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Background: Cross-frequency coupling (CFC), particularly phase–amplitude 
coupling (PAC), reflects hierarchical interactions between neural oscillations and 
plays a critical role in sensorimotor integration. However, its functional relevance 
during balance control under sensory perturbations remains insufficiently 
understood.
Objective: This study aimed to investigate PAC characteristics during postural 
control tasks of varying difficulty in elite freestyle aerial skiers versus non-
athlete controls.
Methods: EEG signals and center of pressure (COP) data were recorded from 
participants performing six standing balance tasks on stable and unstable 
surfaces. Postural control was assessed using center of pressure data, which 
represent the point location of the body’s vertical ground reaction force vector 
and are commonly used to quantify sway and balance performance during 
stance. Mean Vector Length Modulation Index (MVLmi) and PAC analyses were 
applied to assess oscillatory interactions.
Results: Surface instability significantly modulated PAC strength across 
frequency bands (P < 0.05). Athletes exhibited task-specific enhancements in 
alpha-gamma and delta-gamma coupling during single-leg and double-leg 
stance. These coupling patterns were more spatially localized and showed 
trends consistent with superior postural control. In contrast, non-athletes 
showed widespread PAC increases under perturbation, but with less effective 
balance performance. Hemispheric asymmetries were observed during single-
leg stance: athletes demonstrated contralateral dominance during right-leg 
tasks and ipsilateral coupling shifts during unstable left-leg stance, indicating 
dynamic lateralized control shaped by training. Across conditions, athletes 
showed higher PAC strength and lower sample entropy, reflecting more efficient 
and adaptable cortical strategies for postural regulation.
Conclusion: PAC strength is closely linked to postural performance 
and varies with task complexity and surface condition. These findings 
highlight the role of training-induced neuroplasticity in modulating 
cortical dynamics for balance control, offering new insights for
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targeted neuromodulatory interventions and neurofeedback-based training 
strategies.

KEYWORDS

cross-frequency coupling (CFC), EEG, phase-amplitude coupling (PAC), balance tasks, 
freestyle skiers 

1 Introduction

Human balance is a complex neurophysiological function that 
depends on the continuous integration of multisensory input and the 
precise coordination of motor output. The central nervous system 
(CNS) maintains postural stability by processing information from 
the visual, vestibular, and proprioceptive systems. Disruption in 
any of these modalities can impair balance and increase postural 
sway (Henry and Baudry, 2019; Horak and Hlavacka, 2001). 
Although isolating vestibular contributions in experiments remains 
challenging, they act in concert with visual and proprioceptive 
signals to sustain upright posture (Keyvanara et al., 2021).

Recent electrophysiological studies have shown that cortical 
activity is highly responsive to postural challenges. Oscillations in 
specific frequency bands—particularly increased theta power in 
frontal and central regions—are associated with elevated cognitive 
demand and the need to resolve sensorimotor conflicts during 
balance perturbations (Chen X. P. et al., 2021; Tsai et al., 2022). 
For instance, theta activity in the precentral cortex rises during 
complex postural tasks, reflecting the additional processing required 
to coordinate movement and maintain stability (Peterson and 
Ferris, 2018; Stokkermans et al., 2023; Mierau et al., 2015). These 
findings emphasize the dynamic nature of neural adaptation in 
postural control, highlighting the brain’s role in adjusting to varying 
stability demands.

Historically, studies of brain oscillations focused on the roles 
of individual frequency bands. Since Berger’s discovery of the 
alpha rhythm (8–12 Hz) in 1929 (Berger, 1929), low-frequency 
oscillations have been linked to motor control and sensory input, 
whereas high-frequency activity has been associated with localized 
neural processing. More recently, research has shifted toward 
understanding how distinct frequencies interact. Low-frequency 
rhythms, often involved in both external sensory-motor functions 
and internal cognitive processes such as decision-making and 
memory (Schroeder and Lakatos, 2009), are now known to interact 
with high-frequency signals that are topographically localized. 
Cross-frequency coupling (CFC)—especially phase–amplitude 
coupling (PAC)—has emerged as a mechanism for integrating 
information across spatial and temporal scales. Although CFC is 
considered important for coordinating sensory, motor, and cognitive 
functions, its specific contribution to balance control remains 
underexplored (Buzsáki and Draguhn, 2004). In parallel, EEG 
power spectral density (PSD) analysis has become a standard tool for 
assessing frequency-specific brain responses to postural demands 
(Peterson and Ferris, 2018). For example, Hülsdünker et al. (2015) 
found that increased task difficulty was accompanied by greater 
frontal theta power, suggesting enhanced sensorimotor integration 
during balance regulation. Likewise, Slobounov et al. (2006) 
reported elevated theta and reduced alpha power during postural 
instability induced by surface perturbation. These results support 

the use of PSD as a sensitive indicator of cortical adaptation in 
response to balance challenges.

CFC describes the interactions between neural oscillations 
of different frequencies and is widely recognized as playing a 
crucial role in brain functions such as computation, information 
transmission, and learning (Salimpour and Anderson, 2019). Early 
studies identified that distinct frequency bands predominantly 
underlie specific types of brain activity and respond selectively to 
sensory, motor, and cognitive stimuli (Engel et al., 2001). Within 
this theoretical framework, CFC has been categorized into several 
forms, including amplitude–amplitude coupling (AAC), also known 
as comodulation (Yeh et al., 2016); phase–phase coupling (PPC), 
which involves harmonic synchronization (Scheffer-Teixeira and 
Tort, 2016); and the most extensively studied form, PAC. Among 
these, PAC has drawn increasing attention for its critical role in 
regulating neural dynamics, particularly in pathological conditions 
such as epilepsy (Hyafil et al., 2015; Malladi et al., 2018).

PAC occurs when the amplitude of high-frequency neural 
activity in one brain region is modulated by the phase of low-
frequency oscillations, either within the same area or across regions. 
Among the most commonly studied forms are theta–gamma 
and alpha–gamma coupling, which have been used to examine 
interactions between distinct cognitive systems (Canolty and 
Knight, 2010). PAC modulation is often driven by dominant 
low-frequency rhythms that are characteristic of specific brain 
areas and behavioral contexts. For example, Osipova et al. (2008) 
showed that gamma-band power was synchronized with the 
alpha, rather than the theta, phase. Similarly, Cohen et al. (2009) 
identified alpha–gamma coupling in the human ventral thalamus. 
As a mechanism for linking neural activity across spatial and 
temporal scales, PAC facilitates inter-regional communication and 
coordination. Robust CFC patterns have been reported in several 
brain structures—including the neocortex, hippocampus, and basal 
ganglia—during task execution, with coupling frequencies varying 
by region and task. Moreover, multiple coupling modes may coexist 
depending on functional demands.

Although CFC has been increasingly studied as a mechanism 
of cognitive integration, its role in postural control-especially under 
conditions of sensory perturbation-remains poorly understood. 
Among the various forms of CFC, PAC is of particular interest 
because it captures hierarchical interactions between the phase 
of low-frequency and the amplitude of high-frequency brain 
rhythms. Yet, it is not fully known how PAC supports balance 
regulation, or how this coupling adapts to task complexity and 
sensory challenges. Studying brain activity during challenging 
standing tasks in elite athletes is especially valuable, as this 
population operates near the upper limits of human sensorimotor 
performance, where subtle neural adaptations become most 
apparent (Nakata et al., 2010). Previous research has shown that 
elite athletes exhibit distinctive cortical activation patterns during 
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balance regulation (Del Percio et al., 2009). Examining PAC in 
this cohort during progressively challenging standing tasks may 
therefore elucidate how hierarchical neural coordination supports 
elite-level balance regulation and rapid compensatory adjustments. 
Based on this rationale, the present study aimed to quantify PAC 
in elite athletes during balance tasks of increasing difficulty and 
sensory perturbation, thereby characterizing the contribution of 
cross-frequency neural interactions to high-level postural control.

Building upon this framework, we hypothesized that (1) neural 
coupling strength would differ across brain regions, reflecting 
region-specific adaptations for postural control, and (2) external 
perturbations such as unstable support surfaces would modulate 
PAC strength, revealing the context-dependent nature of neural 
coordination during balance tasks. 

2 Methods

2.1 Participants

This study recruited 14 elite freestyle aerial skiing athletes, each 
with more than 5 years of professional training experience, as the 
experimental group. All athletes were ranked within the top eight 
in either the Winter Olympics or the World Cup. The participants 
had a mean height of 167.95 ± 8.70 cm, body weight of 63.11 ± 
10.28 kg, and mean age of 24.63 ± 5.01 years. A control group of ten 
healthy adults who did not participate in regular physical training 
(less than three sessions per week) was also recruited. The average 
height, weight, and age of this group were 172.86 ± 5.5 cm, 72 ± 
9.65 kg, and 25.35 ± 2.4 years. All participants were confirmed to 
be right-leg dominant using a preferred leg test involving a ball-kick 
task, as required by the single-leg balance protocol.

Prior to participation, each subject completed a detailed medical 
history questionnaire to screen for musculoskeletal, neurological, 
or systemic conditions that could interfere with single-leg balance. 
None reported lower limb injuries within the past 6 months. 
The research protocol received ethical approval from the Ethics 
Committee of Shenyang Sport University under approval number 
2018 (09). All methods described in this study were conducted in 
accordance with the relevant guidelines and regulations as outlined 
in the Declaration of Helsinki. 

2.2 Material and procedure

2.2.1 Equipment
Postural data were collected using a portable balance platform 

(Humac Balance, United States; 65 × 40 cm, 100 Hz sampling rate), 
which provided a stable surface condition. To induce proprioceptive 
instability, a foam pad of the same dimensions (65 × 40 cm, 50 mm 
thick) was placed on the platform. The center of pressure (COP) was 
recorded under both stable and unstable conditions.

Cortical activity was simultaneously recorded using a 64-
channel EEG system (eego™ mylab, ANT Neuro, Netherlands). 
Participants wore a standard EEG cap with conductive gel applied 
to all electrodes. Electrode impedance was maintained below 
5 kΩ throughout data acquisition. EEG signals were sampled at 
2000 Hz and filtered online with a 0.1–100 Hz bandpass. The ground 

electrode was positioned between FPz and Fz, and CPz served as the 
reference. This midline location was selected to reduce hemispheric 
bias and is frequently used in postural control and motor-related 
EEG studies (Castillo-Barnes et al., 2024), in accordance with the 
international 10–20 system. 

2.2.2 Testing procedure
Participants were asked to remove their shoes and socks and 

stand barefoot on the platform, maintaining an upright trunk 
posture with minimal body sway. All tests were conducted in 
a quiet, temperature-controlled laboratory to minimize external 
distractions. Participants placed their hands on their hips and 
positioned both feet symmetrically, with the forefoot edges aligned 
to the marked reference line on the platform. The reference line 
defined a standardized stance angle of approximately 45°between the 
feet, a configuration commonly adopted in postural control research 
to provide a natural standing posture and ensure consistency across 
participants.

Visual fixation was maintained on a 5 cm white circle positioned 
at eye level on a wall 3 m ahead. Participants were instructed to avoid 
unnecessary movements and to keep their hips and knees slightly 
flexed during all trials.

Each participant completed a proprioceptive interference and 
single-leg stance test consisting of six static postural conditions. 
These conditions have shown high test–retest and inter-rater 
reliability in healthy young adults (Hof, 2007). The specific 
conditions were as follows:

T1 (EOF): Bipedal stance on an unstable surface.
T2 (EO): Bipedal stance on a stable surface.
T3 (LOF): Left-leg stance on an unstable surface.
T4 (LO): Left-leg stance on a stable surface.
T5 (ROF): Right-leg stance on an unstable surface.
T6 (RO): Right-leg stance on a stable surface.
Each condition lasted 30 s, with a 30-s seated rest between trials. 

EEG signals and plantar pressure data were recorded simultaneously 
to assess neural activity and balance control.

Several procedures were followed to minimize potential 
confounds. All testing took place during the athletes’ off-season, 
and participants were asked to avoid strenuous physical activity for 
24 h prior to testing. They were also instructed to maintain their 
usual daily routines while avoiding behaviors that could influence 
mood or physiological state. All assessments were conducted in a 
temperature-controlled laboratory under standardized conditions 
to ensure consistency and data quality. 

2.3 Data processing

2.3.1 EEG data preprocessing
EEG preprocessing was performed using the EEGLAB toolbox 

in MATLAB, following a standardized and widely accepted pipeline. 
Raw signals were filtered with a fourth-order Butterworth bandpass 
(1–40 Hz) to remove slow drifts and high-frequency noise. A notch 
filter at 50 Hz (48–52 Hz) was applied to eliminate line noise. 
All signals were re-referenced to the common average to enhance 
baseline consistency.

Artifact correction involved multiple steps to address ocular, 
muscular, and movement-related noise. Independent Component 
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Analysis (ICA) was applied to isolate and remove artifactual 
components. These were identified based on their temporal 
signatures (transient bursts, stereotyped rhythmic activity), spatial 
topographies (fronto-orbital or temporalis localization), and 
spectral features showing non-physiological power concentrations 
(>50 Hz or <1 Hz).

Following ICA, amplitude-based thresholding was applied to 
identify and remove residual high-amplitude artifacts. EEG data 
were segmented into 2-s epochs, and any segment containing 
voltage fluctuations exceeding ±80 μV was automatically rejected. 
To ensure data integrity, automatic classification was supplemented 
with visual inspection. On average, 2.67 ± 0.45 components were 
removed per dataset. Residual segments contaminated by noise or 
with incomplete recordings were excluded. Only artifact-free, high-
quality EEG epochs were retained for subsequent PAC analysis. 

2.3.2 Mean vector length modulation index, 
MVLmi

Given the variability of cross-frequency interactions during 
postural control, this study specifically focused on PAC-a subtype of 
CFC-to assess the coordination between neural oscillations across 
different frequency bands. The EEG frequency bands were defined 
as Delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), 
and gamma (30–40 Hz). During processing, the low-frequency 
bandwidth (phase) was set to 1–29 Hz, and the high-frequency 
bandwidth (amplitude) was set to 7–40 Hz. After preprocessing, the 
Hilbert transform was applied to calculate the instantaneous phase 
information for the low-frequency range and the instantaneous 
amplitude information for the high-frequency range. These results 
were subsequently used for CFC analysis.

Subsequently, this study employed the method 
proposed by Canolty and Knight (2010) to calculate CFC. The 
MVLmi depends on generating a composite signal Zt in the complex 
plane, as shown in the formula.

Zt = Aenv · e
i·Φphase,t

Zt:The value of the composite signal at time t, Aenv: instantaneous 
amplitude of a high-frequency signal at time t, i imaginary unit, 
Φphase,t instantaneous phase of a low-frequency signal at time t.

The value of the MVLmi is computed by taking the average 
length of Zt across all time points.

MI = |mean(z)|

mean(z), average of the composite signal Zt across all time 
points is computed, and this value is utilized to analyze phase-
amplitude coupling.

The formula for calculating the average magnitude of the 
composite signal is as follows:

MVLmiabs = abs(zmean)zmean

MIp =
∑nsurr

i=1
MIsurri
>MI+ 1

nsurr + 1

MIsurri
 represents the MVL-MI value obtained from the i simulation. 

The calculation of the p-value involves determining the proportion 
of simulated This ratio provides the MVLmi p-value. If the calculated 

p-value for the observed MVLmi is small (P < 0.05), then the 
observed MVLmi is considered statistically significant.

In this study, the randomization process involves randomly 
dividing the signal into two segments. This randomization method 
simulates the situation where signal segmentation occurs under 
random conditions, allowing for an exploration of the sensitivity of 
MVLmi to signal segmentation.

normalizedMI =
MI− μ

σ

μ represents the mean of the MVLmi obtained from 100 
randomizations, and σ is the standard deviation. 

2.3.3 Sample entropy (SE)
Early studies have shown that Sample Entropy (SE) can quantify 

the regularity or predictability of COP time series data collected 
under different test conditions or across different experimental 
groups (Kirchner et al., 2012). By expanding the dimensionality 
range of all one-dimensional COP data from the measurement 
results, calculating the absolute value of the maximum difference 
between two vectors, and comparing it with a threshold, more 
regular features can be discovered. In this study, we processed the 
measured COP data, where the data length N was 3,000 points 
(sampling frequency of 100 Hz, sampling time of 30 s). Through 
calculation, we expanded the complex and variable original one-
dimensional COP data within the time series into more regular two-
dimensional and three-dimensional data, thereby obtaining a more 
regular SEn value (Ahmadi et al., 2018).

SE (m, r, N) refers to the negative natural logarithm of the 
conditional probability that two sequences similar for m points 
remain similar at the next point, m+ 1, where self-matches are 
not included in the probability calculation. Apart from removing 
self-matches, SE has been proven to be independent of data length 
and capable of providing more meaningful results (Richman and 
Moorman, 2000).

The formula is as follows:
For a time series (xi) = (x1,x2,x3,⋯xn), composed of N data 

points, we form a sequence of m-dimensional vectors yi(m):

yi(m) = (xi,xi+1,…,xi+m−1), i = 1,2,…,N−m+ 1

Next, without considering self-comparisons, we find matching 
templates by comparing the polynomial distance to Bi a 
predetermined threshold r. Then, we construct a variable which 
is the number of pairs that satisfy the aforementioned condition:

Bm
i (r) =

1
N−m− 1

∑N−m
j=1,j≠1

Θ(r− ‖yj(m) − yi(m)‖∞)

In the above equation ‖yj(m) − yi(m)‖∞= max 0 ≤k ≤m−
1|xj+k − xi+k|  representing the maximum distance between two 
vectors, which is the absolute value of the maximum difference 
between the two vectors; Θ is the unit step function used to 
determine whether the maximum distance between two vectors is 
less than or equal to the threshold r;

We calculate two quantities, B(m) and A(m):

Bm(r) = 1
N−m

N−m

∑
i=1

Bm
i (r)
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Increase the dimension to m+ 1, constructing a set of vectors 
with dimension m+ 1. Repeat the above steps to calculate Am

i (r) and 
Am(r):

Am
i (r) =

1
N−m− 1

∑N−m
j=1,j≠1

Θ(r−‖yi(m+ 1) − yi(m+ 1)‖∞)

Am(r) = 1
N−m

N−m

∑
i=1

Am
i (r)

Finally, according to SE (Montesinos et al., 2018), with m = 2 
and r = 0.1SD, the following formula is obtained for the negative 
logarithm of the conditional probability of the sequence of data 
dimensions:

SampleEn(m, r,N) = − log(
Am(r)
Bm(r)
)

Calculate the Euclidean norm of the entropy values obtained 
for the anterior-posterior (AP) direction and medial-lateral (ML) 
direction samples, evaluating a comprehensive indicator of athletes’ 
balance abilities.

EuclideanSE = √ML2
SE +AP2

SE
 

2.3.4 Sway velocity
Sway velocity was included as an additional behavioral measure 

of postural stability to complement SE. Whereas SE reflects the 
temporal irregularity of COP fluctuations, sway velocity captures the 
overall rate of COP displacement and is widely used as a sensitive 
indicator of balance performance under both stable and perturbed 
conditions.

For each trial, sway velocity was calculated from the COP 
time series recorded by the force platform. Instantaneous COP 
displacement between successive samples was computed in the 
anterior-posterior and medial-lateral directions and then divided 
by the corresponding sampling interval. The mean sway velocity 
for each task was obtained by averaging the resultant COP 
velocity across the entire trial duration. Higher sway velocity 
values indicate greater postural instability and reduced efficiency of
balance control.

Sway Velocity = 1
T

N−1

∑
i=1

√(xi+1 − xi)
2 + (yi+1 − yi)

2

Δt

where: xi,yi: COP coordinates at the i-th sampling point; 
Δt:sampling interval (100-Hz device); N: total number of samples; 
T = (N− 1)Δt. 

2.4 Data analysis

All statistical analyses were performed using MATLAB 
R2022a, and spatial brain maps were visualized with the BrainNet 
Viewer toolbox (Figure 1). Group-level comparisons of mean vector 
length modulation index (MVLmi) values and balance performance 
across task conditions were conducted using independent-samples 
t-tests, whereas within-group effects of support surface stability 
(T1 vs. T2, T3 vs. T4, T5 vs. T6) were assessed using paired-
samples t-tests after standardizing MVLmi values across all 

electrodes. Bonferroni correction was applied to adjust for multiple 
comparisons and control the family-wise error rate. Statistical 
significance was set at p < 0.05, and highly significant differences 
were defined as p < 0.01.

To further examine task-dependent variations, pairwise 
comparisons were performed among all six postural tasks within 
each group. These analyses evaluated changes in PAC strength and 
balance performance associated with increasing postural complexity 
and different stance conditions.

Given the relatively small sample size, a non-parametric 
permutation test was additionally performed to validate the 
robustness of group-level comparisons. This method does not 
assume normality and provides more reliable inference under 
limited sample conditions. Permutation-derived p-values were 
subjected to the same Bonferroni correction to adjust for multiple 
comparisons. Results from permutation tests were used to cross-
validate the findings from parametric tests. 

3 Results

3.1 EEG signal characteristics in time and 
frequency domains

To assess the quality of the EEG recordings and to inform the 
selection of frequency bands for the subsequent PAC analysis, both 
time-domain and frequency-domain characteristics of the signals 
were examined under representative task conditions. Figure 2a 
illustrates sample EEG waveforms from the Fz and Cz electrodes 
during Task 1 and Task 5. Each line represents the average 
amplitude across all 2-s epochs for an individual participant. 
The waveforms showed consistent temporal structure and 
oscillatory dynamics across subjects, with no evidence of 
significant artifacts or channel failure, confirming the overall
reliability of the data.

As shown in Figure 2b, normalized PSD values were compared 
between groups at selected electrodes (Fz and Oz) where 
significant differences were observed. Relative to the control 
group, elite athletes displayed significantly greater alpha power 
at both Fz and Oz, as well as elevated theta and beta power
at Fz (p < 0.05). 

3.2 MVLmi of all electrodes

Figure 3 illustrates PAC heatmaps for the elite athlete group 
across six static balance tasks. Each heatmap depicts a coupling 
matrix spanning 15 phase-frequency bands and 22 amplitude-
frequency bands, reflecting interactions between low- and high-
frequency oscillations under varying postural demands.

The results reveal distinct coupling patterns and spatial 
distributions across different task conditions, indicating that 
athletes modulate oscillatory activity in task-specific ways. 
Notably, only data from the athlete group are presented here. 
Although the control group completed the same tasks, their 
PAC distributions are not shown. All analyses were performed 
using identical preprocessing and statistical procedures across
both groups. 
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FIGURE 1
Experimental set-up. In Step 1, We selected 14 elite freestyle skiing aerials athletes and 10 adults. Step 2 involves conducting two experiments on all 
participants: first, 30-s electroencephalogram (EEG) and balance recording test during various support leg conditions, and second, a 30-s test under 
varying surface conditions. Throughout this process, detailed EEG and Balance data for all participants are meticulously recorded. In step 3, Electrode 
positions, providing examples of electrodes on the top of the head for all participants. The coordinates of these electrodes are referenced from the 
node file of the 10/20 EEG system based on Koessler’s research (Koessler et al., 2009). In step 4, Center of Pressure data (anterior-posterior and 
mediolateral) were recorded to further analyze balance.

FIGURE 2
EEG waveforms and PSD comparisons between groups. (a) Presents time-domain EEG waveforms from two representative tasks (Task1 and Task5) at 
the FZ and CZ electrodes. Signals from all participants are overlaid to demonstrate the temporal consistency and variability across subjects. (b)
Normalized PSDs for elite athletes and non-athlete controls, showing frequency bands with statistically significant differences (P < 0.05).
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FIGURE 3
The figure panels (a–f) present the Modulation Index-based Cross-Frequency Coupling (MVLmi) results across 13 electrodes for a representative 
athlete performing six distinct balance tasks (T1-T6). In each panel, the horizontal axis represents the phase-frequency range (capturing low-frequency 
oscillations such as δ, θ, α, β), while the vertical axis corresponds to the amplitude-frequency range (capturing high-frequency components, primarily in 
the γ band). This creates a 15 × 22 matrix of phase-amplitude coupling (PAC) data points.
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FIGURE 4
Electrode locations (lower left) and MVLmi computed for T1 and T2 balance tasks at a subset of channels electrodes (P < 0.05). (a) Represents the 
results for athletes, and (b) represents the results for adults. In (a), the difference in Channel 1 is magnified in the upper left. The MVLmi maximum of T1 
and T2 (32-Hz amplitude, 2-Hz phase) is highlighted with a dotted box (upper left). In (b), the difference in Channel 21 is magnified in the upper left. 
The MVLmi maximum of T1 and T2 (28-Hz amplitude, 12-Hz phase) is highlighted with a dotted box (upper left).

3.3 Cross-frequency coupling differences 
in support surface interference

3.3.1 Dual-leg standing (T1 vs. T2)
As illustrated in Figure 4a, the athlete group exhibited significant 

PAC differences (P < 0.05) at five electrode sites, primarily located 
in the frontopolar, frontal, anterior frontal, and central regions. In 
contrast, the control group showed significant coupling changes 
at seven sites, encompassing broader cortical areas including 
the frontal, temporal, parietal, and occipital lobes. Notably, the 
most prominent modulation in the athlete group occurred at the 
frontopolar site, with enhanced coupling between 2 Hz (phase) 
and 32 Hz (amplitude). The control group, on the other hand, 
demonstrated a peak difference at 12 Hz (phase) and 28 Hz 
(amplitude), as depicted in Figure 4b.

3.3.2 Left-leg standing (T3 vs. T4)
During the left-leg standing task, the athlete group exhibited 

significant PAC alterations across 13 electrode sites, with pronounced 
effects in the parietal cortex (Figure 5a). The strongest coupling 
difference was observed at a phase frequency of 10 Hz and an 
amplitude frequency of 38 Hz. In comparison, the control group 
showed significant changes at eight electrode sites distributed across 
seven cortical regions, with the most pronounced PAC occurring in 
the frontal cortex at 14 Hz (phase) and 32 Hz (amplitude) (Figure 5b). 

3.3.3 Right-leg standing (T5 vs. T6)
Compared to the left-leg condition, fewer significant differences 

were observed during right-leg standing. Athletes showed coupling 

differences in 10 electrodes primarily localized to the frontal 
and central areas, with peak PAC at 10 Hz phase and 32 Hz 
amplitude (Figure 6). The control group exhibited coupling 
differences across six electrodes, spanning the frontal, parietal, and 
occipital cortices, with key PAC activity at 4 Hz phase and 22 Hz 
amplitude.

3.4 Coupling characteristics between 
ipsilateral and contralateral hemispheres

To investigate lateralized neural responses during unilateral 
stance, we analyzed PAC strength between the ipsilateral and 
contralateral hemispheres under both left- and right-leg support 
conditions (Figure 7).

During right-leg stance, all participants demonstrated stronger 
PAC in the hemisphere contralateral to the supporting limb, 
regardless of surface stability. However, the magnitude of this 
hemispheric asymmetry varied between groups and surface 
conditions. Specifically, elite athletes exhibited significantly greater 
contralateral-to-ipsilateral PAC differences under stable support 
conditions (P < 0.05), whereas the control group showed more 
pronounced asymmetry on the unstable surface (P < 0.05).

A different pattern emerged during left-leg stance. While the 
control group maintained stronger contralateral PAC across both 
surface types, the athlete group exhibited a notable shift in coupling 
direction under unstable conditions. In this context, PAC strength 
was significantly greater in the ipsilateral hemisphere compared to 
the contralateral side (P < 0.05). 
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FIGURE 5
Electrode locations (lower left) and MVLmi computed for T3 and T4 balance tasks at a subset of channels electrodes (P < 0.05). (a) Represents the 
results for athletes, and (b) represents the results for adults. In (a), the difference in Channel 26 is magnified in the upper left. The MVLmi maximum of 
T3 and T4 (38-Hz amplitude, 10-Hz phase) is highlighted with a dotted box (upper left). In (b), the difference in Channel 5 is magnified in the upper left. 
The MVLmi maximum of T3 and T4 (32-Hz amplitude, 14-Hz phase) is highlighted with a dotted box (upper left).

FIGURE 6
Electrode locations (lower left) and MVLmi computed for T5 and T6 balance tasks at a subset of channels electrodes (P < 0.05). (a) Represents the 
results for athletes, and (b) represents the results for adults. In (a), the difference in Channel 4 is magnified in the upper left. The MVLmi maximum of T5 
and T6 (32-Hz amplitude, 10-Hz phase) is highlighted with a dotted box (upper left). In (b), the difference in Channel 47 is magnified in the upper left. 
The MVLmi maximum of T5 and T6 (22-Hz amplitude, 4-Hz phase) is highlighted with a dotted box (upper left).
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FIGURE 7
Bilateral hemispheric PAC strength in athletes and adults during (a) right-leg stance and (b) left-leg stance. Mean PAC values are shown for different 
stance conditions (T3–T6 tasks). P < 0.05 indicates significant differences within each group.

3.5 PAC strength and balance performance

In the control group, both SE and sway velocity were 
significantly higher on unstable surfaces than on stable ones across 
all postural tasks (P < 0.05), indicating reduced postural stability 
in response to proprioceptive disturbance. Among elite athletes, 
significant increases in SE and sway velocity were observed during 
bipedal and left-leg stances under unstable conditions (P < 0.05), 
whereas performance during right-leg stance (dominant limb) 
remained relatively stable (Figure 8).

Further between-group comparisons revealed that athletes 
exhibited significantly greater PAC strength than controls during 
the T2 (bipedal-stable), T4 (left-leg-stable), and T6 (right-leg-
stable) tasks (P < 0.05). In contrast, during the T3 and T5 tasks, 
athletes achieved lower SE values and sway velocity compared with 
controls (P < 0.05), indicating better postural stability under these 
conditions.

Across task conditions, the association between PAC strength 
and postural entropy showed task and group dependent variability 
rather than a uniform pattern. In several tasks-particularly in the 
athlete group (T1, T4, and T6)-a clear negative trend was observed, 
whereby stronger cross-frequency coupling tended to accompany 
lower SE values. In other tasks, however, the relationship was weaker 
or showed no consistent direction (Figure 9).

4 Discussion

The present study provides new evidence for the neural 
mechanisms supporting postural control under proprioceptive 
challenge. In response to unstable surfaces, elite athletes exhibited 
stronger and more spatially specific PAC, particularly within 
prefrontal and parietal regions involved in top-down regulation 
and sensorimotor integration. These task-dependent coupling 
patterns—most prominently in the alpha–gamma and delta–gamma 
ranges—suggest that elite performers rely on efficient, context-
sensitive neural strategies to maintain balance when sensory 
reliability decreases. 

4.1 Effects of proprioceptive disturbance 
on neural coupling

Elite athletes exhibit superior postural control, a critical 
component of athletic performance, which is widely attributed 
to long-term neuroplastic adaptations induced by intensive, task-
specific training (Opala-Berdzik et al., 2018). Keller et al. (2018) 
suggested that improved postural performance in athletes 
may stem from functional adaptations in both cortical and 
subcortical structures, particularly during tasks requiring 
lateral body displacement. Such neural optimization often 
involves a downregulation of reflexive spinal responses, 
reducing unnecessary muscle activity and enhancing balance
efficiency.

In the present study, elite athletes showed more spatially focused 
PAC patterns during both bipedal and unilateral stance, whereas 
controls exhibited broader and less differentiated coupling across 
frontal, temporal, and parietal areas. This distinction aligns with 
earlier work suggesting that individuals with extensive balance 
training may engage neural resources in a more selective manner 
during postural tasks (Khan et al., 2023). The more focal PAC 
in athletes, particularly over prefrontal and parietal regions, likely 
reflects optimized recruitment of attentional and sensorimotor 
integration networks that have been strengthened through years of 
balance-specific training. Neuroimaging studies have consistently 
identified a distributed fronto-parietal network supporting postural 
regulation (Edwards et al., 2018), and enhanced activity in these 
regions has been associated with the need to monitor body 
orientation and resolve sensory uncertainty during stance tasks 
(Peterson and Ferris, 2018; Stokkermans et al., 2023).

Sensory perturbation during stance is known to influence 
low- and mid-frequency oscillatory processes (Peterson and 
Ferris, 2018; Varghese et al., 2014). In the present study, however, 
the specific cross-frequency coupling patterns differed markedly 
between tasks and between groups. Rather than exhibiting a single 
dominant spectral profile, the athlete group showed task-dependent 
shifts in coupling frequency: delta–gamma interactions (2–32 Hz) 
emerged during the dual-leg condition, whereas alpha–gamma 
combinations (10–38 Hz or 10–32 Hz) were most prominent 
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FIGURE 8
(a,b) show the relationship between PAC strength and balance performance, assessed using SE and sway velocity, across all six postural conditions 
(T1–T6) for both groups. The color-coded plots represent the relative magnitudes of PAC, SE, and sway velocity observed under each task condition.

FIGURE 9
Scatterplots illustrating the relationship between (PAC strength and SE across the six postural tasks (T1–T6) in the athlete and control groups. Each 
panel displays individual data points (blue dots) and the corresponding linear regression fit (black line).

during unilateral stance. These variations indicate that oscillatory 
coordination in athletes flexibly adapts to the specific postural 
context rather than following a uniform pattern.

The control group displayed an even broader assortment of 
phase–amplitude pairings, including delta–gamma (4–22 Hz), 
alpha–gamma (12–28 Hz; 14–32 Hz), and beta–gamma–range 
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interactions. This diversity, together with the wider spatial 
distribution of significant PAC sites across frontal, temporal, 
parietal, and occipital regions, suggests a less selective or more 
diffuse recruitment of cortical resources during stance regulation. 
Such variability is consistent with prior evidence that individuals 
with less balance experience exhibit broader and less differentiated 
cortical engagement during postural tasks (Hülsdünker et al., 2015). 
These between-group distinctions suggest differences in how 
oscillatory activity is organized during stance, but the variability 
across tasks and surface conditions indicates that PAC likely reflects 
task-dependent recruitment rather than a uniform control strategy.

During right-leg stance, athletes showed fewer but more 
spatially focused PAC differences, primarily over frontal regions. 
This pattern suggests that neural activity during dominant-limb 
support may be organized in a more concentrated manner, 
consistent with the localized engagement observed in other stance 
conditions in this group. The peak PAC at 10 Hz and 32 Hz 
falls within frequency ranges previously linked to attentional 
allocation and sensorimotor integration (Fries, 2005). In contrast, 
controls exhibited broader coupling across frontal, parietal, and 
occipital areas, echoing the more distributed cortical recruitment 
reported in individuals with less specialized balance experience 
(Taubert et al., 2011; Surgent et al., 2019). Within this broader 
context, the present findings indicate that athletes and controls 
engage neural oscillatory processes in distinct, task-dependent ways 
during right-leg stance, consistent with the general pattern observed 
across other postural conditions. 

4.2 Single-leg stance and brain 
lateralization

Single-leg stance introduces asymmetric loading and sensory 
demands that require coordinated engagement of cortical networks 
supporting balance regulation. Previous work has shown that 
unilateral stance elicits lateralized patterns of neural activity, 
reflecting the distribution of attentional and sensorimotor 
processing across hemispheres (Chen Y. C. et al., 2021). These task-
related asymmetries provide a useful framework for interpreting 
the hemispheric PAC differences observed in the present study, 
particularly the distinct contralateral and ipsilateral coupling 
patterns that varied across stance conditions and groups.

During right-leg stance, both groups showed stronger PAC in 
the hemisphere contralateral to the supporting limb, consistent 
with evidence that unilateral stance preferentially engages 
lateralized cortical processes involved in sensorimotor integration 
(Muehlbauer et al., 2014). In our data, however, the degree of 
this contralateral predominance varied with both task conditions 
and group background. Athletes displayed clearer hemispheric 
asymmetry on stable surfaces, whereas controls exhibited more 
pronounced asymmetry when standing on the foam surface. This 
divergence suggests that lateralized recruitment during dominant-
limb stance is not fixed but depends on the interaction between 
sensory demands and prior balance experience. Rather than 
reflecting a mechanistic lateralization strategy, the observed patterns 
may indicate that individuals draw on hemispheric resources 
differently as task constraints shift (Büchel et al., 2021).

Cortical engagement during single-leg stance has been shown to 
vary according to limb dominance and task complexity, with unilateral 
loading eliciting lateralized patterns of neural activity related to 
sensorimotor processing (Herold et al., 2017; Khan et al., 2023). These 
findings provide a relevant context for interpreting the hemispheric 
PAC asymmetries observed in the present study (Lehmann et al., 2020). 
During right-leg stance, both groups showed stronger contralateral 
PAC, though the magnitude and surface dependence of this asymmetry 
differed: athletes demonstrated clearer contralateral predominance on 
the stable surface, whereas controls showed this pattern mainly under 
unstable conditions. During left-leg stance, however, athletes exhibited 
greater ipsilateral PAC in the unstable condition, contrasting with the 
consistently contralateral pattern observed in controls. These task- 
and surface-dependent shifts suggest that hemispheric recruitment 
during unilateral stance varies with both sensory demands and training 
background, without implying fixed or mechanistic lateralization 
strategies. The flexibility observed in the athlete group may reflect 
differences in how oscillatory interactions are organized across 
hemispheres during postural tasks, consistent with prior evidence that 
extensive training can influence the distribution of cortical engagement 
during balance regulation (Del Percio et al., 2008). 

The present findings demonstrate that hemispheric PAC 
patterns during single-leg stance vary systematically with limb and 
surface conditions. Across both groups, contralateral predominance 
in PAC was commonly observed, consistent with previous evidence 
that unilateral stance engages lateralized sensorimotor processes 
(Velotta et al., 2011; Huurnink et al., 2014). The magnitude of this 
asymmetry, however, differed by group: athletes showed clearer 
contralateral coupling during right-leg stance on the stable surface, 
whereas controls exhibited stronger contralateral dominance on the 
unstable surface. During left-leg stance, athletes displayed a shift 
toward ipsilateral PAC under unstable conditions, contrasting with 
the consistently contralateral pattern in controls. These variations 
suggest that hemispheric recruitment during unilateral stance is 
shaped by task demands and prior balance experience, rather than 
reflecting a single, fixed control pattern.

Traditional center-of-pressure measures capture behavioral 
aspects of postural asymmetry but provide limited information 
about the underlying neural processes. In contrast, PAC provides 
complementary insight into how oscillatory interactions are 
organized across hemispheres during stance tasks, particularly 
under conditions with increased proprioceptive demands. The 
task-dependent lateralization patterns observed here indicate that 
cortical involvement during SLS may vary across individuals 
and training backgrounds, supporting the value of incorporating 
neurophysiological indices when examining postural regulation. 

4.3 The association between balance 
performance and phase–amplitude 
coupling

Phase-amplitude coupling reflects coordinated interactions 
between low- and high-frequency oscillatory processes and 
has been linked to sensorimotor integration across a range of 
behavioral contexts (Canolty and Knight, 2010). In the present 
study, PAC strength varied across stance tasks and groups, showing 
task-dependent associations with balance performance rather than 
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a uniform relationship. Notably, clearer negative trends between 
PAC strength and SE emerged in the stable left- and right-leg 
conditions, whereas these associations were weaker or inconsistent 
under unstable conditions. This pattern suggests that CFC-behavior 
relationships may be more readily expressed when sensory noise 
is low and postural demands are relatively predictable, allowing 
oscillatory interactions to align more consistently with behavioral 
measures of postural stability.

The present findings reveal group differences in the organization 
of oscillatory activity during postural regulation. Athletes showed 
PAC patterns that were more distinct across stance conditions, 
whereas controls exhibited broader but less differentiated coupling. 
These contrasts suggest that long-term balance experience may 
influence how oscillatory interactions are recruited during stance. 
Across tasks, the association between PAC strength and SE varied 
by condition and was most apparent in stable left- and right-
leg stance. In these lower-noise conditions, stronger PAC was 
accompanied by lower SE in athletes, whereas this pattern was 
less consistent in controls. The weak or inconsistent PAC-
SE associations during foam-surface standing may reflect the 
increased sensory uncertainty and greater behavioral variability 
inherent in proprioceptively demanding tasks. Under unstable 
conditions, subjects rely more heavily on rapid multisensory 
reweighting and intermittent corrective actions, generating more 
irregular patterns of motor output (Szczepanski et al., 2014). These 
rapid adjustments may obscure any systematic relationship between 
oscillatory coupling and postural variability. Similar dissociations 
between neural markers and balance metrics under high-noise 
conditions have been observed in previous studies of postural 
adaptation and sensory reweighting (Maurer et al., 2006), suggesting 
that oscillatory signatures may not map onto behavior in a simple 
linear fashion when the system operates near its stability limits.

Together, these findings reinforce that the functional relevance 
of PAC during stance cannot be generalized across all postural 
contexts. Instead, the expression of CFC–behavior associations 
appears to depend jointly on task constraints and individual 
balance experience, emerging most clearly when sensory demands 
are moderate and behavioral variability is low. This task- and 
experience-dependent organization of oscillatory interactions 
provides a more nuanced understanding of how neural coupling 
participates in postural regulation. 

4.4 Limitations

While our findings offer novel insights into neural coupling 
mechanisms underlying postural control, several limitations must 
be acknowledged. First, although the control group exhibited 
significant behavioral changes across conditions, their coupling 
strength remained relatively stable. This discrepancy suggests that 
PAC alone may not fully account for behavioral performance, and 
other neurophysiological factors-such as sensory feedback processing, 
motor execution efficiency, or cognitive workload-may also contribute. 
In addition, this study primarily focused on cortical EEG activity 
and behavioral measures of balance to characterize the neural 
mechanisms of postural control. Peripheral physiological data—such 
as lower-limb electromyography (EMG) or eye-tracking signals 
reflecting visual attention—were not included, as the experimental 

design aimed to isolate cortical-level dynamics. Future multimodal 
studies combining EEG with EMG and eye-tracking could further 
elucidate the cortico–muscular and visuo–sensorimotor interactions 
that contribute to adaptive balance regulation. 

Second, the observed similarities in coupling strength among 
non-athletes may reflect alternative control strategies rather than 
a true absence of neural modulation. It remains unclear whether 
these patterns represent a baseline neural state or are influenced 
by task-specific cognitive compensation, individual variability, or 
insufficient sensitivity of the PAC metric itself. Further work is 
needed to examine the relative contributions of phase coherence, 
network modularity, and interregional connectivity. 

5 Conclusion

The present findings illustrate that phase-amplitude coupling 
during stance reflects a pattern shaped jointly by task constraints 
and individual balance experience. PAC did not relate to behavioral 
performance in a uniform way, and the associations that did 
emerge appeared only under stable-surface conditions, where 
postural variability was lower and oscillatory interactions were 
more consistently expressed. Differences between athletes and non-
athletes in both the spatial distribution and spectral structure of PAC 
further suggest that oscillatory coordination is organized in flexible, 
context-dependent ways rather than through fixed neural strategies. 
Future work using longitudinal or multimodal approaches will be 
essential to clarify the functional significance and potential applied 
value of these coupling patterns.
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