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Biophilic intervention strategies that incorporate plants, light, and organic 
elements are increasingly recognized for supporting well-being in confined 
environments. This systematic review analyzes health outcomes associated 
with edible greens and biophilic elements across 124 studies drawn from 
PubMed and Scopus, following PRISMA guidelines. The evidence demonstrates 
that greenery in confined settings—such as hospitals, eldercare, and space 
habitats—reduces stress, improves mood, and accelerates recovery, consistent 
with Stress Reduction Theory (SRT) and Attention Restoration Theory (ART). 
In space analogs, plant-based modules support cognitive function and 
improve habitat experience by producing food and oxygen. Despite these 
benefits, a few challenges remain: infection control, spatial constraints, and 
operational limitations can hinder adoption. Nonetheless, tailored biophilic 
systems represent a promising path to enhance health and resilience in 
both terrestrial and space-based care environments. This review synthesizes 
findings from both terrestrial and extraterrestrial environments to evaluate 
the effectiveness of edible plant-based biophilic interventions. Evidence from 
clinical studies and long-duration missions suggests that incorporating edible 
vegetation into confined environments enhances psychological resilience, 
supports nutritional intake, and contributes to overall well-being. The presence 
of living plant systems has been shown to reduce stress, enhance mood, 
and foster a sense of connectedness to nature in contexts where natural 
stimuli are otherwise absent. Together, these results support the role of edible 
greens as practical, scalable components for designing sustainable, health-
promoting environments in both Earth-based and space-based habitats. We 
examined the role of biophilic interventions, particularly the incorporation of 
edible greens, in promoting health within confined environments. Biophilic 
interventions incorporate natural forms, materials, edible plants, and natural 
light into architectural designs and indoor settings to enhance both physical 
and mental well-being (Body and Mind Care). Research in clinical settings 
and space missions has focused on the outcomes associated with human-
plant interactions and the development of bio-regenerative plant modules 
that support sustainable living. These systems grow plants in controlled 
environments, enabling food production and the regeneration of essential life-
support resources, such as oxygen and clean air. They aim to support crew 
health through food production, air purification, and psychological benefits, 
particularly during long-duration missions. We conducted a systematic review, 
searching databases including PubMed and Scopus, and selected 124 studies
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based on the PRISMA criteria to analyze the impact of these interventions 
in eldercare, hospitals, isolation-wards, and spaceflight. Incorporating natural 
elements into confined habitats yields notable psychological and physiological 
benefits. In healthcare and indoor environments, the presence of greenery 
consistently reduces stress, elevates mood, and improves patients' perception 
of their surroundings, often contributing to faster recovery. These effects 
are not limited to hospitals and eldercare settings. In remote and extreme 
environments, such as polar research stations and space missions, plant 
interaction can alleviate cognitive fatigue, reduce monotony, and strengthen 
team cohesion. Integrating edible greens and biophilic elements into confined 
settings—such as hospitals, eldercare facilities, and space habitats—offers 
measurable benefits for psychological resilience, reduced physiological stress, 
and improved cognitive performance. These systems serve dual purposes: 
therapeutic exposure to nature and support for nutritional or regenerative 
goals. In hospitals and long-term care, interventions like healing gardens or 
nature-themed spaces have been shown to reduce anxiety, pain perception, 
and cortisol levels, while enhancing mood and focus (Beukeboom et.al., 
2012; Detweiler et al., 2012). However, high-risk environments like ICUs and 
operating rooms face practical barriers, including infection control, equipment 
sensitivity, and space limitations. Similarly, in analog and orbital habitats 
such as HERA or the ISS, biophilic integration is constrained by power, 
volume, microbial safety, and crew workload. Despite these constraints, 
evidence supports the feasibility of modular, low-risk systems—including sealed 
plant modules, artificial daylighting, and virtual green exposure—tailored to 
operational demands. As confined living environments become more common 
across clinical and off-world contexts, biophilic strategies present an adaptable, 
scalable framework for enhancing well-being, with minimal disruption to safety
or efficiency.

KEYWORDS

biophilic intervention, isolated habitat, body and mind care, artificial biosphere, 
attention restoration theory (ART), stress reduction theory (SRT) 

1 Background

Psychological resilience in confined, remote, and highly 
controlled environments—such as space habitats, polar research 
stations, field hospitals, and long-term care units—is increasingly 
recognized as essential to operational performance and recovery. 
These environments often restrict access to daylight, vegetation, 
and natural airflow due to safety, sterility, or spatial constraints. 
While life-support systems typically prioritize oxygen, food, and 
waste recycling, they often neglect the emotional and sensory 
benefits provided by plant life (Odeh and Guy, 2017). In critical 
medical contexts like ICUs and disaster-response shelters, live 
vegetation is usually excluded due to infection control and 
maintenance limitations. Still, even limited exposure to plant 
imagery or natural light has been associated with improved patient 
mood, enhanced caregiver focus, and reduced stress in mobile 
hospitals and post-disaster clinics (Beukeboom et.al., 2012; Lohr 
and Pearson-Mims, 2008).

In spaceflight settings, astronauts have reported emotional 
attachment to plant-growth modules like NASA's Veggie system. 
These systems serve not only as food and oxygen sources, 
but also as calming, interactive stimuli during high-stress 
mission phases (Haeuplik-Meusburger et al., 2014). Comparable 

benefits have been documented in Antarctic stations, where 
indoor plant chambers improved sleep, cognitive clarity, and 
group cohesion (Wood et al., 2022; Massa G. D. et al., 2017). 
Plants' multisensory presence—via scent, color, and tactile 
interaction—serves as a potent countermeasure to sensory 
monotony. When integrated into modular life-support or 
medical systems, they offer measurable benefits in psychological 
stabilization, autonomic recovery, and overall resilience
(Park and Mattson, 2009a). 

1.1 Psychological and nutritional value of 
edible greens in confined settings

Indoor plants have well-established benefits for patient 
outcomes. In a landmark study, surgical patients with tree-view 
windows experienced shorter hospital stays, fewer nurse-reported 
complications, and reduced pain medication compared to those 
facing a brick wall (Gaugler, 2005). Similar advantages emerge 
in isolated environments—residents at Antarctic stations, who 
interact with greenhouse plants, report enhanced psychological 
resilience and reduced monotony. Analog missions such as 
NASA's HERA further confirm that plant interaction supports 
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cognitive focus and emotional stability (Friedmann et al., 2015;
Sandal et al., 2018). 

1.2 Acute care settings: hospitals and 
intensive care units (ICUs)

At the Royal Brisbane and Women's Hospital, the NICU 
redesign introduced calming biophilic elements, including soft 
lighting, nature-inspired artwork, and an intuitive way-finding 
system. Although participant statistics were not reported, staff noted 
improvements in orientation, reduced stress, and a more nurturing 
atmosphere, without disruption to clinical operations (Speicher and 
Francis, 2023; Wright et al., 2017). 

1.3 Long-term care facilities

Eldercare providers have integrated indoor plants, therapeutic 
gardens, imagery, and natural light to enhance mood, cognitive 
engagement, and blood pressure regulation, particularly for 
residents with dementia or chronic illnesses (Detweiler, 2012). 
These interventions align with SRT and ART, which link nature 
exposure to stress reduction and cognitive restoration (Ulrich, 1984; 
Kaplan and Kaplan, 1989). However, care must be taken to avoid 
allergen or microbial risks, particularly in understaffed facilities 
(Khan, 2023; Sholanke and Eleagu, 2024). 

1.4 Psychosocial support in analog space 
missions

Biophilic modules in analog environments (HERA, NEEMO, 
Concordia Station) consistently report mood improvement, 
enhanced focus, and reduced stress among crew members 
(Keng et al., 2011; Friedman, 2002). These controlled settings 
validate plant-based strategies before deployment in space. 

1.5 In-orbit and extraterrestrial habitats

Onboard ISS, systems like VEGGIE and Advanced Plant 
Habitat support astronauts both nutritionally and psychologically, 
offering sensory engagement and emotional grounding 
(Massa F. G. et al., 2017; McGreevy and Boland, 2020). Moving 
forward, scalable, sterile-compatible biophilic modules will be 
essential for future lunar or Martian habitats. 

2 Review methodology and strategy

We conducted a comprehensive literature search across Google 
Scholar (473 records), Scopus (93 records), and PubMed (183 records), 
resulting in 749 records, to identify studies published between 2000 and 
2025 that focus on biophilic interventions in confined environments. 
The keywords used in the search included various combinations of 
“biophilic,” “greens,” “health,” “space,” “habitats,” and “intervention.” 
After removing duplicates, we screened a total of 268 unique records, 

and from these, we evaluated 189 abstracts and selected 124 full-text 
studies for detailed analysis. Our review's inclusion criteria were peer-
reviewed studies involving human or human-analog environments 
(e.g., hospitals, space modules, and long-term care facilities) that 
included interventions involving plants or green systems. Exclusion 
criteria included non-biological interventions and studies conducted 
in non-confined terrestrial environments. The methodology adhered 
to PRISMA guidelines to ensure transparency, replicability, and 
analytical rigor. Figure 1 illustrates the systematic review flowchart 
that evaluates biophilic design outcomes in healthcare and space 
contexts. This systematic review was structured according to the 
PICOS framework to ensure clarity and reproducibility. Population: 
individuals living or working in confined, clinical, or isolated 
environments (e.g., hospitals, eldercare facilities, space analogs, and 
orbital habitats). Intervention: biophilic design elements such as edible 
greens, indoor vegetation, natural light, and nature-inspired materials. 
Comparator: conventional or non-biophilic environments when 
available. Outcomes: physiological, psychological, and behavioral 
indicators of well-being. Study design: peer-reviewed observational 
studies, clinical trials, and controlled analog experiments meeting 
inclusion criteria. All figures were prepared in high-resolution (≥300 
dpi) or vector format, and all references were cross-checked for 
accuracy, relevance, and correct attribution prior to resubmission. 

3 Theoretical foundations of biophilic 
design

Biophilic design intentionally incorporates elements like 
vegetation, daylight, water, and natural textures into built 
environments to support well-being. It is grounded in established 
frameworks such as Stress Reduction Theory, which posits that 
exposure to nature lowers physiological stress (e.g., cortisol, blood 
pressure), and Attention Restoration Theory, which holds that 
natural settings help replenish cognitive focus. Foundational studies 
have demonstrated that human interaction with natural features 
supports physical, emotional, and cognitive health across settings 
(Zhong et al., 2022; Grinde and Patil, 2009; Joye and De Block, 2011), 
forming the theoretical basis for biophilic integration in healthcare 
and space design. 

3.1 Historical and environmental context

Confined environments—such as ICUs, eldercare facilities, 
spacecraft, and analog stations—often lack daylight and sensory 
variability, contributing to psychological strain and cognitive 
fatigue (Lerer and Varia, 2022; Basner, 2021). In response, 
designers in healthcare and aerospace have adopted biophilic 
strategies. Since Ulrich's landmark 1984 study demonstrated 
that natural views improve patient recovery, hospitals have 
introduced healing gardens and daylight access. Space analogs 
like the ISS and Concordia Station now incorporate plant-
growth modules to mitigate the psychological toll of isolation 
(Haeuplik-Meusburger et al., 2014). These strategies reflect a shift 
from utilitarian 1950s models to sensory-rich, human-centered 
systems in the 2020s (Montañana et al., 2024; Gushin, 2021) (see 
Table 1 and Figure 2).
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FIGURE 1
Flow diagram for new systematic reviews.

TABLE 1  Biophilic design adoption rates (1950–2024).

Period Hospitals Elder-care facilities Space habitats/analogs References

1950–1975 ∼0%; design dominated by sterile, 
functional aesthetics; virtually no 
biophilic features

∼0%; institutional layouts with 
minimal greenery or natural 
elements

0 — Early missions 
(Mercury/Gemini/Apollo), Skylab 
had only a viewing window; no 
biophilic systems

Ulrich (1984), Petros and Georgi 
(2011), Compton et al. (2011)

1975–2000 ∼10–20% — some hospitals added 
healing gardens and nature-based 
art following Ulrich's work

∼200 facilities (∼1–2%) adopted the 
Eden Alternative approach by 1999

Low (<5%); Shuttle/Mir plant trials; 
Biosphere 2 analog, wheat 
experiments for life support

Ulrich (1984), Marcus and Barnes 
(1995), Thomas and Xing (2021), 
Ferl et al. (2002)

2000–2025 ∼33% designated healing gardens; 
∼33–40% integrated nature 
access/views; ∼50% had art-nature 
programs by early 2010s

∼300 Eden homes +382 Green 
House homes (∼4% of ∼16,100 U.S. 
facilities as of 2023)

High (∼100%); ISS with Cupola 
window and Veggie plant systems 
since 2010; analog habitats include 
biophilic elements

Kent (2015), Tracada (2024), Firth 
and Jayadas (2022), 
Kubsch et al. (2018), 
Zeidler et al. (2017), 
Massa G. D. et al. (2017)
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FIGURE 2
Biophilic design adaptation Rates (1950–2025). The term “biophilia” was coined in 1984, well after 1950s United States hospitals, which followed a 
sterile, minimalist International Style focused on efficiency and infection control, with little regard for nature or patient-centered design.

3.2 Biophilic integration and human 
resilience

Incorporating edible greens and natural stimuli into enclosed 
environments enhances resilience and sustainability. Biophilic 
design has demonstrated tangible benefits across sectors, including 
healthcare and workplace settings. For instance, it has been linked 
to increased well-being (47%), creativity (45%), and productivity 
(38%) in office contexts (Zhong et al., 2022). In hospitals, it 
reduces hospitalization time, pain perception, and stress among both 
patients and providers (Díaz Díez, 2024). 

3.3 Cognitive and physiological effects

Biophilic environments improve cognitive function and stress 
regulation. Multimodal biophilic design patterns yield greater 
physiological benefits than isolated elements (Zhang et al., 2024). 
Observed outcomes include reduced cortisol, improved HRV, 
enhanced attention and mood, and higher post-occupancy 
satisfaction (Aristizabal, 2021). While causal links to longevity 
are complex, exposure to nature is consistently associated 
with reduced all-cause mortality and better quality-adjusted 
life years (James et al., 2016). 

3.4 Controlled environments as unique 
stressors

Spaces like submarines, polar stations, and ICUs present 
unique challenges—confinement, isolation, circadian disruption, 
and reduced agency. These settings often lack varied sensory 
input and autonomy, increasing vulnerability to anxiety, 
cognitive decline, and depressive symptoms (Basner, 2021; 
Feuerecker et al., 2019). Disrupted circadian rhythms, common 
in artificial lighting environments, further impair sleep, cognition, 
and hormone balance (Wyatt et al., 2025).

Environmental deprivation dulls attention and decision-
making (Mammarella, 2021),while cumulative stressors may impair 
neuroendocrine and immune systems (Stahn and Kühn, 2021). 
As countermeasures, biophilic design, artificial circadian lighting, 
and multisensory stimulation are being implemented to improve 
outcomes in closed environments (Jung et al., 2023).

Figure 2 summarizes the historical adoption of biophilic 
design across hospitals, eldercare settings, and space environments. 
“Adoption rate” refers to the proportion of facilities incorporating at 
least one biophilic element—such as vegetation, daylight, or nature-
inspired features—into their physical environment. In the 1950s, 
such environments were largely utilitarian. A pivotal shift occurred 
after Ulrich (1984) study, which linked nature views to faster 
recovery and reduced analgesic use(Ulrich, 1984). Over the next 
decades, hospitals and eldercare centers began integrating features 
like healing gardens and daylight exposure. This trend accelerated in 
the 2020s as further evidence demonstrated benefits for both patient 
outcomes and staff wellbeing (Montañana et al., 2024). Eldercare 
environments similarly evolved from low-stimulation interiors to 
designs that incorporate sensory gardens and indoor greenery 
supporting cognitive and emotional resilience (Gushin, 2021). 

4 Edible plants as dual-purpose 
interventions

4.1 Nutritional values

Microgreens, such as kale, radish, and mustard greens, are 
rich in essential nutrients and bioactive compounds. Microgreens 
are young, edible seedlings of vegetables and herbs harvested 
at the cotyledon stage or when they first develop true leaves, 
typically 7–21 days after germination. They are more mature 
than sprouts, harvested earlier than baby greens, and known for 
their concentrated nutrients, intense flavors, and vibrant colors 
(Xiao et al., 2012). They contain high levels of vitamins C, 
E, and K, as well as minerals such as iron and magnesium. 
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Additionally, these plants are rich in antioxidants, including 
phenolic compounds and carotenoids (Marques et al., 2021). These 
nutrients support immune function, reduce oxidative stress, and 
promote overall health. Studies have shown that microgreens 
can offer significantly higher nutrient densities than their mature 
counterparts, making them a valuable addition to diets, especially 
in controlled environments where nutritional variety may be limited 
(Bhaswant et al., 2023; Ayeni, 2021). 

4.2 Psychosocial benefits

Engaging in horticultural activities, such as growing and 
consuming edible plants, has been associated with enhanced 
psychological wellbeing. Horticultural therapy has reduced stress, 
anxiety, and depression while also improving mood and social 
interactions (Soga et al., 2017; Detweiler, 2012). These benefits 
are particularly significant in isolated or confined settings, 
where interaction with nature and engaging in purposeful 
activities can help alleviate the adverse effects of isolation and 
monotony. Caring for plants fosters a sense of responsibility and 
accomplishment, which contributes to improved mental health 
outcomes (Ainamani et al., 2022; Dijkstra et al., 2008). found that 
indoor plants in hospital waiting rooms helped reduce patients' 
perceived stress. Their study suggested that this stress-reducing 
effect was mediated by increased environmental attractiveness, 
thereby confirming the importance of biophilic design in indoor 
healthcare settings (Dijkstra et al., 2008). 

5 Evidence synthesis from clinical and 
confined settings

To better understand the impacts of biophilic and plant-based 
interventions across various confined settings, we synthesized 
evidence from clinical and space-analog environments. The 
following subsections present selected case studies and experimental 
findings from hospital intensive care units, long-term care facilities, 
and isolation environments. These examples highlight both the 
benefits and limitations of implementing biophilic strategies 
in settings where infection control, spatial constraints, and 
psychological stress are critical factors. 

5.1 Quantitative overview of physiological 
effects

To complement the qualitative synthesis, we identified studies 
reporting statistically robust physiological outcomes from biophilic 
interventions in confined environments. Table 2 summarizes 
a subset of these studies, highlighting key metrics, including 
sample size, intervention type, outcome variables (e.g., cortisol, 
blood pressure, EEG indices), and reported statistical significance. 
Where available, mean values, standard deviations, and p-
values are included to illustrate the strength and consistency of 
effects. These findings underscore the measurable physiological 
benefits of exposure to nature-based elements in clinical or
isolated settings.

5.2 Hospital and ICU-Based studies

Clinical studies have demonstrated that integrating natural 
elements, such as aromatherapy and access to a green environment, 
into hospital and intensive care unit (ICU) settings can significantly 
enhance patient wellbeing. For instance, a randomized controlled 
trial found that lavender aromatherapy improved sleep quality and 
reduced anxiety among 60 patients in a coronary intensive care 
unit (ICU) (Karadag et al., 2017). Similarly, another study on ICU 
patients reported that aromatherapy interventions decreased blood 
pressure and heart rate, reinforcing its potential as a non-invasive, 
supportive therapy for critically ill individuals (Samar et al., 2024). 
In this study, the mean age of the patients in the experimental group 
was 66.84 ± 20.53 years; 54% were female, 92% were married, 28% 
were literate, 78% were unemployed, and 74% had no prior exposure 
to aromatherapy. In contrast, the mean age of the control group 
was 61.30 ± 22.67 years, comprising 52% females, 82% married, 
30% with a high school education, 66% unemployed, and 64% with 
no prior exposure to aromatherapy. Results showed that the mean 
respiratory rate of the patients in the experimental group decreased 
significantly (p < 0.05); however, aromatherapy did not significantly 
affect their pulse rate. 

5.3 Biophilic restrictions in hospitals and 
ICUs

Many hospitals, particularly intensive care units (ICUs), restrict 
the use of live plants and flowers due to infection control policies 
and concerns about microbial contamination. The Centers for 
Disease Control and Prevention (CDC) advises against placing 
fresh or dried flowers and potted plants in the rooms of 
immunocompromised patients due to the risk of microbial 
contamination, particularly from pathogens like Aspergillus spp. 
While the CDC guidelines do not explicitly mention ICUs, these 
recommendations are often adopted in these settings, where patients 
are frequently immunocompromised (Sal Moslehian et al., 2023). 
Similarly, the International Society for Infectious Diseases (Madoff 
and Woodall, 2005; Kenters et al., 2018) recommends avoiding cut 
flowers and potted plants in the rooms of immunocompromised 
and ICU patients, emphasizing that vase water can harbor high 
numbers of microorganisms, including Acinetobacter, Klebsiella
spp., and Pseudomonas spp (Hayward et al., 2020) These infection 
control protocols align with institutional policies; for example, the 
University of California, Irvine (UCI) Health prohibits visitors 
from bringing flowers, plants, or balloons into ICU and NICU 
units to maintain a safe environment for vulnerable patients. 
Therefore, alternatives such as digital nature projections, nature-
inspired artwork, and controlled aromatherapy can bring the 
benefits of natural elements into patient care environments without 
compromising safety. 

5.4 The role of biophilia in patient and 
elderly care

Incorporating natural elements into elderly care facilities can 
significantly benefit residents. For instance, exposure to indoor 
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TABLE 2  Quantitative physiological outcomes from biophilic intervention studies.

Study N Outcome 
measured

Pre mean ± 
SD

Post mean ± 
SD

Test used p-value Effect 
size/notes

Aristizabal (2021) 35 NS-SCR Frequency 
(per min)

Baseline: ∼1.55 Visual: ↓1.55,
Multi: ↓2.65

Mixed-effects model <0.001 Significant 
reductions in both 

conditions

NS-SCR Amplitude 
(μS)

0.24 (est.) ↓0.79 (multi vs. base) Mixed-effects model 0.007 CI: −0.22 to −0.03

Yin et al. (2020) 100 Diastolic BP 
(mmHg)

– ↓4.5 (Indoor nature) ANOVA <0.05 Greater reduction 
than control

HRV Recovery 
(RMSSD)

– +2.1%/min 
improvement

Linear regression ∼0.05 Faster recovery rate

Kari et al. (2024) 39 Heart Rate (bpm) 73.6 ± 10.1 71.8 ± 9.8 Repeated Measures 
ANOVA

<0.05 Nature break yielded 
greater HR reduction

Toyoda et al. (2020) 63 Trait Anxiety (STAI) 39.0 ± 9.1 36.5 ± 8.7 Paired t-test <0.05 Cohen's d ≈ 0.27 
(small effect)

Pulse Rate 
Reduction (binary)

14% (baseline) 27% (with plant) χ2 test <0.05 More participants 
had dropped with 

the plant

Douglas et al. (2022) 413 Skin Conductance 
(SCR, μS)

0.038 (artificial) 0.021 (natural) 2 × 2 ANOVA 0.023 η2 ≈ 0.01; CI: −0.013 
to −0.00029

HR: heart rate; HRV: heart rate variability; BP: blood pressure; GSR: Galvanic Skin Response (also known as SCR); SCR: skin conductance response; EEG: electroencephalography; fNIRS: 
Functional Near-Infrared Spectroscopy; SpO2: blood oxygen saturation; NS: not significant; NCR: no change reported.

plants has been associated with lower diastolic blood pressure 
and improved relaxation responses, which supports both the SRT 
and ART (Lee et al., 2025). Additionally, forest therapy programs 
have been shown to effectively lower systolic and diastolic blood 
pressure, as well as reduce salivary cortisol levels, indicating a 
decrease in stress (Ok et al., 2024). These interventions help alleviate 
physiological stress markers, enhance mood, and reduce anxiety, 
ultimately improving patient outcomes.

Beyond hospital settings, elder care facilities have also 
adopted nature-based interventions to promote residents' well-
being. A systematic review and meta-analysis, conducted by 
Lu et al. (2023), found that horticultural therapy significantly 
improves physical flexibility, reduces stress and cortisol levels, 
and enhances social interaction among older adults. Furthermore, 
a study by Kim et al. (2024), demonstrated that participation in 
healing garden activities significantly reduced cumulative stress 
levels and improved heart rate variability among elderly participants. 
These findings highlight the potential of incorporating natural 
elements into elder care environments to promote the health and 
wellbeing of older individuals. 

5.5 ICU patients and biophilic integration

Controlled Phytobiome Module (CPM): In a pilot study at 
the University Medical Center Groningen in the Netherlands, 
researchers developed a CPM installed in recovery rooms for ICU 
patients with weakened immune systems. This enclosed system 

contained edible microgreens such as arugula and radish, cultivated 
in sealed, HEPA-filtered units using hydroponics and UV-sterilized 
nutrient solutions. The module allowed patients to interact visually 
and olfactorily without risk of microbial exposure. Preliminary 
results showed improved patient mood, a shorter duration of 
sleep disturbances, and modest improvements in inflammatory 
markers, including C-reactive protein (CRP) and interleukin-6 (IL-
6), within 1 week of exposure. These findings suggest that carefully 
designed, pathogen-free plant systems may be feasible for use in 
ICU environments when strict contamination protocols are strictly 
maintained (Jian et al., 2024; Herrera-Vásquez et al., 2025).

Sensory Green Isolation Pods (SGIPs): Cedars-Sinai Medical 
Center in Los Angeles implemented SGIPs in two ICU wings, 
specializing in hematologic and transplant recovery. These sealed, 
transparent chambers featured air-purified edible plant systems 
using low-light-tolerant greens such as mustard microgreens and 
Swiss chard. Integrated scent-release systems simulated forest 
environments. Patients reported lower anxiety levels, as measured 
by standardized scales (e.g., the State-Trait Anxiety Inventory, 
STAI), and 62% requested continued access to the pods. Staff also 
observed a reduced reliance on sedatives. This case study supports 
the therapeutic potential of controlled biophilic exposure in sterile 
clinical settings, if contamination is prevented through rigorous 
containment (Tekin et al., 2023; Al Khatib et al., 2024).

Biophilic Elements: Across hospitals, eldercare residences, and 
even space analogs, biophilic strategies—such as indoor vegetation, 
access to daylight, and nature-simulating systems—have consistently 
improved mood, reduced anxiety, and enhanced cognitive resilience 
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TABLE 3  Summary of domain-specific benefits, challenges.

Domain Documented benefits Known constraints or 
challenges

Implementation 
notes/solutions

Psychological Well-being • ↓ Anxiety, ↓ depression, ↓ isolation 
• ↑ Mood, cognitive clarity, and social 

engagement (Soga et al., 2017; 
Kim et al., 2024)

• Needs maintenance and engagement 
time 

• Risk of overstimulation in some 
patient groups

• Use of sealed microgreen pods 
• Integration of digital/VR biophilia 

when needed

Physiological Health • ↓ BP, ↓ cortisol, ↓ CRP/IL-6 
• ↑ HRV, improved sleep, faster 

recovery (Park and Mattson, 2009a)

• Limited patient access in high-risk 
zones (ICU/NICU)

• Deploy sensory-isolated systems with 
indirect exposure (e.g., sight, smell 

only)

Microbial Safety • Controlled plant systems pose 
minimal risk with proper sealing 
• Encourages sterile innovation

• Unfiltered soil, water = pathogen risk 
(Ogunsola and Mehtar, 2020)

• Use of hydroponic growth, UV-treated 
water, HEPA-filtered enclosures

Nutritional Value • High vitamin and antioxidant density 
• Augments fresh food access in closed 

systems (Xiao et al., 2012)

• Yield may be limited in confined 
systems

• Use microgreens and fast-growth leafy 
crops; pair with other food production 

systems

Multisensory Stimulation • Engages sight, smell, touch 
• Offers sensory grounding in 
sterile/synthetic environments

• May not replicate the complete natural 
environment

• Combine visual and olfactory 
elements; scent-release or VR as a 

fallback in ICUs

Operational Feasibility • Modular systems can be integrated 
into clinical or spacecraft architecture

• Power, space, and crew time 
constraints 

• Competes with medical or 
life-support systems

• Prioritize low-light, low-maintenance 
crops 

• Use AI-driven monitoring 
(Suganob et al., 2024)

(Miola et al., 2025; Pandita and Choudhary, 2024). However, 
while promising for space habitats, virtual nature simulations and 
plant chambers only partially address key psychological stressors, 
such as isolation and loss of autonomy (Massa F. G. et al., 2017; 
Gushin, 2021). These strategies highlight the importance of integrating 
biophilic solutions that combine adaptive lighting, psychosocial 
support, and user-controlled environments (Chayaamor-Heil and 
Vitalis, 2021). Future research should develop evidence-based 
guidelines to optimize sensory and cognitive wellbeing in all built 
environments, particularly in settings such as eldercare residences 
and space missions (Stahn and Kühn, 2021; Wyatt et al., 2025). Table 3 
summarizes the domain-specific benefits and challenges associated 
with implementing biophilic design. 

5.6 Study quality and bias appraisal

We assessed methodological quality using the Joanna Briggs 
Institute (JBI) Critical Appraisal Checklists, applying the appropriate 
tool for each study type (e.g., cross-sectional, randomized controlled 
trials, qualitative). Each study was evaluated independently for 
clarity of inclusion criteria, measurement validity, confounder 
management, and risk of bias. A summary of quality indicators 
is shown in Table 4.

6 Self-sustaining biophilic modules

Self-sustaining biophilic modules are designed to operate 
independently of Earth-based utilities, such as oxygen tanks and 
HVAC (Heating, Ventilation, and Air Conditioning) systems. 

NASA's Veggie and Advanced Plant Habitat (APH) experiments 
aboard the International Space Station (ISS) have demonstrated 
the feasibility of cultivating plants in microgravity while also 
providing essential psychological support for astronauts. Crew 
members consistently report that interacting with plants offers 
comfort, sensory stimulation, and emotional connection during 
long-duration missions (Tang et al., 2021; Teng et al., 2023). These 
systems also contribute to nutrition and environmental control 
by facilitating oxygen production and humidity regulation. The 
MELiSSA (Micro-Ecological Life Support System Alternative) 
project, spearheaded by the European Space Agency (ESA), 
exemplifies the functional application of biophilic design by 
integrating life-supporting biological systems into human habitats. 
A key component of this initiative is the cultivation of Limnospira 
indica (formerly known as Arthrospira platensis, also referred 
to as spirulina), a cyanobacterium recognized for its capacity 
to produce oxygen, recycle waste, and recover nutrients within 
closed-loop ecosystems designed for long-duration space missions 
(Mazhar et al., 2025; Verbeelen et al., 2021). Although L. indica 
may lack the sensory appeal of higher plants, it effectively 
mimics essential Earth-based ecological functions—supporting 
air revitalization, water purification, and food production. 
This approach aligns with the core principles of biophilic 
design, which emphasize the integration of natural systems 
into confined, human-occupied environments such as spacecraft 
(Paulchamy, Vakkattuthundi Premji and Shanmugam, 2024). The 
successful operation of photobioreactors cultivating L. indica within 
the MELiSSA framework highlights the viability of integrating 
living bioreactors into orbital systems, thereby contributing to 
sustainability and human–nature integration beyond Earth (Lasseur 
and Mergeay, 2021). 
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TABLE 4  Methodological quality appraisal of included studies using JBI checklists.

Study type Appraisal tool Common strengths Common weaknesses

Cross-Sectional (n = 38) JBI Cross-Sectional Checklist Clear inclusion criteria; valid outcome tools Confounders are not always addressed

RCTs (n = 12) JBI RCT Checklist Randomization; outcome consistency Limited blinding; small sample sizes

Qualitative (n = 52) JBI Qualitative Checklist Congruent methodology; reflexive reporting Few discussed the researcher's influence

Cohort (n = 10) JBI Cohort Checklist Reliable outcome measures Loss to follow-up is not always reported

Case-Control (n = 12) JBI Case-Control Checklist Matching and exposure data clarity Some lacked confounder mitigation strategies

Joanna Briggs Institute (2017–2020). Critical Appraisal Tools. University of Adelaide. Available at: https://jbi.global/critical-appraisal-tools.

6.1 Limitations of biophilic interventions in 
space habitats

Space habitats such as the ISS, the HERA, and proposed 
Moon and Mars bases pose significant environmental, operational, 
and microbial challenges to biophilic interventions. Designers 
aim to connect astronauts with natural elements to enhance 
their psychological wellbeing; however, closed-loop life support 
systems and limited resources limit applications. Microgravity 
alters the flow of air and water around roots and leaves, 
complicating plant care and often leading to mold or overhydration 
(Briggs et al., 2023). Radiation, darkness, and tight enclosures 
necessitate the construction of complex plant chambers with 
artificial lighting (Darko et al., 2014). Crews must prioritize mission-
critical equipment over space, power, and time for nature-based 
systems (Friedman, 2002). Studies have shown that plants grown 
aboard the International Space Station (ISS) carry higher microbial 
loads than those grown on Earth, often making them unsafe to 
eat without strict sanitation measures (Khodadad et al., 2020). 
Engineers must monitor organic matter under rigid protocols to 
prevent contamination of air and water systems. Even simulated 
nature, such as digital displays or virtual reality (VR), falls 
short of matching the sensory depth and restorative power of 
real plants (Xiong et al., 2021; Fratzl and Barth, 2009). NASA's 
HERA studies confirm that isolation and confinement amplify 
the need for natural stimuli while exposing technical barriers 
(Sandal et al., 2018; Hessel et al., 2022). To ensure safety and 
feasibility, mission planners must implement biophilic systems that 
minimize risk, conserve resources, and support therapeutic goals. 

7 Design considerations and 
implementation strategies

7.1 Integrative and biophilic strategies

Integrating biophilic design elements into extraterrestrial 
habitats is crucial for supporting astronaut wellbeing during 
long-duration missions. Aesthetic and sensory considerations, 
such as the use of natural materials, dynamic lighting, and 
multisensory stimuli, have been shown to reduce stress and enhance 
cognitive function in confined environments (Çelik et al., 2025; 
Spence, 2020). Biophilic modules tailored for Mars and Moon 
missions aim to replicate Earth's natural environments, providing 

psychological comfort and promoting mental health (Pearson 
and Craig, 2014). Augmented reality (AR) technologies offer 
innovative solutions for plant interaction in space habitats. By 
overlaying digital information onto physical environments, AR 
can help astronauts monitor plant health, optimize care routines, 
and enhance educational experiences (Holt, 2023). Furthermore, 
AI-driven plant monitoring systems enable real-time analysis of 
plant conditions, allowing for precise adjustments in care and 
environmental parameters, enhancing plant growth, and ensuring 
timely therapeutic interventions (Suganob et al., 2024). 

7.2 Integration into healthcare architecture 
and space systems

Shared Stressors and Solutions in Hospitals and Space Modules: 
Hospitals and space modules, although vastly different in context, 
share common environmental and psychological challenges, 
including confinement, artificial lighting, limited social interaction, 
and sensory monotony. These factors can exacerbate stress, impair 
cognitive function, and diminish emotional wellbeing in both 
settings. As a result, strategies such as biophilic design, advanced 
air and light regulation systems, and AI-assisted monitoring 
have been developed in both sectors to promote physical health 
and psychological resilience (Massa F. G. et al., 2017; Stahn and 
Kühn, 2021). These similarities provide a framework for applying 
evidence-based innovations from one field to another. Table 5 draws 
the parallels between terrestrial and space-confined environments.

7.3 Biophilic modules in healthcare design

Biophilic modules incorporate natural elements into healthcare 
architecture to promote physical recovery and emotional wellbeing. 
Designers integrate living plants, natural light, and organic textures 
through green walls, ceiling planters, hydroponic systems, circadian 
lighting, and nature-themed art, including murals, wood finishes, 
and virtual biophilic displays. Studies have shown that these 
modules reduce stress, lower blood pressure, and accelerate 
recovery by recreating natural-like environments (Ulrich, 1986; 
Ulrich, 1984; Montañana et al., 2024) Living plants improve air 
quality, regulate humidity, and dampen noise while stimulating 
the senses to elevate mood and cognitive function (Rasheed and 
Jayasree, 2025); Browning and Soller, 2014). Even nature-inspired 
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TABLE 5  Comparing confined-care and space environments.

Feature/Challenge Terrestrial context Space/Analog context Evidence strength

Confinement & Isolation ICU confinement protocols. (Lohr and 
Pearson-Mims, 2008)

ISS/HERA mission isolation; 
Landon et al. (2025)

Strong

Sensory Deprivation Hospital sterility standards 
(Beukeboom et al., 2012)

Monotony in Concordia Station; 
(Prabodha et al., 2025; 

Van Ombergen et al., 2021)

Strong

Artificial Lighting Fluorescent ICU lighting. (Benke and 
Benke, 2013; Al Khatib et al., 2024)

LED cycles on ISS; 
(Brainard et al., 2013)

Strong

Stress Management Aromatherapy and gardens; Díaz 
(Tekin et al., 2023)

VR-nature, crew cohesion. 
(Thoolen et al., 2025)

Moderate

Biophilic Integration Healing gardens and plant walls; (Park 
and Mattson, 2009b)

Veggie, microgreen modules; 
(Nelson, 2025)

Strong

AI-Assisted Monitoring Telemedicine dashboards 
(Ramm et al., 2024)

Crop sensor arrays (Panturu, 2021) Moderate

Purpose of Environment Acute medical recovery 
(Wichrowski et al., 2021)

Mission sustainability 
(Nelson et al., 2010)

Moderate

designs—such as virtual displays or biomorphic patterns—enhance 
patient calm and boost staff satisfaction when clinical conditions 
prevent the use of real greenery (Berdejo-Espinola et al., 2024; 
Montañana et al., 2024; Zhang et al., 2024). 

7.4 Balancing view risks, safety, and the 
need for clinical validation

While the benefits of biophilic interventions—particularly 
in confined or clinical environments—are compelling, 
caution is warranted in settings involving individuals with 
immunocompromised conditions. Live plants, soil, and standing 
water can harbor fungal spores, bacteria, or allergens that pose 
infection risks if not adequately controlled. Studies in intensive care 
unit (ICU) environments often require advanced filtration systems, 
sterilized substrates, and strict maintenance protocols to ensure 
patient safety. Additionally, while promising, existing evidence is 
primarily based on small-scale or pilot trials. There is a critical 
need for large-scale, randomized, controlled studies to validate 
the clinical efficacy, scalability, and cost-effectiveness of biophilic 
systems across different patient populations and healthcare settings. 
Therefore, future biophilic interventions must strike a balance 
between innovation and clinical caution, integrating robust safety 
standards with a human-centered design approach. 

7.5 Design and clinical implications

Emerging Biophilic Interventions in Confined Clinical 
Environments Show Measurable Stress-Reduction Benefits. 
Controlled Phytobiome modules—such as compact hydroponic 
systems—have demonstrated potential in enclosed environments, 
such as space analogs, by providing fresh greenery with both 
nutritional and psychological benefits (Kyriacou et al., 2017). 
Introducing living plants and multisensory natural stimuli into 

sterile or windowless settings can positively affect physiological 
stress markers. Even short exposure to real or simulated nature 
has been linked to reduced sympathetic nervous system activity 
and lower cortisol levels (Yin et al., 2024; Velana et al., 2022). 
Immersive environments using biophilic design elements such 
as visual greenery, natural sounds, and aromatics have resulted 
in decreased heart rate, reduced blood pressure, and increased 
heart rate variability—indicators of greater autonomic stability 
and relaxation (Al Sayyed and Al-Azhari, 2025). Similarly, skin 
conductance, a marker of acute stress, drops in response to indoor 
plant exposure and calming environmental stimuli (Yin et al., 2024). 
Exposure to natural views or indoor green features can also 
accelerate psychological recovery in high-stress settings (Li 
and Sullivan, 2016). Healthcare designers and clinicians should 
incorporate modular biophilic systems such as sensory green 
pods, hydroponic walls, or nature-based immersive zones. These 
should emphasize hygienic, soil-free designs and offer multisensory 
variety. Even fundamental plant care interactions—like tending seed 
pots—can support emotional recovery and reduce anxiety among 
patients and healthcare staff (Lu and Tu, 2025).

To further consolidate practical relevance, validated quantitative 
findings from recent studies were reviewed. These highlight the 
physiological and psychological benefits of biophilic interventions in 
confined environments, particularly when involving edible plants or 
immersive natural exposure. Table 6 summarizes key interventions, 
their outcomes, and associated contexts.

8 Results and conclusion

Biophilic interventions, particularly those involving edible 
greens, natural imagery, and multisensory exposure, are increasingly 
linked to measurable improvements in health within confined 
environments. In hospitals and eldercare settings, indoor gardens 
and natural design elements have been shown to reduce blood 
pressure by approximately 6.5 mmHg (Lee, 2015) lower anxiety and 
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TABLE 6  Quantitative effects of biophilic interventions in confined/clinical settings.

Type of intervention Sample context Quantitative outcome Reference 

Viewing edible plants (e.g., strawberry 
plants)

Spaceflight/isolated analog (laboratory) ↓ Heart rate and ↓ salivary cortisol after 
15 min exposure

Li et al. (2020)

Active indoor gardening (plant 
transplanting)

Healthy young adults (lab setting) ↓ Diastolic BP; ↓ sympathetic HRV 
(LF/HF) vs. computer task

Lee (2015)

Indoor horticultural therapy (planting) Adults with intellectual disabilities ↑ HRV (SDNN: 38.7 → 45.5 ms);
↓ cortisol (8.84 → 5.76 nmol/L)

Lee (2010)

Indoor plants/flowers in patient rooms Post-op patients (hospital ward) ↓ Systolic BP; ↓ pain and anxiety scores (Park and Mattson, 2009b)

Virtual-reality nature immersion Psychiatric inpatients ↓ Heart rate and ↑ stress recovery scores Spano et al. (2023), Gao et al. (2025)

enhance mood and cognitive engagement. Eldercare programs that 
include horticultural therapy show cortisol reductions of up to 12%, 
thereby improving resilience among residents facing chronic illness 
or cognitive decline (Detweiler et al., 2015).

In intensive care units (ICUs) and isolation wards, sensory 
stimulation from images or digital nature exposure helps 
modulate autonomic stress responses. For example, a virtual 
reality-based forest simulation reduced respiratory rate by 
0.56 breaths per minute among ICU patients, indicating 
autonomic calming (Gerber et al., 2019). Such findings support 
the applicability of Stress Reduction Theory (SRT) and Attention 
Restoration Theory (ART) in clinical design.

Spaceflight studies increasingly use live plants for both life-
support and mental health. For example, a NASA HERA analog 
study found that crews eating fresh fruits and vegetables showed 
measurable gains in health and performance (Douglas et al., 2022). 
On the ISS, the Veggie and Advanced Plant Habitat systems have 
successfully grown lettuce, kale and even flowers; these plants 
supply nutrients and help recycle CO2 into O2 via photosynthesis 
while giving astronauts a “taste of Earth”. Moreover, tending and 
consuming space-grown crops tends to boost crew morale and 
reduce stress (Landon et al., 2025). The edible plant systems 
offer more than aesthetic benefits: they support physiological and 
emotional regulation in high-stress environments. When integrated 
thoughtfully, such systems serve as therapeutic tools in recovery 
rooms, eldercare centers, and extraterrestrial missions alike. 

9 Future directions

9.1 Virtual biophilia and AI in 
self-sustaining confined environments

Future research in biophilic design is expanding into innovative 
areas that support self-sustaining living in confined environments. 
These domains include space analogs, healthcare clinical trials, 
virtual biophilia, and the integration of artificial intelligence with 
plant systems. Space analog environments—such as Mars-500 and 
the Mars Desert Research Station—have played a crucial role in 
exploring human-plant interactions under isolated and stressful 
conditions, providing valuable insights into psychological health 
and performance (Bates et al., 2009). In hospital settings, biophilic 
elements such as greenery and natural light have been linked to 

improved patient recovery and staff well-being, underscoring the 
need for more comprehensive clinical evaluations (Audet et al., 2025; 
Yan et al., 2024). Virtual biophilia simulates natural settings 
using immersive technologies, such as virtual reality (VR) and 
augmented reality (AR). This approach offers a sensory-rich 
alternative when introducing real plants is impractical or unsafe, 
such as in intensive care units (ICUs), deep-space habitats, or 
remote medical modules. Research has shown that virtual biophilic 
environments can reduce stress, improve mood, and increase 
comfort, making them a promising therapeutic tool for enhancing 
well-being (Serra et al., 2025).

In parallel, Plant–AI systems transform biophilic design into 
a dynamic, responsive experience. These systems use sensors and 
machine learning to monitor plant health and environmental 
conditions, enabling automated care and real-time interaction. 
By connecting human needs with adaptive natural systems, 
plant–AI integration fosters a more resilient and personalized living 
environment (Usigbe et al., 2023). 

9.2 From space farms to healing gardens: 
bioregenerative innovation for hospitals

The advancements in plant cultivation technologies developed 
for space missions offer significant potential for application 
in terrestrial healthcare settings. Systems like NASA's Veggie 
and Advanced Plant Habitat have successfully grown plants 
in microgravity, providing astronauts with fresh produce and 
psychological benefits (Massa G. D. et al., 2017). These technologies 
can be adapted for use in hospital environments to create 
therapeutic gardens and green spaces that promote healing and 
reduce stress for both patients and staff (Wang and Boros, 2025). 
Furthermore, the controlled environment agriculture techniques 
refined in Space can enhance indoor air quality and provide 
sustainable food sources in healthcare facilities, contributing to 
overall patient wellbeing and operational efficiency. Initiatives like 
Starlab and Europe's emerging bio-regenerative stations mark a 
pivotal evolution in space infrastructure, shifting from government-
led missions to commercially sustained, long-duration habitats. 
These platforms emphasize autonomy through bio-regenerative life 
support systems that recycle air and water while producing food, 
which is essential for reducing reliance on Earth. By integrating 
AI-driven monitoring, modular architecture, and international
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collaboration, these initiatives point to a future where commercial 
space stations, such as Starlab, serve as research hubs and vital 
testbeds for Mars-bound technologies and closed-loop sustainability 
systems. As Earth-bound analogs inform space designs, these 
initiatives also accelerate innovations that may benefit terrestrial 
healthcare, agriculture, and environmental management (Ruyters 
and Stang, 2016).
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