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This research analyzed the sample entropy (SampEn) of breath-by-breath cardiopulmonary exercise testing (CPET) data from 170 healthy pediatric participants (85 males) 8 to 18-years-old, using a Bayesian statistics approach. SampEn measures the complexity of time series data, providing quantitative insight into the predictability of breathing patterns in pediatric participants. To address non-stationarity, signals were differenced prior to SampEn calculation. In addition to sex and age group comparisons, we examined SampEn before and after the midpoint of each participant’s CPET to assess how SampEn changes as exercise intensity increases. We corroborated previous findings that SampEn decreases in the later half of CPET for healthy pediatric participants for oxygen uptake (V̇O2), carbon dioxide output (V̇CO2), ventilation (V̇E), and heart rate (HR). Females tended to have higher SampEn than their male counterparts, with a statistically significant difference between the sexes in older participants for V̇O2, V̇CO2, V̇E, HR, and respiratory rate (RR). Age-related findings included: significantly higher SampEn in younger males compared to older males for V̇O2 and V̇E and older female participants had a higher SampEn in older females compared to younger females for HR. These findings support SampEn as a sensitive, non-invasive marker of physiological transition during pediatric CPET, with potential applications in exercise physiology research and clinical assessment.
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1 INTRODUCTION
Cardiopulmonary exercise testing (CPET) is a non-invasive clinical tool with the ability to provide wide-ranging insights into human health for clinical applications (Myers et al., 2014; West et al., 2016; Smith et al., 2022; Cooper et al., 2023). During a progressive CPET, the intensity of exercise increases incrementally, typically on a treadmill or cycle ergometer, while physiological metrics such as heart rate (HR), respiratory rate (RR), tidal volume (VT), oxygen uptake (V̇O2), carbon dioxide output (V̇CO2), and ventilation (V̇E) are continuously measured breath-by-breath. This amounts to substantial data collection. The duration of a typical pediatric CPET is about 8–12 min, with an average respiratory rate of 25 breaths per minute generating approximately 250 breaths. At each of these breaths, individual values for V̇O2, V̇CO2, V̇E, and VT are recorded. Moreover, HR (typically ranging from 90–190 beats per minute) is recorded at each breath, yielding an additional 1500–2000 individual data points.
Despite the richness of these continuous breath-by-breath data, clinical practice generally refers to maximal, submaximal, or aggregated metrics (Leclerc, 2017; Kristenson et al., 2024). In particular, CPET in clinical practice has traditionally focused on V̇O2 peak. This emphasis originated from early exercise physiology work at the Harvard Fatigue Laboratory (Tipton, 1998; Bassett, 2002), where the primary goal was to quantify the maximal capacity of the cardiorespiratory system. Over time, V̇O2 peak remained the dominant measure, reinforced by its ease of computation, straightforward interpretation, and the extensive body of normative data supporting its use. Consequently, more complex analyses that could exploit the full time-series signal are rarely implemented in routine practice.
Some research has begun exploring methodologies to take advantage of the entire breath-by-breath data set from CPET (Cooper et al., 2014; Ntalianis et al., 2024; Ross et al., 2024). One promising approach involves the value of information science analytics such as entropy, a statistical measure that can quantify the complexity or unpredictability within time-series data. Entropy provides insights distinct from variability; for example, a highly variable but predictable signal (e.g., a sine wave) demonstrates low entropy. Entropy analysis may be especially informative in pediatric CPET as younger participants' breathing patterns tend to be more irregular than those of adults (Nagano et al., 1998; Ondrak and McMurray, 2006). This increased irregularity in breath timing and volume can produce greater fluctuations in the underlying time-series signal, enhancing the usefulness of entropy to detect differences in physiological control and adaptation during exercise.
Previous research (Blanks et al., 2024a; Blanks et al., 2024b) applied entropy analysis to pediatric populations, finding significant insights related to pubertal status and sex differences in CPET metrics. However, analyzing entropy of CPET variables presents unique challenges due to the short duration and non-stationary nature of the ramp CPET protocols where work rate and physiological signal responses change continuously without reaching a steady state. Non-stationarity violates assumptions of constant mean, variance, and autocorrelation, complicating entropy analysis. The method introduced in Blanks and Brown (2024) effectively addresses this by incorporating techniques to handle these non-stationary signals.
Building on this work, and continuing the process of validation of these new CPET analytics in the context of the growing child, the present study applies the entropy-based methodology used by Blanks et al. (2024b) to a larger pediatric data set (170 participants in this study vs. 81 in the previous study) with some key differences. For instance, the previous study separated the data at the ventilatory threshold (VT1) since progressive exercise testing results in at least two domains of physiological responses usually thought of as below or above the point during exercise at which lactate concentrations begin to increase in the circulating blood. However, the mechanism of this increase remains incompletely understood and consensus has yet to be established regarding what noninvasively obtained gas exchange and/or HR biomarker most accurately demarcates these exercise domains (Rossiter, 2021). The physiological regulation of heavier exercise is likely distinct as it is accompanied by the release of stress, inflammatory, immune, and other circulating mediators typically not increased in the central circulation at lighter exercise (Cooper et al., 2007). Precise measurements of any of the commonly accepted defining biomarkers is challenging in pediatric CPET given the increased breath-to-breath variability in gas exchange in younger compared to older children and young adults. Accordingly, we simplified our previous approach and performed our comparison of gas exchange before and after the midpoint of exercise duration. Additionally, we used age-cutoffs for comparisons as physical examination to determine pubertal status in younger participants and older participants is personally quite invasive and self-report is only moderately accurate (Rasmussen et al., 2015). Although VT1 and Tanner stage provide physiologically meaningful cut points, both require subjective judgment and can be difficult to determine consistently. In contrast, age and test midpoint are simpler, more objective criteria that do not require additional clinical assessment. Robust data cleaning procedures were also implemented to minimize the impact of clear measurement errors on the results.
2 MATERIALS AND METHODS
2.1 Data description
2.1.1 CPET
Children and adolescents were recruited for this study, which was approved by the University of California, Irvine Institutional Review Board. All procedures adhered to relevant ethical guidelines and regulations. Demographic and anthropometric measurements were collected using a calibrated scale and stadiometers. Participants then performed a CPET following an established ramp progressive protocol in the laboratory by pedaling on an electronically braked, servo-controlled cycle ergometer (Lode, Groningen, Netherlands) (Cooper et al., 2014). During testing, the Sensor Medics System (Vmax Encore 229, Yorba Linda, CA) collected gas exchange data and at each breath instantaneous HR was recorded. For consistency purposes, laboratory staff and faculty instructed and ensured participants maintained a pedaling rate between 65 and 75 revolutions per minute. Exercise continued until the participant or the supervising staff decided that the participant reached their limit of tolerance.
2.1.2 Pediatric participant demographics and sample characteristics
This study included 170 participants aged 8–18 years (85 males) with no known cardiac, metabolic, or respiratory conditions and no history of taking medication for chronic disorders. The body mass index (BMI) of all participants fell between the 5.34% and 84.16% percentiles. [These BMI percentile values are sex-age specific, calculated utilizing CDC growth charts (Kuczmarski et al., 2002)]. The time series of breaths recorded during CPET for the 170 participants had a mean of 304.59±68.26 breaths per participant. All participants had a total test duration between 8 and 12 min and achieved a Respiratory Exchange Rate > 1.0. Breaths that met the criteria in Equation 1 were removed.
WRi,t<WRi,95th−WRi,5thci,95th−ci,5thci,t−1(1)
where i denotes participant i, t denotes observation or breath t, WR is the work rate in Watts, c is the time in minutes, WRi,95th, ci,95th, WRi,5th, and ci,5th represent the 95th and 5th percentiles of participant i’s WR and c accordingly. To minimize the impact of erroneous data collection, we also removed extreme points, such as V̇O2 and V̇CO2 observations <0.2 L/min, HR observations that fell outside of the range 50−230 beats per minute, RR observations <8 and >75 breaths per minute, and VT observations <0.1 and >3.5 (L/breath). Additionally, we detected extreme points relative to surrounding points using a moving window and standard deviation process, as Hesse et al. (2025) found to be a common approach in CPET studies. Specifically, for each CPET metric m, let bi,tm be the value for participant i at breath t. We defined the moving average for participant i at breath t in Equation 2.
μi,tm=115∑j=t−7t+7bi,jm(2)
Similarly, we defined the moving standard deviation at observation t in Equation 3.
σi,tm=115∑j=t−7t+7bi,jm−μi,tm2(3)
Finally, we considered bi,tm an extreme point (and subsequently removed from analysis) if it met the criteria of Equation 4.
bi,tm−μi,tm>3σi,tm(4)
After the mentioned data cleaning techniques, participants with missing breath-by-breath data for 30 consecutive seconds or more for any metric were excluded from this study. More participant information can be found in Table 1, where V̇O2 peak was calculated using the maximum 20 s rolling average, computed every 5 s of the last 2 min of exercise.
TABLE 1 | Descriptive statistics of data set.	Metric	Males <13	Males ≥13	Females <12	Females ≥12
	Count of participants	40	45	40	45
	Age (years)	10.56±1.42	15.57±1.26	10.14±1.23	15.30±1.50
	CPET duration (minutes)	9.71 ± 1.09	10.04 ± 0.95	9.29 ± 0.89	9.73 ± 0.91
	BMI percentile	43.19 ± 23.67	47.06 ± 21.71	49.03 ± 23.98	43.76 ± 22.85
	Height (cm)	142.08 ± 10.13	170.38 ± 7.60	142.43 ± 9.88	162.58 ± 7.13
	Weight (kg)	34.44 ± 7.15	58.84 ± 8.18	35.04 ± 7.40	52.24 ± 6.41
	V̇O2 peak (L/min)	1.47±0.29	2.59±0.55	1.27±0.27	1.90±0.44
	V̇O2 peak (mL/min/kg)	43.42 ± 8.59	44.31 ± 8.34	36.71 ± 6.66	36.31 ± 7.84


To examine the effects of age and sex on Sample Entropy (SampEn), participants were first divided by sex into male and female groups. Within each sex, males were classified as younger than 13 years or older than 13 years, and females as younger than 12 years or older than 12 years. These cutoffs approximate the typical ages at which each sex reaches Tanner Stage 3 of 5 (Brix et al., 2019). Since this is an imperfect estimation, we also conducted additional analyses using an alternative female group cutoff at age 11 instead of 12 and excluding the 8 male participants between 12.5 (inclusive) and 13.5 years old (exclusive) and the 12 female participants between 11 (inclusive) and 12 (exclusive). The former provides some sensitivity analysis for the age delineator for female participants, and the latter creates more distinct age groups for both males and females. Minimal differences in results were observed between the groups. The results for these additional grouping mechanisms can be found in the Supplementary Data section. Since we created groups based off age, all results are interpreted as related to the age of the participants, and not to their maturational status.
2.2 Sample entropy and stationarity
The participants included in this study had a mean of 304.59±68.26 breaths (or distinct observations), which is typical in a progressive CPET. Each breath was considered a unique signal, and the timestamp was defined as the number of seconds elapsed since the CPET began. This posed a challenge, since information entropy analysis was originally designed for larger data sets. Information entropy analysis also assumes stationarity, which is not applicable to physiological metrics in a progressive CPET, since the mean of each metric increases as the test progresses. To solve these challenges, we performed the following SampEn related calculations, transformations, verifications, and decisions, by using “EristroPy” https://zblanks.github.io/eristropy. This Python programming package was designed specifically for the entropy analysis of short physiological signals and modifies the data to ensure weakly stationary signals (Blanks and Brown, 2024).
SampEn measures the uncertainty and predictability of dynamic time series data (Richman and Moorman, 2000). Let x∈RN define a time series signal of length N. The embedding dimension is an m-dimensional vector such that xm(i)=(xi,xi+1,…,xi+m−1). The distance between templates is evaluated in relation to a predefined similarity radius, r>0, as outlined in Equation 5.
∥xmi−xmj∥∞=maxk=1,…,m|xmik−xmjk|≤r,(5)
where xm(i)(k) is the k-th element of the vector. This process repeats for all combinations except for self-checks. Bm(r) denotes the probability that the time series data remains within a distance r for m points. See Equation 6.
Bmr=1ZN,m∑i=1N−m∑j=1,i≠jN−m−1Θ∥xmi−xmj∥∞≤r,(6)
where Θ[⋅] represents the Heaviside function, evaluating to 1 when the condition is true and 0 otherwise. Moreover, Z(N,m) is the normalization constant so that Bm(r) always lies between 0 and 1.
To compute the probability that the time series data remain within a distance r for m+1 points, see Equation 7 below.
Amr=1ZN,m∑i=1N−m∑j=1,i≠jN−m−1Θ∥xm+1i−xm+1j∥∞≤r.(7)
Finally, SampEn can be calculated using Equation 8.
SampEnx,m,r=−logAmrBmr.(8)
Richman and Moorman (2000) provides details of the mathematical foundations of SampEn. Chatain et al. (2020) discusses that it is vital to work with stationary signals for accurate SampEn analysis. To account for CPET signals being non-stationary, we modified the signals into a weakly stationary form by applying a differencing algorithm. In particular, if x is a CPET signal, the differenced signal can be represented as x̃ defined in Equation 9.
xt̃=xt−xt−1,t=2,…,N,(9)
where N represents the total number of observations in x. Then, the updated set of signals were standardized to have zero mean and unit variance. Next, these standardized and updated signals were checked for weakly stationary signals at a significance level of α=0.05, leveraging the Augmented Dickey and Fuller test. After the significance level assessment, multiple testing errors were corrected using the Holm-Sidak method. Optimal SampEn parameters (m, r) were selected using the method explained in Blanks and Brown (2024). It is worth noting that the optimal m and r were found independently for each metric using all participants, regardless of age or sex. The penalization parameter on r, lam, was set to 0.2 for metrics V̇O2, V̇CO2, V̇E, RR, and VT, and to 0.006 for HR (to guarantee proper exploration of the parameter search space). See Blanks and Brown (2024) for information on lam selection and “EristroPy” documentation for more details on the overall approach to SampEn https://zblanks.github.io/eristropy.
2.3 SampEn Pre- and post- midpoint
Blanks et al. (2024b) also studied the SampEn of each participant before and after they reached their VT1. Blanks et al. (2024b) estimated VT1 using the process used by Kim et al. (2021), where they defined VT1 to be the average of the VT1 detected via the V-slope and excess CO2 methods. When applying this process to the present study’s data set, we found notable differences in VT1 detected using the V-slope approach compared to the excess CO2 approach, introducing uncertainty around the participants’ true VT1. To avoid analysis based on incorrect VT1 detection, we compared entropy before and after the midpoint of the test. We defined the midpoint for each participant as their total CPET time divided in half. Any breath observed before the halfway mark of the total time of the CPET was labeled as “pre-midpoint,” and any breath observed at or after the halfway mark was labeled as “post-midpoint.”
2.4 Bayesian statistical testing
To analyze differences in the entropy of the gas exchange and HR variables across sexes, age groups, and midpoint status, we implemented Bayesian models defined with the following notation:
	M denotes the set of CPET metrics {V̇O2, V̇CO2, V̇E, HR, RR, VT}.
	S denotes the set {Male, Female}
	A denotes the set of age groups {Child, Adolescent}
	H denotes the set of midpoint status {Pre-Midpoint, Post-Midpoint}.
	I(m,s,a,h) denotes the set of indices corresponding to participants with a CPET metric m, sex s, age group a, with midpoint status h.
	I(m,s,a) denotes the set of indices corresponding to participants with a CPET metric m, sex s, age group a.

The following specifications were placed on the model:
	μs,a,h(m)∼N(2,1)
	σs,a,h(m)∼U(0.05,0.50)
	• ν∼logN(1,1)
	yi,s,a,h(m)∼t(μs,a,h(m),σs,a,h(m),ν)
	μs,a(m)∼N(2,1)
	σs,a(m)∼U(0.05,0.50)
	yi,s,a(m)∼t(μs,a(m),σs,a(m),ν)

These prior distributions and parameter decisions are the same as those in Blanks et al. (2024b) for effective comparison of SampEn results. Specifically, the Gaussian prior for μ and the uniform prior for σ represent the reasonably bounded range of entropy observed in healthy younger participants within this context. The prior on μ has a large variance to account for the differences between gas exchange entropy and HR entropy. The heavy-tailed distribution of ν accommodates potential extreme points in the data set.
We utilized PyMC Abril-Pla et al. (2023) for Markov chain Monte Carlo (MCMC) sampling via the No U-Turn Sampler algorithm. For each sample, 4000 posterior draws were made from MCMC. We evaluated convergence using trace plots, effective sample size, and the R̂ statistic (Vehtari et al., 2021).
2.4.1 Midpoint entropy differences
To compare SampEn pre- and post-midpoint, we defined μs,a,hm as the inferred mean SampEn for participants of sex s (0 = male, 1 = female), age group a (0 = younger, 1 = older), midpoint status h (0 = pre-midpoint, 1 = post-midpoint) for metric m. The change in SampEn from pre-to post-midpoint was then computed using Equation 10.
Δμs,am,mid=μs,a,1m−μs,a,0m.(10)
The estimated probability that Δμs,a(m,mid) is greater than or equal to zero is represented in Equation 11.
PΔμs,am,mid≥0|y≈1D∑k=1D1Δμs,am,midk≥0,(11)
based on D=4000 posterior draws from MCMC, where 1[⋅] denotes the indicator function. Thus, when P(Δμs,a(m,mid)≥0|y)<0.5, there are more instances of lower SampEn post-midpoint than pre-midpoint of CPET. We set the threshold for all analyses such that if P(Δμs,a(m,mid)≥0|y)<0.05 or P(Δμs,a(m,mid)≥0|y)>0.95 then there is statistical significance that SampEn is higher pre-midpoint or higher post-midpoint, respectively.
2.4.2 Total entropy analysis: effect of age on SampEn
In this section, we examined the entropy differences across the age groups for the entire CPET, regardless of the midpoint. We evaluated the following mean posterior SampEn percentage difference between the older participants and the younger participants in Equation 12.
Δμsm=μs,1m−μs,0mμs,1m×100,(12)
where μs,a(m) represents the mean posterior SampEn estimate for CPET metric m for sex s (0 = male, 1 = female) and age group a (0 = younger, 1 = older). Therefore, a negative Δμs(m) supports the claim that younger participants on average have higher SampEn for CPET metrics than older participants.
The estimated probability that Δμs(m) is greater than zero is represented in Equation 13:
PΔμsm≥0|y≈1D∑k=1D1Δμsmk≥0,(13)
based on D=4000 posterior draws from MCMC, where 1[⋅] denotes the indicator function. Therefore, P(Δμs(m)≥0|y)<0.5 indicates that there are more instances of higher SampEn for the younger participants. Similar to the midpoint analysis, for our purposes, P(Δμs(m)≥0|y)<0.05 or P(Δμs(m)≥0|y)>0.95 indicate that statistical significance that SampEn is higher for younger participants or higher for older participants, respectively.
2.4.3 Total entropy analysis: effect of sex on SampEn
As a part of this study, we also explored the entropy differences between males and females for the entire CPET, regardless of the midpoint. For each CPET metric m, we evaluated the mean posterior SampEn percentage difference using Equation 14.
Δμam=μ0,am−μ1,amμ1,am×100(14)
where μs,a(m) represents the mean posterior SampEn estimate for CPET metric m for participants of sex s (0 = male, 1 = female) and age group a (0 = younger, 1 = older). Therefore, a negative Δμa(m) supports the findings in Blanks et al. (2024a) and Blanks et al. (2024b) that pediatric females on average have higher SampEn for CPET metrics than pediatric males.
The estimated probability that Δμa(m) is greater than or equal to zero is represented in Equation 15.
PΔμam≥0|y≈1D∑k=1D1Δμamk≥0,(15)
based on D=4000 posterior draws from MCMC, where 1[⋅] denotes the indicator function. If P(Δμa(m)≥0|y)<0.5, then there are more instances of higher SampEn for female participants. Again, if P(Δμa(m)≥0|y)<0.05 or P(Δμa(m)≥0|y)>0.95 are the thresholds for statistical significance that SampEn is higher for female participants or higher for male participants, respectively.
3 RESULTS
3.1 Midpoint entropy differences
Similar to the post VT1 results reported in Blanks et al. (2024b), we hypothesized that SampEn would decrease after the midpoint of the CPET for the metrics V̇O2, V̇CO2, V̇E, and HR, and increase for RR and V̇T across all combinations of sex and age groups. The results in Figure 1 indicate that:
	For all four combinations of age and sex, (except for younger females’ V̇CO2) there is an average decrease in SampEn after the midpoint of the CPET for the gas exchange metrics V̇O2, V̇CO2, V̇E, and HR, with HR having the most pronounced decrease. This decrease is strongly supported (with P(Δμs,a(m)≥0|y)<0.05) for younger male participants and older male participants, for all four metrics, for younger female participants for V̇E and HR, and for older females for V̇CO2, V̇E, and HR
	The differences between RR and VT pre- and post-midpoint for all four age and sex groups lacks statistical significance.

[image: Twelve box plots compare pre-midpoint (green) and post-midpoint (yellow) data for younger and older groups across various metrics. Panels A-F show male and female SampEn values for \(\dot{V}O_2\), \(\dot{V}CO_2\), \(\dot{V}E\) with p-values < 0.05 indicating significant difference for all metrics for males and all metrics but (\dot{V}O_2\) for females and \(\dot{V}CO_2\) for younger females. Panels G-L show male and female values for \(HR\), \(RR\), and \(V_T\), with corresponding p-values. Significant differences are see for \(HR\) for males and females of both age groups.]FIGURE 1 | SampEn Pre- and Post-Midpoint by Metric, Sex, and Age. In this plot, p represents P(Δμs,a(m)≥0|y), with p<0.05 or p>0.95 indicating a statistical significance that SampEn (the measure of complexity) is higher pre-midpoint or higher post-midpoint, respectively.3.2 Total entropy analysis
In this section, we examine the differences in entropy between sexes and age groups for the entire CPET, regardless of the midpoint.
3.2.1 Effect of age on SampEn
Results and analysis detailed in Blanks et al. (2024a) and Blanks et al. (2024b) both suggest that early-pubertal participants tend to have higher SampEn than late-pubertal participants, particularly female participants. Thus, we hypothesized that the younger participants would have higher SampEn than the older participants in our sample. Recall that if P(Δμs(m)≥0|y)<0.05 or P(Δμs(m)≥0|y)>0.95, then it is statistically significant that SampEn is higher for younger participants or higher for older participants, respectively, for the given metric m. Figures 2A,B presents the following:
	Younger male participants have higher SampEn than older male participants with statistical significance for V̇O2 and V̇E.
	Older male participants have higher SampEn than younger male participants for HR and VT but without statistical significance.
	Younger female participants have a higher SampEn than older female participants without statistical significance for metrics V̇O2, V̇CO2, V̇E, and VT.
	Older female participants have a higher SampEn than younger female participants for HR with statistical significance. The height of this bar is remarkably taller than the others; this indicates that the percent difference between younger female participants and older participants’ raw HR SampEn is large in addition to statistically significant.

[image: Bar charts labeled A, B, C, and D compare sample entropy percent differences for various physiological parameters between different groups. Chart A shows older minus younger males; B shows older minus younger females; C shows male minus female younger group; D shows male minus female older group. Parameters include oxygen consumption (\dot{V}O_2\), carbon dioxide production (\dot{V}CO_2\), ventilation (\dot{V}E\), heart rate (HR), respiratory rate (RR), and tidal volume (\(V_T\)), with corresponding p-values < 0.05 and = 0.95 indicating statistical significance. Plots A and B range -10 to 30, and plots C and D range -20 to 20.]FIGURE 2 | Percent Difference in SampEn by Sex and Age Group. In plots (A,B) p represents P(Δμs(m)≥0|y), with p<0.05 or p>0.95 indicating statistical significance that SampEn (the measure of complexity) is higher for younger participants or higher for older participants, respectively. In plots (C,D) p represents P(Δμa(m)≥0|y), with p<0.05 or p>0.95 indicating statistically significance, with SampEn (the measure of complexity) being higher for female participants or higher for male participants, respectively. The further p is from 0.5, the more statistically significant the mean percent difference between the two data sets. The length of the bars represents Δμs(m) [plots (A,B)] and Δμa(m) [plots (C,D)] and the black represents one standard deviation of the posterior SampEn estimates for CPET metric m for participants of sex s [plots (A,B)] and age group a [plots (C,D)].3.2.2 Effect of sex on SampEn
Blanks et al. (2024a) and Blanks et al. (2024b) found that pediatric female participants tend to exhibit greater SampEn of CPET metrics than pediatric male participants. We aimed to determine if this claims extends to the participants in this study. Results shown in Figures 2C,D indicate:
	For the younger participants, females have a higher SampEn for V̇O2, V̇CO2, V̇E, RR, and VT, but without statistical significance.
	Younger male participants have higher SampEn for HR than younger female participants without statistical significance.
	Older females have statistically significant higher SampEn than their male counterparts for V̇O2, V̇CO2, V̇E, HR, and RR. The percent difference for HR between adolescent males and females has higher magnitude.
	Older males have higher SampEn than their female counterparts for VT without statistical significance.

3.3 Comparison to previous study
We compared these results to those reported in Blanks et al. (2024b) (Figure 3). In that study, participants were grouped by pubertal status, while in this study, we used age. For direct comparison, we aligned Blanks et al. (2024b) early pubertal participants with the younger participants in this study, and the late pubertal participants with our older participants. Note that the same statistical procedures and significance thresholds were used in both studies.
[image: Heatmap comparing statistical results for males and females across different age groups for various metrics such as VO2 and HR from 2 different studies. Colors indicate statistical significance and p-value directions: dark green for significance in both studies, teal for one study with similar p-values, gray for no significance, yellow for one study with differing p-values, and orange for significance in both studies with differing p-values.]FIGURE 3 | Study Comparison of SampEn Pre-/Post- VT1 and Midpoint and Study Comparison of SampEn Early Puberty/Child and Late Puberty/Adolescent. Recall that the previous study analyzed SampEn (the measure of complexity) pre-/post-VT1, and in the current study, we analyzed SampEn pre-/post-midpoint. Additionally, the previous study segmented groups based on pubertal status (early or late) and in the current study, we segmented groups based on age (child or adolescent). The values in plot (A) represent P(Δμs,a(m)≥0|y) with a value <0.05 or >0.95 indicating a statistical significance that SampEn (the measure of complexity) is higher pre-VT1/pre-midpoint or higher post-VT1/post-midpoint, respectively. Meanwhile, the values in plot (B) are P(Δμs(m)≥0|y), with <0.05 or >0.95 indicating statistical significance that SampEn (the measure of complexity) is higher for younger participants or higher for older participants, respectively.Key points from Figure 3 include:
	Consistent findings across studies: Both studies find statistically significant decreases in SampEn post-VT1 or post-midpoint for V̇O2, V̇CO2, and V̇E for the male early-pubertal and younger participants groups, and for HR in all four sex and pubertal status/age groups.

Differences in statistical significance: Although the direction of results was generally consistent, statistical significance varied. Only one study presented statistically significant results for:
	A decline in SampEn of V̇E in older male participants [late-pubertal females in Blanks et al. (2024b)].
	A decline in SampEn of V̇O2 and V̇E, and an increase in SampEn of RR for younger female participants [early-pubertal females in Blanks et al. (2024b)].
	A decline in SampEn for V̇O2, V̇CO2, and V̇E for older female participants [late-pubertal females in Blanks et al. (2024b)].

	Male adolescent differences: The present study finds a statistically significant decline in SampEn post-midpoint for older male participants, whereas Blanks et al. (2024b) observed a non-significant increase in V̇O2 and V̇CO2 in late pubertal males post-the VT1 of the CPET.
	Younger female V̇CO2 differences: Blanks et al. (2024b) found a statistically significant decline in SampEn post-VT1 for early-pubertal females, while this study finds a non-significant subtle increase post-midpoint.
	Older female RR differences: Blanks et al. (2024b) reported a statistically significant increase in SampEn post-VT1 for late-pubertal females’ RR metric, whereas our results showed a non-significant decrease.

Figure 3 also compares the P(Δμs(m)≥0|y) of both studies, which represents the probability that the differences between late and early pubertal participants in Blanks et al. (2024b) and older participants and younger participants in this study are greater than 0 by sex.
	Both the present study and Blanks et al. (2024b) younger female participants (early-puberty) to have higher SampEn than their older (late-puberty) counterparts for the VT metric. However, only Blanks et al. (2024b) found each of this difference to be statistically significant.
	Both studies found older female participants (late-puberty) to have higher SampEn than younger female participants (early-puberty) for the RR metric, but only Blanks et al. (2024b) found this differences to be statistically significant.
	For males, the current study found the younger participants to have higher SampEn than the older participants for V̇O2 and V̇E with statistical significance, but Blanks et al. (2024b) found insignificant results in the opposite direction between early- and late-pubertal participants.
	Blanks et al. (2024b) found younger male participants (early-puberty) to have statistically significantly higher SampEn than their older male (late-puberty) counterparts for the HR metric, but the current study found insignificant results in the other direction.
	The current work found older female participants to have higher HR SampEn than younger female participants with statistically significance. However, Blanks et al. (2024b) found statistical significance in early-pubertal females having higher HR SampEn than late-pubertal females.

4 DISCUSSION
This study strengthens the findings of Blanks et al. (2024b) regarding how SampEn changes as exercise intensity increases during CPET. Specifically, SampEn consistently decreases for V̇O2, V̇CO2, V̇E, and HR as exercise intensity increases in the latter half of the CPET. These statistically significant results validate entropy of breath-by-breath time series data as a way to measure and understand people’s physiological response to exercise.
The consistent decreases in SampEn for V̇O2, V̇CO2, V̇E, and HR after the CPET midpoint aligns with the findings of Blanks et al. (2024b), suggesting that V̇O2, V̇CO2, V̇E, and HR become more predictable as exercise intensity increases, independent of age or sex. This general agreement across studies provides additional evidence of increased predictability in key gas exchange variables during high intensity exercise in pediatric participants. Similar patterns have been reported in other physical domains; for example, Solís-Montufar et al. (2020) reported a decline in the entropy of the electrocardiogram RR interval as exercise intensity increased for the young and middle-aged adults in their study. Collectively, the consistent decrease in entropy observed after the CPET midpoint may reflect the physiological changes that occur as participants progress toward maximal exercise intensity. Per Pincus (1994), reductions in approximate entropy indicate higher predictability, interpreted as greater component isolation. Jiang et al. (2021) reported an increase in entropy of SpO2 during normobaric hypoxia, while the current work shows decreased entropy as metabolic and ventilatory demands reach maximum levels. These findings support SampEn as a non-invasive marker of cardiorespiratory dynamics under stress, which can be applied to monitor physical health and aerobic fitness during exercise testing.
In this study, females had higher SampEn than males in both age groups for V̇O2, V̇CO2, V̇E, and RR. Previous studies (Blanks et al., 2024a; Blanks et al., 2024b) also found higher SampEn in females for CPET metrics, although those differences were not always statistically significant. The current work found statistically significant differences between the SampEn of adolescent males and females for V̇O2, V̇CO2, V̇E, HR, and RR, adding evidence to the suggestion of possible sex-related differences in ventilatory control or metabolic regulation discussed in Dominelli and Molgat-Seon (2022) that warrant further physiological investigation.
One limitation of this work relates specifically to the HR data. Note that in Figure 1 the SampEn of HR is lower than the other gas exchange variables, particularly post-midpoint. In CPET, HR is measured continuously via ECG or heart rate monitor but stored in the breath-by-breath dataset by assigning an HR value to each recorded breath. Because there are typically more breaths in the latter half of the test, this approach results in more repeated HR values in that segment, which may increase redundancy in the HR signal and incidentally lower SampEn post-midpoint. Nonetheless, the substantial pre–post midpoint differences in HR entropy remained statistically significant. We surmise that the lower entropy of HR observed during heavier exercise, compared with gas exchange variables, emerges because HR is virtually controlled by autonomic mechanisms (Fukumoto et al., 2022), while breathing is under the control of both involuntary and voluntary regulatory mediators (Grassmann et al., 2016).
As a part of this experiment, the SampEn of the differenced signal was calculated to produce a weakly stationary form. This step is necessary as Chatain et al. (2020) found that failing to account for the non-stationarity of physiological force signals increases SampEn. Differencing the signal emphasizes short-term fluctuations versus the gradually increasing trend of CPET metrics over time.
We also chose to group participants by age rather than pubertal status. This decision was intentional, as age is an objective and easily collected measure, whereas pubertal status is more difficult to obtain (Ernst et al., 2018; Ebo et al., 2024). While age may not perfectly align with maturational status, our sensitivity analyses using alternative age cutoffs and excluding participants near the thresholds produced minimal differences in results. This supports the suitability of age as a practical proxy in this context, while acknowledging that maturational status can provide additional developmental insight.
Finally, we segmented the CPET at the midpoint rather than VT1. In pediatric data analysis, the midpoint offers a simpler and more consistent approach, avoiding the methodological variability and interpretation challenges associated with VT1 determination in younger participants. Although this choice sacrifices some individualized metabolic information, it improves standardization across participants and facilitates reproducible analysis.
The stark disagreement between this study and (Blanks et al., 2024b) for the female age and pubertal status groups’ HR metric also warrants further investigation. Possible explanations include differences in data processing and modifications made to satisfy SampEn assumptions. While we are confident that all data processing implemented in this work was necessary, we are uncertain how or if these steps affected the SampEn results. Future research on best practices for CPET data processing is essential, particularly given that Hesse et al. (2025) found only 376 out of 8,344 of articles reviewed mentioned removing outliers. The contrasts of these studies may also suggest that maximal CPET (with short signals and lack of stationarity without modifications) may not provide optimal data to measure SampEn of gas exchange metrics and HR for comparison between maturational statuses, ages, or sex during exercise. This area also requires further research.
In conclusion, this study builds on the work of Blanks et al. (2024b) by applying entropy-based analysis to a larger pediatric CPET cohort. We confirmed consistent post-midpoint declines in V̇O2, V̇CO2, V̇E, and HR, supporting SampEn as a promising tool for capturing physiological changes during high-intensity exercise. We also identified significant sex differences in SampEn for multiple CPET variables. Our methodological choices, using age as a practical proxy for maturational status, segmenting tests at the midpoint for consistency, and implementing robust data processing procedures, were intentional and supported by sensitivity analyses showing minimal impact on results. While certain discrepancies with previous work highlight the need for standardized CPET data processing practices and further evaluation of SampEn in pediatric exercise testing, the present findings strengthen the evidence for its utility as a non-invasive measure of physiological response across age and sex groups.
DATA AVAILABILITY STATEMENT
The data analyzed in this study is subject to the following licenses/restrictions: The datasets presented in this article are not readily available because human subjects’ data is protected beyond the research team. Requests to access these datasets should be directed to Shlomit Radom Aizik, saizik@hs.uci.edu.
ETHICS STATEMENT
The studies involving humans were approved by the University of California, Irvine Institutional Review Board. The studies were conducted in accordance with the local legislation and institutional requirements. Written informed consent for participation in this study was provided by the participants' legal guardians/next of kin. Written informed consent was obtained from the minor(s)' legal guardian/next of kin for the publication of any potentially identifiable images or data included in this article.
AUTHOR CONTRIBUTIONS
KO: Investigation, Writing – review and editing, Project administration, Writing – original draft, Methodology, Visualization. DB: Methodology, Conceptualization, Writing – review and editing. DC: Writing – review and editing, Conceptualization, Formal Analysis. AS: Data curation, Writing – review and editing, Validation. SR: Data curation, Writing – review and editing, Formal Analysis. NK: Formal Analysis, Writing – review and editing, Project administration, Visualization.
FUNDING
The author(s) declare that financial support was received for the research and/or publication of this article. This study was supported by National Institutes of Health Grants: 1) Project REACH (Revamping Exercise Assessments in Child Health) National Center for Advancing Translational Science (NCATS) U01 TR002004, 2) the UCI Clinical Translational Science Award (CTSA) NCATS UCI TR004927.
CONFLICT OF INTEREST
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
GENERATIVE AI STATEMENT
The author(s) declare that Generative AI was used in the creation of this manuscript. Generative AI was used to debug code to create plots using matplotlib in own python environment.
Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.
SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2025.1698399/full#supplementary-material
SUPPLEMENTARY FIGURE S1 | SampEn Pre- and Post-Midpoint by Metric, Sex, and Age - Female Age Cut Off of 11 Years. In this plot, p represents P(Δμs,a(m)≥0|y), with p<0.05 or p>0.95 indicating a statistical significance that SampEn (the measure of complexity) is higher pre-midpoint or higher post-midpoint, respectively.
SUPPLEMENTARY FIGURE S2 | SampEn Pre- and Post-Midpoint by Metric, Sex, and Age - Remove Middle Aged Male and Female Participants. In this plot, p represents P(Δμs,a(m)≥0|y), with p<0.05 or p>0.95 indicating a statistical significance that SampEn (the measure of complexity) is higher pre-midpoint or higher post-midpoint, respectively.
SUPPLEMENTARY FIGURE S3 | Percent Difference in SampEn by Sex and Age Group - Female Age Cut Off of 11 Years. In plots (A,B) p represents P(Δμs(m)≥0|y), with p<0.05 or p>0.95 indicating statistical significance that SampEn (the measure of complexity) is higher for younger participants or higher for older participants, respectively. In plots (C,D) p represents P(Δμa(m)≥0|y), with p<0.05 or p>0.95 indicating statistically significance, with SampEn (the measure of complexity) being higher for female participants or higher for male participants, respectively. The further p is from 0.5, the more statistically significant the mean percent difference between the two data sets. The length of the bars represents Δμs(m) [plots (A,B)] and Δμa(m) [plots (C,D)] and the black represents one standard deviation of the posterior SampEn estimates for CPET metric m for participants of sex s [plots (A,B)] and age group a [plots (C,D)].
SUPPLEMENTARY FIGURE S4 | Percent Difference in SampEn by Sex and Age Group - Remove Middle Aged Male and Female Participants. In plots (A,B) p represents P(Δμs(m)≥0|y), with p<0.05 or p>0.95 indicating statistical significance that SampEn (the measure of complexity) is higher for younger participants or higher for older participants, respectively. In plots (C,D) p represents P(Δμa(m)≥0|y), with p<0.05 or p>0.95 indicating statistically significance, with SampEn (the measure of complexity) being higher for female participants or higher for male participants, respectively. The further p is from 0.5, the more statistically significant the mean percent difference between the two data sets. The length of the bars represents Δμs(m) [plots (A,B)] and Δμa(m) [plots (C,D)] and the black represents one standard deviation of the posterior SampEn estimates for CPET metric m for participants of sex s [plots (A,B)] and age group a [plots (C,D)].
REFERENCES
	Abril-Pla O., Andreani V., Carroll C., Dong L., Fonnesbeck C. J. Kochurov M., et al. (2023). PyMC: a modern, and comprehensive probabilistic programming framework in python. PeerJ Comput. Sci. 9, e1516. doi:10.7717/peerj-cs.1516

	Bassett D. R. (2002). Scientific contributions of A. V. Hill: exercise physiology pioneer. J. Appl. Physiology 93, 1567–1582. doi:10.1152/japplphysiol.01246.2001

	Blanks Z., Brown D. E. (2024). Bayesian optimization of sample entropy hyperparameters for short time series. doi:10.48550/ARXIV.2405.06112

	Blanks Z., Brown D. E., Cooper D. M., Aizik S. R., Bar-Yoseph R. (2024a). Signal variability comparative analysis of healthy Early- and late-pubertal children during cardiopulmonary exercise testing. Med. and Sci. Sports and Exerc. 56, 287–296. doi:10.1249/MSS.0000000000003296

	Blanks Z., Brown D. E., Cooper D. M., Aizik S. R., Bar-Yoseph R. (2024b). Dynamics of gas exchange and heart rate signal entropy in standard cardiopulmonary exercise testing during critical periods of growth and development. Physiol. Rep. 12, e70034. doi:10.14814/phy2.70034

	Brix N., Ernst A., Lauridsen L. L. B., Parner E., Støvring H. Olsen J., et al. (2019). Timing of puberty in boys and girls: a population-based study. Paediatr. Perinat. Epidemiol. 33, 70–78. doi:10.1111/ppe.12507

	Chatain C., Gruet M., Vallier J.-M., Ramdani S. (2020). Effects of nonstationarity on muscle force signals regularity during a fatiguing motor task. IEEE Trans. Neural Syst. Rehabilitation Eng. 28, 228–237. doi:10.1109/TNSRE.2019.2955808

	Cooper D. M., Radom-Aizik S., Schwindt C., Zaldivar F. (2007). Dangerous exercise: lessons learned from dysregulated inflammatory responses to physical activity. J. Appl. Physiology 103, 700–709. doi:10.1152/japplphysiol.00225.2007

	Cooper D. M., Leu S.-Y., Galassetti P., Radom-Aizik S. (2014). Dynamic interactions of gas exchange, body mass, and progressive exercise in children. Med. and Sci. Sports and Exerc. 46, 877–886. doi:10.1249/MSS.0000000000000180

	Cooper D., Bar-Yoseph B., Olin T., Lovinsky S., Radom-Aizik S. (2023). “Exercise and lung function in child health and disease,” in Kendig and Wilmott’s disorders of the respiratory tract in children ed . Editors E. L. Kendig, R. W. Wilmott10th edition edn. (Philadelphia, Pa: Elsevier), 182–200.

	Dominelli P. B., Molgat-Seon Y. (2022). Sex, gender and the pulmonary physiology of exercise. Eur. Respir. Rev. 31, 210074. doi:10.1183/16000617.0074-2021

	Ebo C., McCray J., Bowers K., Rose S. R., Jones N.-H. Y. (2024). Self-puberty staging in endocrine encounters during the COVID pandemic. Front. Endocrinol. 15, 1487329. doi:10.3389/fendo.2024.1487329

	Ernst A., Lauridsen L. L. B., Brix N., Kjersgaard C., Olsen J. Parner E. T., et al. (2018). Self-assessment of pubertal development in a puberty cohort. J. Pediatr. Endocrinol. Metabolism 31, 763–772. doi:10.1515/jpem-2018-0178

	Fukumoto Y., Tsuji Y., Kakuda A., Hori R., Kitano M. Sakamoto K., et al. (2022). Evaluation of autonomic nervous system responses during isometric handgrip exercise using nonlinear analysis of heart rate variability. J. Phys. Ther. Sci. 34, 689–693. doi:10.1589/jpts.34.689

	Grassmann M., Vlemincx E., Von Leupoldt A., Mittelstädt J. M., Van Den Bergh O. (2016). Respiratory changes in response to cognitive load: a systematic review. Neural Plast. 2016, 8146809–8146816. doi:10.1155/2016/8146809

	Hesse A., White M., Lundstrom C. (2025). The prevalence of gas exchange data processing methods: a semi-automated scoping review. Int. J. Sports Med. 46, 227–236. doi:10.1055/a-2495-5364

	Jiang Y., Costello J. T., Williams T. B., Panyapiean N., Bhogal A. S. Tipton M. J., et al. (2021). A network physiology approach to oxygen saturation variability during normobaric hypoxia. Exp. Physiol. 106, 151–159. doi:10.1113/EP088755

	Kim K. J., Rivas E., Prejean B., Frisco D., Young M., Downs M. (2021). Novel computerized method for automated determination of ventilatory threshold and respiratory compensation point. Front. Physiology 12, 782167. doi:10.3389/fphys.2021.782167

	Kristenson K., Gerring E., Björnsson B., Sandström P., Hedman K. (2024). Peak oxygen uptake in combination with ventilatory efficiency improve risk stratification in major abdominal surgery. Physiol. Rep. 12, e15904. doi:10.14814/phy2.15904

	Kuczmarski R. J., Ogden C. L., Guo S. S., Grummer-Strawn L. M., Flegal K. M., Mei Z. (2002). 2000 CDC growth charts for the United States: methods and development. Vital Health Stat. 246, 1–190.

	Leclerc K. (2017). Cardiopulmonary exercise testing: a contemporary and versatile clinical tool. Clevel. Clin. J. Med. 84, 161–168. doi:10.3949/ccjm.84a.15013

	Myers J., De Souza C. R., Borghi-Silva A., Guazzi M., Chase P. Bensimhon D., et al. (2014). A neural network approach to predicting outcomes in heart failure using cardiopulmonary exercise testing. Int. J. Cardiol. 171, 265–269. doi:10.1016/j.ijcard.2013.12.031

	Nagano Y., Baba R., Kuraishi K., Yasuda T., Ikoma M. Nishibata K., et al. (1998). Ventilatory control during exercise in normal children. Pediatr. Res. 43, 704–707. doi:10.1203/00006450-199805000-00021

	Ntalianis E., Cauwenberghs N., Sabovčik F., Santana E., Haddad F. Claes J., et al. (2024). Improving cardiovascular risk stratification through multivariate time-series analysis of cardiopulmonary exercise test data. iScience 27, 110792. doi:10.1016/j.isci.2024.110792

	Ondrak K. S., McMurray R. G. (2006). Exercise-induced breathing patterns of youth are related to age and intensity. Eur. J. Appl. Physiology 98, 88–96. doi:10.1007/s00421-006-0248-z

	Pincus S. M. (1994). Greater signal regularity May indicate increased system isolation. Math. Biosci. 122, 161–181. doi:10.1016/0025-5564(94)90056-6

	Rasmussen A. R., Wohlfahrt-Veje C., Tefre De Renzy-Martin K., Hagen C. P., Tinggaard J. Mouritsen A., et al. (2015). Validity of self-assessment of pubertal maturation. Pediatrics 135, 86–93. doi:10.1542/peds.2014-0793

	Richman J. S., Moorman J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiology-Heart Circulatory Physiology 278, H2039–H2049. doi:10.1152/ajpheart.2000.278.6.H2039

	Ross H. J., Peikari M., Vishram-Nielsen J. K. K., Fan C.-P. S., Hearn J. Walker M., et al. (2024). Predicting heart failure outcomes by integrating breath-by-breath measurements from cardiopulmonary exercise testing and clinical data through a deep learning survival neural network. Eur. Heart J. - Digital Health 5, 324–334. doi:10.1093/ehjdh/ztae005

	Rossiter H. B. (2021). The “Anaerobic Threshold” concept is valid in physiology and medicine. Med. and Sci. Sports and Exerc. 53, 1089–1092. doi:10.1249/MSS.0000000000002548

	Smith K. N., Baynard T., Fischbach P. S., Hankins J. S., Hsu L. L. Murphy P. M., et al. (2022). Safety of maximal cardiopulmonary exercise testing in individuals with sickle cell disease: a systematic review. Br. J. Sports Med. 56, 764–769. doi:10.1136/bjsports-2021-104450

	Solís-Montufar E. E., Gálvez-Coyt G., Muñoz-Diosdado A. (2020). Entropy analysis of RR-Time series from stress tests. Front. Physiology 11, 981. doi:10.3389/fphys.2020.00981

	Tipton C. M. (1998). Contemporary exercise physiology: fifty years after the closure of harvard fatigue laboratory. Exerc. Sport Sci. Rev. 26, 315–339.

	Vehtari A., Gelman A., Simpson D., Carpenter B., Bürkner P.-C. (2021). Rank-normalization, folding, and localization: an improved Rˆ for assessing convergence of MCMC (with discussion). Bayesian Anal. 16. doi:10.1214/20-BA1221

	West M. A., Asher R., Browning M., Minto G., Swart M. Richardson K., et al. (2016). Validation of preoperative cardiopulmonary exercise testing-derived variables to predict in-hospital morbidity after major colorectal surgery. Br. J. Surg. 103, 744–752. doi:10.1002/bjs.10112


Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Copyright © 2025 O’Hara, Brown, Cooper, Stehli, Radom Aizik and Kupperman. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
OPS/images/fphys-16-1698399-g003.jpg
A) (B)

Males Females Males Females

Early  Younger Late Older Early  Younger Late Older Previous Current Previous Current
VO, 0.63 0.20
VCO, 0.51 0.34
VE 0.76 0.12
HR 0.04 1.00
RR 0.32 0.51
Vr 0.28 0.59 0.03 0.09

Il Both studies have statistically significant results.
One study has statistically significant results, but direction of p-values suggest similar results.
Neither study shows statistically significant results.
One study has statistically significant results, but direction of p-values suggest differing results.
Both studies have statistically significant results, but direction of p-values differs.





OPS/xhtml/nav.xhtml
Table of Contents

		Cover

		Entropy as a marker of physiological transition during pediatric cardiopulmonary exercise testing		1 INTRODUCTION

		2 MATERIALS AND METHODS		2.1 Data description		2.1.1 CPET

		2.1.2 Pediatric participant demographics and sample characteristics





		2.2 Sample entropy and stationarity

		2.3 SampEn Pre- and post- midpoint

		2.4 Bayesian statistical testing		2.4.1 Midpoint entropy differences

		2.4.2 Total entropy analysis: effect of age on SampEn

		2.4.3 Total entropy analysis: effect of sex on SampEn









		3 RESULTS		3.1 Midpoint entropy differences

		3.2 Total entropy analysis		3.2.1 Effect of age on SampEn

		3.2.2 Effect of sex on SampEn





		3.3 Comparison to previous study





		4 DISCUSSION

		DATA AVAILABILITY STATEMENT

		ETHICS STATEMENT

		AUTHOR CONTRIBUTIONS

		FUNDING

		CONFLICT OF INTEREST

		GENERATIVE AI STATEMENT

		SUPPLEMENTARY MATERIAL

		REFERENCES









OPS/images/cover.jpg
& frontiers | Frontiers in Physiology






OPS/images/fphys-16-1698399-g001.jpg
(A)

Male SampEn
e e N
3 8 8 8

iy
o)
o

e
o
o

VO,

8

» = 0.00 p =004

(D)

2.00
1.95
1.90
1.85

1.80

Female SampEn

1.75

1.70

Younger Older

VO,

e

p=0.14 p=0.05

(G)

0.25

Younger Older

HR

+
-

p = 0.00

~+

p = 0.00

@

1.75
1.50
1.25
1.00

Female SampEn
o
o

0.50

0.25

Younger Older

HR

—
-+

p = 0.00

-
-

°

p = 0.00

Younger Older

(B)

VCO,

2.00

360 +

1.0 %

1.70

1.60 °
» = 0.00 p = 0.01
Younger Older

VCO,

2.00

1.90

1.80 S %

1701, _0.54 p=0.04
Younger Older

RR

1.60 °

1.50

1.40

1.30 g °
p = 0.54 p = 0.67
Younger Older

RR

1.70

1.60

1.50

1.40

1.30 ° :

: p = 0.89 p=0.33

Younger Older

I Pre-Midpoint
[0 Post-Midpoint

vE
2.00
1.90 g
1.80
1.70
1.60 p = 0.00 p = 0.00
Younger Older
VE
2.10
2.00 §
1.90 %
1.70
» = 0.01 p =001
Younger Older
Vir
2.00
1.90
1-80 H
1.70 ° ©
p=0.42 p=0.35
Younger Older
Vir
2.00
1.90 i
1.80
1.70
1601 074 p=0.74
Younger Older





OPS/images/fphys-16-1698399-g002.jpg
Older Minus Younger
SampEn Percent Difference (A,ugm))

Male Minus Female
SampEn Percent Difference (A,ugm))

(A) (B)
Male Female
301 304
p = 1.00
20 1 201
p=0.65
10 1 101
= 0 59
0 T O T "?"'T‘ o F""
’ _ | p=0.20 p=0.34p:0‘12 .
p=002 P77 p=o.01 p=024 p=0.09
-0 , , -l , , ,
VO, VCO, VE HR RR Vr VO, VCO, VE HR RR Vr
©) (D)
Younger Older
20 1 201
=0.62
10 ! 101
-0 88
0 —_"T" "T" "3 "'T"" 0 T - . ==
=020 007 P=025 ! p=033 — — ! F
p=0.11 p=001 p="001 P=003 B

—10+ -101 B
—20 A —20 1 p=0.03

VO, VCO, VE HR RR Vp

VO, VCO, VE HR RR Vi










OPS/images/crossmark.jpg
©

|





OPS/images/logo.jpg
¥ frontiers | Frontiers in Physiology





