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Background: Boxing performance heavily relies on lower-limb strength and 
power. Velocity-based resistance training (VBT), which adjusts load and 
repetition volume using real-time velocity feedback, may provide a more 
individualized and effective approach compared to traditional percentage-based 
training (PBT). However, its long-term effect on boxing-specific performance 
outcomes remains underexplored.
Methods: Twenty-eight male collegiate boxers were randomly assigned to a 
VBT group (n = 14) or a PBT group (n = 14) for an 8-week training program. 
Both groups performed four sets of each exercise (back squat, Bulgarian split-
squat, and deadlift) at 70% of their one-repetition maximum (1RM). The VBT 
group performed a flexible number of repetitions until their velocity dropped 
below a 10% threshold, whereas the PBT group consistently performed sets 
of 5 repetition. Pre- and post-intervention assessments included 1RM strength, 
countermovement jump (CMJ) height, standing long jump (SLJ) distance, and 
30 m sprint run time.
Results: All dependent variables demonstrated significant main effects of “time” 
(p < 0.001; averaged Hedges’ g = 0.44 for VBT group and 0.23 for PBT group). 
Notably, significant “time” × “group” interactions were observed for the CMJ, SLJ, 
and 30 m sprint run (p ≤ 0.038), whereas no significant interactions were found 
for 1RM strength measures across exercises (p ≥ 0.163). Furthermore, when 
comparing the magnitude of changes between groups, the VBT group exhibited 
small effect size improvements in CMJ height (Hedges’ g = 0.41), SLJ distance 
(Hedges’ g = 0.56), and 30 m sprint time (Hedges’ g = 0.51). In contrast, all other 
variables only showed trivial (Hedges’ g < 0.20) differences between groups.
Conclusion: Both training programs led to comparable improvements in 
maximal strength (1RM) across exercises. However, VBT was more effective
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than PBT in enhancing performance in high-velocity tasks such as vertical 
and horizontal jumps and sprinting. These findings support the use of VBT 
to optimize neuromuscular adaptations relevant to explosive actions in male 
collegiate boxers.

KEYWORDS

combat sports, strength training, velocity-based resistance training, velocity threshold, 
lower-limb strength performance 

Introduction

Resistance training (RT), is a form of physical exercise 
that utilize external loads to exercise muscle groups, enhance 
neuromuscular fitness and improve athletic performance 
(Gonzalez-Badillo et al., 2022). Among the various RT variables, 
training intensity and volume are the two primary determinants of 
physiological adaptation (Kraemer and Ratamess, 2004; Bird et al., 
2005; Scott et al., 2016). Traditionally, RT intensity is prescribed 
using a fixed percentage of an athlete’s one-repetition maximum 
(1RM), and the number of repetitions per set is also standardized 
accordingly (Kraemer and Ratamess, 2004; Scott et al., 2016). 
Although this percentage-based training (PBT) model is widely 
used, it has several limitations. For example, assessing 1RM is time-
consuming and physically demanding, and it may increase the risk 
of injury (Ramos, 2024). Moreover, it does not account for daily 
fluctuations in performance caused by factors such as sleep, fatigue, 
nutrition, or psychological stress (Gonzalez-Badillo and Sanchez-
Medina, 2010). In addition, prescribing a fixed number of repetitions 
overlooks individual differences in fatigue tolerance, potentially 
resulting in either insufficient training stimulus or excessive 
fatigue accumulation (Gonzalez-Badillo and Sanchez-Medina, 2010;
González-Badillo et al., 2011).

To address these issues, velocity-based resistance training (VBT) 
has emerged as an alternative approach that uses movement velocity 
as a real-time indicator of training intensity and fatigue level 
(González-Badillo et al., 2011; Orange et al., 2020b; Weakley et al., 
2021). Based on the stable relationship between barbell velocity 
and relative load (%1RM), movement velocity can be used 
to guide loading prescription (Gonzalez-Badillo and Sanchez-
Medina, 2010; Sánchez-Medina et al., 2017). Several studies 
across diverse populations have shown that lifting with maximal 
intended velocity produces greater improvements in power- and 
speed-related variables than deliberately lifting at submaximal 
velocities (González-Badillo et al., 2014; Pareja-Blanco et al., 
2014; Lecce et al., 2025a; Lecce et al., 2025b). Furthermore, 
VBT introduces a novel method of managing training volume: 
instead of prescribing a fixed number of repetitions, a set is 
terminated once a predetermined velocity loss (VL) threshold is 
reached (Pareja-Blanco et al., 2017a; Pareja-Blanco et al., 2017b). 
The validity of this method relies on the significant association 
between the magnitude of velocity loss and multiple markers of 
mechanical, metabolic and perceptual fatigue (Sánchez-Medina and 
González-Badillo, 2011; González-Badillo et al., 2017; Rodríguez-
Rosell et al., 2020b). This auto-regulatory strategy aims to maintain 
a high number of repetitions performed at high velocities, manage 
neuromuscular fatigue, and promote optimal training adaptations 
(Perez-Castilla et al., 2018; Rodríguez-Rosell et al., 2021).

Recent evidence suggests that different VL thresholds induce 
distinct neuromuscular and performance adaptations (Pareja-
Blanco et al., 2017b; Perez-Castilla et al., 2018; 2020). Higher VL 
thresholds (20%–40%) tend to promote muscle hypertrophy but are 
associated with greater fatigue accumulation (Jukic et al., 2023). 
In contrast, lower VL thresholds (≤20%) are less fatiguing and 
yield similar or even superior improvements in maximal strength, 
muscular endurance, and high-speed, short-duration movements 
such as vertical jumps and sprinting (Pareja-Blanco et al., 2017a; 
Pareja-Blanco et al., 2020; Rodríguez-Rosell et al., 2020a). Compared 
to PBT, VBT with repetition volume regulation based on VL has 
demonstrated superior improvements in explosive performance 
indicators—such as jump height, sprint time, and maximal strength 
output—in sports like football, rugby, and track and field (Pareja-
Blanco et al., 2017b; Weakley et al., 2020; Yuan et al., 2023). 
However, this approach remains underexplored in combat sports 
such as boxing.

Boxing heavily relies on the transfer of lower-limb strength 
to generate effective punches and footwork (Davis et al., 2013; 
Chaabène et al., 2015). Given the demands for high-velocity 
force application and sensitivity to fatigue in training, VBT 
may be particularly well-suited for boxers (Turner et al., 2011; 
Loturco et al., 2016). Therefore, this study aimed to compare the 
effects of an 8-week VBT program using a 10% VL threshold with 
those of traditional PBT on lower-limb strength performance in 
male collegiate boxers, providing novel insights into resistance 
training strategies for boxing. Previous studies indicate that 
a 6–8 week period is commonly used to capture the initial 
adaptations elicited by different strength training protocols 
(Schoenfeld et al., 2017; Pareja Blanco et al., 2020). Based on prior 
evidence of VBT efficacy across various sports (Banyard et al., 2020; 
Lecce et al., 2025a; Lecce et al., 2025b), we hypothesized that VBT 
would lead to greater improvements in jump performance and sprint 
ability compared to PBT, while no significant differences would be 
observed in lower-limb maximal dynamic strength (1RM).

Materials and methods

Subjects

The sample size for this study was determined using G∗Power 
3.1 (Faul et al., 2009), with a medium effect size (f = 0.30), α = 
0.05, and power (1-β) = 0.80, indicating that at least twenty-four 
participants were required for repeated measures ANOVA. A total 
of twenty-eight male collegiate boxers from Shanghai University of 
Sport (Shanghai, China) voluntarily participated and were randomly 
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TABLE 1  Baseline characteristics of study participants.

Variable VBT (n = 14) PBT (n = 14)

Age (years) 19.6 ± 1.0 19.9 ± 1.0

Height (cm) 181.9 ± 7.4 179.1 ± 7.3

Body mass (kg) 77.9 ± 9.1 78.4 ± 9.5

Boxing experience (years) 6.3 ± 1.4 6.0 ± 1.5

Abbreviations: VBT, velocity-based resistance training; PBT, percentage-based training.

assigned to either the VBT group or the PBT group (Table 1). 
All subjects provided written informed consent after being briefed 
on the study protocol and potential risks and benefits. To ensure 
the scientific validity of the data and minimize injury risk, the 
following inclusion criteria were applied: (1) subjects engaged only 
in regular technical-tactical training, minimizing other physical 
exertion; (2) subjects had at least 2 years of RT experience (2-4 
sessions per week) (Weakley et al., 2017), and received professional 
technical evaluation and guidance 2 weeks before testing to ensure 
proficiency and standardization of exercise techniques, ensuring 
that performance changes were attributed to the training stimulus 
and not learning effects; (3) subjects were healthy with no injuries 
in the 6 months prior to testing. The study was approved by the 
Ethics Committee of Shanghai University of Sport (Approval No. 
102772025RT044).

Experimental design

All tests and interventions were conducted at the Physical 
Training Research Center of Shanghai University of Sport (Shanghai, 
China). The baseline testing was conducted over two separate testing 
days. On the first day, 1RM value tests for various exercises were 
performed. On the second day, the 30 m sprint run, standing 
long jump (SLJ), and countermovement jump (CMJ) tests were 
performed. Participants were asked to avoid staying up late or 
consuming alcohol prior to testing. The post-intervention testing 
followed the same procedure as the baseline testing. 

Testing procedures

1RM assessment
This study conducted 1RM assessments for three exercises: back 

squat (BS), Bulgarian split-squat (BSS), and deadlift. Participants 
began the 1RM test with an initial load of 20 kg, progressively 
increasing the load in 10 kg increments until the mean velocity 
(MV) dropped below 0.5 m·s−1. Thereafter, load increments were 
reduced between 1 and 5 kg to precisely determine the maximal 
load at which a complete repetition could be performed. Throughout 
the testing procedure, researchers closely supervised participants 
to ensure correct technique and safety. For lighter loads (MV > 
0.7 m·s−1), 3-4 repetitions were performed; for moderate loads 
(0.5 m·s−1 ≤ MV ≤ 0.7 m·s−1), 2 repetitions; and for heavier 
loads (MV < 0.5 m·s−1), only 1 repetition was executed. Rest 

intervals consisted of 10 s between repetitions at the same load and 
5 min between different loads. Verbal encouragement and real-time 
velocity feedback were provided during each repetition to motivate 
maximal voluntary effort.

For the BS exercise, participants positioned their feet shoulder-
width apart or slightly wider, with toes pointing forward. During the 
descent, knees were allowed to travel slightly beyond the toes until 
the thighs were parallel to the ground. In the BSS, the rear foot was 
elevated and placed on a bench while the front foot remained flat 
on the floor, maintaining an upright torso. The movement initiated 
from a standing posture, with a controlled descent until the front 
thigh was parallel to the floor and the front knee approached, but 
did not contact, the ground. The BSS test was performed on both 
the dominant and non-dominant legs to assess unilateral strength. 
For the deadlift, participants stood with feet shoulder-width apart 
and toes externally rotated by 10°–15°. At the start of the pull phase, 
elbows were fully extended, gripping the barbell with a mixed grip at 
shoulder width. The force production sequence began with ground 
contact through the feet, followed by leg drive and hip extension, 
lifting the barbell while maintaining an upright posture without 
excessive forward pelvic tilt. Exhalation was coordinated with the 
exertion phase. 

SLJ assessment
Participants adjusted their stance behind the starting line, 

performed a pre-squat with arm swing, and explosively jumped 
forward. The distance from the nearest point of contact to the 
starting line was measured. Participants were not allowed to toe or 
cross the line during the jump. Participants performed three trials 
separated by 30 s of rest. The best result was recorded, rounded to 
two decimal places. 

30M sprint run assessment
The 30 m sprint is a commonly used indicator for assessing 

lower-limb explosiveness, as it not only reflects an athlete’s level 
of explosive power but also demonstrates the efficiency with 
which maximal lower-limb strength can be translated into rapid 
displacement (Vencúrik and Fikar, 2022; Li et al., 2025). After proper 
warm-up, participants sprinted 30 m from a stationary start, with 
timing gates at both the start and finish (Smart Speed system, Fusion 
Sport Inc., Australia). A crouched start was used, and participants 
sprinted as soon as the “start” command was given. Participants 
performed two trials separated by at least 3 min of rest. The best time 
was recorded, rounded to two decimal places. 

CMJ assessment
CMJ is a widely used test for lower-limb strength performance, 

utilizing a dual-force plate system (KWYP-FP6035, Kunwei Sport 
Technology Co., Ltd., Shanghai, China) with a sampling rate of 
1,000 Hz. Data were collected using Gameon software (Gameon 
Sports Science Corp, Shenzhen, China) and analyzed with its 
integrated software (KW3.1.10.9, Kunwei, Shanghai, China). To 
reduce the effect of upper-limb swing, participants performed 
the test with their hands on their hips to avoid torso rotation. 
Participants performed three trials separated by 30 s of rest. The best 
result was recorded, rounded to two decimal places. 
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FIGURE 1
Overview of the experimental design. CMJ, countermovement jump; SLJ, standing long jump; BS, back squat; BSS, Bulgarian split-squat; PBT, 
percentage-based training; VBT, velocity-based resistance training.

Resistance training program

The intervention lasted 8 weeks, with two sessions per week 
(Figure 1). Both the VBT and PBT groups trained at the same 
time of the day. After 4 weeks of training, participants’ 1RM 
for each exercise was retested, and training loads were adjusted 
accordingly in the PBT group for the remaining 4 weeks. During 
the lower-limb strength training sessions, the VBT group used a 
linear position transducer (GymAware Power Tool Version 6.1; 
Canberra, Australia) to monitor movement velocity. Studies have 
shown that GymAware demonstrates high reliability across the 
entire velocity range (Orange et al., 2020a; Mitter et al., 2021). 
Other training components, such as technical-tactical exercises, 
remained the same. Before training, all participants performed 
a warm-up, which included general physical activities as well as 
boxing-specific preparation drills, lasting 10–15 min, followed by 
3–5 min of recovery. During training, the PBT group used a constant 
load of 70% 1RM, completing 4 sets of 5 repetitions with 3-min rest 
intervals between sets. The VBT group selected loads based on 
the velocity corresponding to 70% 1RM (with a target velocity 
deviation maintained within ±0.03 m/s). Each set was terminated 
when VL reached the predefined 10% VL threshold. The VBT 
group completed 4 sets, with 3-min rest intervals between sets. After 
training, participants performed a cool-down to alleviate exercise-
induced fatigue, under the guidance of the same instructors leading 
the training sessions.

Statistical analyses

Descriptive statistics are presented as mean ± standard deviation 
(Mean ± SD). The normality of the data was assessed using Shapiro-
Wilk tests, and Levene’s test was used to check for homogeneity 
of variance. Two-factor mixed analysis of variance test was used 
to examine the effects of “time” (within-subject factor: pre-test 

vs. post-test) and “training group” (between-subject factor: VBT 
vs. PBT) on lower-limb strength performance in boxers. The 
magnitude of the changes was assessed using Hedges’ g effect 
size (ES), along with 95%CIs. ES was calculated using pretest 
SD for within-group and pooled pretest SD for between-group 
comparisons. ES magnitudes were classified as: trivial (<0.20), small 
(0.20–0.59), moderate (0.60–1.19), large (1.20–2.00), and extremely 
large (>2.00) (Hopkins et al., 2009). Statistical significance was set at 
p ≤ 0.05, with all analyses performed using SPSS (version 27, IBM, 
Armonk, NY, United States).

Results

No significant differences were observed between the VBT and 
PBT groups across any measured variables prior to the intervention 
(p > 0.05). Following the 8-week training program, a significant main 
effect of “time” was found for all dependent variables (F ≥ 27.1,
p < 0.001) (Table 2). However, the interaction effect between “time” 
and “group” differed across variables: significant interactions were 
detected for CMJ, SLJ, and 30 m sprint performance (F ≥ 4.8,
p ≤ 0.038), whereas 1RM strength did not reach statistical 
significance for any exercise (F ≤ 2.1, p ≥ 0.163). Furthermore, 
when comparing the magnitude of changes between groups, the 
VBT group exhibited greater gains (small ES) in CMJ height (ES = 
0.41), SLJ distance (ES = 0.56), and 30 m sprint time (ES = 0.51). In 
contrast, trivial (ES < 0.20) differences were observed between the 
PBT and VBT groups for the 1RMs (Figure 2).

Discussion

This study is the first to systematically compare the differences 
in strength adaptations between VBT and PBT in boxing, and 
the main results supported our hypothesis. The findings showed 
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TABLE 2  Two-way ANOVA comparing the pre to post changes in lower-limb strength performance variables for the PBT and VBT groups.

Variable/group Pre-test
Mean (SD)

Post-test
Mean (SD)

Hedges g, ES
(95% CI)

ANOVA

Time Interaction

Countermovement jump height, cm

PBT
VBT

32.6 (5.40)
33.2 (4.42)

34.0 (5.35)
36.7 (4.48)a

0.25 (−0.49, 1.00)
0.76 (0.00, 1.53)

F = 27.1
p < 0.001

F = 4.8
p = 0.038

standing long jump, m

PBT
VBT

2.48 (0.18)
2.54 (0.21)

2.52 (0.14)
2.69 (0.17)a

0.24 (−0.50, 0.98)
0.76 (−0.01, 1.53)

F = 64.7
p < 0.001

F = 22.5
p < 0.001

30 m sprint run, s

PBT
VBT

4.12 (0.29)
4.18 (0.32)

4.10 (0.29)
3.99 (0.30)a

−0.09 (−0.81, 0.67)
−0.59 (−1.35, 0.16)

F = 37.5
p < 0.001

F = 20.9
p < 0.001

Back squat 1RM, kg

PBT
VBT

141.0 (24.6)
135.0 (32.6)

146.9 (21.9)a

143.6 (31.2)a
0.25 (−0.50, 0.99)
0.26 (−0.48, 1.01)

F = 57.7
p < 0.001

F = 2.0
p = 0.169

BSS-dominant 1RM, kg

PBT
VBT

104.2 (14.0)
96.4 (27.3)

109.8 (15.6)a

103.4 (25.7)a
0.37 (−0.38, 1.11)
0.26 (−0.49, 1.00)

F = 30.8
p < 0.001

F = 0.4
p = 0.534

BSS-nondominant 1RM, kg

PBT
VBT

96.6 (15.4)
91.4 (26.7)

99.8 (16.0)
97.1 (25.7)a

0.20 (−0.54, 0.94)
0.21 (−0.53, 0.95)

F = 29.6
p < 0.001

F = 2.1
p = 0.163

Deadlift 1RM, kg

PBT
VBT

154.9 (24.8)
150.4 (29.5)

159.7 (25.2)a

157.1 (29.2)a
0.19 (−0.56, 0.93)
0.22 (−0.52, 0.96)

F = 33.1
p < 0.001

F = 1.0
p = 0.329

Abbreviations: ANOVA, analysis of variance; BSS, Bulgarian split-squat; PBT, percentage-based training; VBT, velocity-based resistance training; 1RM, one-repetition maximum; ES, effect
size = (post-test mean − pre-test mean)/pre-test SD.
aSignificant differences compared with pre-test (p < 0.05).

that both training modalities produced similar improvements in 
maximal strength (1RM). However, compared with the PBT group, 
the VBT group demonstrated greater enhancements in high-
speed action-related measures, such as CMJ height (g = 0.76 
vs. 0.25), SLJ distance (g = 0.76 vs. 0.24), and 30 m sprint run 
time (g = 0.59 vs. 0.09). These differences may be explained 
by distinct physiological mechanisms: PBT primarily relies on 
increasing cumulative time under tension (TUT) to promote 
strength adaptations (Pareja-Blanco et al., 2014), whereas VBT 
induces neuromuscular adaptations through contraction velocity 
stimulation (Tøien et al., 2022), such as faster motor unit 
recruitment, higher firing frequency, and improved intermuscular 
coordination (Tillin et al., 2011; Del Vecchio et al., 2024).

Consistent with our findings, recent studies using similar 
velocity-versus-loading designs have also reported comparable 
improvements in 1RM strength between training modalities, 
and highlighted contraction velocity as a key determinant of 
improvements in peak power, rate of force development (RFD), and 
impulse (Lecce et al., 2025a; Lecce et al., 2025b). Although VBT can 
enhance high-speed actions, such improvements may be limited by 
factors such as athletes’ baseline capacities, the short intervention 

period, and the predominance of neural over structural adaptations. 
These superior adaptations may be attributed to three key variables 
that differentiated VBT from PBT: (i) daily-based individualized 
load adjustment, (ii) flexible volume regulation using VL thresholds, 
and (iii) continuous real-time feedback on lifting velocity.

Traditionally, direct assessment of 1RM is considered an 
effective method to evaluate an individual’s maximal strength 
capacity and subsequently prescribe loads during resistance 
training programs (Grgic et al., 2020). However, it presents 
several challenges, including physical, technical, and psychological 
demands (Ramos, 2024). Moreover, 1RM values are subject to 
daily fluctuations due to factors such as training fatigue, sleep 
deprivation, nutritional status, and academic or occupational stress 
(Gonzalez-Badillo and Sanchez-Medina, 2010; Hirsch and Frost, 
2021). To address these issues, individualized load-velocity (L-V) 
profiles, based on the velocity attained under submaximal loads, 
have been proposed. These profiles allow for real-time adjustments 
of training loads, potentially providing more accurate estimations of 
an athlete’s current 1RM (García-Ramos et al., 2018). This method 
ensures athletes train at the desired intensity, potentially maximizing 
performance outcomes while minimizing injury risk (Ramos, 2024).
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FIGURE 2
Standardized differences with 95% confidence intervals for the pre to 
post changes in lower-limb strength performance variables between 
the VBT and PBT. CMJ, countermovement jump; SLJ, standing long 
jump; BS, back squat; BSS-d, dominant side in Bulgarian split-squat; 
BSS-n, nondominant side in Bulgarian split-squat; PBT, 
percentage-based training; VBT, velocity-based resistance training.

In addition to load adjustment, VBT regulates training volume 
by terminating sets once a predetermined VL threshold (e.g., 10%, 
20%, or 30%) is reached. Compared to conventional resistance 
training prescriptions, implementing VL thresholds allows for 
better fatigue management (Sánchez-Medina and González-
Badillo, 2011; González-Badillo et al., 2017), as VL has been 
shown to correlate strongly with mechanical, metabolic, and 
perceptual markers of fatigue (Sánchez-Medina and González-
Badillo, 2011; González-Badillo et al., 2017; Rodríguez-Rosell et al., 
2020c). This autoregulatory strategy helps to maintain high-
quality repetitions and tailor training volume to the athlete’s daily 
readiness (Ramos, 2024), A meta-analysis reported that lower VL 
thresholds were associated with superior gains in strength and 
high-speed performance, likely due to the avoidance of excessive 
neuromuscular fatigue (Jukic et al., 2023).

Another unique feature of VBT is the provision of real-time 
velocity feedback. Feedback has been shown to significantly enhance 
acute resistance training performance (Pérez-Castilla et al., 2021). 
Providing repetition-by-repetition feedback improves athletes’ 
motivation, concentration, and movement quality, while reducing 
perceived exertion (Wilson et al., 2018; Weakley et al., 2019). 
Immediate feedback enables athletes to make rapid adjustments 
in effort and technique, contributing to a more engaging and 
effective training environment (Weakley et al., 2023). Studies 
have demonstrated that consistent feedback not only improves

short-term performance but also leads to superior long-term 
adaptations compared to training without feedback (Letafatkar et al., 
2020). For coaches aiming to enhance acceleration and sprint 
performance, incorporating feedback during resistance training 
is strongly recommended (Randell et al., 2011).

Despite these promising findings, it must be acknowledged that 
the VBT intervention simultaneously manipulated three variables: 
load, volume, and feedback. Therefore, it remains unclear whether 
the observed superior adaptations were driven by a single factor or 
the combination of all three. Future studies should aim to isolate 
these variables to determine their independent contributions to 
training outcomes. 

Practical applications

Practitioners are encouraged to integrate VBT into strength and 
conditioning programs for boxing athletes. By employing real-time 
velocity monitoring to adjust training loads dynamically, VBT can 
effectively reduce excessive fatigue accumulation while maximizing 
training efficiency. This is especially advantageous for boxers who 
must consistently maintain peak physical performance throughout 
training cycles. Furthermore, the efficiency and safety benefits 
provided by VBT make it particularly suitable for settings with 
limited training resources or high training densities. Consequently, 
athletes can allocate more time to other critical training components, 
such as skill acquisition and tactical development. Future training 
program designs should further incorporate individualized VBT 
protocols to foster sustained development in strength and sport-
specific performance among boxers.

Conclusion

This study is the first to systematically compare the effects of 
VBT and PBT on lower-limb strength performance in male collegiate 
boxers. After 8 weeks of training, the VBT group demonstrated 
significantly greater improvements than the PBT group in CMJ, 
SLJ, and 30 m sprint performance, whereas both training modalities 
similarly enhanced 1RM strength. These results confirm the superior 
efficacy of VBT in enhancing lower-limb dynamic performance 
compared to conventional PBT methods. Nonetheless, because the 
VBT protocol combined load, volume, and feedback adjustments, the 
specific contribution of each factor remains uncertain and warrants 
further investigation. Finally, we recommend incorporating VBT into 
boxing training regimens to optimize athletic outcomes. 
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