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Resistance training and 
cardiovascular health: epigenetic 
regulation
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Resistance training plays a crucial role in cardiovascular health by promoting 
epigenetic adaptations that beneficially modulate gene expression. These 
modifications include DNA methylation, histone alterations, and regulation 
by non-coding RNAs, which directly affect cardiac muscle and the vascular 
system. Such epigenetic changes lead to improved cardiac function, reduced 
inflammation, optimized metabolism, and protection against cardiovascular 
diseases. Resistance training induces the release of signaling molecules 
that mediate favorable systemic adaptations. Studies demonstrate that 
resistance training, especially when combined with aerobic training, improves 
cardiovascular risk factors such as blood pressure and lipid profile. Epigenetic 
regulation is fundamental to the plasticity of the cardiovascular system and 
the reversibility of exercise-induced adaptations. Although extreme exercise 
may pose risks, regular and moderate resistance training is safe and effective 
in the prevention and management of cardiovascular diseases through 
these molecular mechanisms. Further investigation into these epigenetic 
modifications may unveil novel exercise-based therapeutic strategies to 
enhance cardiovascular health.
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 1 Introduction

Resistance training (RT) is widely recognized for improving health, physical fitness, 
and athletic performance, typically involving the use of free weights, body weight, 
or specialized equipment (Westcott, 2012). Numerous studies have demonstrated its 
benefits in increasing strength and muscle mass, enhancing quality of life, and preventing 
various diseases (Prestes et al., 2019; Peng et al., 2024; Vann et al., 2020). For instance 
(Shailendra et al., 2022), reported an association between RT and reduced risk of all-cause, 
cardiovascular, and cancer-specific mortality, as well as improved health-related quality 
of life in individuals with rheumatic diseases. Beyond its musculoskeletal effects, RT also 
contributes to the functional improvement of organs such as the heart, vasculature, and 
lungs (Paluch et al., 2024; De Caterina et al., 2019).

In the cardiovascular system specifically, reviews indicate that RT enhances 
hemodynamic and contractile function and improves overall cardiac metabolism, 
both in healthy individuals and in those with cardiovascular disease (Liu et al., 2019;
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Tucker et al., 2022). This is particularly relevant given that 
cardiovascular diseases remain the leading cause of death 
worldwide, and interest in non-pharmacological therapeutic 
strategies continues to grow (Pillon et al., 2020). At the molecular 
level, exercise—especially aerobic training—is known to induce 
beneficial changes in gene and protein expression (Popov et al., 2018; 
Miranda Furtado et al., 2024); however, relatively few studies have 
examined the effects of RT on epigenetic mechanisms such as 
DNA methylation, histone modifications, and non-coding RNAs 
(ncRNAs) (Plaza-Diaz et al., 2022; Weineck, 1999).

Despite the recognized importance of RT, molecular 
and epigenetic investigations of its adaptive cardiovascular 
effects remain limited, highlighting the need for 
further research (Powers, 1999). Therefore, the aim of this 
review is to explore the effects of RT on epigenetic regulatory 
mechanisms within the cardiovascular system in both humans and 
animal models. 

2 Impact of RT on the cardiovascular 
system

Over the years, several benefits generated by RT have 
been demonstrated (Zouita et al., 2023; Lacio et al., 2021), 
particularly in skeletal muscle, where it promotes hypertrophy and 
maintenance of strength levels (Alcaraz-Ibañez and Rodríguez-
Pérez, 2018; Bachero-Mena et al., 2019). These adaptations 
are crucial not only for athletic and functional performance 
(Berin et al., 2022; Krzysztofik et al., 2019; Gylling et al., 2020), 
but also for maintaining quality of life in healthy individuals 
(Abou Sawan et al., 2023; Hunter et al., 2004). Importantly, in the 
context of aging, adequate muscle strength and mass are strongly 
associated with greater autonomy, reduced risk of falls, prevention 
of systemic and mental diseases, and increased life expectancy 
(de Sousa Ferreira et al., 2022; Cardo et al., 2024).

Beyond muscular adaptations, RT induces significant 
metabolic improvements. Aristizabal et al. (Aristizabal et al., 2015) 
demonstrated an increased basal metabolic rate after 9 months 
of training using dual-energy X-ray absorptiometry (DEXA). 
RT also enhances insulin sensitivity and glycemic control 
(Bronczek et al., 2021), leading to improved intramuscular 
glycogen storage (Correia et al., 2023). These findings indicate that 
RT acts as a metabolic modulator, supporting both energy efficiency 
and glucose homeostasis.

Clinically, RT contributes to the prevention and management 
of chronic diseases such as hypertension and diabetes mellitus 
(Hearris et al., 2018). In diabetic patients, RT acutely reduces serum 
glucose levels and chronically enhances GLUT4 expression and 
insulin sensitivity—key mechanisms for glucose metabolism and 
glycemic stability (Correia et al., 2023; Lima et al., 2022). Regarding 
hypertension, Moraes et al. (Flores-Opazo et al., 2020) reported 
that just 12 weeks of RT significantly reduced blood pressure in 
grade 1 hypertensive patients. Complementary evidence shows that 
performing RT 2–3 times per week with moderate to high loads can 
sustain these reductions for up to 14 weeks after cessation of training 
(Moraes et al., 2012; Ferreira Mendes et al., 2024), underscoring its 
long-term cardiovascular benefit.

Another crucial adaptation involves the cardiovascular system 
itself. RT induces physiological cardiac remodeling, often described 
as concentric cardiac hypertrophy, initially conceptualized by 
Morganroth et al. (1975), Correia et al. (2023), Mihl et al. (2008). 
In contrast to the eccentric hypertrophy associated with aerobic 
exercise—characterized by increased chamber volume and 
sarcomeres in series—RT produces concentric hypertrophy, 
defined by increased wall thickness and sarcomeres in parallel 
(Mihl et al., 2008; Morganroth et al., 1975). Although Mongaroth's 
model provided an early framework, subsequent research has 
revealed a more complex and integrated picture of cardiac 
remodeling (Haykowsky et al., 2018; Fernandes et al., 2011), 
including the contribution of the right ventricle and 
transmural pressure gradients often neglected in early
studies.

Recent investigations reinforce that RT, when properly 
prescribed, promotes beneficial cardiovascular remodeling 
without pathological hypertrophy. Pamart et al. (2025), 
Fernandes et al. (2011) reported reductions in blood pressure and 
heart rate after 20 weeks of high-intensity RT, alongside moderate 
biventricular Pamart remodeling and preserved cardiac function. 
In a murine model, Li et al. (2021), Haykowsky et al. (2002) 
demonstrated that RT improved vascular function and enhanced 
mitochondrial biogenesis after myocardial infarction, suggesting 
a direct cardioprotective effect through improved cardiac
metabolism.

At the vascular level, RT stimulates angiogenic processes 
that contribute to improved perfusion and vascular health. Both 
animal and human studies have shown that RT protocols induce 
angiogenic responses and can aid in the management of vascular 
diseases (Naylor et al., 2008; Pamart et al., 2025). Traditional 
RT and blood flow restriction training (Kaatsu-training) have 
been shown to activate transcription factors and genes related to 
angiogenesis (Li et al., 2021; McIntosh et al., 2024), increasing 
vascular density in healthy and clinical populations. This occurs 
through elevated expression of nitric oxide and vascular endothelial 
growth factor (VEGF), leading to localized vascular expansion. 
Although the restriction method is limited to limbs and often 
associated with local discomfort, it allows the use of low loads 
(low % of 1RM), making it suitable for populations unable to 
tolerate high mechanical stress, such as elderly or obese individuals
(Banks et al., 2024).

Taking together, these findings demonstrate that RT exerts 
systemic effects extending beyond skeletal muscle, with direct 
implications for cardiovascular health, as shown in Figure 1. 
While acute RT sessions may transiently elevate blood pressure 
and cardiac workload, chronic adaptations include reduced 
resting blood pressure, improved endothelial function, and 
enhanced autonomic regulation. When implemented with 
appropriate progression and supervision, RT becomes a safe 
and effective therapeutic strategy for cardiovascular disease 
management (Yang K. et al., 2024). Furthermore, improved 
nitric oxide bioavailability, decreased endothelin-1, and 
reduced oxidative stress contribute to enhanced vasodilation, 
improved hemodynamic control, and reduced arterial stiffness
(Yang J. et al., 2024).
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FIGURE 1
Benefits of RT on cardiovascular system. Regular RT can improve cardiovascular efficiency, boost its pumping ability, and result in physiological cardiac 
hypertrophy, along with lower blood pressure, improved lipid profiles, and enhanced insulin sensitivity.

3 Impact of RT on the signaling 
pathways

In recent years, considerable efforts have been directed 
toward a better understanding of the cellular and molecular 
signaling pathways underlying the adaptations induced by RT, 
particularly those regulating muscle hypertrophy and protein 
degradation control (Perera et al., 2022). This knowledge is 
fundamental not only for understanding physiological responses 
in healthy individuals but also for elucidating mechanisms 
involved in skeletal muscle disorders such as fibromyalgia and 
sarcopenia (De Matos et al., 2024; Sartori et al., 2021). Expanding 
comprehension of the regulatory mechanisms that orchestrate 
these signaling pathways is therefore essential to explain the 
molecular determinants of phenotypic adaptations observed 
in response to RT (Schiaffino et al., 2021). In addition to 
classical intracellular cascades, increasing evidence highlights the 
importance of epigenetic regulation—including DNA methylation, 
histone acetylation/deacetylation, chromatin remodeling, and 
non-coding RNAs—in modulating the transcriptional programs 
activated by RT. Notably, RT-induced alterations in histone 
deacetylase (HDAC) activity, the AMPK–SIRT axis, and DNA 
methyltransferase–dependent methylation patterns have emerged 
as key mechanisms influencing gene expression, cellular growth, 
and metabolic remodeling.

In this context, Wang et al. (Pascual-Fernández et al., 2020) 
demonstrated through skeletal muscle biopsy that RT can activate 
signaling pathways associated with mitochondrial biogenesis, 
suggesting a possible interaction between mitochondrial regulatory 

pathways and those mediated by mTOR. As the understanding 
of muscle hypertrophy has evolved, evidence now indicates that 
increases in muscle cross-sectional area occur through three main 
mechanisms: the formation of syncytial fibers, the addition of 
myonuclei, and the expansion of cytoplasmic volume, characterized 
by elevated water content, energy substrates, and fibrillar organelles 
(Attwaters and Hughes, 2022). Complementarily, epigenetic 
processes such as HDAC inhibition particularly of class IIa isoforms 
facilitate MEF2-mediated transcriptional activation, while the 
AMPK–SIRT1 axis modulates mitochondrial and metabolic gene 
networks through NAD+-dependent deacetylation. RT may also 
influence DNMT-mediated methylation of promoters related 
to inflammatory control, structural remodeling, and insulin 
sensitivity, reinforcing its capacity to induce long-term phenotypic 
adaptations (Fakhar et al., 2025).

Although most mechanistic insights come from skeletal 
muscle, the cardiovascular system has also been investigated 
to a lesser extent. Current evidence suggests that the pressure-
induced hemodynamic overload generated during RT resembles, 
in part, the mechanical stress experienced in early stages 
of certain cardiovascular diseases, such as hypertension. 
Both conditions may share transient molecular responses, 
including increased fibrotic signaling and extracellular matrix 
remodeling, before pathological decompensation occurs 
(Colorado et al., 2023). Importantly, the overload imposed during 
RT is intermittent and physiological, differing fundamentally 
from the chronic and pathological nature of hemodynamic 
stress in disease states (Wang et al., 2011). This distinction is 
crucial, as it explains the reversibility and adaptive potential 
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of exercise-induced remodeling (Bachero-Mena et al., 2019;
Furrer and Handschin, 2024).

Advances in next-generation sequencing have substantially 
expanded knowledge of the genomic and molecular interactions 
involved in RT-induced adaptations, enabling a more integrative 
view of the signaling networks that support the cardioprotective 
and systemic effects of physical exercise (Melo et al., 2018; 
Martinez et al., 2021; Rodríguez et al., 2024). Among these, the 
PI3K/AKT/mTOR pathway stands out as one of the most well-
characterized cascades activated by RT. This pathway is pivotal 
for protein synthesis, cellular growth, proliferation, and survival 
(Bouchard, 2019). In cardiac tissue, PI3K/AKT signaling has 
been closely associated with physiological remodeling induced by 
exercise; however, most studies to date have focused on aerobic 
training models (Smith, 2021).

Notably, RT preferentially modulates signaling pathways related 
to tissue morphology and extracellular matrix remodeling (Oliveira-
Junior et al., 2022), whereas aerobic exercise predominantly alters 
metabolic profiles associated with cardiac function (Fukada and 
Ito, 2021). Beyond these classic pathways, RT also influences 
systemic metabolic signaling, particularly through cytokines such 
as interleukin-6 (IL-6), which acts as a key mediator in the 
hypertrophic response and in the regulation of inflammation 
(Soci et al., 2016). Epigenetic regulators, including non-coding 
RNAs, play an additional role in modulating these processes by 
influencing mRNA stability and translation of transcripts related to 
hypertrophy, fibrosis, and angiogenesis (da Costa et al., 2015).

In summary, RT orchestrates a complex network of molecular 
signaling pathways that extend beyond skeletal muscle to other 
tissues, including neural, immune, and adipose systems. Integrated 
with epigenetic mechanisms that fine-tune gene accessibility 
and transcription, these interactions contribute to the systemic 
adaptations and broad health benefits associated with RT. 

4 Impact of RT on the epigenetic 
regulations

When we talk about regulatory mechanisms of signaling 
pathways, epigenetics is a field of knowledge that covers this 
topic by providing mechanisms and changes in gene expression 
without altering the biological sequence of DNA (Fukada 
and Ito, 2021). Currently, the literature identifies three major 
epigenetic mechanisms: DNA methylation, histone modification, 
and non-coding RNAs (da Costa et al., 2015; Raleigh, 2021; 
Wu et al., 2023); the latter being considered the main class of 
gene regulators already described, representing nearly 80% of 
the human genome (Wu et al., 2023). Importantly, RT induces 
both acute epigenetic responses, which occur within minutes 
to hours after a single exercise session, and chronic epigenetic 
adaptations, which accumulate over repeated training bouts and 
contribute to long-term phenotypic remodeling. Acute responses 
are typically characterized by transient changes in gene expression, 
rapid chromatin accessibility shifts, and short-term fluctuations 
in DNA methylation or histone acetylation status. In contrast, 
chronic adaptations are associated with more stable methylation 
patterns, persistent histone signatures, and long-lasting miRNA 

expression profiles that collectively contribute to the establishment 
of exercise-induced molecular memory (Wu et al., 2023).

The literature has shown that a single session or a RT program 
can alter DNA methylation sites, which is closely linked to the 
regulation of gene expression, given that unmethylated DNA 
regions (euchromatin) allow full action of RNA polymerase II 
(Nurk et al., 2022; Bagley et al., 2020; Bittel and Chen, 2024). In 
this context, the premise of investigating the relationship between 
hyper- or hypomethylated regions and their relationships with 
gene expression—especially in skeletal muscle—was highlighted 
by Turner et al. (2019), Lindholm et al. (2014), who introduced 
the concept of an epigenetic memory, demonstrating that exercise 
training acts as a chronic modulator of gene expression in 
trained individuals compared to sedentary controls. In an extensive 
review, Bittel et al. (2024) reinforced the role of DNA methylation 
in the adaptive response to physical exercise, emphasizing the 
importance of methylation in promoter, gene body, and enhancer 
regions in the regulation of skeletal muscle gene expression, 
while also highlighting individual factors (e.g., genetics and diet) 
in shaping the epigenetic response (Petrie et al., 2020). Recent 
studies have identified specific methylation changes in genes such 
as PPARGC1A, NR4A3, and TFAM following both resistance 
and endurance exercise, associated with enhanced mitochondrial 
biogenesis and oxidative metabolism (Petrie et al., 2020). Moreover, 
AMPK–PGC-1α and MAPK signaling pathways appear to mediate 
many of these methylation-dependent transcriptional effects. In 
contrast, cardiac-specific evidence remains limited, but emerging 
data suggest that aerobic exercise promotes demethylation of genes 
involved in fatty acid oxidation (PPARα, CPT1B) and calcium 
handling (SERCA2a), contributing to improved metabolic and 
contractile function (Geiger et al., 2024).

Histone modification has also been a significant area of 
investigation in recent years. Physical exercise has been shown to 
modulate histone acetylation and deacetylation, processes integral to 
the regulation of gene expression and consequently to adaptations 
induced by training (Bittel and Chen, 2024; Turner et al., 2019). Acute 
responses often include rapid histone acetylation changes at promoters 
of metabolic and stress-responsive genes, whereas chronic training 
appears to consolidate these modifications into more stable chromatin 
states that support long-term transcriptional reprogramming. Recent 
reviews indicate that histone modifications (acetylation, methylation, 
phosphorylation) play a crucial role in muscular adaptations to 
exercise, including RT, by regulating transcription of genes involved 
in hypertrophy and metabolism (Wu et al., 2023; McGee et al., 2009). 
In skeletal muscle, increased H3K4me3 and decreased H3K27me3 
have been observed at loci governing energy metabolism and 
muscle remodeling (Lim et al., 2020). In cardiac tissue, aerobic 
exercise has been linked to enhanced histone acetylation (H3K9ac, 
H4K12ac) in regions controlling mitochondrial genes and anti-
hypertrophic signaling, suggesting that exercise-driven chromatin 
remodeling contributes to cardioprotection (Wu et al., 2021), 
as shown in Figure 2. These findings reinforce the need to 
distinguish between skeletal and cardiac muscle evidence, as many 
exercise–epigenetics studies rely on skeletal muscle samples and cannot 
be directly extrapolated to the heart. 

Non-coding RNAs were discovered through important 
discoveries in the 1970s and 1980s, when studies on genomic 
complexity revealed no correlation between genome size and 
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FIGURE 2
Epigenetic regulations in exercise training-induced cardioprotection. The figure illustrates how enhanced histone acetylation (H3K9ac, H4K1the) 
regulates mitochondrial genes and promotes anti-hypertrophic signaling. These changes contribute to cardioprotection, distinguishing between 
pathological and physiological cardiac conditions.

organismal complexity—a phenomenon known as the C-value 
paradox (Wu et al., 2021; Seaborne et al., 2018). This paradox led 
to the recognition that large portions of the genome could perform 
regulatory functions beyond the classical “DNA–RNA–protein” 
framework proposed by Francis Crick in 1958. Initially regarded as 
“junk DNA,” these regions were later shown to exert key regulatory 
and catalytic roles as new molecular tools enabled their functional 
characterization (Finke et al., 2022).

Currently, ncRNAs are considered one of the largest classes of 
gene regulators. Even without coding for proteins, they regulate 
pre- and post-transcriptional control, chromatin remodeling, 
histone modification, and cell cycle regulation (George et al., 2024; 
Jarroux et al., 2017; Li, 2023; Yin and Shen, 2023; Li et al., 2024). 
They are generally divided into short and long non-coding 
RNAs (lncRNAs), with the former including miRNAs, the 
best-characterized subgroup (Loganathan and Doss, 2023; 
Shang et al., 2023; He et al., 2023). MiRNAs are small non-coding 
RNAs widely studied for their post-transcriptional regulatory roles 
(Zhang et al., 2019; O'Brien et al., 2018; Improta-Caria et al., 2024). 
Acute RT sessions can produce transient fluctuations in circulating 
and intramuscular miRNA levels, whereas chronic RT leads 
to more stable remodeling of miRNA networks that regulate 
long-term hypertrophic and metabolic pathways. However, 
limited data exist on the role of miRNAs in cardiac muscle in 
response to RT. Some miRNAs exhibit tissue-dependent expression 
and can be released into systemic circulation in response to 
exercise, influencing pathways related to muscle function and 
cardiovascular health (Romaine et al., 2015; Fóthi et al., 2020; 
Ma et al., 2025; Liu et al., 2017; Wang et al., 2018). Certain miRNAs 

regulate adaptations in skeletal muscle and myocardial crosstalk 
during exercise, thus promoting systemic cardiovascular benefits 
(Karunakaran and Rayner, 2013; dos Santos et al., 2022).

Updates from the American Heart Association emphasize the 
importance of RT for individuals with and without cardiovascular 
disease (CVD). RT not only enhances muscle strength but also 
improves cardiovascular health by optimizing hemodynamics 
and reducing CVD risk factors. Combining aerobic and 
RT modalities may yield synergistic cardiovascular benefits 
(Cui et al., 2017; Nappi et al., 2023).

MiRNAs regulate key signaling pathways, including the 
IGF1/PI3K/AKT/mTOR axis, which is essential for exercise 
adaptation (Zhou et al., 2018; Zhang et al., 2017). Following 
exercise, miRNAs such as miR-23a, miR-133a, and miR-378
show marked expression changes in muscle tissue. miR-23a, for 
instance, is downregulated 2–4 h post-exercise, suggesting a role in 
muscle protein metabolism (Domańska-Senderowska et al., 2019). 
miR-486 has been associated with mitochondrial adaptation, 
while miR-21 and miR-148b regulate insulin signaling during 
RT (Zhou et al., 2020). RT also decreases miR-214 expression, 
which leads to increased SERCA2a expression and improved 
cardiomyocyte contraction and relaxation. This mechanism is 
associated with physiological cardiac hypertrophy, demonstrating 
that RT influences the cardiac phenotype through miRNA-mediated 
regulation (Zhou et al., 2020), as shown in Figure 3.

Importantly, emerging evidence suggests that these epigenetic 
modifications extend beyond skeletal muscle and may contribute 
to cardiovascular adaptations commonly observed with exercise. 
Alterations in DNA methylation and histone acetylation status 
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FIGURE 3
Epigenetic regulation is induced by RT. This figure illustrates the relationship between RT and various signaling pathways (JNK, ERK, p38) that are 
influenced by growth factors and insulin. It highlights the regulation of specific miRNAs (miR-21, miR-23a, miR-133a, miR-148b, miR-214, and 
miR-486), showing which are upregulated or downregulated in response to RT. These changes play a significant role in cellular growth and 
proliferation, contributing to muscle adaptation and cardiovascular health.

in vascular and cardiac tissues have been associated with 
improved endothelial function through enhanced expression of 
nitric oxide–related genes and reductions in pro-inflammatory 
signaling, processes that collectively support better vasodilation 
and lower arterial stiffness. Likewise, miRNA-mediated regulation 
of calcium-handling proteins, mitochondrial genes, and anti-fibrotic 
pathways—such as changes in miR-133a, miR-486, and miR-
214—has been linked to improved cardiomyocyte contractility, 
physiological hypertrophy, and enhanced metabolic efficiency, 
which together contribute to increases in VO2peak. Although 
direct evidence in response specifically to RT remains limited, 
the available literature indicates that epigenetic modulation 
represents a mechanistic bridge connecting exercise stimuli to 
favorable cardiovascular remodeling and function (Domańska-
Senderowska et al., 2019).

In addition to the epigenetic mechanisms modulated by RT, 
individual factors such as age, sex, metabolic status, obesity, and 
pre-existing cardiovascular disease play a decisive role in shaping 
the magnitude and direction of these responses. Older adults, 
for instance, typically exhibit higher global DNA methylation 
and altered HDAC and sirtuin activity, which may reduce 
epigenetic plasticity and influence exercise-induced adaptations. 
Sex-related differences also affect the expression of key miRNAs 
and hormone-driven pathways that interact with SIRT1, AMPK, 
and DNMTs, potentially resulting in distinct cardiovascular 
outcomes between men and women. Likewise, conditions such 
as insulin resistance, low-grade inflammation, and excess adiposity 
modify the cellular metabolic environment, impacting bioenergetic 
status and, consequently, the efficiency of epigenetic mechanisms 

dependent on redox balance and NAD+/NADH availability. 
In individuals with established cardiovascular disease, pre-
existing epigenetic remodeling may either attenuate or enhance 
responsiveness to training stimuli. Considering these variables 
is essential to understanding the heterogeneity of molecular 
adaptations and strengthening the translational relevance of 
exercise-induced epigenetic effects (Zhou et al., 2020; Domańska-
Senderowska et al., 2019).

Another class of non-coding RNAs, the lncRNAs, still requires 
deeper exploration regarding their roles in RT. However, they have 
been shown to regulate skeletal muscle metabolism. Melo et al. (2015) 
identified a muscle-specific lncRNA, linc-MD1, which modulates 
the timing of muscle differentiation by acting as a competing 
endogenous RNA (ceRNA) in mouse and human myocytes. Linc-
MD1 binds to miR-133 and miR-135, thus regulating transcription 
factors such as MAML1 and MEF2C, which activate muscle-
specific genes. Modulating linc-MD1 levels can delay or accelerate 
muscle differentiation, demonstrating its essential role in muscle 
plasticity (Cesana et al., 2011). However, studies on the effects of RT 
on lncRNAs expression in cardiac tissue still need to be addressed. 

Critical considerations regarding the current literature are also 
necessary to contextualize the epigenetic adaptations induced by 
RT. Although several studies report consistent changes in DNA 
methylation, histone modifications, and non-coding RNA expression, 
conflicting results remain, particularly regarding the magnitude, 
direction, and functional significance of these epigenetic shifts. These 
discrepancies arise partly from methodological limitations, including 
small sample sizes, heterogeneity in tissue sampling (e.g., whole muscle 
vs. specific fiber types), and variability across epigenetic measurement 
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techniques such as bisulfite sequencing, ChIP-based assays, or 
RNA-seq, which differ in sensitivity and coverage. Population-
specific factors—such as age, sex, disease status, training experience, 
and metabolic profile—further contribute to divergent findings, as 
do differences in training intensity, volume, and duration used 
across studies. Collectively, these considerations highlight the need 
for standardized protocols, larger and more diverse cohorts, and 
integrative multi-omics approaches to better define the reliability and 
translational relevance of exercise-induced epigenetic modifications. 

5 Limitations and research gaps

Current evidence on cardiovascular epigenetic adaptations 
to RT is limited by substantial heterogeneity in RT protocols 
across studies, including differences in intensity, volume, duration, 
and participant characteristics, which complicate comparison and 
interpretation. Moreover, there is a scarcity of studies assessing 
epigenetic changes directly in human cardiac or vascular tissues, 
as most mechanistic insights come from skeletal muscle or 
preclinical models, restricting the ability to generalize findings to the 
cardiovascular system. Many investigations also rely on peripheral 
biomarkers—such as circulating microRNAs or leukocyte DNA 
methylation—as indirect indicators of cardiovascular adaptations, 
although these measures may not accurately reflect tissue-specific 
epigenetic modifications. Additional methodological constraints, 
including small sample sizes, short intervention periods, variability 
in analytical techniques, and limited longitudinal designs, further 
hinder reproducibility and weaken the current evidence base. 
Therefore, future research should prioritize standardized RT 
protocols, incorporate tissue-specific assessment approaches, and 
conduct well-controlled clinical trials to better elucidate how RT 
modulates epigenetic regulation in cardiovascular tissues. 

6 Conclusion

Understanding these epigenetic mechanisms opens new 
perspectives for the prevention and treatment of cardiovascular 
diseases. Adopting a lifestyle that includes regular RT can be 
an effective strategy for shaping epigenetic markers favorable to 
cardiovascular health, highlighting the importance of epigenetic 
interventions in promoting a healthy heart. Although this review 
is limited by the many differences in RT protocols in literature, 
which makes interpreting the results difficult, studies show several 
beneficial effects of RT on the cardiovascular system with alterations 
in signaling pathways through epigenetic regulations. Thus, it 
is essential to continue exploring how RT can be optimized to 
maximize its epigenetic benefits and improve cardiovascular health 
in different populations.

However, important limitations of RT must also be 
acknowledged. RT-induced epigenetic adaptations can vary 
substantially depending on training intensity, volume, and rest 
intervals, which are not standardized across studies and may 
lead to inconsistent cardiovascular outcomes. Additionally, most 
available evidence relies on skeletal muscle samples, limiting the 
direct extrapolation of findings to cardiac or vascular tissues. 
Interindividual variability—driven by age, sex, metabolic status, and 

pre-existing disease—further complicates the interpretation of RT-
specific effects. Moreover, the acute mechanical load imposed by RT 
may not be suitable for all clinical populations, particularly those 
with uncontrolled hypertension or structural cardiomyopathies, 
potentially restricting the generalizability of RT-based epigenetic 
interventions. These factors highlight the need for more rigorous, 
mechanistically oriented studies to clarify the specific role of RT 
in modulating cardiovascular epigenetics. Furthermore, a therapy 
based on RT-induced epigenetic modification could be implemented 
in the future to promote cardiovascular health.
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