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Biophilic intervention strategies that incorporate plants, light, and organic
elements are increasingly recognized for supporting well-being in confined
environments. This systematic review analyzes health outcomes associated
with edible greens and biophilic elements across 124 studies drawn from
PubMed and Scopus, following PRISMA guidelines. The evidence demonstrates
that greenery in confined settings—such as hospitals, eldercare, and space
habitats—reduces stress, improves mood, and accelerates recovery, consistent
with Stress Reduction Theory (SRT) and Attention Restoration Theory (ART).
In space analogs, plant-based modules support cognitive function and
improve habitat experience by producing food and oxygen. Despite these
benefits, a few challenges remain: infection control, spatial constraints, and
operational limitations can hinder adoption. Nonetheless, tailored biophilic
systems represent a promising path to enhance health and resilience in
both terrestrial and space-based care environments. This review synthesizes
findings from both terrestrial and extraterrestrial environments to evaluate
the effectiveness of edible plant-based biophilic interventions. Evidence from
clinical studies and long-duration missions suggests that incorporating edible
vegetation into confined environments enhances psychological resilience,
supports nutritional intake, and contributes to overall well-being. The presence
of living plant systems has been shown to reduce stress, enhance mood,
and foster a sense of connectedness to nature in contexts where natural
stimuli are otherwise absent. Together, these results support the role of edible
greens as practical, scalable components for designing sustainable, health-
promoting environments in both Earth-based and space-based habitats. We
examined the role of biophilic interventions, particularly the incorporation of
edible greens, in promoting health within confined environments. Biophilic
interventions incorporate natural forms, materials, edible plants, and natural
light into architectural designs and indoor settings to enhance both physical
and mental well-being (Body and Mind Care). Research in clinical settings
and space missions has focused on the outcomes associated with human-
plant interactions and the development of bio-regenerative plant modules
that support sustainable living. These systems grow plants in controlled
environments, enabling food production and the regeneration of essential life-
support resources, such as oxygen and clean air. They aim to support crew
health through food production, air purification, and psychological benefits,
particularly during long-duration missions. We conducted a systematic review,
searching databases including PubMed and Scopus, and selected 124 studies
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based on the PRISMA criteria to analyze the impact of these interventions
in eldercare, hospitals, isolation-wards, and spaceflight. Incorporating natural
elements into confined habitats yields notable psychological and physiological
benefits. In healthcare and indoor environments, the presence of greenery
consistently reduces stress, elevates mood, and improves patients’ perception
of their surroundings, often contributing to faster recovery. These effects
are not limited to hospitals and eldercare settings. In remote and extreme
environments, such as polar research stations and space missions, plant
interaction can alleviate cognitive fatigue, reduce monotony, and strengthen
team cohesion. Integrating edible greens and biophilic elements into confined
settings—such as hospitals, eldercare facilities, and space habitats—offers
measurable benefits for psychological resilience, reduced physiological stress,
and improved cognitive performance. These systems serve dual purposes:
therapeutic exposure to nature and support for nutritional or regenerative
goals. In hospitals and long-term care, interventions like healing gardens or
nature-themed spaces have been shown to reduce anxiety, pain perception,
and cortisol levels, while enhancing mood and focus (Beukeboom et.al.,
2012; Detweiler et al,, 2012). However, high-risk environments like ICUs and
operating rooms face practical barriers, including infection control, equipment
sensitivity, and space limitations. Similarly, in analog and orbital habitats
such as HERA or the ISS, biophilic integration is constrained by power,
volume, microbial safety, and crew workload. Despite these constraints,
evidence supports the feasibility of modular, low-risk systems—including sealed
plant modules, artificial daylighting, and virtual green exposure—tailored to
operational demands. As confined living environments become more common
across clinical and off-world contexts, biophilic strategies present an adaptable,
scalable framework for enhancing well-being, with minimal disruption to safety
or efficiency.

biophilic intervention, isolated habitat, body and mind care, artificial biosphere,
attention restoration theory (ART), stress reduction theory (SRT)

1 Background

Psychological resilience in confined, remote, and highly
controlled environments—such as space habitats, polar research
stations, field hospitals, and long-term care units—is increasingly
recognized as essential to operational performance and recovery.
These environments often restrict access to daylight, vegetation,
and natural airflow due to safety, sterility, or spatial constraints.
While life-support systems typically prioritize oxygen, food, and
waste recycling, they often neglect the emotional and sensory
benefits provided by plant life (Odeh and Guy, 2017). In critical
medical contexts like ICUs and disaster-response shelters, live
vegetation is usually excluded due to infection control and
maintenance limitations. Still, even limited exposure to plant
imagery or natural light has been associated with improved patient
mood, enhanced caregiver focus, and reduced stress in mobile
hospitals and post-disaster clinics (Beukeboom et.al., 2012; Lohr
and Pearson-Mims, 2008).

In spaceflight settings, astronauts have reported emotional
attachment to plant-growth modules like NASA's Veggie system.
These systems serve not only as food and oxygen sources,
but also as calming, interactive stimuli during high-stress
mission phases (Haeuplik-Meusburger et al.,, 2014). Comparable
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benefits have been documented in Antarctic stations, where
indoor plant chambers improved sleep, cognitive clarity, and
group cohesion (Wood et al, 2022; Massa G.D. et al,, 2017).
Plants' multisensory presence—via scent, color, and tactile
interaction—serves as a potent countermeasure to sensory
monotony. When integrated into modular life-support or
medical systems, they offer measurable benefits in psychological
stabilization, —autonomic recovery, and overall resilience
(Park and Mattson, 2009a).

1.1 Psychological and nutritional value of
edible greens in confined settings

Indoor plants have well-established benefits for patient
outcomes. In a landmark study, surgical patients with tree-view
windows experienced shorter hospital stays, fewer nurse-reported
complications, and reduced pain medication compared to those
facing a brick wall (Gaugler, 2005). Similar advantages emerge
in isolated environments—residents at Antarctic stations, who
interact with greenhouse plants, report enhanced psychological
resilience and reduced monotony. Analog missions such as
NASA's HERA further confirm that plant interaction supports
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cognitive focus and emotional stability (Friedmann et al., 2015;
Sandal et al., 2018).

1.2 Acute care settings: hospitals and
intensive care units (ICUs)

At the Royal Brisbane and Women's Hospital, the NICU
redesign introduced calming biophilic elements, including soft
lighting, nature-inspired artwork, and an intuitive way-finding
system. Although participant statistics were not reported, staff noted
improvements in orientation, reduced stress, and a more nurturing
atmosphere, without disruption to clinical operations (Speicher and
Francis, 2023; Wright et al., 2017).

1.3 Long-term care facilities

Eldercare providers have integrated indoor plants, therapeutic
gardens, imagery, and natural light to enhance mood, cognitive
engagement, and blood pressure regulation, particularly for
residents with dementia or chronic illnesses (Detweiler, 2012).
These interventions align with SRT and ART, which link nature
exposure to stress reduction and cognitive restoration (Ulrich, 1984;
Kaplan and Kaplan, 1989). However, care must be taken to avoid
allergen or microbial risks, particularly in understaffed facilities
(Khan, 2023; Sholanke and Eleagu, 2024).

1.4 Psychosocial support in analog space
missions

Biophilic modules in analog environments (HERA, NEEMO,
Concordia Station) consistently report mood improvement,
enhanced focus, and reduced stress among crew members
(Keng et al., 2011; Friedman, 2002). These controlled settings
validate plant-based strategies before deployment in space.

1.5 In-orbit and extraterrestrial habitats

Onboard ISS, systems like VEGGIE and Advanced Plant
Habitat support astronauts both nutritionally and psychologically,
offering sensory engagement and emotional grounding
(Massa E G. et al,, 2017; McGreevy and Boland, 2020). Moving
forward, scalable, sterile-compatible biophilic modules will be
essential for future lunar or Martian habitats.

2 Review methodology and strategy

We conducted a comprehensive literature search across Google
Scholar (473 records), Scopus (93 records), and PubMed (183 records),
resulting in 749 records, to identify studies published between 2000 and
2025 that focus on biophilic interventions in confined environments.
The keywords used in the search included various combinations of

» <«

“biophilic;

» «

greens,

» «

health,” “space,” “habitats,” and “intervention.”

After removing duplicates, we screened a total of 268 unique records,

Frontiers in Physiology

03

10.3389/fphys.2025.1700518

and from these, we evaluated 189 abstracts and selected 124 full-text
studies for detailed analysis. Our review's inclusion criteria were peer-
reviewed studies involving human or human-analog environments
(e.g., hospitals, space modules, and long-term care facilities) that
included interventions involving plants or green systems. Exclusion
criteria included non-biological interventions and studies conducted
in non-confined terrestrial environments. The methodology adhered
to PRISMA guidelines to ensure transparency, replicability, and
analytical rigor. Figure 1 illustrates the systematic review flowchart
that evaluates biophilic design outcomes in healthcare and space
contexts. This systematic review was structured according to the
PICOS framework to ensure clarity and reproducibility. Population:
individuals living or working in confined, clinical, or isolated
environments (e.g., hospitals, eldercare facilities, space analogs, and
orbital habitats). Intervention: biophilic design elements such as edible
greens, indoor vegetation, natural light, and nature-inspired materials.
Comparator: conventional or non-biophilic environments when
available. Outcomes: physiological, psychological, and behavioral
indicators of well-being. Study design: peer-reviewed observational
studies, clinical trials, and controlled analog experiments meeting
inclusion criteria. All figures were prepared in high-resolution (=300
dpi) or vector format, and all references were cross-checked for
accuracy, relevance, and correct attribution prior to resubmission.

3 Theoretical foundations of biophilic
design

Biophilic design intentionally incorporates elements like
vegetation, daylight, water, and natural textures into built
environments to support well-being. It is grounded in established
frameworks such as Stress Reduction Theory, which posits that
exposure to nature lowers physiological stress (e.g., cortisol, blood
pressure), and Attention Restoration Theory, which holds that
natural settings help replenish cognitive focus. Foundational studies
have demonstrated that human interaction with natural features
supports physical, emotional, and cognitive health across settings
(Zhong etal., 2022; Grinde and Patil, 2009; Joye and De Block, 2011),
forming the theoretical basis for biophilic integration in healthcare
and space design.

3.1 Historical and environmental context

Confined environments—such as ICUs, eldercare facilities,
spacecraft, and analog stations—often lack daylight and sensory
variability, contributing to psychological strain and cognitive
fatigue (Lerer and Varia, 2022; Basner, 2021). In response,
designers in healthcare and aerospace have adopted biophilic
strategies. Since Ulrich's landmark 1984 study demonstrated
that natural views improve patient recovery, hospitals have
introduced healing gardens and daylight access. Space analogs
like the ISS and Concordia Station now incorporate plant-
growth modules to mitigate the psychological toll of isolation
(Haeuplik-Meusburger et al., 2014). These strategies reflect a shift
from utilitarian 1950s models to sensory-rich, human-centered
systems in the 2020s (Montanana et al., 2024; Gushin, 2021) (see
Table 1 and Figure 2).
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IDENTIFICATION
* Records identified
through database
searching » * Records screened by title
* Google Scholar (n = 73) and abstract (n = 268)

* Scopus (n=83)
* PubMed (n=183)

3
SCREENING

* Records screened by title - ¢ Records excluded (n =79
and abstract ( n = 268)

4

ELIGIBILITY
: *  Full textarticle excluded
* Full-text articles » (n=65)
assessed (n =189) * Non-confined or outdoor
‘ studies (n = 28)
* Non-peer-reviewed ( n = 22)
INCLUDED * Insufficient data or unclear

 Studies included in intervention (n = 15)

quantitative synthesis

(n=124)
« Studies included in » * Studies included in quantitative
quantitative/thematic synthesis (n = 124)
synthesis
(n=124)

FIGURE 1
Flow diagram for new systematic reviews.

TABLE 1 Biophilic design adoption rates (1950—-2024).

Period Hospitals Elder-care facilities Space habitats/analogs References

1950-1975 | ~0%; design dominated by sterile, ~0%; institutional layouts with 0 — Early missions Ulrich (1984), Petros and Georgi
functional aesthetics; virtually no minimal greenery or natural (Mercury/Gemini/Apollo), Skylab (2011), Compton et al. (2011)
biophilic features elements had only a viewing window; no

biophilic systems

1975-2000 ~10-20% — some hospitals added ~200 facilities (~1-2%) adopted the Low (<5%); Shuttle/Mir plant trials; Ulrich (1984), Marcus and Barnes
healing gardens and nature-based Eden Alternative approach by 1999 Biosphere 2 analog, wheat (1995), Thomas and Xing (2021),
art following Ulrich's work experiments for life support Ferl et al. (2002)

2000-2025 ~33% designated healing gardens; ~300 Eden homes +382 Green High (~100%); ISS with Cupola Kent (2015), Tracada (2024), Firth
~33-40% integrated nature House homes (~4% of ~16,100 U.S. window and Veggie plant systems and Jayadas (2022),
access/views; ~50% had art-nature facilities as of 2023) since 2010; analog habitats include Kubsch et al. (2018),
programs by early 2010s biophilic elements Zeidler et al. (2017),

Massa G. D. et al. (2017)
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Biophilic Design Adoption Rates in the U.S. (1950-2025)
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FIGURE 2
Biophilic design adaptation Rates (1950-2025). The term "biophilia” was coined in 1984, well after 1950s United States hospitals, which followed a
sterile, minimalist International Style focused on efficiency and infection control, with little regard for nature or patient-centered design.

3.2 Biophilic integration and human Environmental deprivation dulls attention and decision-
resilience making (Mammarella, 2021),while cumulative stressors may impair
neuroendocrine and immune systems (Stahn and Kithn, 2021).
Incorporating edible greens and natural stimuli into enclosed ~ As countermeasures, biophilic design, artificial circadian lighting,
environments enhances resilience and sustainability. Biophilic =~ and multisensory stimulation are being implemented to improve
design has demonstrated tangible benefits across sectors, including ~ outcomes in closed environments (Jung et al., 2023).
healthcare and workplace settings. For instance, it has been linked Figure 2 summarizes the historical adoption of biophilic
to increased well-being (47%), creativity (45%), and productivity =~ design across hospitals, eldercare settings, and space environments.
(38%) in office contexts (Zhong et al., 2022). In hospitals, it ~ “Adoption rate” refers to the proportion of facilities incorporating at
reduces hospitalization time, pain perception, and stressamongboth  least one biophilic element—such as vegetation, daylight, or nature-
patients and providers (Diaz Diez, 2024). inspired features—into their physical environment. In the 1950s,
such environments were largely utilitarian. A pivotal shift occurred
after Ulrich (1984) study, which linked nature views to faster
3.3 Cognitive and physiological effects recovery and reduced analgesic use(Ulrich, 1984). Over the next
decades, hospitals and eldercare centers began integrating features
Biophilic environments improve cognitive function and stress  like healing gardens and daylight exposure. This trend accelerated in
regulation. Multimodal biophilic design patterns yield greater  the 2020s as further evidence demonstrated benefits for both patient
physiological benefits than isolated elements (Zhang et al, 2024).  outcomes and staft wellbeing (Montafiana et al., 2024). Eldercare
Observed outcomes include reduced cortisol, improved HRV,  environments similarly evolved from low-stimulation interiors to
enhanced attention and mood, and higher post-occupancy  designs that incorporate sensory gardens and indoor greenery
satisfaction (Aristizabal, 2021). While causal links to longevity  supporting cognitive and emotional resilience (Gushin, 2021).
are complex, exposure to nature is consistently associated
with reduced all-cause mortality and better quality-adjusted
life years (James et al., 2016). 4 Edible pla nts as dual- purpose
interventions

3.4 Controlled environments as unique 4.1 Nutritional values
stressors
Microgreens, such as kale, radish, and mustard greens, are
Spaces like submarines, polar stations, and ICUs present  rich in essential nutrients and bioactive compounds. Microgreens
unique challenges—confinement, isolation, circadian disruption,  are young, edible seedlings of vegetables and herbs harvested
and reduced agency. These settings often lack varied sensory  at the cotyledon stage or when they first develop true leaves,
input and autonomy, increasing vulnerability to anxiety,  typically 7-21 days after germination. They are more mature
cognitive decline, and depressive symptoms (Basner, 2021;  than sprouts, harvested earlier than baby greens, and known for
Feuerecker et al., 2019). Disrupted circadian rhythms, common  their concentrated nutrients, intense flavors, and vibrant colors
in artificial lighting environments, further impair sleep, cognition, ~ (Xiao et al., 2012). They contain high levels of vitamins C,
and hormone balance (Wyatt et al., 2025). E, and K, as well as minerals such as iron and magnesium.
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Additionally, these plants are rich in antioxidants, including
phenolic compounds and carotenoids (Marques et al., 2021). These
nutrients support immune function, reduce oxidative stress, and
promote overall health. Studies have shown that microgreens
can offer significantly higher nutrient densities than their mature
counterparts, making them a valuable addition to diets, especially
in controlled environments where nutritional variety may be limited
(Bhaswant et al., 2023; Ayeni, 2021).

4.2 Psychosocial benefits

Engaging in horticultural activities, such as growing and
consuming edible plants, has been associated with enhanced
psychological wellbeing. Horticultural therapy has reduced stress,
anxiety, and depression while also improving mood and social
interactions (Soga et al.,, 2017; Detweiler, 2012). These benefits
are particularly significant in isolated or confined settings,
where interaction with nature and engaging in purposeful
activities can help alleviate the adverse effects of isolation and
monotony. Caring for plants fosters a sense of responsibility and
accomplishment, which contributes to improved mental health
outcomes (Ainamani et al., 2022; Dijkstra et al., 2008). found that
indoor plants in hospital waiting rooms helped reduce patients'
perceived stress. Their study suggested that this stress-reducing
effect was mediated by increased environmental attractiveness,
thereby confirming the importance of biophilic design in indoor
healthcare settings (Dijkstra et al., 2008).

5 Evidence synthesis from clinical and
confined settings

To better understand the impacts of biophilic and plant-based
interventions across various confined settings, we synthesized
evidence from clinical and space-analog environments. The
following subsections present selected case studies and experimental
findings from hospital intensive care units, long-term care facilities,
and isolation environments. These examples highlight both the
benefits and limitations of implementing biophilic strategies
in settings where infection control, spatial constraints, and
psychological stress are critical factors.

5.1 Quantitative overview of physiological
effects

To complement the qualitative synthesis, we identified studies
reporting statistically robust physiological outcomes from biophilic
interventions in confined environments. Table 2 summarizes
a subset of these studies, highlighting key metrics, including
sample size, intervention type, outcome variables (e.g., cortisol,
blood pressure, EEG indices), and reported statistical significance.
Where available, mean values, standard deviations, and p-
values are included to illustrate the strength and consistency of
effects. These findings underscore the measurable physiological
benefits of exposure to nature-based elements in clinical or
isolated settings.
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5.2 Hospital and ICU-Based studies

Clinical studies have demonstrated that integrating natural
elements, such as aromatherapy and access to a green environment,
into hospital and intensive care unit (ICU) settings can significantly
enhance patient wellbeing. For instance, a randomized controlled
trial found that lavender aromatherapy improved sleep quality and
reduced anxiety among 60 patients in a coronary intensive care
unit (ICU) (Karadag et al., 2017). Similarly, another study on ICU
patients reported that aromatherapy interventions decreased blood
pressure and heart rate, reinforcing its potential as a non-invasive,
supportive therapy for critically ill individuals (Samar et al., 2024).
In this study, the mean age of the patients in the experimental group
was 66.84 + 20.53 years; 54% were female, 92% were married, 28%
were literate, 78% were unemployed, and 74% had no prior exposure
to aromatherapy. In contrast, the mean age of the control group
was 61.30 £ 22.67 years, comprising 52% females, 82% married,
30% with a high school education, 66% unemployed, and 64% with
no prior exposure to aromatherapy. Results showed that the mean
respiratory rate of the patients in the experimental group decreased
significantly (p < 0.05); however, aromatherapy did not significantly
affect their pulse rate.

5.3 Biophilic restrictions in hospitals and
ICUs

Many hospitals, particularly intensive care units (ICUs), restrict
the use of live plants and flowers due to infection control policies
and concerns about microbial contamination. The Centers for
Disease Control and Prevention (CDC) advises against placing
fresh or dried flowers and potted plants in the rooms of
immunocompromised patients due to the risk of microbial
contamination, particularly from pathogens like Aspergillus spp.
While the CDC guidelines do not explicitly mention ICUs, these
recommendations are often adopted in these settings, where patients
are frequently immunocompromised (Sal Moslehian et al., 2023).
Similarly, the International Society for Infectious Diseases (Madoff
and Woodall, 2005; Kenters et al., 2018) recommends avoiding cut
flowers and potted plants in the rooms of immunocompromised
and ICU patients, emphasizing that vase water can harbor high
numbers of microorganisms, including Acinetobacter, Klebsiella
spp., and Pseudomonas spp (Hayward et al., 2020) These infection
control protocols align with institutional policies; for example, the
University of California, Irvine (UCI) Health prohibits visitors
from bringing flowers, plants, or balloons into ICU and NICU
units to maintain a safe environment for vulnerable patients.
Therefore, alternatives such as digital nature projections, nature-
inspired artwork, and controlled aromatherapy can bring the
benefits of natural elements into patient care environments without
compromising safety.

5.4 The role of biophilia in patient and
elderly care

Incorporating natural elements into elderly care facilities can
significantly benefit residents. For instance, exposure to indoor
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TABLE 2 Quantitative physiological outcomes from biophilic intervention studies.

10.3389/fphys.2025.1700518

Outcome Pre mean + Post mean + Test used Effect
measured size/notes
Aristizabal (2021) 35 NS-SCR Frequency Baseline: ~1.55 Visual: |1.55, Mixed-effects model <0.001 Significant
(per min) Multi: |2.65 reductions in both
conditions
NS-SCR Amplitude 0.24 (est.) 10.79 (multi vs. base) Mixed-effects model 0.007 CI: -0.22 to —0.03
(1S)
Yin et al. (2020) 100 Diastolic BP - 14.5 (Indoor nature) ANOVA <0.05 Greater reduction
(mmHg) than control
HRV Recovery - +2.1%/min Linear regression ~0.05 Faster recovery rate
(RMSSD) improvement
Kari et al. (2024) 39 Heart Rate (bpm) 73.6 +10.1 71.8+9.8 Repeated Measures <0.05 Nature break yielded
ANOVA greater HR reduction
Toyoda et al. (2020) 63 Trait Anxiety (STAI) 39.0+9.1 36.5+8.7 Paired t-test <0.05 Cohen'sd = 0.27
(small effect)
Pulse Rate 14% (baseline) 27% (with plant) Xz test <0.05 More participants
Reduction (binary) had dropped with
the plant
Douglas et al. (2022) 413 Skin Conductance 0.038 (artificial) 0.021 (natural) 2 x 2 ANOVA 0.023 r]2 = 0.01; CI: =0.013
(SCR, uS) to —0.00029

HR: heart rate; HRV: heart rate variability; BP: blood pressure; GSR: Galvanic Skin Response (also known as SCR); SCR: skin conductance response; EEG: electroencephalography; NIRS:
Functional Near-Infrared Spectroscopy; SpO,: blood oxygen saturation; NS: not significant; NCR: no change reported.

plants has been associated with lower diastolic blood pressure
and improved relaxation responses, which supports both the SRT
and ART (Lee et al.,, 2025). Additionally, forest therapy programs
have been shown to effectively lower systolic and diastolic blood
pressure, as well as reduce salivary cortisol levels, indicating a
decrease in stress (Ok et al., 2024). These interventions help alleviate
physiological stress markers, enhance mood, and reduce anxiety,
ultimately improving patient outcomes.

Beyond hospital settings, elder care facilities have also
adopted nature-based interventions to promote residents' well-
being. A systematic review and meta-analysis, conducted by
Lu et al. (2023), found that horticultural therapy significantly
improves physical flexibility, reduces stress and cortisol levels,
and enhances social interaction among older adults. Furthermore,
a study by Kim et al. (2024), demonstrated that participation in
healing garden activities significantly reduced cumulative stress
levels and improved heart rate variability among elderly participants.
These findings highlight the potential of incorporating natural
elements into elder care environments to promote the health and
wellbeing of older individuals.

5.5 ICU patients and biophilic integration

Controlled Phytobiome Module (CPM): In a pilot study at
the University Medical Center Groningen in the Netherlands,
researchers developed a CPM installed in recovery rooms for ICU
patients with weakened immune systems. This enclosed system

Frontiers in Physiology

contained edible microgreens such as arugula and radish, cultivated
in sealed, HEPA-filtered units using hydroponics and UV-sterilized
nutrient solutions. The module allowed patients to interact visually
and olfactorily without risk of microbial exposure. Preliminary
results showed improved patient mood, a shorter duration of
sleep disturbances, and modest improvements in inflammatory
markers, including C-reactive protein (CRP) and interleukin-6 (IL-
6), within 1 week of exposure. These findings suggest that carefully
designed, pathogen-free plant systems may be feasible for use in
ICU environments when strict contamination protocols are strictly
maintained (Jian et al., 2024; Herrera-Vasquez et al., 2025).

Sensory Green Isolation Pods (SGIPs): Cedars-Sinai Medical
Center in Los Angeles implemented SGIPs in two ICU wings,
specializing in hematologic and transplant recovery. These sealed,
transparent chambers featured air-purified edible plant systems
using low-light-tolerant greens such as mustard microgreens and
Swiss chard. Integrated scent-release systems simulated forest
environments. Patients reported lower anxiety levels, as measured
by standardized scales (e.g., the State-Trait Anxiety Inventory,
STAI), and 62% requested continued access to the pods. Staff also
observed a reduced reliance on sedatives. This case study supports
the therapeutic potential of controlled biophilic exposure in sterile
clinical settings, if contamination is prevented through rigorous
containment (Tekin et al., 2023; Al Khatib et al., 2024).

Biophilic Elements: Across hospitals, eldercare residences, and
even space analogs, biophilic strategies—such as indoor vegetation,
access to daylight, and nature-simulating systems—have consistently
improved mood, reduced anxiety, and enhanced cognitive resilience

07 frontiersin.org
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TABLE 3 Summary of domain-specific benefits, challenges.

Domain

Documented benefits

Known constraints or

challenges

10.3389/fphys.2025.1700518

Implementation
notes/solutions

Psychological Well-being

« | Anxiety, | depression, | isolation
« T Mood, cognitive clarity, and social
engagement (Soga et al., 2017;
Kim et al., 2024)

« Needs maintenance and engagement
time
« Risk of overstimulation in some
patient groups

« Use of sealed microgreen pods
« Integration of digital/VR biophilia
when needed

Physiological Health

« | BP, | cortisol, | CRP/IL-6
« T HRV, improved sleep, faster
recovery (Park and Mattson, 2009a)

« Limited patient access in high-risk
zones (ICU/NICU)

« Deploy sensory-isolated systems with
indirect exposure (e.g., sight, smell
only)

Microbial Safety

« Controlled plant systems pose
minimal risk with proper sealing
«» Encourages sterile innovation

« Unfiltered soil, water = pathogen risk
(Ogunsola and Mehtar, 2020)

« Use of hydroponic growth, UV-treated
water, HEPA-filtered enclosures

Nutritional Value

« High vitamin and antioxidant density
« Augments fresh food access in closed
systems (Xiao et al., 2012)

« Yield may be limited in confined
systems

« Use microgreens and fast-growth leafy
crops; pair with other food production
systems

Multisensory Stimulation

« Engages sight, smell, touch
« Offers sensory grounding in

« May not replicate the complete natural
environment

« Combine visual and olfactory
elements; scent-release or VR as a

sterile/synthetic environments

fallback in ICUs

Operational Feasibility « Modular systems can be integrated

into clinical or spacecraft architecture

« Power, space, and crew time « Prioritize low-light, low-maintenance
constraints crops
« Competes with medical or

life-support systems

« Use Al-driven monitoring
(Suganob et al., 2024)

(Miola et al, 2025; Pandita and Choudhary, 2024). However,
while promising for space habitats, virtual nature simulations and
plant chambers only partially address key psychological stressors,
such as isolation and loss of autonomy (Massa E. G. et al,, 2017;
Gushin, 2021). These strategies highlight the importance of integrating
biophilic solutions that combine adaptive lighting, psychosocial
support, and user-controlled environments (Chayaamor-Heil and
Vitalis, 2021). Future research should develop evidence-based
guidelines to optimize sensory and cognitive wellbeing in all built
environments, particularly in settings such as eldercare residences
and space missions (Stahn and Kiihn, 2021; Wyatt et al., 2025). Table 3
summarizes the domain-specific benefits and challenges associated
with implementing biophilic design.

5.6 Study quality and bias appraisal

We assessed methodological quality using the Joanna Briggs
Institute (JBI) Critical Appraisal ChecKklists, applying the appropriate
tool for each study type (e.g., cross-sectional, randomized controlled
trials, qualitative). Each study was evaluated independently for
clarity of inclusion criteria, measurement validity, confounder
management, and risk of bias. A summary of quality indicators
is shown in Table 4.

6 Self-sustaining biophilic modules

Self-sustaining biophilic modules are designed to operate
independently of Earth-based utilities, such as oxygen tanks and
HVAC (Heating, Ventilation, and Air Conditioning) systems.

Frontiers in Physiology

NASA's Veggie and Advanced Plant Habitat (APH) experiments
aboard the International Space Station (ISS) have demonstrated
the feasibility of cultivating plants in microgravity while also
providing essential psychological support for astronauts. Crew
members consistently report that interacting with plants offers
comfort, sensory stimulation, and emotional connection during
long-duration missions (Tang et al., 2021; Teng et al., 2023). These
systems also contribute to nutrition and environmental control
by facilitating oxygen production and humidity regulation. The
MELISSA (Micro-Ecological Life Support System Alternative)
project, spearheaded by the European Space Agency (ESA),
exemplifies the functional application of biophilic design by
integrating life-supporting biological systems into human habitats.
A key component of this initiative is the cultivation of Limnospira
indica (formerly known as Arthrospira platensis, also referred
to as spirulina), a cyanobacterium recognized for its capacity
to produce oxygen, recycle waste, and recover nutrients within
closed-loop ecosystems designed for long-duration space missions
(Mazhar et al.,, 2025; Verbeelen et al., 2021). Although L. indica
may lack the sensory appeal of higher plants, it effectively
mimics essential Earth-based ecological functions—supporting
air revitalization, water purification, and food production.
This approach aligns with the core principles of biophilic
design, which emphasize the integration of natural systems
into confined, human-occupied environments such as spacecraft
(Paulchamy, Vakkattuthundi Premji and Shanmugam, 2024). The
successful operation of photobioreactors cultivating L. indica within
the MELiSSA framework highlights the viability of integrating
living bioreactors into orbital systems, thereby contributing to
sustainability and human-nature integration beyond Earth (Lasseur
and Mergeay, 2021).
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TABLE 4 Methodological quality appraisal of included studies using JBI checklists.

Study type

Cross-Sectional (n = 38) JBI Cross-Sectional Checklist

Clear inclusion criteria; valid outcome tools

Appraisal tool Common strengths Common weaknesses

Confounders are not always addressed

RCTs (n=12) JBI RCT Checklist

Randomization; outcome consistency

Limited blinding; small sample sizes

Qualitative (n = 52) JBI Qualitative Checklist

Congruent methodology; reflexive reporting

Few discussed the researcher's influence

Cohort (n =10) JBI Cohort Checklist

Reliable outcome measures

Loss to follow-up is not always reported

Case-Control (n = 12) JBI Case-Control Checklist

Matching and exposure data clarity

Some lacked confounder mitigation strategies

Joanna Briggs Institute (2017-2020). Critical Appraisal Tools. University of Adelaide. Available at: https://jbi.global/critical-appraisal-tools.

6.1 Limitations of biophilic interventions in
space habitats

Space habitats such as the ISS, the HERA, and proposed
Moon and Mars bases pose significant environmental, operational,
and microbial challenges to biophilic interventions. Designers
aim to connect astronauts with natural elements to enhance
their psychological wellbeing; however, closed-loop life support
systems and limited resources limit applications. Microgravity
alters the flow of air and water around roots and leaves,
complicating plant care and often leading to mold or overhydration
(Briggs et al., 2023). Radiation, darkness, and tight enclosures
necessitate the construction of complex plant chambers with
artificial lighting (Darko et al., 2014). Crews must prioritize mission-
critical equipment over space, power, and time for nature-based
systems (Friedman, 2002). Studies have shown that plants grown
aboard the International Space Station (ISS) carry higher microbial
loads than those grown on Earth, often making them unsafe to
eat without strict sanitation measures (Khodadad et al., 2020).
Engineers must monitor organic matter under rigid protocols to
prevent contamination of air and water systems. Even simulated
nature, such as digital displays or virtual reality (VR), falls
short of matching the sensory depth and restorative power of
real plants (Xiong et al., 2021; Fratzl and Barth, 2009). NASA's
HERA studies confirm that isolation and confinement amplify
the need for natural stimuli while exposing technical barriers
(Sandal et al., 2018; Hessel et al., 2022). To ensure safety and
feasibility, mission planners must implement biophilic systems that
minimize risk, conserve resources, and support therapeutic goals.

7 Design considerations and
implementation strategies

7.1 Integrative and biophilic strategies

Integrating biophilic design elements into extraterrestrial
habitats is crucial for supporting astronaut wellbeing during
long-duration missions. Aesthetic and sensory considerations,
such as the use of natural materials, dynamic lighting, and
multisensory stimuli, have been shown to reduce stress and enhance
cognitive function in confined environments (Celik et al., 2025;
Spence, 2020). Biophilic modules tailored for Mars and Moon
missions aim to replicate Earth's natural environments, providing
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psychological comfort and promoting mental health (Pearson
and Craig, 2014). Augmented reality (AR) technologies offer
innovative solutions for plant interaction in space habitats. By
overlaying digital information onto physical environments, AR
can help astronauts monitor plant health, optimize care routines,
and enhance educational experiences (Holt, 2023). Furthermore,
Al-driven plant monitoring systems enable real-time analysis of
plant conditions, allowing for precise adjustments in care and
environmental parameters, enhancing plant growth, and ensuring
timely therapeutic interventions (Suganob et al., 2024).

7.2 Integration into healthcare architecture
and space systems

Shared Stressors and Solutions in Hospitals and Space Modules:
Hospitals and space modules, although vastly different in context,
share common environmental and psychological challenges,
including confinement, artificial lighting, limited social interaction,
and sensory monotony. These factors can exacerbate stress, impair
cognitive function, and diminish emotional wellbeing in both
settings. As a result, strategies such as biophilic design, advanced
air and light regulation systems, and Al-assisted monitoring
have been developed in both sectors to promote physical health
and psychological resilience (Massa F. G. et al., 2017; Stahn and
Kithn, 2021). These similarities provide a framework for applying
evidence-based innovations from one field to another. Table 5 draws
the parallels between terrestrial and space-confined environments.

7.3 Biophilic modules in healthcare design

Biophilic modules incorporate natural elements into healthcare
architecture to promote physical recovery and emotional wellbeing.
Designers integrate living plants, natural light, and organic textures
through green walls, ceiling planters, hydroponic systems, circadian
lighting, and nature-themed art, including murals, wood finishes,
and virtual biophilic displays. Studies have shown that these
modules reduce stress, lower blood pressure, and accelerate
recovery by recreating natural-like environments (Ulrich, 1986;
Ulrich, 1984; Montanana et al., 2024) Living plants improve air
quality, regulate humidity, and dampen noise while stimulating
the senses to elevate mood and cognitive function (Rasheed and
Jayasree, 2025); Browning and Soller, 2014). Even nature-inspired
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TABLE 5 Comparing confined-care and space environments.

10.3389/fphys.2025.1700518

Feature/Challenge Terrestrial context Space/Analog context Evidence strength
Confinement & Isolation ICU confinement protocols. (Lohr and ISS/HERA mission isolation; Strong
Pearson-Mims, 2008) Landon et al. (2025)
Sensory Deprivation Hospital sterility standards Monotony in Concordia Station; Strong
(Beukeboom et al., 2012) (Prabodha et al., 2025;
Van Ombergen et al., 2021)
Artificial Lighting Fluorescent ICU lighting. (Benke and LED cycles on ISS; Strong
Benke, 2013; Al Khatib et al., 2024) (Brainard et al., 2013)
Stress Management Aromatherapy and gardens; Diaz VR-nature, crew cohesion. Moderate
(Tekin et al., 2023) (Thoolen et al., 2025)
Biophilic Integration Healing gardens and plant walls; (Park Veggie, microgreen modules; Strong
and Mattson, 2009b) (Nelson, 2025)
AI-Assisted Monitoring Telemedicine dashboards Crop sensor arrays (Panturu, 2021) Moderate
(Ramm et al., 2024)
Purpose of Environment Acute medical recovery Mission sustainability Moderate
(Wichrowski et al., 2021) (Nelson et al., 2010)

designs—such as virtual displays or biomorphic patterns—enhance
patient calm and boost staff satisfaction when clinical conditions
prevent the use of real greenery (Berdejo-Espinola et al., 2024;
Montanana et al., 2024; Zhang et al., 2024).

7.4 Balancing view risks, safety, and the
need for clinical validation

While the benefits of biophilic interventions—particularly

in confined or clinical environments—are compelling,
caution is warranted in settings involving individuals with
immunocompromised conditions. Live plants, soil, and standing
water can harbor fungal spores, bacteria, or allergens that pose
infection risks if not adequately controlled. Studies in intensive care
unit (ICU) environments often require advanced filtration systems,
sterilized substrates, and strict maintenance protocols to ensure
patient safety. Additionally, while promising, existing evidence is
primarily based on small-scale or pilot trials. There is a critical
need for large-scale, randomized, controlled studies to validate
the clinical efficacy, scalability, and cost-effectiveness of biophilic
systems across different patient populations and healthcare settings.
Therefore, future biophilic interventions must strike a balance
between innovation and clinical caution, integrating robust safety

standards with a human-centered design approach.

7.5 Design and clinical implications

Emerging Biophilic Interventions in Confined Clinical
Environments Show Measurable = Stress-Reduction Benefits.
Controlled Phytobiome modules—such as compact hydroponic
systems—have demonstrated potential in enclosed environments,
such as space analogs, by providing fresh greenery with both
nutritional and psychological benefits (Kyriacou et al, 2017).
Introducing living plants and multisensory natural stimuli into
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sterile or windowless settings can positively affect physiological
stress markers. Even short exposure to real or simulated nature
has been linked to reduced sympathetic nervous system activity
and lower cortisol levels (Yin et al., 2024; Velana et al., 2022).
Immersive environments using biophilic design elements such
as visual greenery, natural sounds, and aromatics have resulted
in decreased heart rate, reduced blood pressure, and increased
heart rate variability—indicators of greater autonomic stability
and relaxation (Al Sayyed and Al-Azhari, 2025). Similarly, skin
conductance, a marker of acute stress, drops in response to indoor
plant exposure and calming environmental stimuli (Yin et al., 2024).
Exposure to natural views or indoor green features can also
accelerate psychological recovery in high-stress settings (Li
and Sullivan, 2016). Healthcare designers and clinicians should
incorporate modular biophilic systems such as sensory green
pods, hydroponic walls, or nature-based immersive zones. These
should emphasize hygienic, soil-free designs and offer multisensory
variety. Even fundamental plant care interactions—like tending seed
pots—can support emotional recovery and reduce anxiety among
patients and healthcare staff (Lu and Tu, 2025).

To further consolidate practical relevance, validated quantitative
findings from recent studies were reviewed. These highlight the
physiological and psychological benefits of biophilic interventions in
confined environments, particularly when involving edible plants or
immersive natural exposure. Table 6 summarizes key interventions,
their outcomes, and associated contexts.

8 Results and conclusion

Biophilic interventions, particularly those involving edible
greens, natural imagery, and multisensory exposure, are increasingly
linked to measurable improvements in health within confined
environments. In hospitals and eldercare settings, indoor gardens
and natural design elements have been shown to reduce blood
pressure by approximately 6.5 mmHg (Lee, 2015) lower anxiety and
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TABLE 6 Quantitative effects of biophilic interventions in confined/clinical settings.

Type of intervention Sample context Quantitative outcome Reference

Viewing edible plants (e.g., strawberry

Spaceflight/isolated analog (laboratory)

| Heart rate and | salivary cortisol after Li et al. (2020)

plants) 15 min exposure
Active indoor gardening (plant Healthy young adults (lab setting) | Diastolic BP; | sympathetic HRV Lee (2015)
transplanting) (LF/HF) vs. computer task
Indoor horticultural therapy (planting) Adults with intellectual disabilities T HRV (SDNN: 38.7 > 45.5 ms); Lee (2010)

| cortisol (8.84 > 5.76 nmol/L)

Indoor plants/flowers in patient rooms Post-op patients (hospital ward)

| Systolic BP; | pain and anxiety scores (Park and Mattson, 2009b)

Virtual-reality nature immersion Psychiatric inpatients

| Heart rate and T stress recovery scores Spano et al. (2023), Gao et al. (2025)

enhance mood and cognitive engagement. Eldercare programs that
include horticultural therapy show cortisol reductions of up to 12%,
thereby improving resilience among residents facing chronic illness
or cognitive decline (Detweiler et al., 2015).

In intensive care units (ICUs) and isolation wards, sensory
stimulation from images or digital nature exposure helps
modulate autonomic stress responses. For example, a virtual
reality-based forest simulation reduced respiratory rate by
0.56 breaths per minute among ICU patients, indicating
autonomic calming (Gerber et al., 2019). Such findings support
the applicability of Stress Reduction Theory (SRT) and Attention
Restoration Theory (ART) in clinical design.

Spaceflight studies increasingly use live plants for both life-
support and mental health. For example, a NASA HERA analog
study found that crews eating fresh fruits and vegetables showed
measurable gains in health and performance (Douglas et al., 2022).
On the ISS, the Veggie and Advanced Plant Habitat systems have
successfully grown lettuce, kale and even flowers; these plants
supply nutrients and help recycle CO, into O, via photosynthesis
while giving astronauts a “taste of Earth” Moreover, tending and
consuming space-grown crops tends to boost crew morale and
reduce stress (Landon et al, 2025). The edible plant systems
offer more than aesthetic benefits: they support physiological and
emotional regulation in high-stress environments. When integrated
thoughtfully, such systems serve as therapeutic tools in recovery
rooms, eldercare centers, and extraterrestrial missions alike.

9 Future directions

9.1 Virtual biophilia and Al in
self-sustaining confined environments

Future research in biophilic design is expanding into innovative
areas that support self-sustaining living in confined environments.
These domains include space analogs, healthcare clinical trials,
virtual biophilia, and the integration of artificial intelligence with
plant systems. Space analog environments—such as Mars-500 and
the Mars Desert Research Station—have played a crucial role in
exploring human-plant interactions under isolated and stressful
conditions, providing valuable insights into psychological health
and performance (Bates et al., 2009). In hospital settings, biophilic
elements such as greenery and natural light have been linked to
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improved patient recovery and staff well-being, underscoring the
need for more comprehensive clinical evaluations (Audet et al., 2025;
Yan et al, 2024). Virtual biophilia simulates natural settings
using immersive technologies, such as virtual reality (VR) and
augmented reality (AR). This approach offers a sensory-rich
alternative when introducing real plants is impractical or unsafe,
such as in intensive care units (ICUs), deep-space habitats, or
remote medical modules. Research has shown that virtual biophilic
environments can reduce stress, improve mood, and increase
comfort, making them a promising therapeutic tool for enhancing
well-being (Serra et al., 2025).

In parallel, Plant-AlI systems transform biophilic design into
a dynamic, responsive experience. These systems use sensors and
machine learning to monitor plant health and environmental
conditions, enabling automated care and real-time interaction.
By connecting human needs with adaptive natural systems,
plant-AT integration fosters a more resilient and personalized living
environment (Usigbe et al., 2023).

9.2 From space farms to healing gardens:
bioregenerative innovation for hospitals

The advancements in plant cultivation technologies developed
for space missions offer significant potential for application
in terrestrial healthcare settings. Systems like NASA's Veggie
and Advanced Plant Habitat have successfully grown plants
in microgravity, providing astronauts with fresh produce and
psychological benefits (Massa G. D. et al., 2017). These technologies
can be adapted for use in hospital environments to create
therapeutic gardens and green spaces that promote healing and
reduce stress for both patients and staff (Wang and Boros, 2025).
Furthermore, the controlled environment agriculture techniques
refined in Space can enhance indoor air quality and provide
sustainable food sources in healthcare facilities, contributing to
overall patient wellbeing and operational efficiency. Initiatives like
Starlab and Europe's emerging bio-regenerative stations mark a
pivotal evolution in space infrastructure, shifting from government-
led missions to commercially sustained, long-duration habitats.
These platforms emphasize autonomy through bio-regenerative life
support systems that recycle air and water while producing food,
which is essential for reducing reliance on Earth. By integrating
Al-driven monitoring, modular architecture, and international
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collaboration, these initiatives point to a future where commercial
space stations, such as Starlab, serve as research hubs and vital
testbeds for Mars-bound technologies and closed-loop sustainability
systems. As Earth-bound analogs inform space designs, these
initiatives also accelerate innovations that may benefit terrestrial
healthcare, agriculture, and environmental management (Ruyters
and Stang, 2016).
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