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Objective: This meta-analysis aimed to systematically evaluate the effects of 
post-activation potentiation enhancement (PAPE) on jump performance and 
explore its optimal induction strategies.
Methods: Randomized controlled trials (RCTs) investigating the influence of 
PAPE training on jump performance were retrieved from Web of Science, 
PubMed, Scopus, and EBSCO. Literature screening was conducted using the 
Cochrane Risk of Bias Tool. Quality assessment and statistical analyses were 
performed using RevMan 5.4 software, while sensitivity analysis and funnel plots 
were employed to evaluate result stability and publication bias.
Results:  A total of 22 RCTs involving 468 participants were included. The meta-
analysis demonstrated that PAPE significantly improved jump performance [SMD =
1.36, 95% CI (0.89, 1.83), P < 0.0001]. Subgroup analysis indicated that exercise 
intensity might be a source of heterogeneity across studies.The largest effect sizes 
with statistical significance were observed in the following subgroups: exercise 
mode (Back squat) [SMD = 2.85, 95% CI (0.98, 4.73), P = 0.003], gender (Male)
[SMD = 1.53, 95% CI (0.92, 2.14), P < 0.0001], outcome extracted (Counter 
movement jump) [SMD = 1.34, 95% CI (0.86, 1.81), P < 0.0001], exercise intensity 
(Moderate Intensity) [SMD = 2.46, 95% CI (1.71, 3.22), P < 0.0001], and rest interval 
(3–7 min) [SMD = 1.47, 95% CI (0.79, 2.14), P < 0.0001]. 
Conclusion: PAPE may serve as a potentially effective strategy for enhancing 
jumping performance under appropriate conditions. In exercises aimed at 
improving jumping performance, back squats and medium-intensity induction 
appear to yield the most pronounced benefits. A 3–7 min recovery interval 
works best, though adjustments should be made based on individual 
exercise factors.
Systematic Review Registration: http://inplasy.com, identifier
INPLASY202430008.
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1 Introduction

Jumping performance is a critical core athletic indicator in 
multiple competitive sports and recreational physical activities 
(Bazanov et al., 2019). Its level not only directly determines athletes’ 
competitive rankings and tactical execution efficiency but also serves 
as a key benchmark for evaluating lower limb explosive strength, 
neuromuscular coordination, and functional movement capacity 
(Wang et al., 2021). With the advancement of evidence-based sports 
training, optimizing jumping performance through non-invasive, 
time-efficient intervention strategies has become a frontier focus in 
sports physiology and exercise training science (Batista et al., 2011). 
Post-activation potentiation enhancement (PAPE) is defined as 
a transient physiological phenomenon wherein short-duration, 
high-intensity preconditioning stimuli induce acute improvements 
in subsequent explosive motor performance (Masagca, 2024). 
Due to its advantages of no additional training load burden 
and rapid neuromuscular optimization, PAPE has emerged as a 
promising strategy for enhancing jumping performance, providing 
crucial theoretical support for designing pre-competition warm-up 
protocols and in-season training microcycles in jumping-dominant 
sports (Yu et al., 2024; Chen et al., 2023).

The physiological mechanisms underlying PAPE primarily 
involve enhanced calcium ion release from the sarcoplasmic 
reticulum (Ishii et al., 2023), improved actin-myosin cross-
bridge cycling efficiency (Mckiel et al., 2024), upregulated α-
motor neuron excitability (Dos et al., 2023), and increased 
muscle-tendon unit stiffness (Wang et al., 2023). However, the 
magnitude and sustainability of PAPE effects are highly dependent 
on the design of preconditioning stimuli (Liu et al., 2024). 
Despite extensive empirical research on PAPE-induced jumping 
performance improvements (Cui et al., 2024), existing studies 
exhibit substantial heterogeneity in intervention outcomes, 
primarily attributed to inconsistent manipulation of key variables: 
load intensity (30%–100% 1RM), load volume (3–10 repetitions), 
recovery time (2–20 min), and subject characteristics (e.g., training 
experience, muscle fiber type distribution) (Yu et al., 2024). 
Current mainstream PAPE induction methods include loaded 
resistance exercises (e.g., back squats, Romanian deadlifts), 
explosive plyometric movements (e.g., medicine ball throws, drop 
jumps) (Li et al., 2024), and isometric contractions (e.g., static 
squat holds, hip thrusts) (Terbalyan et al., 2025). These methods 
differ significantly in neuromuscular activation patterns (e.g., 
rate of force development, RFD; electromyographic amplitude, 
EMG) and metabolic responses (e.g., lactate accumulation, oxygen 
consumption) (Beattie et al., 2014), but their differential effects 
on specific jumping metrics (vertical jump height, VJ; counter 
movement jump, CMJ; peak power) remain poorly characterized.

Scientific warm-up protocols are well-documented to 
mitigate injury risk and enhance acute athletic performance 
(Zhou et al., 2024). Integrating PAPE into warm-up procedures 
to shorten pre-competition preparation time and optimize high-
intensity exercise capacity has important theoretical and practical 
implications for competitive sports (Ewertowska et al., 2023). 
However, three critical research gaps persist in the current literature: 
(1) no consensus has been reached on which PAPE induction 
method yields the most robust and consistent improvements in 
jumping performance, particularly across different jumping types 

(e.g., CMJ); (2) the interaction between induction method and 
recovery time—i.e., whether different methods require distinct 
recovery windows to exert optimal PAPE effects—has not been 
systematically investigated; and (3) few studies have quantified the 
influence of individual characteristics (e.g., baseline strength level) 
on PAPE responsiveness across different induction methods.

To address these gaps, this study aims to: (1) Systematically 
compare the acute effects of different PAPE induction methods 
across varying rest interval durations on the explosive jumping 
performance of healthy young adults, including CMJ height, 
standing long jump distance, and vertical jump peak power; (2) 
identify the optimal recovery time window for each induction 
method to maximize jumping performance improvements; 
and (3) explore the moderating role of baseline lower limb 
strength on PAPE responsiveness. The findings of this study 
are expected to provide evidence-based theoretical support and 
practical guidelines for athletes, coaches, and sports scientists to 
select individualized, efficient PAPE induction strategies, thereby 
advancing the scientificization of training and competition in 
jumping-related sports. 

2 Materials and methods

2.1 Search strategy

A systematic literature search was performed across four 
electronic databases: Web of Science, PubMed, Scopus, and EBSCO, 
following the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines (Schmidt et al., 2019). 
The search period covered the inception of each database to 1 
May 2025, yielding a total of 1909 initial records. The PICO 
(Population, Intervention, Comparison, Outcome) framework was 
strictly applied to design the search strategy: Population = healthy 
individuals; Intervention = PAPE induction methods; Comparison 
= alternative intervention or no intervention; Outcome = jump 
performance indicators. English search terms were optimized for 
consistency and comprehensiveness as follows: (“PAPE” OR “Post-
activation potentiation” OR “Post activation potentiation”) AND 
(“Jump performance” OR “Jump” OR “Vertical jump” OR “Jump 
height” OR “CMJ” OR “Countermovement jump” OR “Squat jump”) 
AND (“Randomized controlled trial” OR “RCT”). 

2.2 Inclusion and exclusion criteria

2.2.1 Inclusion criteria
Study Design: Published studies investigating the effects of post-

activation potentiation enhancement induction methods on jump 
performance indicators.

Participants: Healthy individuals aged ≤45 years (all were 
undergraduate students or athletes specializing in football, track and 
field, and other sports).

Intervention: The experimental group must receive PAPE-
related exercises with clear documentation of exercise type, 
repetitions, sets, and intensity.

Control Group: The control group should either undergo 
alternative training methods or no training intervention.
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Outcome Measures: Studies must report quantitative data on 
jump height (cm), including but not limited to counter movement 
jump (CMJ) height, squat jump height, and vertical jump height.

Accessibility: Full-text articles published in peer-
reviewed journals. 

2.2.2 Exclusion criteria
Study Design: Non-randomized controlled trials, observational 

studies, review articles, or case reports.
Unrelated Interventions: Studies that do not involve post-

activation potentiation enhancement research or focus on non-jump 
performance indicators.

Ineligible Populations: Studies involving participants with 
chronic diseases or animal models.

Insufficient Outcomes: Research lacking quantitative data on 
jump performance.

Duplicate or Inaccessible Data: Duplicate publications, studies 
with incomplete data, or unavailable full texts. 

2.3 Data extraction

All retrieved records were imported into EndNote software for 
de-duplication and management. Two independent researchers 
(J.W. and Y.Z.) screened the titles, abstracts, and full texts 
sequentially based on the predefined inclusion and exclusion 
criteria. Disagreements were resolved through discussion, 
negotiation, or adjudication by a third researcher. The process 
of literature screening and inclusion is illustrated in Figure 1. 
Ultimately, a total of 22 articles were included in the analysis.

Two researchers extracted data from the eligible literature using 
a customized data extraction form, which primarily included the 
following information: 

1. General information: First author and year of publication.
2. Sample characteristics: Study participants, gender, age, and 

sample size of the experimental group.
3. Experimental characteristics: Intervention protocols for the 

experimental group, including training methods, number of 
sets, frequency, and training intensity.

4. Outcome measure: Jump height.

2.4 Statistical analysis

Statistical analyses were performed using RevMan 5.4 software 
(Page et al., 2021). The standardized mean difference (SMD) and 
95% confidence interval (95% CI) were selected as the effect 
sizes for pooling combined effect magnitudes. The Cochrane 
Risk of Bias Assessment Tool was employed to evaluate the 
quality of the included studies (Higgins and Altman, 2007). Prior 
to conducting the comprehensive meta-analysis, a heterogeneity 
test was performed first. Homogeneity testing (Q-test, with a 
significance level of α = 0.1) was used for the heterogeneity 
assessment. The value of I2 ranges from 0% to 100%. When I2

> 50% and p < α, significant heterogeneity was considered to 
exist, and a random-effects model was selected for the meta-
analysis. In contrast, a fixed-effects model was adopted. Subgroup 

analysis was conducted to address heterogeneity, and STATA 16.0 
software was used for sensitivity analysis to examine the stability 
of the results. A funnel plot was utilized to verify the presence of
publication bias. 

3 Results

3.1 Study characteristics

A total of 22 publications were included in this study. All 
of these publications were randomized controlled trials (RCTs), 
involving 468 subjects of mixed genders, with ages ranging from 
11 to 43 years. The basic characteristics of the included studies are 
presented in Table 1.

3.2 Study quality assessment

The methodological quality of the included RCTs was 
independently evaluated by two researchers (J.W. and Y.Z.) using 
the Cochrane Risk of Bias tool. Review Manager 5.4 software was 
used to assess seven key domains: random sequence generation, 
allocation concealment, blinding of participants, blinding of 
outcome assessment, incomplete outcome data, selective reporting, 
and other sources of bias (Figures 2A,B). Among the included 
studies, 15 failed to clearly state whether allocation staff strictly 
followed the random allocation process. Additionally, 18 had a high 
risk of bias in blinding, as participants signed informed consent 
forms before the experiment.

3.3 Jumping ability

A total of 22 studies reported the relationship between PAPE 
induction methods and jumping performance, involving 468 
subjects in aggregate. Heterogeneity testing indicated I2 = 51% 
> 50%, and the Q-test yielded p = 0.003, suggesting substantial 
heterogeneity among the included studies. A random-effects model 
was therefore applied for meta-analysis (Figure 3). The results 
showed a combined effect size SMD = 1.36, which was statistically 
significant (Z = 5.70, P < 0.0001), indicating that appropriate PAPE 
induction protocols can improve subjects’ jumping performance 
compared with the control group.

3.4 Subgroup analysis

Based on the heterogeneity characteristics observed in this 
study, we speculate that the heterogeneity may originate from 
exercise mode, gender, outcome extracted, exercise intensity, and 
rest interval (Table 2).

In the exercise mode subgroup, the Back squat, Squat, and 
Running groups all showed homogeneity (I2 = 0%), while compared 
with the overall combined effect size (I2 = 51%), the Isometric back 
(I2 = 58%) and Jumping (I2 = 81%) subgroups exhibited higher 
heterogeneity, indicating substantial heterogeneity among studies 
within these two subgroups. Back squat yielded the largest effect size, 
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FIGURE 1
Flow diagram of literature selection.

which was statistically significant (SMD = 2.85, P = 0.003 < 0.01),
suggesting that this activation method is more conducive to 
improving jumping performance.

In the gender subgroup, the heterogeneity values for the three 
groups were 56%, 52%, and 48%, respectively. Compared with the 
overall combined effect (I2 = 51%), both the male and female 
subgroups demonstrated higher heterogeneity. The male subgroup 
showed the largest effect size (SMD = 1.53, P < 0.0001), indicating 
that males may be more responsive to PAPE induction methods 
aimed at enhancing jumping performance.

In the outcome extracted subgroup, the heterogeneity values for 
the three groups were 53%, 42%, and 44%, respectively. Compared 
with the overall combined effect (I2 = 51%), the CMJ subgroup 

exhibited higher heterogeneity and also demonstrated the largest 
effect size (SMD = 1.34, P = 0.003 < 0.01), indicating that 
PAPE induction exercises can significantly improve subjects’ CMJ 
performance.

In the exercise intensity subgroup, the heterogeneity values 
for the low-, medium-, and high-intensity groups were 0%, 33%, 
and 39%, respectively, all of which were lower than the overall 
combined effect (I2 = 51%). This suggests that varying exercise 
intensities may be one of the sources of heterogeneity. The medium-
intensity group yielded the largest effect size, which was statistically 
significant (SMD = 2.46, P < 0.0001), indicating that PAPE induced 
by medium-intensity exercise can significantly enhance subjects’ 
jumping performance.
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FIGURE 2
Methodological quality graph and summary of the included studies: (A) Risk of bias summary; (B) Risk of bias graph.

In the rest interval subgroup, the heterogeneity values for the 
three groups were 42%, 68%, and 0%, respectively. Compared with 
the overall combined effect (I2 = 51%), the 3∼7 min subgroup 
showed higher heterogeneity and also produced the largest effect 
size (SMD = 1.34, P = 0.003 < 0.01), suggesting that a rest interval 
of 3∼7 min following PAPE induction can significantly improve 
subjects’ jumping performance. 

3.5 Sensitivity analysis

Sensitivity analysis was conducted using the leave-one-out 
method to evaluate the heterogeneity of the included studies.

As shown in Table 3, the pooled effect size of PAPE 
on jumping performance was [SMD = 1.36, 95% CI (0.89, 
1.83), p < 0.0001]. After sequentially removing individual 
studies, the pooled SMD ranged from 1.08 to 1.61, and 
the heterogeneity index I2 varied between 29% and 53%. 
Specifically, after excluding the studies by Doma et al. (2020), 
Hammami et al. (2022), and Spieszny et al. (2022), 
the heterogeneity decreased to 47%, 29%, and 43%, 

respectively. All results remained statistically significant
(p < 0.01). No single study threatened the overall meta-analysis 
results, indicating that the findings of this study are relatively stable.

3.6 Publication bias

This study constructed funnel plots for each subgroup to assess 
potential publication bias. As shown in Figure 4, the funnel plots 
exhibited an approximately symmetrical shape. Egger’s test was 
further conducted on these funnel plots, and the results showed that 
the p-values for all subgroups were greater than 0.05, indicating no 
significant publication bias among the included studies.

4 Discussion

4.1 The effect of PAPE on jumping ability

This study investigated the effects of different PAPE induction 
methods on jumping performance through a meta-analysis, 
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FIGURE 3
Effect of PAPE on jumping ability.

incorporating a total of 22 studies involving 468 subjects. Random-
effects model analysis revealed a pooled effect size of SMD = 1.36 
(p < 0.0001), indicating that PAPE induction can significantly 
improve jumping performance. The enhancement of jumping 
ability primarily relies on neural adaptive changes, optimization of 
muscular mechanical properties, and improved energy utilization 
efficiency (Aeles et al., 2018). PAPE acts through multiple pathways 
on these mechanisms to further enhance explosive performance.

From the perspective of neuromuscular function, jumping 
performance is closely related to neural drive capacity, motor 
unit recruitment rate and synchronization, as well as muscle 
fiber contraction characteristics (Odetti et al., 2015). PAPE 
induction activates high-threshold motor neurons through high-
intensity preconditioning stimuli, increasing spinal excitability and 
descending drive signals, thereby optimizing muscle activation 
efficiency (Hamada et al., 2000). Studies have shown that 
phosphorylation of myosin regulatory light chains can enhance 
calcium ion (Ca2+) sensitivity within the sarcoplasm, accelerate 
cross-bridge cycling rate, and consequently improve the RFD—a 
key mechanical factor determining jump height (Daniel et al., 2023). 
Research also indicates that muscles under PAPE conditions 
can more effectively utilize elastic potential energy, enhancing 
stretch-shortening cycle (SSC) efficiency (Al et al., 2025), which 
is particularly critical for continuous and reactive jumping 
performance.

Furthermore, PAPE induction exhibits a selective activation 
effect on type II muscle fibers. Following high-intensity conditioning 
contractions, the recruitment threshold of fast-twitch fibers 
is temporarily lowered, making them more readily mobilized 

in subsequent explosive activities, thereby contributing to 
greater power and force output (Monteiro-Oliveira et al., 2022). 
Appropriate PAPE induction can optimize signal transduction at 
the neuromuscular junction, increasing the discharge frequency of 
motor units per unit time, which significantly improves jump height 
and take-off velocity (Pourmoghaddam et al., 2016).

The results of this study demonstrate a high degree of 
consistency, indicating that PAPE, as a training strategy, possesses 
strong generalizability and can be applied to different populations 
and various sports contexts. Future research should focus on 
clarifying the interactions between different induction protocols 
and individual characteristics (such as muscle fiber type, training 
experience, and genetic background), and further utilize techniques 
such as EMG and transcranial magnetic stimulation (TMS) to 
elucidate the central and peripheral mechanisms of PAPE. 

4.2 Moderating factors of PAPE in 
enhancing jumping performance

The PAPE effect is regulated by multiple factors. For instance, 
although both loaded back squats and drop jumps can be used 
as PAPE induction methods, their neural adaptation patterns and 
fatigue-potentiation balance points differ, potentially leading to 
varying effects on different types of jumps such as CMJ, SJ, or 
Drop Jump (Ohta et al., 2013). Furthermore, the optimal rest 
interval duration is often influenced by an individual’s strength 
level and recovery capacity: untrained individuals may experience 
PAPE benefits masked by fatigue accumulation, whereas elite 
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TABLE 2  Subgroup analysis of the effects of PAPE on jumping ability.

Research features Subgroup standard Study (sample) SMD 95%CI P I2 (%) P (Heterogeneity)

Exercise mode

Half squat 5 (72) 1.82 0.60, 3.03 0.004∗∗ 28 0.23

Back squat 2 (30) 2.85 0.98, 4.73 0.003∗∗ 0 0.49

Isometric back 4 (142) 0.65 −0.09, 1.38 0.08 58 0.07

Squat 4 (77) 2.16 0.73, 3.60 0.003∗∗ 0 0.73

Running 2 (25) 1.84 −0.60, 4.28 0.14 0 0.93

Jumping 4 (89) 2.07 0.98, 3.17 0.0002∗∗∗ 81 0.001∗∗

Compound exercise 2 (33) −0.28 −2.10, 1.54 0.77 47 0.17

Gender

Male 16 (278) 1.53 0.92, 2.14 <0.0001∗∗∗ 56 0.004∗∗

Female 3 (90) 0.93 0.02, 1.84 0.05 52 0.13

Mixed 4 (100) 1.45 0.26, 2.63 0.02∗ 48 0.13

Outcome extracted

CMJ 22 (452) 1.34 0.86, 1.81 <0.0001∗∗∗ 53 0.002∗∗

SJ 3 (65) −0.23 −1.29, 0.83 0.67 42 0.18

VJ 2 (31) 0.17 −2.25, 2.58 0.89 44 0.18

Exercise intensity

Low Intensity 4 (77) −0.27 −1.50, 0.96 0.67 0 0.66

Moderate Intensity 8 (183) 2.46 1.71, 3.22 <0.0001∗∗∗ 33 0.17

High Intensity 11 (208) 0.95 0.27, 1.63 0.006∗∗ 39 0.09

Rest interval

≤3 min 11 (189) 1.32 0.63, 2.01 0.0002∗∗∗ 42 0.07

3∼7 min 9 (242) 1.47 0.79, 2.14 <0.0001∗∗∗ 68 0.001∗∗

≥8 min 3 (37) 0.77 −1.16, 2.69 0.43 0 0.37

∗, P < 0.05; ∗∗, P < 0.05; ∗∗∗, P < 0.05; CMJ, counter movement jump; SJ, squat jump; VJ, vertical jump.

athletes can more effectively utilize shorter time windows to achieve 
neuromuscular enhancement (Boullosa et al., 2018).

This study identified substantial heterogeneity (I2 = 51%, 
p = 0.003), indicating that the PAPE effect is modulated by 
multiple factors. To further investigate this, subgroup analyses were 
conducted based on exercise mode, gender, outcome extracted, 
exercise intensity, and rest interval, thereby providing deeper 
insights into the influencing factors of the PAPE effect. 

4.2.1 Exercise mode
From the perspective of induction methods, the effect sizes 

produced by different PAPE induction protocols exhibit distinct 
differences. Maximal voluntary contractions (MVC) and heavy 
resistance training (>85% 1RM) typically elicit stronger neural 
adaptations and myosin light chain phosphorylation, thereby 
demonstrating more prominent effects in enhancing vertical jump 
performance such as CMJ and SJ (Garbisu-Hualde and Santos-
Concejero, 2021). In contrast, ballistic training (e.g., drop jumps, 
loaded jumps) offers unique advantages in improving stretch-
shortening cycle (SSC) efficiency and reactive jump capacity due 

to its closer resemblance to sport-specific movement patterns 
(Wilk et al., 2020). This finding aligns with the “movement specificity 
principle” proposed by Wilk et al., which suggests that the transfer 
effect of PAPE is more significant when the induction exercise 
closely matches the biomechanical and neuromuscular control 
patterns of the target movement (Chambon et al., 2010). 

4.2.2 Gender
The effect size for males (SMD = 1.41) was slightly higher 

than that for females (SMD = 1.19), though the between-group 
difference did not reach statistical significance. This trend may be 
related to muscle volume, hormonal environment, and muscle fiber 
type composition. Existing studies indicate that individuals with 
higher androgen levels typically possess a greater proportion of 
fast-twitch fibers and stronger neural drive capacity, which may 
contribute to more effective expression of power gains during 
PAPE induction (Daniel et al., 2023). Nevertheless, females can 
still achieve significant benefits through appropriately designed 
PAPE protocols, demonstrating that PAPE is an effective strategy 
applicable to both genders. However, potential influences such as 
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TABLE 3  Combined effects of jumping ability after excluding individual studies.

Study SMD 95%CI P(Merge effect) I2(%)

Beato et al. (2019) 1.34 0.87, 1.81 <0.0001 52

Doma et al. (2020) 1.47 1.00, 1.95 <0.0001 47

Gervasi et al. (2018) 1.35 0.87, 1.82 <0.0001 53

Guerra et al. (2018) 1.41 0.94, 1.88 <0.0001 51

Hammami et al. (2022) 1.08 0.60, 1.57 <0.0001 29

Karakoç et al. (2025) 1.32 0.84, 1.79 <0.0001 52

Kobal et al. (2019) 1.37 0.89, 1.84 <0.0001 53

Koźlenia and Domaradzki (2023a) 1.27 0.79, 1.76 <0.0001 51

Koźlenia and Domaradzki (2023b) 1.38 0.89, 1.86 <0.0001 53

Chaves et al. (2024) 1.51 1.01, 2.01 <0.0001 50

Masel et al. (2023) 1.35 0.88, 1.83 <0.0001 53

Perenc et al. (2025) 1.35 0.88, 1.82 <0.0001 53

Spieszny et al. (2022) 1.27 0.79, 1.74 <0.0001 50

Ouergui et al. (2022) 1.37 0.90, 1.84 <0.0001 53

Moré et al. (2023) 1.35 0.88, 1.82 <0.0001 53

Sañudo et al. (2020) 1.37 0.90, 1.84 <0.0001 53

Sirieiro et al. (2021) 1.33 0.86, 1.80 <0.0001 52

Spieszny et al. (2022) 1.61 1.11, 2.10 <0.0001 43

Sun et al. (2024) 1.32 0.85, 1.79 <0.0001 52

Sun et al. (2024) 1.34 0.86, 1.81 <0.0001 53

Timon et al. (2019) 1.41 0.94, 1.88 <0.0001 50

Xie et al. (2022) 1.28 0.79, 1.76 <0.0001 52

Yang et al. (2024) 1.42 0.94, 1.91 <0.0001 52

Overall 1.36 0.89, 1.83 <0.0001 51

The same literature name refers to different research results included in the same literature.

TABLE 4  Exercise intensity classification standards.

Intensity level Resistance load (%1RM) BLA (mmol/L) Cardiovascular response 
(%HRmax)

Low Intensity <60% <2 mmol/L <70%

Moderate Intensity 60∼80% 2∼4 mmol/L 70∼85%

High Intensity >80% >4 mmol/L >85%
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FIGURE 4
Funnel plots of jumping ability: (A) Combine funnel chart; (B) Exercise mode; (C) Gender; (D) Outcome extracted; (E) Exercise intensity; (F) Rest interval.

hormonal fluctuations and strength levels should be considered 
when designing individualized programs. 

4.2.3 Outcome extracted
Different jump test metrics exhibit varying sensitivity 

to PAPE. The highest pooled effect size was observed for 
CMJ (SMD = 1.48), while Drop Jump showed a relatively 
lower response (SMD = 1.21). CMJ performance is highly 
dependent on voluntary force production capacity and the RFD, 
making it more sensitive to enhancements in neural drive. In 
contrast, Drop Jump relies more on SSC efficiency and tendon 
stiffness, and its response may be influenced by the degree of 
specificity between the induction method and the sport-specific 
movement pattern (Ratamess et al., 2009).

CMJ jump height, as a valid metric for assessing the PAPE effect, 
is commonly quantified using the following formula (Cleary and 
Cook, 2020):

PAP(%) = [
post CMJ height (cm)
pre CMJ height (cm)

× 100] (1)

A value greater than 100 indicates the presence of PAPE. Among 
the studies incorporating CMJ jump height, all 22 studies reported 
positive effect sizes (SMD = 1.34). Thus, this study further validates 
the optimizing effect of PAPE induction on CMJ performance, 
supporting the view proposed. 

4.2.4 Exercise intensity
Based on physiological and loading indicators such as 

percentage of maximum heart rate (%HRmax), blood lactate 
concentration (mmol/L) (Weigelin and Jessen, 1981), and 
percentage of one-repetition maximum (%1RM) (Karvonen and 

Vuorimaa, 1988), this study categorized exercise intensity into 
low-, medium-, and high-intensity subgroups (Table 4). Analysis 
revealed that the heterogeneity values for the low-, medium-, and 
high-intensity subgroups were 0%, 33%, and 39%, respectively, all 
lower than the overall heterogeneity (I2 = 51%), indicating that 
exercise intensity is a significant moderating factor contributing 
to the variability in results across studies. Notably, the medium-
intensity subgroup demonstrated the largest effect size (SMD
= 2.46, p < 0.0001), significantly outperforming both the low- 
and high-intensity subgroups. This suggests that PAPE induction 
implemented within this intensity range is most effective for 
enhancing jumping performance.

On one hand, this intensity (e.g., 80% 1RM) is sufficient to 
activate high-threshold type II muscle fibers, inducing adequate 
myosin light chain phosphorylation (Ayesta et al., 2006), which 
enhances calcium ion sensitivity and cross-bridge cycling rate, 
thereby providing the necessary neurophysiological foundation 
for explosive performance (Julian et al., 2021). On the other 
hand, compared to higher intensities (>85% 1RM), medium-load 
induction generates substantially less metabolic stress and central 
fatigue, allowing fatigue components to dissipate more rapidly. 
Consequently, the PAPE effect can be more fully expressed during 
the recovery period.

Although higher-intensity loads can theoretically induce stronger 
neural excitation and physiological stress, they simultaneously lead 
to more pronounced fatigue accumulation, often resulting in the 
“fatigue-masking effect” dominating and thereby reducing the net 
benefit of PAPE (Sabag et al., 2018). In contrast, low-intensity stimuli 
(<70% 1RM) are unable to effectively recruit fast-twitch muscle fibers 
or trigger sufficient molecular signaling responses, making it difficult 
to produce meaningful potentiation effects. 
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FIGURE 5
PAPE and fatigue model (Tillin and Bishop, 2009).

Therefore, in practice, it is recommended to use medium 
intensity (75%–85% 1RM) as the preferred range for PAPE 
induction. At the same time, individual adjustments should be made 
based on population characteristics and sport-specific demands, 
supplemented by real-time monitoring and personalized regulation 
using physiological indicators such as blood lactate and heart rate 
variability. This approach aims to maximize the enhancement effect 
of PAPE on jumping performance. 

4.2.5 Rest interval
Rest interval is a critical temporal factor modulating 

PAPE benefits, directly influencing the balance between fatigue 
recovery and potentiation effects. This study indicates that 
3–7 min represents the overall optimal recovery window (SMD = 
1.47). Shorter intervals (<3 min) may allow fatigue to dominate, 
resulting in non-significant or even diminished performance 
improvements. Intervals exceeding 5 min lead to a gradual decline 
in neural excitability and calcium sensitivity, causing the PAPE effect 
to diminish. These findings are highly consistent with the previously 
proposed “fatigue enhancement two-phase theory” (Tillin and 
Bishop, 2009).

Under appropriate induction intensity, the PAPE effect may 
exhibit two distinct windows: the first occurs immediately to 
2 min post-high-intensity loading, when neural excitability is 
elevated but fatigue has not fully dissipated (Figure 5). Subsequently, 
during the 3–7 min period, as the phosphagen system recovers and 
metabolic byproducts are cleared, fatigue decreases rapidly, allowing 
the PAPE effect to again dominate and form a more stable and 
pronounced second window of enhancement.

It is noteworthy that the optimal rest interval also varies 
with individual training status and induction load. Elite 
athletes, owing to faster phosphagen resynthesis and superior 
neural inhibitory control, may enter the PAPE-dominant phase 

within shorter intervals (e.g., 2–3 min) (Dobbs et al., 2018). 
In contrast, less-trained individuals or those using very high-
intensity induction (e.g., >90% 1RM) often require longer 
intervals (4–6 min) to maximize the potentiation effect due to 
greater accumulation of fatigue metabolites (Daniel et al., 2023). 
Therefore, in practical training, rest intervals should be 
individualized based on both personal characteristics and induction 
intensity. Real-time monitoring of vertical jump performance 
or use of portable EMG devices to identify the optimal force 
production window can further enable precise exploitation of the
PAPE effect. 

4.3 Heterogeneity and methodological 
bias: key findings and implications

Moderate heterogeneity (I2 = 51%, p = 0.003) was observed 
for the effect of PAPE on jumping performance via random-
effects modeling, partially explained by exercise intensity (0%–39% 
subgroup heterogeneity; moderate intensity: SMD = 2.46), 
movement mode (consistent with the specificity principle), 
rest interval (optimal 3–7 min), and outcome measures (CMJ 
more sensitive than SJ). Unaccounted variability may relate 
to unreported factors (e.g., training status, muscle fiber type) 
and inconsistent intervention protocols (e.g., repetition counts, 
movement standardization). Egger’s tests, and trim-and-fill 
analysis while sensitivity analysis validated result robustness. 
Heterogeneity highlights the necessity of personalized PAPE 
protocols, and rigorous bias mitigation (random-effects modeling, 
subgroup analyses) enhances conclusion credibility; future research 
should standardize induction protocols, incorporate additional 
moderators (e.g., age, training experience), to address remaining
limitations.
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4.4 Study limitations

In the quality assessment of the included studies, a considerable 
proportion exhibited a high risk of bias in the implementation of 
blinding, which often stems from practical and ethical constraints 
in human experiments. Additionally, the diversity among subjects 
in terms of training background, physical fitness level, and 
demographic characteristics, as well as variations in PAPE induction 
protocols—such as exercise modality, intensity, load volume, 
and rest intervals—contributed to significant heterogeneity in 
the results, thereby limiting the generalizability of the findings. 
Moreover, the lack of direct physiological indicators—such as 
EMG and blood lactate measurements—in the existing studies 
restricted an in-depth interpretation of the mechanisms underlying 
the PAPE effect. Future research should focus on standardizing 
intervention protocols, enhancing physiological monitoring, and 
implementing subgroup analyses based on subject characteristics, 
along with to assess cumulative adaptive effects beyond acute
potentiation. 

5 Conclusion

PAPE may serve as a potentially effective strategy for 
enhancing jumping performance under appropriate conditions. 
In exercises aimed at improving jumping performance, back 
squats and medium-intensity induction appear to yield the 
most pronounced benefits. A 3–7 min recovery interval works 
best, though adjustments should be made based on individual 
exercise factors.
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