—improvements in reactive
strength index are often accompanied by increases in jump
height, a conclusion supported by both previous studies and our
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own findings (Ramirez-Campillo et al., 2023). These findings
imply that plyometric training intensity and drop height should
be progressively individualized to prevent excessive eccentric stress
and asymmetry exacerbation.

4.2 Symmetry

Peak vGRF analysis in our study showed that male jump athletes
consistently produced greater impact forces with their dominant
leg during single-leg landings. However, no interlimb differences
were observed in the timing-related variables, such as time to peak
vGRF or loading rate. This finding contrasts with previous studies on
bilateral landings in female athletes, where peak vGRF was generally
distributed symmetrically between legs (Sinsurin et al., 2017). Such
symmetry has been attributed to a centrally coordinated shock
attenuation strategy (Aizawa et al., 2018). In contrast, our results
suggest that trained male jumpers may exhibit a force-dominant leg
bias under unilateral conditions without changes in the temporal
aspects of impact absorption. These findings align with prior reports
indicating that sex, task type, and sport-specific loading histories can
influence asymmetry patterns during landing (Maloney, 2019).

Based on the findings of this study, the asymmetry indices
for both peak ground reaction force and loading rate exceeded
the conventional 10% threshold for balanced loading, with the
asymmetry becoming more pronounced as drop height increased.
This pattern suggests that comparisons based solely on peak values
or timing parameters may not fully capture underlying inter-
limb imbalances. This is consistent with prior studies reporting
absolute symmetry index values exceeding 10% in impact variables,
particularly loading rate, which is a sensitive indicator of how
rapidly the peak VGRF is absorbed by the body, reflecting the
rate at which mechanical energy is transferred through the lower
extremity structures during landing. Higher loading rates indicate a
shorter time frame for force attenuation, potentially overwhelming
musculoskeletal buffering capacity and increasing the likelihood of
injury, particularly in repetitive or high-intensity jump tasks (Puddle
and Maulder, 2013). This highlights that asymmetry patterns are
sport-specific and should be regularly monitored through single-leg
landing assessments to tailor corrective training.

4.3 Joint work and contribution

The hip and ankle joints play dominant roles during the entire
movement, while the knee joint plays a secondary role. Studies
have demonstrated that hip extensors and ankle plantar flexors
work vigorously during the concentric phase (Yeow et al., 2011).
Although joint power was not subjected to statistical analysis in
the present study, visual inspection of the joint work contribution
charts revealed that the dominant leg consistently demonstrated
a stable redistribution pattern across different drop heights: the
hip contribution tended to increase, and the ankle contribution
decreased. In contrast, the knee contribution remained relatively
stable. This observation aligns with prior research, indicating a
possible shift of mechanical demand toward proximal joints to
maintain movement efficiency (Waterval et al., 2024; Zhao et al.,
2024). This coupling of joint moment and work trends suggests
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The average percentage of work contributions from the hip, knee, and ankle joints during the absorption and generation phases of the single-leg drop

jump is 30 cm and 40 cm, respectively.

a mechanical pattern consistent with a proximal compensation
strategy (Arampatzis et al., 2023; Monteiro et al., 2023).

When viewed in conjunction with our joint moment results, an
apparent dominance effect emerged at both the hip and ankle, with
significantly greater peak moment observed in the dominant leg.
The knee joint, by contrast, did not exhibit statistically significant
asymmetry (Yeow et al.,, 2011). This coupling of joint moment and
joint work trends reinforces the practical manifestation of a proximal
compensation strategy during single-leg drop jump tasks. It also
highlights the increasing mechanical demands on the hip during
impact absorption and force generation phases. Such joint-level
functional asymmetry reveals the differential roles of each joint in
unilateral landing strategies. It underscores the need for systematic
monitoring and targeted interventions to optimise performance and
mitigate injury risk.

Notably, knee joint work remained essentially unchanged at
both 30 cm and 40 cm drop heights. The biarticular coupling of the
gastrocnemius and other lower limb muscle groups may explain
this stability. Previous research in running has shown that the
gastrocnemius facilitates bidirectional energy transfer between the
knee and ankle joints (Zhang et al., 2025), potentially allowing the
knee to act as a passive conduit during impact absorption, thereby
reducing mechanical demands on the joint.

From a training and applied perspective, attention should be
paid to the potential risks of overusing the hip in the dominant
leg (Campbell et al., 2025). Coaches may wish to integrate targeted
distal joint conditioning—such as ankle-focused eccentric loading
and stability drills—to enhance ankle contribution, balance joint
work distribution, and mitigate injury risk (Aout et al, 2025).
Furthermore, similar asymmetry-related compensations have
been reported in clinical populations such as chronic ankle
instability and patellofemoral pain, indicating that our findings
may also inform rehabilitation strategies to restore functional
symmetry and reduce pain-related movement inefliciencies
(Tajdini et al.,, 2022; Emamvirdi et al., 2023).

In addition, single-leg jump performance has been shown
to sensitively detect residual knee function deficits during
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return-to-sport evaluation after anterior cruciate ligament (ACL)
reconstruction (Kotsifaki et al., 2023). Therefore, the asymmetry
metrics used in this study may also serve as practical indicators for
tracking functional recovery and guiding individualized return to
sport (RTS) progression in athletes.

4.4 Limitation

Although this study offers valuable insights into inter-limb
asymmetries during single-leg drop jumps, some limitations should
be noted. The relatively small, homogeneous sample of male athletes
from jumping sports (e.g., high jump and long jump), which may
exhibit heterogeneity in their specific training and techniques,
and the use of only two moderate drop heights (30 cm and
40 cm) may limit generalizability and sensitivity to subtle effects.
Future work with larger samples and studies comparing athletes
from different specializations could help identify thresholds where
kinetic and symmetry parameters diverge. Moreover, the absence of
electromyographic (EMG) and dynamic stability measures restricts
the interpretation of neuromuscular activation and post-landing
control, which should be addressed in future studies.

5 Conclusion

The findings demonstrate that the single-leg drop jump test
effectively identifies functional lower limb asymmetries. Test
data reveal that the dominant leg consistently exhibits superior
mechanical characteristics across different drop heights, including
shorter ground contact time, greater jump height, and higher GRE
The observed hip-ankle dominant movement pattern further verifies
the existence of proximal compensation mechanisms. Importantly,
the magnitude of inter-limb asymmetry showed a tendency to
increase with drop height, suggesting that higher eccentric demands
may amplify existing imbalances. From a training perspective,
these results highlight the importance of leveraging the mechanical
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advantages of the dominant leg while avoiding overreliance through
a balanced regimen of bilateral and unilateral exercises. Such
an approach can help mitigate injury risks and promote more
symmetrical functional performance.
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