:' frontiers ‘ Frontiers in Physiology

‘ @ Check for updates

OPEN ACCESS

Lahouaria Hadri,
Icahn School of Medicine at Mount Sinai,
United States

Dominique Moser,

University Hospital of Munich, Germany

Nu Zhang,

Northwestern Polytechnical University, China

Yuan Wang,
wangcircle22@163.com

Xiging Sun,
sunxiging@fmmu.edu.cn

08 September 2025
07 November 2025

10 November 2025

10 December 2025

Qin X, Wang R, Li C, Pan Y, Wang Y and Sun X
(2025) Integrated transcriptomic and
proteomic analyses identify the TLR2-CXCR4
axis as a regulator of endothelial cell
migration under simulated microgravity.
Front. Physiol. 16:1701338.

doi: 10.3389/fphys.2025.1701338

© 2025 Qin, Wang, Li, Pan, Wang and Sun.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Physiology

Original Research
10 December 2025
10.3389/fphys.2025.1701338

Integrated transcriptomic and
proteomic analyses identify the
TLR2-CXCR4 axis as a regulator
of endothelial cell migration
under simulated microgravity

Xiaodong Qin, Ruonan Wang, Chengfei Li, Yikai Pan,
Yuan Wang* and Xiging Sun*

Department of Aerospace Medical Training, School of Aerospace Medicine, Air Force Medical
University, Xi'an, China

Simulated microgravity profoundly alters endothelial function, particularly cell
migration. However, the mechanosensitive molecular pathways involved remain
incompletely understood. In this study, we performed integrated transcriptomic
and proteomic analyses of human umbilical vein endothelial cells exposed
to simulated microgravity to identify key regulators of endothelial migration.
RNA-seq and proteomic profiling identified 964 differentially expressed genes
and 183 differentially expressed proteins, primarily enriched in stress response,
signal transduction, and angiogenesis pathways. Combined analysis of both
datasets revealed four key genes—TLR2, HSPB1, RBM3, and HSPA1B—with more
than a twofold change. Protein—protein interaction analysis incorporating 48
endothelial migration—related genes further highlighted TLR2 as a central hub
with strong interaction with CXCR4. Functional experiments demonstrated that
simulated microgravity significantly enhanced endothelial migration through
TLR2 upregulation, while TLR2 activation further promoted this response by
increasing CXCR4 expression. These findings identify the TLR2-CXCR4 axis
as a previously unrecognized mechanosensitive signaling pathway driving
endothelial adaptation to simulated microgravity, offering potential molecular
targets for therapeutic intervention against microgravity-induced vascular
remodeling.

simulated microgravity, human umbilical vein endothelial cells (HUVECs),
transcriptomics, proteomics, multi-omics integration, TLR2—-CXCR4 axis, endothelial
cell migration

1 Introduction

Extended exposure to microgravity leads to profound cardiovascular deconditioning,
characterized by orthostatic intolerance, cardiac atrophy, arrhythmias, and endothelial
dysfunction, all of which pose significant risks to astronaut health (Baran et al,
2022). The initial headward fluid shift increases central venous pressure and stroke
volume by up to 40%, but subsequent hypovolemia (a 10%-15% reduction in
blood volume) and relative anemia compromise cardiac output upon return to
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normal gravity. Cardiac muscle mass decreases by 10%-20%
after long-duration spaceflight, thereby heightening susceptibility
to orthostatic hypotension and syncope (Vernice et al., 2020).
Moreover, microgravity acts synergistically with space radiation
to accelerate oxidative stress, promote vascular remodeling, and
impair autonomic regulation, collectively elevating the risk of
atherosclerosis and endothelial injury (Patel, 2020). These systemic
alterations underscore the urgent need to elucidate the cellular
and molecular mechanisms underlying microgravity-induced
cardiovascular dysfunction.

Endothelial cells (ECs) are key regulators of vascular
homeostasis, modulating vascular tone, permeability, coagulation,
and angiogenesis through the mechanosensing of physical forces
such as shear stress and hydrostatic pressure (Liu et al., 2013;
Charbonier et al, 2019). Under microgravity, the absence of
these mechanical cues disrupts endothelial signaling, resulting
in alterations in gene expression, protein synthesis, and cellular
behavior (Maier et al., 2015; Locatelli and Maier, 2021). Owing
to their accessibility and well-established relevance to vascular
physiology, human umbilical vein endothelial cells (HUVECs)
represent an ideal in vitro model for investigating endothelial
function (Medina-Leyte et al., 2020; Duranova et al., 2024). Studies
have shown that HUVECs exposed to simulated microgravity
(MG)—using devices such as the clinostat or random positioning
machine—exhibit extensive cellular and molecular alterations
(Buravkova et al., 2020; Shi et al., 2012; Kashirina et al., 2021).
Collectively, these findings indicate that HUVECs display a complex
and multifaceted adaptive response to microgravity, involving
diverse signaling pathways.

Transcriptomic studies have revealed that exposure to
microgravity induces substantial changes in gene expression
within endothelial cells, affecting essential biological functions
such as motility, adhesion, and immune regulation. Research on
HUVECs under MG conditions has demonstrated alterations in
genes associated with cytoskeletal organization, apoptosis, and
cell cycle regulation, which collectively contribute to reduced
proliferation and increased cell death (Rudimov et al, 2017;
Dan et al., 2018). Notably, Buravkova et al. (2017) reported that a
24-h MG environment caused differential expression of 177 genes in
endothelial cells derived from umbilical cord blood, many of which
were linked to angiogenesis, migration, and cell division—reflecting
the cells’ adaptive responses to decreased mechanical load
(Rudimov et al.,, 2017). In addition, transcriptomic investigations
have shown that microgravity can modulate endothelial responses
to inflammatory stimuli such as lipopolysaccharide (LPS) by
reshaping the expression of genes involved in both LPS recognition
and cytokine signaling. For instance, Chakraborty etal. (2014)
found that microgravity suppressed early immune signaling by
downregulating Lbp, MyD88, and MD-2—key genes involved in
LPS sensing—while concurrently enhancing the expression of
pro-inflammatory cytokines such as IL-6 and IL-8, indicating
a reprogrammed inflammatory response under microgravity
(Maier et al., 2015).

Recent mass spectrometry-based proteomic studies have begun
to elucidate how microgravity (MG) alters the expression of proteins
directly involved in endothelial cell migration and vessel formation.
For example, Kopp et al. (2021) used a random positioning machine
to simulate MG in cultured human umbilical vein endothelial
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cells for 5days and subsequently applied label-free quantitative
LC-MS/MS to profile protein abundance changes relative to
static controls. They identified approximately 120 proteins that
changed by > 1.5-fold (p < 0.05), with Gene Ontology enrichment
in cytoskeletal organization (e.g., vinculin, talin), extracellular
matrix remodeling (fibronectin, laminin), chaperone-mediated
proteostasis (HSP70, HSPB1), and focal adhesion assembly (paxillin,
FAK). Key findings—including upregulation of HSP70 and vinculin
and downregulation of integrin p1—were validated by Western blot,
demonstrating that MG induces cytoskeletal disassembly, activates
stress-response pathways, and disrupts cell-matrix interactions in
endothelial cells (Kashirina et al.,, 2021). In addition, proteomic
analyses of EA. hy926 cells and primary human microvascular
endothelial cells cultured on a random positioning machine for
5-7 days revealed differential abundance of cytoskeletal regulators
(e.g., vinculin, talin), angiogenic mediators (e.g., angiopoietin 2,
PDGF BB), and focal adhesion proteins (e.g., paxillin, FAK), which
correlated with impaired formation of three-dimensional tube-like
structures (Ma et al., 2014).

Despite the
governing the endothelial response to microgravity remain
incompletely understood. To address these gaps, we employed

these advances, molecular mechanisms

an integrated multi-omics strategy combining transcriptomic and
proteomic analyses to comprehensively characterize the complex
regulatory networks underlying microgravity-induced endothelial
dysfunction (Huang et al., 2025). In this study, we aimed to delineate
transcriptomic and proteomic alterations in HUVEC:s after 48 h of
MG exposure. By identifying key differentially expressed genes and
proteins, we sought to elucidate the molecular pathways mediating
endothelial adaptation to microgravity and to highlight potential
therapeutic targets for mitigating vascular dysfunction during
spaceflight.

2 Materials and methods

2.1 Cell culture and experimental
conditions

HUVECs were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, United States) and maintained
in high-glucose Dulbeccos Modified Eagles Medium (DMEM;
HyClone, Logan, UT, United States) supplemented with 10% heat-
inactivated fetal bovine serum (FBS; HyClone, Logan, UT, United
States). The cells were plated at a density of 1 x 10° cells per
well on 2.55 x 2.15 cm coverslips within 6-well culture plates and
incubated at 37°C in a humidified environment with 5% CO,.
To block CXCR4 signaling, we employed the selective antagonist
AMD3100 (MedChemExpress, Monmouth Junction, NJ, United
States), which was prepared as a 50 uM working solution using
sterile ultrapure water.

2.2 Simulated microgravity condition
Due to the high cost associated with real spaceflight, most

studies investigating the biological effects of microgravity rely
on ground-based simulation models. Among these, the clinostat
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is a widely used and effective tool for simulating microgravity
conditions. The 2D-clinostat (2D-RWYV, Rotating Wall Vessel),
developed by the China Astronaut Research and Training Center
(Beijing, China), consists of two rotating components: a horizontal
turntable and a vertical turntable. The horizontal chambers rotate
around the horizontal axis to minimize the effects of gravity,
while the vertical chambers rotate around the vertical axis,
serving as rotation controls. After the cells had adhered to the
coverslips for 24 h, the coverslips were transferred to culture
chambers pre-filled with culture medium. The chambers were
divided into two experimental groups: the simulated microgravity
(MG) group and the rotation control group (CON). The clinostat
was operated at a rotation speed of 30rpm for 48 h while
being maintained in a humidified incubator at 37 °C with 5%
CO, throughout the culture period. After 48h of simulated
microgravity exposure, the coverslips were carefully removed
from the chambers and processed immediately for subsequent
experiments. A schematic representation of the 2D-clinostat setup is
provided in Supplementary Figure S1 to illustrate the experimental
configuration.

2.3 RNA isolation, sequencing and data
analysis

After 48h of culture under either control or rotating
conditions, total RNA was extracted from HUVECs using TRIzol
reagent (Invitrogen, Carlsbad, CA, United States) following
the manufacturer’s protocol. The integrity of the RNA was
assessed via electrophoresis on a 1% agarose gel, while its
concentration was quantified by measuring absorbance at
260 nm using a UV-2600 spectrophotometer (UNIC, Shanghai,
China).

Total RNA was subjected to sequencing using the Illumina
HiSeq 2500 platform (Illumina, San Diego, CA, United States), and
RNA-seq libraries were prepared accordingly. Briefly, ribosomal
RNA was selectively removed to enrich for mRNA, which was
subsequently fragmented to the desired length. For each sample,
a minimum of 10pg of total RNA was utilized for library
construction following the manufacturer’s protocol. The fragmented
RNA underwent sequential ligation of 3’and 5’ adapters, followed
by reverse transcription to generate complementary DNA (cDNA).
The resulting cDNA was then amplified through 30 cycles of PCR
to construct sequencing libraries. Reads with low quality or adapter
contamination were filtered out, yielding clean reads for further
bioinformatic analysis.

The RNA-seq data analysis was performed as follows: Clean
sequencing reads were aligned to the reference genome using
HISAT?2 (version 2.2.1). The alignment results were subsequently
converted into BAM format using SAMtools (version 1.20).
Transcript assembly and quantification were conducted using
StringTie (version 2.2.3) to generate the gene expression matrix.
Differentially expressed genes (DEGs) were identified using DESeq2
(version 1.44.0), with statistical significance defined as p < 0.05 and
fold change >1.5.

GO and KEGG enrichment analyses of differentially expressed
genes were performed using the OmicShare tools platform (https://
www.omicshare.com/tools). Gene set enrichment analysis (GSEA)
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was also conducted on the entire gene expression dataset using the
same platform using default parameters.

2.4 Quantitative real-time PCR

Total RNA was extracted from HUVECs using TRIzol
reagent (Invitrogen, Carlsbad, CA, United States) following the
manufacturer’s protocol. RNA (500 ng) was reverse transcribed
into cDNA using the PrimeScript RT reagent kit (Takara, Shiga,
Japan). Quantitative PCR was performed on a LightCycler 480
system (Roche, Basel, Switzerland) with SYBR Premix Ex Taq
II (YISHEN, Shanghai, China). The thermal cycling conditions
consisted of: 95°C for 30s, followed by 40 cycles of 95°C
for 5s and 60°C for 30s. Gene expression was normalized
to GAPDH and calculated using the comparative Ct method
(2722€T) The primer sequences used for quantitative RT-PCR
are listed in Table 1. Primers were designed and synthesized by
Beijing AuGCT DNA-SYN Biotechnology Co., Ltd. (Beijing, China).
PCR products were verified by melting curve analysis and agarose gel
electrophoresis.

2.5 Protein analysis by LC—MS/MS

2.5.1 Protein extraction

HUVEC samples were subjected to ultrasonic disruption on
ice three times using a high-intensity ultrasonic processor (Scientz,
Ningbo, China) in lysis buffer containing 8 M urea and 1% protease
inhibitor cocktail. The lysates were then centrifuged at 12,000 x g for
10 min at 4 °C to remove insoluble debris. The resulting supernatant
was carefully collected, and the protein concentration was measured
using a BCA assay kit following the manufacturer’s protocol.

2.5.2 Trypsin digestion

For protein digestion, the sample was first reduced with 5 mM
dithiothreitol at 56 °C for 30 min, followed by alkylation with 11 mM
iodoacetamide at room temperature for 15 min in the dark. The
protein solution was then diluted with 100 mM TEAB to reduce the
urea concentration to below 2 M. Trypsin was subsequently added
at a trypsin-to-protein mass ratio of 1:50 for an initial overnight
digestion, followed by a second digestion at a 1:100 ratio for an
additional 4 h. Finally, the resulting peptides were purified using a
C18 solid-phase extraction (SPE) column.

2.5.3 4D mass spectrometer

The tryptic peptides were resuspended in solvent A (0.1%
formic acid, 2% acetonitrile in water) and directly loaded onto a
custom-packed reversed-phase analytical column (25 cm in length,
75/100 pm inner diameter). Peptide separation was performed using
a gradient elution, starting with an increase from 6% to 24% solvent
B (0.1% formic acid in acetonitrile) over 70 min, followed by a rise to
35% over 14 min, then reaching 80% within 3 min and maintaining
this composition for an additional 3 min. The chromatography was
conducted at a constant flow rate of 450 nL/min using a nanoElute
UHPLC system (Bruker Daltonics, Bremen, Germany).

The eluted peptides were subsequently introduced into a
timsTOF Pro mass spectrometer (Bruker Daltonics, Bremen,
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TABLE 1 Primers used for each gene.

10.3389/fphys.2025.1701338

Gene ID Forward primer (5'—3') Reverse primer (5'—3')

TLR2 CTTCACTCAGGAGCAGCAAGCA ACACCAGTGCTGTCCTGTGACA
HSPB1 CTGACGGTCAAGACCAAGGATG GTGTATTTCCGCGTGAAGCACC
HSPAIB ACCTTCGACGTGTCCATCCTGA TCCTCCACGAAGTGGTTCACCA
RBM3 GACCACTTCAGCAGTTTCGGAC TGGCTCTCATGGCAACTGAAGC
ILGST CACCCTGTATCACAGACTGGCA TTCAGGGCTTCCTGGTCCATCA
BAG3 TGCCAGAAACCACTCAGCCAGA TGAGGATGAGCAGTCAGAGGCA
CLU TGCGGATGAAGGACCAGTGTGA TTTCCTGGTCAACCTCTCAGCG
GAPDH AGAAGGCTGGGGCTCATTTG AGGGGCCATCCACAGTCTTC

Germany) via a nano-electrospray ionization (nESI) source. An
electrospray voltage of 1.60kV was applied. Both precursor
and fragment ions were detected using a time-of-flight (TOF)
analyzer, with an MS/MS scan range of 100-1700 m/z. The
instrument operated in parallel accumulation-serial fragmentation
(PASEF) mode, selecting precursor ions with charge states
between 0 and 5 for fragmentation. Each acquisition cycle
included 10 PASEF-MS/MS scans, with a dynamic exclusion time
set to 30 s.

2.5.4 Database search
The acquired MS/MS data were
MaxQuant search engine (v.1.6.15.0). Tandem mass spectra were

analyzed using the

matched against the human SwissProt database (20,422 entries),
supplemented with a reverse decoy database. Trypsin/P was
designated as the protease, allowing for up to two missed cleavages.
The mass tolerance for precursor ions was set to 20 ppm in the
first search and 5 ppm in the main search, while the fragment
ion mass tolerance was set to 0.02 Da. Carbamidomethylation of
cysteine was considered a fixed modification, while acetylation at
the protein N-terminus and oxidation of methionine were defined
as variable modifications. The false discovery rate (FDR) threshold
was set to <1%.

2.6 Functional analyses and
protein-protein interaction network

GO and KEGG annotation was first conducted using eggnog-
mapper based on the EggNOG database to assign GO terms
related to cellular components, molecular functions, and biological
processes (Huerta-Cepas et al., 2019). KEGG pathway annotation
was performed by aligning protein sequences to the KEGG database
using BLASTP (e-value < le-4), with annotations based on the
top-scoring hits. Subsequently, enrichment analysis was carried out
using Fisher’s exact test, with the entire set of identified proteins as
background. Functional categories with a fold enrichment >1.5 or
1.2 and p value < 0.05 were considered significantly enriched.
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The protein-protein interaction (PPI) network of differentially
expressed proteins was constructed using the stringApp plugin
in Cytoscape software (version 3.10.3), based on data from the
STRING database (https://string-db.org/), with default parameters.
The interaction network was visualized and analyzed in Cytoscape.
Hub gene analysis was performed using the CytoHubba plugin, and
key hub proteins were identified by ranking nodes according to
degree centrality.

2.7 Western blot

After removal from the rotating chamber, cells on coverslips
were rinsed three times with pre-chilled PBS and lysed using RIPA
buffer supplemented with 1 mM PMSE The lysates were collected,
vortexed thoroughly, and incubated on ice for 10 min, followed by
centrifugation at 12,000 x g for 5 min at 4 °C. Protein concentrations
were assessed using the BCA assay and normalized with 5x loading
buffer. Equal protein amounts (15 pg per lane) were resolved via
SDS-PAGE and subsequently transferred onto methanol-activated
PVDF membranes. The membranes were blocked with 5% non-fat
milk in TBST for 1h at room temperature, followed by overnight
incubation at 4 °C with the following primary antibodies: anti-TLR2
(1:1000; Cat# 66645-1-1g, Proteintech, Wuhan, China), anti-HSPB1
(1:1000; Cat# T55934, Abmart, Shanghai, China), anti-HSPA1B
(1:2000; Cat# 25405-1-AP, Proteintech, Wuhan, China), anti-RBM3
(1:10000; Cat# 14363-1-AP, Proteintech, Wuhan, China), anti-
IL6ST (1:2000; Cat# 67766-1-Ig, Proteintech, Wuhan, China), anti-
BAG3 (1:10000; Cat# 83779-4-RR, Proteintech, Wuhan, China),
anti-CLU (1:10000; Cat# 84067-4-RR, Proteintech, Wuhan, China),
anti-CXCR4 (1:1000; Cat# ab124824, Abcam, Cambridge, United
Kingdom), and anti-GAPDH (1:2000; Cat# NCO021, Zhuangzhi
Biology, Xi’an, China). After thorough washing, membranes were
incubated with HRP-conjugated secondary antibodies (1:5000) for
1h at room temperature. Protein bands were visualized using
an enhanced chemiluminescence (ECL) substrate and quantified
using Image] software (NIH), with GAPDH as the loading
control.
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2.8 Small interfering RNA transfection

HUVECs at 70% confluence were transfected with TLR2 siRNA
(sc-35203, Santa Cruz Biotechnology, Dallas, TX, United States)
using Lipofectamine 2000 (11668019, Invitrogen, Carlsbad, CA,
United States) according to the manufacturer’s protocol. Briefly,
cells were washed and maintained in Opti-MEM I Reduced Serum
Medium (31985070, Invitrogen, Carlsbad, CA, United States). For
each transfection, 50 pmol/mL siRNA and Lipofectamine 2000
(2 uL/mL) were separately diluted in Opti-MEM, incubated for
5 min at room temperature, then combined and incubated for
an additional 20 min before adding to cells. Parallel transfections
were performed using scrambled siRNA as a negative control.
Transfection efficiency was assessed 48 h post-transfection by both
qPCR and Western blot analysis. Sequences of the siRNA probes
were as follows: NC, 5'-UUCUCCGAACGUGUCACGUTT-3'
siTLR2-1056, 5'-CUGGAUUGUUAGAAUUAGATT-3; siTLR2-
1560, 5'-CUGGAUUGUUAGAAUUAGATT-3'; siTLR2-2480, 5'-
CUGCGGAAGAUAAUGAACATT-3".

2.9 Transwell

After exposure to MG for 48 h, HUVECs were collected,
digested with trypsin, and resuspended for use in the Transwell
migration assay. The Transwell migration assay was assessed
using Transwell chambers (Corning Inc., Corning, NY, United
States) in a 24-well plate format. Briefly, cells were trypsinized,
resuspended in low-serum medium (0.25% FBS), and seeded into
the upper chamber (3 x 10* cells/100 uL). The lower chamber
contained 600 uL of complete medium (10% FBS) to serve as a
chemoattractant. After 12 h of incubation at 37 °C, non-migrated
cells were removed from the upper membrane surface with a
cotton swab. Migrated cells were fixed with 4% paraformaldehyde,
stained with 0.4% crystal violet, and quantified by bright-field
microscopy (Nikon).

2.10 Statistics

Statistical analyses were performed using GraphPad Prism
software (version 8.3.0). Data were expressed as the mean +
SD from three independent experiments. For continuous variables,
two-group analyses employed t-tests, whereas comparisons across
four and three groups utilized One-way ANOVA supplemented by
Dunnett’s post hoc analysis and p < 0.05 was considered statistical
significance.

3 Results

3.1 Transcriptomic study of endothelial
cells under simulated microgravity

Through transcriptome sequencing analysis of HUVECs
subjected to simulated microgravity (MG) for 48 h, a total of 964
significantly differentially expressed genes (fold change >1.5 or
<0.67, p < 0.05) were identified compared with the control group.
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Among these, 593 genes were significantly upregulated, while 371
were downregulated (Figure 1A). The complete transcriptome
expression matrix and the list of differentially expressed genes
(DEGs) are provided in Supplementary Table S1.

GO enrichment analysis of all DEGs revealed significant
enrichment in biological processes such as “response to topologically
incorrect protein” (GO:0035966) and “response to unfolded protein”
(G0O:0006986), both indicative of proteostatic stress responses.
Additionally, processes such as “tube morphogenesis” (GO:0035239),
“regulation of angiogenesis” (GO:0045765) and “regulation of
vasculature development” (GO:1901342) were significantly enriched,
highlighting their essential roles in endothelial cell migration and
angiogenesis (Figure 1B).

Analysis of the upregulated gene set further revealed
“tube (GO:0035239) and
“response to unfolded protein” (GO:0006986), underscoring their

enrichment in morphogenesis”
involvement in promoting endothelial migration and adaptation
to microgravity-induced stress (Figure 1C). In contrast, the
downregulated gene set was enriched in “nucleosome assembly”
(GO:0006334) and “chromatin assembly” (GO:0031497), suggesting
a potential reduction in transcriptional activity and chromatin
remodeling under MG (Figure 1D).

KEGG pathway analysis showed significant enrichment
in pathways such as “neutrophil extracellular trap formation”
(ko04613), “alcoholism” (ko05034) and “necroptosis” (ko04217).
In addition, pathways related to systemic inflammation, such as
“systemic lupus erythematosus” (ko05322) were also enriched,
supports the notion that MG induces a pro-inflammatory
state in HUVECs, which may enhance migratory capacity
through the activation of adhesion molecules and chemotactic
signaling (Figure 1E).

To further coordinated biological processes
beyond individual DEGs, we performed Gene Set Enrichment
Analysis (GSEA). The results demonstrated that the gene set
associated with “positive regulation of blood vessel endothelial
cell migration” (GO:0043536) was positively enriched under

investigate

MG. The positive normalized enrichment score (NES) indicated
that genes within this pathway were predominantly upregulated
in the MG group, suggesting transcriptional activation of pro-
migratory programs (Figure 1F).

3.2 Proteomic study of endothelial cells
under simulated microgravity

Proteomic profiling of HUVECs following 48 h of simulated
microgravity (MG) identified a total of 5,646 proteins, among
which 4,808 were quantified with high confidence (Figure 2A).
Using a threshold of fold change >1.5 and p < 0.05, 183
(DEPs)
identified, including 140 upregulated and 43 downregulated
(Figure 2B). The label-free (LFQ)
intensity values and the complete list of DEPs are provided in
Supplementary Table S2.

significantly  differentially expressed proteins were

proteins quantification

GO enrichment analysis of all DEPs showed significant
overrepresentation of processes such as “regulation of amyloid
fibril formation” (GO:1905908), “positive regulation of protein
import” (GO:1904591), and “extracellular structure organization”
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FIGURE 1
Transcriptomic Analysis of HUVECs under MG. (A) Volcano plot displaying differentially expressed genes (DEGs) in HUVECs after 48 h of MG. The x-axis

represents log, fold change, and the y-axis represents—log,, (p value). Red dots indicate significantly upregulated genes, blue dots indicate significantly
downregulated genes, and gray dots represent non-significant genes (fold change >1.5). (B) Gene Ontology (GO) enrichment analysis of all DEGs. The
top 30 enriched biological process terms are displayed, with bar lengths representing gene count and color intensity indicating enrichment
significance. (C,D) GO enrichment analysis of significantly upregulated and downregulated genes, respectively. (E) KEGG enrichment analysis of all
DEGs. The top 30 pathways are shown. (F) Gene Set Enrichment Analysis (GSEA) of the ranked transcriptome based on fold change. The plot displays
the enrichment of GO term “positive regulation of blood vessel endothelial cell migration” (GO:0043536). (Statistical significance for all enrichment
analyses was defined as adjusted p < 0.05).

(GO:0043062), implying that MG alters cytoskeletal dynamics and ~ were identified and highlighted in orange in Figure 2C. These
extracellular matrix (ECM) remodeling. Notably, two migration-  findings indicate that MG may prime endothelial cells for
related GO terms, including “positive regulation of cell migration”  enhanced motility by reorganizing adhesion and intracellular
(G0O:0030335) and “regulation of cell migration” (GO:0030334), trafficking systems.
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Focusing exclusively on upregulated DEPs, GO enrichment
retained strong representation of migration-related pathways,
MG preferentially promotes

reinforcing
proteomic programs associated with cell motility (Figure 2D).

the notion that
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This  selective upregulation highlights a cellular shift
toward a motile phenotype, possibly as an adaptive
mechanism to compensate for the altered mechanical

environment.
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In contrast, downregulated DEPs were predominantly enriched
in nuclear and DNA maintenance processes, including “telomere
maintenance via semi-conservative replication” (GO:0032201),
“nucleotide-excision repair” (GO:0006289) and “DNA strand
(GO:0022616) (Figure 2E). 'This
reduction in proliferation-related

elongation” downregulation

may reflect a transient
activities, favoring the activation of survival and stress-adaptive
pathways under MG.

KEGG pathway analysis of all DEPs revealed enrichment
in “DNA replication” (hsa03030) “proteoglycans in cancer”
(hsa05205), “mismatch repair” (hsa03430), “base excision repair”
(hsa03410) and “mitophagy—animal” (hsa04137) (Figure 2F). These
enriched pathways reflect broad cellular responses involving DNA
maintenance, extracellular matrix organization, and mitochondrial

regulation under MG.

3.3 Integrated transcriptome and
proteome analysis

To comprehensively elucidate the molecular responses of
HUVECs under simulated microgravity (MG), we performed
an integrated analysis of the transcriptomic and proteomic
datasets. To improve transcriptome-proteome comparability
and enhance biological insight, we relaxed the protein-level
differential expression threshold to >1.2-fold in this section. This
adjustment enabled the inclusion of a broader set of proteins
and increased the number of matched gene-protein pairs,
thereby facilitating a more robust and informative multi-omics
integration.

A nine-quadrant diagram was constructed to illustrate the
differential expression patterns of genes and proteins under MG
and normal conditions. As shown in Figure 3A, some genes
displayed consistent expression trends in both datasets (quadrants
3 and 7), while a few exhibited opposite trends (quadrants
1 and 9). The majority of genes showed significant changes
in only one of the two omics datasets (quadrants 2, 4, 6,
and 8).

To further identify key regulatory genes involved in the
response of HUVECs to MG, we intersected the significantly
differentially expressed genes from both the transcriptomic
and proteomic analyses. This Venn diagram revealed that 57
genes were significantly differentially expressed in both the
transcriptomic and proteomic studies (Figure 3B). Among them,
33 genes were significantly upregulated in both datasets, and
20 genes were significantly downregulated in both datasets.
Additionally, 4 genes exhibited opposite expression patterns:
WNT5B (Wnt family member 5B) and GPATCH4 (G-patch
domain containing 4) were significantly downregulated in the
transcriptome but significantly upregulated in the proteome,
whereas ZNF185 (zinc finger protein 185) and MAP1B (microtubule
associated protein 1B) were significantly upregulated in the
transcriptome but significantly downregulated in the proteome. The
expression profiles of these 57 genes are illustrated in the heatmap
(Figure 3C).

KEGG enrichment analysis of the 57 differentially expressed
genes identified in both the transcriptomic and proteomic
datasets revealed significant enrichment in several key pathways,
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including “protein processing in endoplasmic reticulum” (ko04141),
“NOD-like receptor signaling pathway” (ko04621), “lipid and
atherosclerosis” (ko05417), and “proteoglycans
(ko05205) (Figure 3D).

Among the overlapping 57 differentially expressed genes,

in cancer”

seven genes—toll-like receptor 2 (TLR2), heat shock protein Bl
(HSPB1), heat shock protein A1B (HSPA1B), RNA-binding motif
protein 3 (RBM3), interleukin 6 signal transducer (IL6ST), Bcl-
2-associated athanogene 3 (BAG3), and clusterin (CLU)—were
selected for further validation. TLR2, HSPB1, HSPAI1B, and
RBM3 were chosen because they showed consistent and strong
differential expression (fold change >2) at both transcriptomic
and proteomic levels, while IL6ST, BAG3, and CLU were
included as representative genes involved in cytokine signaling,
chaperone-assisted stress response, and extracellular remodeling,
respectively. These seven genes were validated by qRT-PCR
(Figure 3E) and confirmed at the protein level via Western blot
(Figure 3F).

3.4 TLR2 promotes endothelial cell
migration under simulated microgravity

To explore the underlying molecular mechanisms, we
performed an integrated analysis of transcriptomic and proteomic
datasets in the previous section. We focus on four genes-TLR2,
HSPB1, RBM3, and HSPA1B-with fold changes greater than 2
in both omics layers in this section to further investigate their
potential roles in endothelial cell responses under simulated
microgravity (MG). In parallel, 48 genes annotated with “endothelial
cell migration” were retrieved from the AmiGO 2 database to
construct an extended gene set relevant to endothelial motility.
Subsequently, a protein-protein interaction (PPI) network was
established by combining the four candidate genes with the
48 migration-associated genes. Using the STRING database,
we generated a high-confidence network to visualize potential
interactions among proteins involved in endothelial migration. The
PPI analysis revealed that TLR2 exhibited multiple interactions
within the network (Figure 4A). To quantitatively assess gene
importance, we conducted a hub gene analysis based on network
centrality metrics. TLR2 ranked the highest among the four
candidates, suggesting its central regulatory position in response
to MG.

To validate the function of TLR2, we performed siRNA-
mediated knockdown and identified two siTLR2 constructs
(siTLR2-1056 and siTLR2-2480) that achieved the most effective
suppression, as confirmed by qRT-PCR and Western blot
(Figures 4B,C). These two siRNAs were used for subsequent
functional assays. To further assess the involvement of TLR2 under
MG, siRNA transfection was performed prior to clinorotation.
The knockdown efficiency of siTLR2 under MG was verified
at both the mRNA and protein levels (Figures 4D,E). Transwell
assays showed that the number of migrated cells in the MG NC
group was approximately 1.7-fold higher than in the CON NC
group, whereas TLR2 silencing significantly reduced this MG-
induced enhancement (Figure 4F). These data demonstrate that
TLR2 is required for the promotion of endothelial cell migration
under MG.
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FIGURE 3
Integrated Transcriptomic and Proteomic Analysis of HUVECs under MG. (A) Nine-quadrant diagram of gene and protein expression Changes. Each dot

represents a single gene. Different dot colors represent the corresponding expression pattern of genes. The selection thresholds for differentially
expressed genes in the transcriptomic and proteomic analyses were set at 1.5-fold and 1.2-fold, respectively, and are indicated by dashed lines. (B)
Venn diagram showing the overlap of differentially expressed genes identified in the transcriptome and proteome. The transcriptomic DEGs are shown
in blue, and the proteomic DEPs are shown in pink. (C) Heatmap of the 57 genes differentially expressed in both transcriptomic and proteomic
datasets. (D) KEGG pathway enrichment analysis for the 57 shared DEGs/DEPs. (E) gqRT-PCR validation of seven shared differentially expressed genes
between transcriptome and proteome datasets, including TLR2, HSPB1, HSPA1B, RBM3, IL6ST, BAG3 and CLU. (F) Western blot analysis confirming the
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FIGURE 4
Functional Characterization of TLR2 in Regulating Endothelial Migration under MG. (A) Protein—protein interaction (PPI) network integrating four
candidate genes (TLR2, HSPB1, HSPA1B, RBM3) with 48 endothelial cell migration—related genes from AmiGO 2. TLR2 is highlighted as a potential hub
(purple). (B) gRT-PCR validation of TLR2 knockdown in HUVECs after 48 h MG siTLR2-1056 and siTLR2-2480 showed optimal knockdown and were
used in subsequent experiments. Data are presented as mean + SD (n = 3). (C) Western blot validation of TLR2 protein knockdown under normal gravity;
GAPDH as loading control. Data are presented as mean + SD (n = 3). (D) gRT-PCR validation of TLR2 knockdown under MG (48 h); expression relative
to CON NC. Data are presented as mean + SD (n = 4). (E) Western blot analysis of TLR2 under MG following siRNA knockdown; quantified relative to
GAPDH. Data are presented as mean + SD (n = 3). (F) Transwell migration assay showing reduced HUVEC migration under MG upon TLR2 knockdown.
Data are presented as mean + SD (n = 3). Statistical significance was defined as **p < 0.01. MG, MG group; CON, control; NC, negative control.

3.5 The TLR2-CXCR4 axis facilitates
endothelial cell migration under simulated
microgravity

Our previous experiments demonstrated that regulation of
C-X-C Motif Chemokine Receptor 4 (CXCR4) contributes to
enhanced HUVECs migration under simulated microgravity
(MG) (Ohori et al, 2021). To further investigate the potential
molecular link between TLR2 and CXCR4, we performed an
integrative analysis focusing on their possible interaction. In
addition to these two targets, we retrieved 48 genes annotated
with the biological process “endothelial cell migration” from
the AmiGO 2 database and combined them with TLR2
and CXCR4 to construct a protein-protein interaction (PPI)
network using the STRING database (Figure 5A). The network
analysis revealed an interaction between TLR2 and CXCR4.
Subsequent hub gene analysis showed that CXCR4 exhibited
a high degree of centrality within the network, suggesting its
key role in regulating endothelial migration-related processes
under MG.

Under normal gravity conditions, TLR2 silencing significantly
reduced CXCR4 expression at both the mRNA (Figure 5B) and
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protein (Figure 5C) levels, as determined by qRT-PCR and Western
blot analysis. After 48 h of MG exposure, TLR2 knockdown
similarly led to a marked decrease in CXCR4 mRNA (Figure 5D)
and protein expression (Figure 5E). Furthermore, treatment with
AMD3100, a selective CXCR4 antagonist, during clinorotation
significantly suppressed the MG-induced enhancement of HUVEC
migration, as evidenced by Transwell assays (Figure 5F). These
results indicate that TLR2 regulates CXCR4 expression and that
inhibition of either component diminishes the pro-migratory
effects observed under MG, supporting the existence of a

TLR2-CXCR4-dependent mechanism mediating endothelial
migration.
4 Discussion

Simulated microgravity (MG) disrupts cardiovascular

homeostasis by altering biomechanical signals in vascular tissues,
including fluid distribution and shear forces, which impair
endothelial function. As mechanosensitive cells, endothelial cells
transduce these changes into biochemical signals regulating vessel
tone, remodeling, and permeability. Our findings align with
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Functional Validation of the TLR2-CXCR4 Signaling Axis as a Mediator of Microgravity-Induced Endothelial Migration. (A) Protein—protein interaction
(PPI) network constructed with TLR2 and CXCR4 together with 48 endothelial migration—related genes retrieved from the AmiGO 2 database. (B)
qRT-PCR showing reduced CXCR4 mRNA expression in HUVECs following TLR2 knockdown under normal gravity. Data are presented as mean + SD (n
= 3). (C) Western blot validation of CXCR4 protein reduction in response to TLR2 knockdown under normal gravity. GAPDH serves as the loading
control. Data are presented as mean + SD (n = 3). (D) gRT-PCR showing that TLR2 knockdown decreases CXCR4 mRNA expression under 48 h MG.
Data are presented as mean + SD (n = 4). (E) Western blot analysis confirming reduced CXCR4 protein expression under MG after TLR2 knockdown.
GAPDH used as loading control. Data are presented as mean + SD (n = 3). (F) Transwell assay demonstrating that pharmacological inhibition of CXCR4
by AMD3100 attenuates MG-enhanced HUVEC migration. Data are presented as mean + SD (n = 3). Statistical significance was defined as *p < 0.05

prior studies showing MG induces oxidative stress (Versari et al.,
2013), apoptosis (Li et al, 2019), and cytoskeletal alterations
(Maier et al., 2015), predisposing the system to deconditioning.
For instance, Pan etal. (2025) linked MG to apoptosis via post-
translational modifications impairing mitochondrial function
(Pan et al., 2020), while Kang et al. (2011) reported downregulation
of PI3K/AKkt signaling (Kang et al., 2011). Wang et al. (2024) further
highlighted upregulation of mechanosensitive channels like those
mediating migration. Additionally, MG perturbs extracellular
matrix remodeling (Buravkova et al, 2021; Martinez et al,
2024) receptor signaling, with TLR2 implicated in
inflammatory responses exacerbating endothelial stress (Jiang et al.,
2011). These observations underscore MG’s multifaceted
impact on endothelial central
stability.

Transcriptomic profiling of HUVECs under 48-h MG
revealed 964 differentially expressed genes (593 upregulated,
371 downregulated), providing insights into cellular adaptations.
This pattern reflects stress-induced responses in endothelial cells,
consistent with Ohori etal. (2021), who identified networks
in senescence involving stress, splicing, and cytoskeletal genes
(Ohori et al,, 2021). Li et al. (2023) reported overlapping oxidative

and

integrity, to  vascular
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stress-responsive genes (Li et al., 2023), while Abdelgawad et al.
(2021) noted subpopulation heterogeneity in single-cell analyses
(Abdelgawad et al., 2021). Our data emphasize enhanced cell-cell
interactions and integrin signaling, echoing Afshar etal. (2023)
on inflammatory and apoptotic gene induction (Afshar et al.,
2023). Fu etal. (2019) documented MG-specific signatures,
including non-coding RNAs (Fu et al., 2020). This transcriptomic
fingerprint validates MG’s unique effects and positions it as a
potential biomarker for endothelial dysfunction, informing future
interventions.

Proteomic analysis identified 5,646 proteins (4,808
quantifiable), with 183 differentially expressed (140 upregulated,
43 downregulated) under MG. These changes complement
transcriptomic shifts, highlighting post-transcriptional regulation
in stress response, receptor signaling, and transduction pathways.
Mehlferber etal. (2022) revealed isoform diversity in HUVECs
(Mehlferber et al., 2022), while Yi et al. (2020) described metabolic
and proteomic alterations in senescence (Yi et al., 2020). Tang
etal. (2023) linked epigenetic regulation to angiogenic proteins
(Tang et al., 2023). Our results show cytoskeletal and adhesion
complex shifts, aligning with Donald et al. (2024) and Wang et al.
(2023) on mechanical stress effects (Ingber, 2002; Wang et al,
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2001). Integrating proteomics with transcriptomics thus offers
a fuller view of MG-induced adaptations at mRNA and protein
levels.

Multi-omics integration, visualized via a nine-quadrant
diagram, captured concordant and discrepant changes between
transcriptomic and proteomic layers in MG-exposed HUVECs.
This strategy enhances mechanistic insights and target identification
beyond single-omics analyses, advancing precision cardiovascular
research. This approach, identifying 57 overlapping differentially
expressed genes/proteins, reveals pivotal nodes in endothelial
adaptation. Among the genes with significant differential expression
in both omics layers in this study, TLR2 has been shown to play a
significant role in promoting cell migration. Additionally, TLR2
signaling has been implicated in modulating leukocyte migration
during tissue injury (Yao et al., 2013; Khandoga et al., 2009). HSPBI,
also known as HSP27, is a small heat shock protein that regulates
actin cytoskeletal dynamics and cell motility. Phosphorylation of
HSPB1 enhances its recruitment to actin filaments, promoting
cytoskeletal remodeling and migration (Lam et al., 2022; Doshi et al.,
2010). HSPAI1B, another heat-shock family member, supports
protein folding and stress response, promoting cellular survival
and potentially aiding migration under stress (Haase and Fitze,
2016; Xie et al., 2019). RBM3 acts as an RNA chaperone, stabilizing
VEGF mRNA to facilitate angiogenesis and directional migration
(Pilotte et al., 2018). IL6ST is the common signal-transducing
subunit of IL-6 family receptors; its activation of JAK/STAT3
signaling enhances endothelial proliferation and chemotactic
movement during vascular repair (Zegeye et al., 2018). BAG3 serves
as a co-chaperone in selective autophagy, regulating focal adhesion
turnover and increasing HUVEC migratory capacity under stress
(Diao et al,, 2022). CLU is a secreted glycoprotein that protects
endothelial cells from oxidative injury and stimulates migration
by modulating matrix metalloproteinases and adhesion molecules
(Trougakos, 2013; Du et al.,, 2025). In addition, Lin et al. (2025)
used machine learning for similar integrations in cardiovascular
risk prediction (Lin et al., 2025), while databases like CVD Atlas
facilitate clinical correlations (Qian et al., 2025). Alemu et al. (2025)
emphasized gene-environment interactions (Alemu et al., 2025),
and multi-omics resolves mRNA-protein paradoxes (Vogel and
Marcotte, 2012; Aviner et al., 2015).

A key result is the validation of the TLR2-CXCR4 axis mediating
HUVEC migration under MG. TLR2, beyond innate immunity,
regulates cardiovascular migration and cytoskeletal dynamics.
Our datasets showed TLR2 upregulation after 48-h MG, with
knockdown reducing CXCR4 levels and migration. This causal
link resonates with Bezhaeva etal. (2022) on TLR’s reparative
roles (Bezhaeva et al., 2022), and Meteva et al. (2023) on matrix
interactions enhancing migration (Meteva et al., 2023). Wang et al.
(2024) linked MG to CXCR4 upregulation (Wang et al., 2024),
while Colleselli et al. (Colleselli et al., 2023) and Wilhelmsen et al.
(Wilhelmsen et al.,, 2012) described TLR2 pathways converging
on adhesion and chemotaxis. AMD3100 (CXCR4 antagonist)
attenuated MG-enhanced migration, aligning with Miao etal.
(2020) in vascular remodeling models (Miao et al., 2020). Targeting
this axis holds therapeutic promise for MG-related cardiovascular
issues.
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5 Conclusion

This multi-omics study under simulated microgravity (MG)
provides critical data on endothelial cell adaptations, supporting
research on cardiovascular deconditioning associated with MG. In
addition, this study reveals that MG activates the TLR2/CXCR4
signaling axis to potently enhance endothelial cell migration. Our
integrated transcriptomic and proteomic analyses not only map the
molecular responses of HUVECs under MG but also lay a data-
driven foundation for understanding vascular deconditioning in
spaceflight.

6 Limitations

Several limitations of this study warrant consideration.
First, while our 2D clinostat effectively simulated microgravity
at 30rpm, achieving a residual gravity of ~107g, we did
not perform a dedicated sensitivity analysis of rotation speed.
Although this speed is standardized in the literature for
minimizing centrifugal artifacts and shear stress, variations could
subtly influence outcomes, and future optimizations may refine
the model.

Second, the 48-h exposure period, constrained by clinostat
oxygenation limits (maximum continuous rotation ~72 h), captures
acute-to-mid-term molecular adaptations but may not fully
recapitulate chronic responses observed in long-term spaceflight
(weeks to months). Incorporating multiple time points (6-48 h)
mitigated this to some extent; however, advanced simulators
or space-based experiments are needed to elucidate sustained
remodeling.

Finally, although our knockdown experiments establish a
causal relationship between TLR2 and CXCR4, with TLR2 acting
upstream to regulate CXCR4 expression, the precise molecular
mechanism in this model remains to be fully elucidated. Existing
literature indicates that TLR2, a membrane-bound pattern
recognition receptor, likely modulates CXCR4 via canonical
downstream pathways, such as the MyD88-dependent NF-«B
cascade or PI3K/AKkt signaling, which can influence transcriptional
or post-transcriptional regulation of chemokine receptors like
CXCR4. For instance, in infection models, TLR2 facilitates
CXCR4 expression and function through physical co-association
and cross-talk, enhancing downstream signaling that promotes
migration and inflammation. TLR2-CXCR4 interactions may also
involve [-arrestin2-mediated pathways, regulating endocytosis
and signaling to indirectly affect CXCR4 levels. In bacterial
invasion contexts, TLR2 exploits CXCR4 to inhibit MyD88-
dependent antibacterial responses, suggesting post-transcriptional
or trafficking-based regulation. Furthermore, intervention with
the CXCR4 antagonist AMD3100 significantly attenuated MG-
enhanced HUVEC migration, substantiating CXCR4’s functional
role. These observations align with Miao etal. (2020), who
reported analogous effects in models of cell migration and vascular
remodeling, thereby underscoring the therapeutic potential of
targeting the TLR2-CXCR4 axis in cardiovascular diseases.

Future studies could employ specific inhibitors (e.g., for
MyD88, NF-«B, or PI3K/Akt) or co-immunoprecipitation assays
to directly assess TLR2-CXCR4 interactions and downstream
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signaling, thereby clarifying the regulatory axis and building upon
our findings.
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