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Background: Cross-frequency coupling (CFC), particularly phase—amplitude
coupling (PAC), reflects hierarchical interactions between neural oscillations and
plays a critical role in sensorimotor integration. However, its functional relevance
during balance control under sensory perturbations remains insufficiently
understood.

Objective: This study aimed to investigate PAC characteristics during postural
control tasks of varying difficulty in elite freestyle aerial skiers versus non-
athlete controls.

Methods: EEG signals and center of pressure (COP) data were recorded from
participants performing six standing balance tasks on stable and unstable
surfaces. Postural control was assessed using center of pressure data, which
represent the point location of the body’s vertical ground reaction force vector
and are commonly used to quantify sway and balance performance during
stance. Mean Vector Length Modulation Index (MVLmi) and PAC analyses were
applied to assess oscillatory interactions.

Results: Surface instability significantly modulated PAC strength across
frequency bands (P < 0.05). Athletes exhibited task-specific enhancements in
alpha-gamma and delta-gamma coupling during single-leg and double-leg
stance. These coupling patterns were more spatially localized and showed
trends consistent with superior postural control. In contrast, non-athletes
showed widespread PAC increases under perturbation, but with less effective
balance performance. Hemispheric asymmetries were observed during single-
leg stance: athletes demonstrated contralateral dominance during right-leg
tasks and ipsilateral coupling shifts during unstable left-leg stance, indicating
dynamic lateralized control shaped by training. Across conditions, athletes
showed higher PAC strength and lower sample entropy, reflecting more efficient
and adaptable cortical strategies for postural regulation.

Conclusion: PAC strength is closely linked to postural performance
and varies with task complexity and surface condition. These findings
highlight the role of training-induced neuroplasticity in modulating
cortical dynamics for balance control, offering new insights for
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targeted neuromodulatory interventions and neurofeedback-based training

strategies.
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1 Introduction

Human balance is a complex neurophysiological function that
depends on the continuous integration of multisensory input and the
precise coordination of motor output. The central nervous system
(CNS) maintains postural stability by processing information from
the visual, vestibular, and proprioceptive systems. Disruption in
any of these modalities can impair balance and increase postural
sway (Henry and Baudry, 2019; Horak and Hlavacka, 2001).
Although isolating vestibular contributions in experiments remains
challenging, they act in concert with visual and proprioceptive
signals to sustain upright posture (Keyvanara et al., 2021).

Recent electrophysiological studies have shown that cortical
activity is highly responsive to postural challenges. Oscillations in
specific frequency bands—particularly increased theta power in
frontal and central regions—are associated with elevated cognitive
demand and the need to resolve sensorimotor conflicts during
balance perturbations (Chen X. P. et al., 2021; Tsai et al., 2022).
For instance, theta activity in the precentral cortex rises during
complex postural tasks, reflecting the additional processing required
to coordinate movement and maintain stability (Peterson and
Ferris, 2018; Stokkermans et al., 2023; Mierau et al., 2015). These
findings emphasize the dynamic nature of neural adaptation in
postural control, highlighting the brain’s role in adjusting to varying
stability demands.

Historically, studies of brain oscillations focused on the roles
of individual frequency bands. Since Bergers discovery of the
alpha rhythm (8-12 Hz) in 1929 (Berger, 1929), low-frequency
oscillations have been linked to motor control and sensory input,
whereas high-frequency activity has been associated with localized
neural processing. More recently, research has shifted toward
understanding how distinct frequencies interact. Low-frequency
rhythms, often involved in both external sensory-motor functions
and internal cognitive processes such as decision-making and
memory (Schroeder and Lakatos, 2009), are now known to interact
with high-frequency signals that are topographically localized.
Cross-frequency coupling (CFC)—especially phase-amplitude
coupling (PAC)—has emerged as a mechanism for integrating
information across spatial and temporal scales. Although CFC is
considered important for coordinating sensory, motor, and cognitive
functions, its specific contribution to balance control remains
underexplored (Buzsaki and Draguhn, 2004). In parallel, EEG
power spectral density (PSD) analysis has become a standard tool for
assessing frequency-specific brain responses to postural demands
(Peterson and Ferris, 2018). For example, Hiilsdiinker et al. (2015)
found that increased task difficulty was accompanied by greater
frontal theta power, suggesting enhanced sensorimotor integration
during balance regulation. Likewise, Slobounov et al. (2006)
reported elevated theta and reduced alpha power during postural
instability induced by surface perturbation. These results support
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the use of PSD as a sensitive indicator of cortical adaptation in
response to balance challenges.

CFC describes the interactions between neural oscillations
of different frequencies and is widely recognized as playing a
crucial role in brain functions such as computation, information
transmission, and learning (Salimpour and Anderson, 2019). Early
studies identified that distinct frequency bands predominantly
underlie specific types of brain activity and respond selectively to
sensory, motor, and cognitive stimuli (Engel et al., 2001). Within
this theoretical framework, CFC has been categorized into several
forms, including amplitude-amplitude coupling (AAC), also known
as comodulation (Yeh et al., 2016); phase-phase coupling (PPC),
which involves harmonic synchronization (Scheffer-Teixeira and
Tort, 2016); and the most extensively studied form, PAC. Among
these, PAC has drawn increasing attention for its critical role in
regulating neural dynamics, particularly in pathological conditions
such as epilepsy (Hyafil et al., 2015; Malladi et al., 2018).

PAC occurs when the amplitude of high-frequency neural
activity in one brain region is modulated by the phase of low-
frequency oscillations, either within the same area or across regions.
Among the most commonly studied forms are theta-gamma
and alpha-gamma coupling, which have been used to examine
interactions between distinct cognitive systems (Canolty and
Knight, 2010). PAC modulation is often driven by dominant
low-frequency rhythms that are characteristic of specific brain
areas and behavioral contexts. For example, Osipova et al. (2008)
showed that gamma-band power was synchronized with the
alpha, rather than the theta, phase. Similarly, Cohen et al. (2009)
identified alpha-gamma coupling in the human ventral thalamus.
As a mechanism for linking neural activity across spatial and
temporal scales, PAC facilitates inter-regional communication and
coordination. Robust CFC patterns have been reported in several
brain structures—including the neocortex, hippocampus, and basal
ganglia—during task execution, with coupling frequencies varying
by region and task. Moreover, multiple coupling modes may coexist
depending on functional demands.

Although CFC has been increasingly studied as a mechanism
of cognitive integration, its role in postural control-especially under
conditions of sensory perturbation-remains poorly understood.
Among the various forms of CFC, PAC is of particular interest
because it captures hierarchical interactions between the phase
of low-frequency and the amplitude of high-frequency brain
rhythms. Yet, it is not fully known how PAC supports balance
regulation, or how this coupling adapts to task complexity and
sensory challenges. Studying brain activity during challenging
standing tasks in elite athletes is especially valuable, as this
population operates near the upper limits of human sensorimotor
performance, where subtle neural adaptations become most
apparent (Nakata et al., 2010). Previous research has shown that
elite athletes exhibit distinctive cortical activation patterns during
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balance regulation (Del Percio et al., 2009). Examining PAC in
this cohort during progressively challenging standing tasks may
therefore elucidate how hierarchical neural coordination supports
elite-level balance regulation and rapid compensatory adjustments.
Based on this rationale, the present study aimed to quantify PAC
in elite athletes during balance tasks of increasing difficulty and
sensory perturbation, thereby characterizing the contribution of
cross-frequency neural interactions to high-level postural control.

Building upon this framework, we hypothesized that (1) neural
coupling strength would differ across brain regions, reflecting
region-specific adaptations for postural control, and (2) external
perturbations such as unstable support surfaces would modulate
PAC strength, revealing the context-dependent nature of neural
coordination during balance tasks.

2 Methods
2.1 Participants

This study recruited 14 elite freestyle aerial skiing athletes, each
with more than 5 years of professional training experience, as the
experimental group. All athletes were ranked within the top eight
in either the Winter Olympics or the World Cup. The participants
had a mean height of 167.95 + 8.70 cm, body weight of 63.11 +
10.28 kg, and mean age of 24.63 + 5.01 years. A control group of ten
healthy adults who did not participate in regular physical training
(less than three sessions per week) was also recruited. The average
height, weight, and age of this group were 172.86 + 5.5cm, 72 *
9.65 kg, and 25.35 + 2.4 years. All participants were confirmed to
be right-leg dominant using a preferred leg test involving a ball-kick
task, as required by the single-leg balance protocol.

Prior to participation, each subject completed a detailed medical
history questionnaire to screen for musculoskeletal, neurological,
or systemic conditions that could interfere with single-leg balance.
None reported lower limb injuries within the past 6 months.
The research protocol received ethical approval from the Ethics
Committee of Shenyang Sport University under approval number
2018 (09). All methods described in this study were conducted in
accordance with the relevant guidelines and regulations as outlined
in the Declaration of Helsinki.

2.2 Material and procedure

2.2.1 Equipment

Postural data were collected using a portable balance platform
(Humac Balance, United States; 65 x 40 cm, 100 Hz sampling rate),
which provided a stable surface condition. To induce proprioceptive
instability, a foam pad of the same dimensions (65 x 40 cm, 50 mm
thick) was placed on the platform. The center of pressure (COP) was
recorded under both stable and unstable conditions.

Cortical activity was simultaneously recorded using a 64-
channel EEG system (eego™ mylab, ANT Neuro, Netherlands).
Participants wore a standard EEG cap with conductive gel applied
to all electrodes. Electrode impedance was maintained below
5kQ throughout data acquisition. EEG signals were sampled at
2000 Hz and filtered online with a 0.1-100 Hz bandpass. The ground
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electrode was positioned between FPz and Fz, and CPz served as the
reference. This midline location was selected to reduce hemispheric
bias and is frequently used in postural control and motor-related
EEG studies (Castillo-Barnes et al., 2024), in accordance with the
international 10-20 system.

2.2.2 Testing procedure

Participants were asked to remove their shoes and socks and
stand barefoot on the platform, maintaining an upright trunk
posture with minimal body sway. All tests were conducted in
a quiet, temperature-controlled laboratory to minimize external
distractions. Participants placed their hands on their hips and
positioned both feet symmetrically, with the forefoot edges aligned
to the marked reference line on the platform. The reference line
defined a standardized stance angle of approximately 45°between the
feet, a configuration commonly adopted in postural control research
to provide a natural standing posture and ensure consistency across
participants.

Visual fixation was maintained on a 5 cm white circle positioned
ateyelevel on a wall 3 m ahead. Participants were instructed to avoid
unnecessary movements and to keep their hips and knees slightly
flexed during all trials.

Each participant completed a proprioceptive interference and
single-leg stance test consisting of six static postural conditions.
These conditions have shown high test-retest and inter-rater
reliability in healthy young adults (Hof, 2007). The specific
conditions were as follows:

T1 (EOF): Bipedal stance on an unstable surface.

T2 (EO): Bipedal stance on a stable surface.

T3 (LOF): Left-leg stance on an unstable surface.

T4 (LO): Left-leg stance on a stable surface.

T5 (ROF): Right-leg stance on an unstable surface.

T6 (RO): Right-leg stance on a stable surface.

Each condition lasted 30 s, with a 30-s seated rest between trials.
EEG signals and plantar pressure data were recorded simultaneously
to assess neural activity and balance control.

Several procedures were followed to minimize potential
confounds. All testing took place during the athletes’ off-season,
and participants were asked to avoid strenuous physical activity for
24 h prior to testing. They were also instructed to maintain their
usual daily routines while avoiding behaviors that could influence
mood or physiological state. All assessments were conducted in a
temperature-controlled laboratory under standardized conditions
to ensure consistency and data quality.

2.3 Data processing

2.3.1 EEG data preprocessing

EEG preprocessing was performed using the EEGLAB toolbox
in MATLAB, following a standardized and widely accepted pipeline.
Raw signals were filtered with a fourth-order Butterworth bandpass
(1-40 Hz) to remove slow drifts and high-frequency noise. A notch
filter at 50 Hz (48-52 Hz) was applied to eliminate line noise.
All signals were re-referenced to the common average to enhance
baseline consistency.

Artifact correction involved multiple steps to address ocular,
muscular, and movement-related noise. Independent Component
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Analysis (ICA) was applied to isolate and remove artifactual
components. These were identified based on their temporal
signatures (transient bursts, stereotyped rhythmic activity), spatial
topographies (fronto-orbital or temporalis localization), and
spectral features showing non-physiological power concentrations
(>50 Hz or <1 Hz).

Following ICA, amplitude-based thresholding was applied to
identify and remove residual high-amplitude artifacts. EEG data
were segmented into 2-s epochs, and any segment containing
voltage fluctuations exceeding +80 pV was automatically rejected.
To ensure data integrity, automatic classification was supplemented
with visual inspection. On average, 2.67 + 0.45 components were
removed per dataset. Residual segments contaminated by noise or
with incomplete recordings were excluded. Only artifact-free, high-
quality EEG epochs were retained for subsequent PAC analysis.

2.3.2 Mean vector length modulation index,
MVLmi

Given the variability of cross-frequency interactions during
postural control, this study specifically focused on PAC-a subtype of
CFC-to assess the coordination between neural oscillations across
different frequency bands. The EEG frequency bands were defined
as Delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz),
and gamma (30-40 Hz). During processing, the low-frequency
bandwidth (phase) was set to 1-29 Hz, and the high-frequency
bandwidth (amplitude) was set to 7-40 Hz. After preprocessing, the
Hilbert transform was applied to calculate the instantaneous phase
information for the low-frequency range and the instantaneous
amplitude information for the high-frequency range. These results
were subsequently used for CFC analysis.

Subsequently,  this  study employed the method
proposed by Canolty and Knight (2010) to calculate CFC. The
MVLmi depends on generating a composite signal Z, in the complex
plane, as shown in the formula.

Zy= A & Pphasedt
Z,:The value of the composite signal at time t, A,,,,,: instantaneous
amplitude of a high-frequency signal at time t, i imaginary unit,

0]

phase, INstantaneous phase of a low-frequency signal at time t.

The value of the MVLmi is computed by taking the average
length of Z, across all time points.

MI = |mean(z)|

mean(z), average of the composite signal Z, across all time
points is computed, and this value is utilized to analyze phase-
amplitude coupling.

The formula for calculating the average magnitude of the
composite signal is as follows:

MVLmig,, = abs(z

mean )Zmean

i DM, > MI+ 1

P
gy + 1

MI,,, represents the MVL-MI value obtained from the i simulation.
The calculation of the p-value involves determining the proportion

of simulated This ratio provides the MVLmi p-value. If the calculated
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p-value for the observed MVLmi is small (P < 0.05), then the
observed MVLmi is considered statistically significant.

In this study, the randomization process involves randomly
dividing the signal into two segments. This randomization method
simulates the situation where signal segmentation occurs under
random conditions, allowing for an exploration of the sensitivity of
MVLmi to signal segmentation.

MI—u

normalized,;; =

u represents the mean of the MVLmi obtained from 100
randomizations, and o is the standard deviation.

2.3.3 Sample entropy (SE)

Early studies have shown that Sample Entropy (SE) can quantify
the regularity or predictability of COP time series data collected
under different test conditions or across different experimental
groups (Kirchner et al, 2012). By expanding the dimensionality
range of all one-dimensional COP data from the measurement
results, calculating the absolute value of the maximum difference
between two vectors, and comparing it with a threshold, more
regular features can be discovered. In this study, we processed the
measured COP data, where the data length N was 3,000 points
(sampling frequency of 100 Hz, sampling time of 30 s). Through
calculation, we expanded the complex and variable original one-
dimensional COP data within the time series into more regular two-
dimensional and three-dimensional data, thereby obtaining a more
regular SEn value (Ahmadi et al.,, 2018).

SE (m, 1, N) refers to the negative natural logarithm of the
conditional probability that two sequences similar for m points
remain similar at the next point, m+ 1, where self-matches are
not included in the probability calculation. Apart from removing
self-matches, SE has been proven to be independent of data length
and capable of providing more meaningful results (Richman and
Moorman, 2000).

The formula is as follows:

For a time series (x;) = (x,x, X3 ---x,), composed of N data
points, we form a sequence of m-dimensional vectors y; ,.:

Viemy = X Xis oo Xipme1 i = L2, ,N=m + 1

Next, without considering self-comparisons, we find matching
templates by comparing the polynomial distance to B; a
predetermined threshold r. Then, we construct a variable which
is the number of pairs that satisfy the aforementioned condition:

B (1) = ——— 3" 0(r- ly(m) - y(m)lloo)
N—m—14j=1j#l ] !

In the above equation ||yj(m) —y;(m)|loo = max 0 <k <m—
1|xj+k— X;.x| representing the maximum distance between two
vectors, which is the absolute value of the maximum difference
between the two vectors; © is the unit step function used to
determine whether the maximum distance between two vectors is
less than or equal to the threshold 7;

We calculate two quantities, B(m) and A(m):

N-m
BM() = = Y Bl
i=1
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Increase the dimension to m + 1, constructing a set of vectors
with dimension m + 1. Repeat the above steps to calculate A"(r) and
A™(r):

1 N-m
m —
A= { 121':1,#1
N-m

AT = Y A7)
i=1

O(r-lly,(m +1) - y,(m + 1)]|c0)

Finally, according to SE (Montesinos et al., 2018), with m = 2
and r = 0.1SD, the following formula is obtained for the negative
logarithm of the conditional probability of the sequence of data

)

Calculate the Euclidean norm of the entropy values obtained

dimensions:

A" (r)
B™(r)

SampleEn(m,r,N) = —log<

for the anterior-posterior (AP) direction and medial-lateral (ML)
direction samples, evaluating a comprehensive indicator of athletes’

) [ 2 2
Euclideang = \\ MLy, + APg;,

2.3.4 Sway velocity

Sway velocity was included as an additional behavioral measure

balance abilities.

of postural stability to complement SE. Whereas SE reflects the
temporal irregularity of COP fluctuations, sway velocity captures the
overall rate of COP displacement and is widely used as a sensitive
indicator of balance performance under both stable and perturbed
conditions.

For each trial, sway velocity was calculated from the COP
time series recorded by the force platform. Instantaneous COP
displacement between successive samples was computed in the
anterior-posterior and medial-lateral directions and then divided
by the corresponding sampling interval. The mean sway velocity
for each task was obtained by averaging the resultant COP
velocity across the entire trial duration. Higher sway velocity
values indicate greater postural instability and reduced efficiency of
balance control.

Sway Velocity = 1 I\f \/(xiﬂ _xi)z + i —yi)z
¢ g T = At

where: x;,y;: COP coordinates at the i-th sampling point;
At:sampling interval (100-Hz device); N: total number of samples;
T=(N-1)At

2.4 Data analysis

All statistical analyses were performed using MATLAB
R2022a, and spatial brain maps were visualized with the BrainNet
Viewer toolbox (Figure 1). Group-level comparisons of mean vector
length modulation index (MVLmi) values and balance performance
across task conditions were conducted using independent-samples
t-tests, whereas within-group effects of support surface stability
(T1 vs. T2, T3 vs. T4, T5 vs. T6) were assessed using paired-
samples t-tests after standardizing MVLmi values across all
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electrodes. Bonferroni correction was applied to adjust for multiple
comparisons and control the family-wise error rate. Statistical
significance was set at p < 0.05, and highly significant differences
were defined as p < 0.01.

To further examine task-dependent variations, pairwise
comparisons were performed among all six postural tasks within
each group. These analyses evaluated changes in PAC strength and
balance performance associated with increasing postural complexity
and different stance conditions.

Given the relatively small sample size, a non-parametric
permutation test was additionally performed to validate the
robustness of group-level comparisons. This method does not
assume normality and provides more reliable inference under
limited sample conditions. Permutation-derived p-values were
subjected to the same Bonferroni correction to adjust for multiple
comparisons. Results from permutation tests were used to cross-
validate the findings from parametric tests.

3 Results

3.1 EEG signal characteristics in time and
frequency domains

To assess the quality of the EEG recordings and to inform the
selection of frequency bands for the subsequent PAC analysis, both
time-domain and frequency-domain characteristics of the signals
were examined under representative task conditions. Figure 2a
illustrates sample EEG waveforms from the Fz and Cz electrodes
during Task 1 and Task 5. Each line represents the average
amplitude across all 2-s epochs for an individual participant.
The waveforms showed consistent temporal structure and
oscillatory dynamics across subjects, with no evidence of
significant artifacts or channel failure, confirming the overall
reliability of the data.

As shown in Figure 2b, normalized PSD values were compared
between groups at selected electrodes (Fz and Oz) where
significant differences were observed. Relative to the control
group, elite athletes displayed significantly greater alpha power
at both Fz and Oz, as well as elevated theta and beta power
at Fz (p < 0.05).

3.2 MVLmi of all electrodes

Figure 3 illustrates PAC heatmaps for the elite athlete group
across six static balance tasks. Each heatmap depicts a coupling
matrix spanning 15 phase-frequency bands and 22 amplitude-
frequency bands, reflecting interactions between low- and high-
frequency oscillations under varying postural demands.

The results reveal distinct coupling patterns and spatial
distributions across different task conditions, indicating that
athletes modulate oscillatory activity in task-specific ways.
Notably, only data from the athlete group are presented here.
Although the control group completed the same tasks, their
PAC distributions are not shown. All analyses were performed
using identical preprocessing and statistical procedures across
both groups.
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FIGURE 1
Experimental set-up. In Step 1, We selected 14 elite freestyle skiing aerials athletes and 10 adults. Step 2 involves conducting two experiments on all

participants: first, 30-s electroencephalogram (EEG) and balance recording test during various support leg conditions, and second, a 30-s test under
varying surface conditions. Throughout this process, detailed EEG and Balance data for all participants are meticulously recorded. In step 3, Electrode
positions, providing examples of electrodes on the top of the head for all participants. The coordinates of these electrodes are referenced from the
node file of the 10/20 EEG system based on Koessler's research (Koessler et al., 2009). In step 4, Center of Pressure data (anterior-posterior and
mediolateral) were recorded to further analyze balance.
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EEG waveforms and PSD comparisons between groups. (a) Presents time-domain EEG waveforms from two representative tasks (Taskl and Task5) at
the FZ and CZ electrodes. Signals from all participants are overlaid to demonstrate the temporal consistency and variability across subjects. (b)
Normalized PSDs for elite athletes and non-athlete controls, showing frequency bands with statistically significant differences (P < 0.05).
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FIGURE 3

the y band). This creates a 15 x 22 matrix of phase-amplitude coupling (PAC) data points.

The figure panels (a—f) present the Modulation Index-based Cross-Frequency Coupling (MVLmi) results across 13 electrodes for a representative
athlete performing six distinct balance tasks (T1-T6). In each panel, the horizontal axis represents the phase-frequency range (capturing low-frequency
oscillations such as §, 6, a, B), while the vertical axis corresponds to the amplitude-frequency range (capturing high-frequency components, primarily in
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3.3 Cross-frequency coupling differences
in support surface interference

3.3.1 Dual-leg standing (T1 vs. T2)

Asillustrated in Figure 4a, the athlete group exhibited significant
PAC differences (P < 0.05) at five electrode sites, primarily located
in the frontopolar, frontal, anterior frontal, and central regions. In
contrast, the control group showed significant coupling changes
at seven sites, encompassing broader cortical areas including
the frontal, temporal, parietal, and occipital lobes. Notably, the
most prominent modulation in the athlete group occurred at the
frontopolar site, with enhanced coupling between 2 Hz (phase)
and 32 Hz (amplitude). The control group, on the other hand,
demonstrated a peak difference at 12 Hz (phase) and 28 Hz
(amplitude), as depicted in Figure 4b.

3.3.2 Left-leg standing (T3 vs. T4)

During the left-leg standing task, the athlete group exhibited
significant PAC alterations across 13 electrode sites, with pronounced
effects in the parietal cortex (Figure5a). The strongest coupling
difference was observed at a phase frequency of 10 Hz and an
amplitude frequency of 38 Hz. In comparison, the control group
showed significant changes at eight electrode sites distributed across
seven cortical regions, with the most pronounced PAC occurring in
the frontal cortex at 14 Hz (phase) and 32 Hz (amplitude) (Figure 5b).

3.3.3 Right-leg standing (T5 vs. T6)
Compared to the left-leg condition, fewer significant differences
were observed during right-leg standing. Athletes showed coupling
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differences in 10 electrodes primarily localized to the frontal
and central areas, with peak PAC at 10 Hz phase and 32 Hz
amplitude (Figure 6). The control group exhibited coupling
differences across six electrodes, spanning the frontal, parietal, and
occipital cortices, with key PAC activity at 4 Hz phase and 22 Hz
amplitude.

3.4 Coupling characteristics between
ipsilateral and contralateral hemispheres

To investigate lateralized neural responses during unilateral
stance, we analyzed PAC strength between the ipsilateral and
contralateral hemispheres under both left- and right-leg support
conditions (Figure 7).

During right-leg stance, all participants demonstrated stronger
PAC in the hemisphere contralateral to the supporting limb,
regardless of surface stability. However, the magnitude of this
hemispheric asymmetry varied between groups and surface
conditions. Specifically, elite athletes exhibited significantly greater
contralateral-to-ipsilateral PAC differences under stable support
conditions (P < 0.05), whereas the control group showed more
pronounced asymmetry on the unstable surface (P < 0.05).

A different pattern emerged during left-leg stance. While the
control group maintained stronger contralateral PAC across both
surface types, the athlete group exhibited a notable shift in coupling
direction under unstable conditions. In this context, PAC strength
was significantly greater in the ipsilateral hemisphere compared to
the contralateral side (P < 0.05).
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3.5 PAC strength and balance performance

In the control group, both SEand sway velocity were
significantly higher on unstable surfaces than on stable ones across
all postural tasks (P < 0.05), indicating reduced postural stability
in response to proprioceptive disturbance. Among elite athletes,
significant increases in SE and sway velocity were observed during
bipedal and left-leg stances under unstable conditions (P < 0.05),
whereas performance during right-leg stance (dominant limb)
remained relatively stable (Figure 8).

Further between-group comparisons revealed that athletes
exhibited significantly greater PAC strength than controls during
the T2 (bipedal-stable), T4 (left-leg-stable), and T6 (right-leg-
stable) tasks (P < 0.05). In contrast, during the T3 and T5 tasks,
athletes achieved lower SE values and sway velocity compared with
controls (P < 0.05), indicating better postural stability under these
conditions.

Across task conditions, the association between PAC strength
and postural entropy showed task and group dependent variability
rather than a uniform pattern. In several tasks-particularly in the
athlete group (T1, T4, and T6)-a clear negative trend was observed,
whereby stronger cross-frequency coupling tended to accompany
lower SE values. In other tasks, however, the relationship was weaker
or showed no consistent direction (Figure 9).

4 Discussion

The present study provides new evidence for the neural
mechanisms supporting postural control under proprioceptive
challenge. In response to unstable surfaces, elite athletes exhibited
stronger and more spatially specific PAC, particularly within
prefrontal and parietal regions involved in top-down regulation
and sensorimotor integration. These task-dependent coupling
patterns—most prominently in the alpha-gamma and delta—gamma
ranges—suggest that elite performers rely on efficient, context-
sensitive neural strategies to maintain balance when sensory
reliability decreases.

Frontiers in Physiology

4.1 Effects of proprioceptive disturbance
on neural coupling

Elite athletes exhibit superior postural control, a critical
component of athletic performance, which is widely attributed
to long-term neuroplastic adaptations induced by intensive, task-
specific training (Opala-Berdzik et al., 2018). Keller et al. (2018)
suggested that improved postural performance in athletes
may stem from functional adaptations in both cortical and
tasks
lateral body displacement. Such neural optimization often
a downregulation of reflexive

subcortical ~ structures, particularly during requiring

involves spinal responses,
reducing unnecessary muscle activity and enhancing balance
efficiency.

In the present study, elite athletes showed more spatially focused
PAC patterns during both bipedal and unilateral stance, whereas
controls exhibited broader and less differentiated coupling across
frontal, temporal, and parietal areas. This distinction aligns with
earlier work suggesting that individuals with extensive balance
training may engage neural resources in a more selective manner
during postural tasks (Khan et al., 2023). The more focal PAC
in athletes, particularly over prefrontal and parietal regions, likely
reflects optimized recruitment of attentional and sensorimotor
integration networks that have been strengthened through years of
balance-specific training. Neuroimaging studies have consistently
identified a distributed fronto-parietal network supporting postural
regulation (Edwards et al., 2018), and enhanced activity in these
regions has been associated with the need to monitor body
orientation and resolve sensory uncertainty during stance tasks
(Peterson and Ferris, 2018; Stokkermans et al., 2023).

Sensory perturbation during stance is known to influence
low- and mid-frequency oscillatory processes (Peterson and
Ferris, 2018; Varghese et al., 2014). In the present study, however,
the specific cross-frequency coupling patterns differed markedly
between tasks and between groups. Rather than exhibiting a single
dominant spectral profile, the athlete group showed task-dependent
shifts in coupling frequency: delta-gamma interactions (2-32 Hz)
emerged during the dual-leg condition, whereas alpha-gamma
combinations (10-38 Hz or 10-32 Hz) were most prominent
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(a,b) show the relationship between PAC strength and balance performance, assessed using SE and sway velocity, across all six postural conditions
(T1-T6) for both groups. The color-coded plots represent the relative magnitudes of PAC, SE, and sway velocity observed under each task condition.
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Scatterplots illustrating the relationship between (PAC strength and SE across the six postural tasks (T1-T6) in the athlete and control groups. Each
panel displays individual data points (blue dots) and the corresponding linear regression fit (black line).

during unilateral stance. These variations indicate that oscillatory
coordination in athletes flexibly adapts to the specific postural

context rather than following a uniform pattern.
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The control group displayed an even broader assortment of
phase-amplitude pairings, including delta—gamma (4-22 Hz),
alpha-gamma (12-28 Hz; 14-32Hz), and beta-gamma-range
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interactions. This diversity, together with the wider spatial
distribution of significant PAC sites across frontal, temporal,
parietal, and occipital regions, suggests a less selective or more
diffuse recruitment of cortical resources during stance regulation.
Such variability is consistent with prior evidence that individuals
with less balance experience exhibit broader and less differentiated
cortical engagement during postural tasks (Hiilsdiinker et al., 2015).
These between-group distinctions suggest differences in how
oscillatory activity is organized during stance, but the variability
across tasks and surface conditions indicates that PAC likely reflects
task-dependent recruitment rather than a uniform control strategy.

During right-leg stance, athletes showed fewer but more
spatially focused PAC differences, primarily over frontal regions.
This pattern suggests that neural activity during dominant-limb
support may be organized in a more concentrated manner,
consistent with the localized engagement observed in other stance
conditions in this group. The peak PAC at 10 Hz and 32 Hz
falls within frequency ranges previously linked to attentional
allocation and sensorimotor integration (Fries, 2005). In contrast,
controls exhibited broader coupling across frontal, parietal, and
occipital areas, echoing the more distributed cortical recruitment
reported in individuals with less specialized balance experience
(Taubert et al., 2011; Surgent et al., 2019). Within this broader
context, the present findings indicate that athletes and controls
engage neural oscillatory processes in distinct, task-dependent ways
during right-leg stance, consistent with the general pattern observed
across other postural conditions.

4.2 Single-leg stance and brain
lateralization

Single-leg stance introduces asymmetric loading and sensory
demands that require coordinated engagement of cortical networks
supporting balance regulation. Previous work has shown that
unilateral stance elicits lateralized patterns of neural activity,
reflecting the distribution of attentional and sensorimotor
processing across hemispheres (Chen Y. C. et al,, 2021). These task-
related asymmetries provide a useful framework for interpreting
the hemispheric PAC differences observed in the present study,
particularly the distinct contralateral and ipsilateral coupling
patterns that varied across stance conditions and groups.

During right-leg stance, both groups showed stronger PAC in
the hemisphere contralateral to the supporting limb, consistent
with evidence that unilateral stance preferentially engages
lateralized cortical processes involved in sensorimotor integration
(Muehlbauer et al., 2014). In our data, however, the degree of
this contralateral predominance varied with both task conditions
and group background. Athletes displayed clearer hemispheric
asymmetry on stable surfaces, whereas controls exhibited more
pronounced asymmetry when standing on the foam surface. This
divergence suggests that lateralized recruitment during dominant-
limb stance is not fixed but depends on the interaction between
sensory demands and prior balance experience. Rather than
reflecting a mechanistic lateralization strategy, the observed patterns
may indicate that individuals draw on hemispheric resources
differently as task constraints shift (Biichel et al., 2021).
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Cortical engagement during single-leg stance has been shown to
vary according to limb dominance and task complexity, with unilateral
loading eliciting lateralized patterns of neural activity related to
sensorimotor processing (Herold et al., 2017; Khan et al., 2023). These
findings provide a relevant context for interpreting the hemispheric
PACasymmetries observed in the present study (Lehmann etal., 2020).
During right-leg stance, both groups showed stronger contralateral
PAC, though the magnitude and surface dependence of thisasymmetry
differed: athletes demonstrated clearer contralateral predominance on
the stable surface, whereas controls showed this pattern mainly under
unstable conditions. During left-leg stance, however, athletes exhibited
greater ipsilateral PAC in the unstable condition, contrasting with the
consistently contralateral pattern observed in controls. These task-
and surface-dependent shifts suggest that hemispheric recruitment
during unilateral stance varies with both sensory demands and training
background, without implying fixed or mechanistic lateralization
strategies. The flexibility observed in the athlete group may reflect
differences in how oscillatory interactions are organized across
hemispheres during postural tasks, consistent with prior evidence that
extensive training can influence the distribution of cortical engagement
during balance regulation (Del Percio et al., 2008).

The present findings demonstrate that hemispheric PAC
patterns during single-leg stance vary systematically with limb and
surface conditions. Across both groups, contralateral predominance
in PAC was commonly observed, consistent with previous evidence
that unilateral stance engages lateralized sensorimotor processes
(Velotta et al., 2011; Huurnink et al., 2014). The magnitude of this
asymmetry, however, differed by group: athletes showed clearer
contralateral coupling during right-leg stance on the stable surface,
whereas controls exhibited stronger contralateral dominance on the
unstable surface. During left-leg stance, athletes displayed a shift
toward ipsilateral PAC under unstable conditions, contrasting with
the consistently contralateral pattern in controls. These variations
suggest that hemispheric recruitment during unilateral stance is
shaped by task demands and prior balance experience, rather than
reflecting a single, fixed control pattern.

Traditional center-of-pressure measures capture behavioral
aspects of postural asymmetry but provide limited information
about the underlying neural processes. In contrast, PAC provides
complementary insight into how oscillatory interactions are
organized across hemispheres during stance tasks, particularly
under conditions with increased proprioceptive demands. The
task-dependent lateralization patterns observed here indicate that
cortical involvement during SLS may vary across individuals
and training backgrounds, supporting the value of incorporating
neurophysiological indices when examining postural regulation.

4.3 The association between balance
performance and phase—amplitude
coupling

Phase-amplitude coupling reflects coordinated interactions
between low- and high-frequency oscillatory processes and
has been linked to sensorimotor integration across a range of
behavioral contexts (Canolty and Knight, 2010). In the present
study, PAC strength varied across stance tasks and groups, showing
task-dependent associations with balance performance rather than
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a uniform relationship. Notably, clearer negative trends between
PAC strength and SE emerged in the stable left- and right-leg
conditions, whereas these associations were weaker or inconsistent
under unstable conditions. This pattern suggests that CFC-behavior
relationships may be more readily expressed when sensory noise
is low and postural demands are relatively predictable, allowing
oscillatory interactions to align more consistently with behavioral
measures of postural stability.

The present findings reveal group differences in the organization
of oscillatory activity during postural regulation. Athletes showed
PAC patterns that were more distinct across stance conditions,
whereas controls exhibited broader but less differentiated coupling.
These contrasts suggest that long-term balance experience may
influence how oscillatory interactions are recruited during stance.
Across tasks, the association between PAC strength and SE varied
by condition and was most apparent in stable left- and right-
leg stance. In these lower-noise conditions, stronger PAC was
accompanied by lower SEin athletes, whereas this pattern was
less consistent in controls. The weak or inconsistent PAC-
SE associations during foam-surface standing may reflect the
increased sensory uncertainty and greater behavioral variability
inherent in proprioceptively demanding tasks. Under unstable
conditions, subjects rely more heavily on rapid multisensory
reweighting and intermittent corrective actions, generating more
irregular patterns of motor output (Szczepanski et al., 2014). These
rapid adjustments may obscure any systematic relationship between
oscillatory coupling and postural variability. Similar dissociations
between neural markers and balance metrics under high-noise
conditions have been observed in previous studies of postural
adaptation and sensory reweighting (Maurer et al., 2006), suggesting
that oscillatory signatures may not map onto behavior in a simple
linear fashion when the system operates near its stability limits.

Together, these findings reinforce that the functional relevance
of PAC during stance cannot be generalized across all postural
contexts. Instead, the expression of CFC-behavior associations
appears to depend jointly on task constraints and individual
balance experience, emerging most clearly when sensory demands
are moderate and behavioral variability is low. This task- and
experience-dependent organization of oscillatory interactions
provides a more nuanced understanding of how neural coupling
participates in postural regulation.

4.4 Limitations

While our findings offer novel insights into neural coupling
mechanisms underlying postural control, several limitations must
be acknowledged. First, although the control group exhibited
significant behavioral changes across conditions, their coupling
strength remained relatively stable. This discrepancy suggests that
PAC alone may not fully account for behavioral performance, and
other neurophysiological factors-such as sensory feedback processing,
motor execution efficiency, or cognitive workload-may also contribute.
In addition, this study primarily focused on cortical EEG activity
and behavioral measures of balance to characterize the neural
mechanisms of postural control. Peripheral physiological data—such
as lower-limb electromyography (EMG) or eye-tracking signals
reflecting visual attention—were not included, as the experimental

Frontiers in Physiology

13

10.3389/fphys.2025.1700523

design aimed to isolate cortical-level dynamics. Future multimodal
studies combining EEG with EMG and eye-tracking could further
elucidate the cortico-muscular and visuo-sensorimotor interactions
that contribute to adaptive balance regulation.

Second, the observed similarities in coupling strength among
non-athletes may reflect alternative control strategies rather than
a true absence of neural modulation. It remains unclear whether
these patterns represent a baseline neural state or are influenced
by task-specific cognitive compensation, individual variability, or
insufficient sensitivity of the PAC metric itself. Further work is
needed to examine the relative contributions of phase coherence,
network modularity, and interregional connectivity.

5 Conclusion

The present findings illustrate that phase-amplitude coupling
during stance reflects a pattern shaped jointly by task constraints
and individual balance experience. PAC did not relate to behavioral
performance in a uniform way, and the associations that did
emerge appeared only under stable-surface conditions, where
postural variability was lower and oscillatory interactions were
more consistently expressed. Differences between athletes and non-
athletes in both the spatial distribution and spectral structure of PAC
further suggest that oscillatory coordination is organized in flexible,
context-dependent ways rather than through fixed neural strategies.
Future work using longitudinal or multimodal approaches will be
essential to clarify the functional significance and potential applied
value of these coupling patterns.
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