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role of disturbed 
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Patients with severe myalgic encephalomyelitis/chronic fatigue syndrome 
(ME/CFS) are bedridden and suffer from hypersensitivities to light and noise, 
severe orthostatic intolerance reducing cerebral blood flow, and skeletal muscle 
symptoms, including loss of force, fatigue, pain, fasciculations, and cramps. 
Because neurological investigations exclude neuronal causes of myasthenia, we 
hypothesize a muscular pathomechanism. In previous articles, we considered 
insufficient activity of the Na+/K+-ATPase to be the main cause of mitochondrial 
damage via high intracellular sodium that reverses the transport mode of 
the sodium-calcium-exchanger to import calcium, causing calcium overload. 
Low Na+/K+-ATPase activity also causes sarcolemmal depolarization, leading 
to less effective action potential propagation and loss of force. Depolarization 
brings the membrane potential closer to the threshold potential, causing 
hyperexcitability that explains fasciculations and cramps. These increase sodium 
influx during excitation to further increase the workload of Na+/K+-ATPase. 
Thereby, depolarization causes further depolarization. Higher intracellular 
sodium favors calcium overload and mitochondrial damage, which lowers the 
energy supply of Na+/K+-ATPase and increases the reactive oxygen species, 
further inhibiting Na+/K+-ATPase. The muscle is in a state of depolarization even 
at rest. Depolarization and mitochondrial damage reinforce each other. Thus, 
dysfunction of Na+/K+-ATPase as a single mechanism can explain the different 
skeletal muscle symptoms of severely ill ME/CFS patients, comprising loss of 
force, fatigue, and fasciculations.
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myalgic encephalomyelitis/chronic fatigue syndrome, long COVID, post-acute infection 
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 1 Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a severe, frequent, 
and debilitating disease. There is an overlap with post-acute infection syndromes 
(PAISs), which demonstrate similar symptom profiles irrespective of the infectious 
agent (Choutka et al., 2022; Kedor et al., 2022; Peter et al., 2025). The prevalence of 
ME/CFS and PAIS has increased significantly because of SARS-CoV-2 infections. During
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the first wave of the COVID-19 pandemic, the incidence of 
developing PAIS was 6.5%–15% of those infected (Hill et al., 2022). 
PAIS after SARS-CoV-2 infection contributes substantially to the 
cumulative health burden in populations (Choutka et al., 2022; 
Kedor et al., 2022; Peter et al., 2025; Bowe et al., 2023; Steinacker 
and Klinkisch, 2025). ME/CFS presents with a plethora of 
symptoms, including severe fatigue, cognitive dysfunction, and 
exercise intolerance with post-exertional malaise (PEM), which are 
exacerbated by physical, emotional, or cognitive stress. Chronic 
whole-body pain, joint and muscle aches, and dyspnea have 
also been reported (Peter et al., 2025; Carruthers et al., 2011; 
Ballouz et al., 2023). Orthostatic intolerance, tachycardia, and 
palpitations are prevalent. An inability to stand upright or even 
to sit for a long time is found in more severely ill ME/CFS patients, 
who are often housebound or bedridden (van Campen et al., 2020; 
van Campen et al., 2023). Neurocognitive symptoms include 
the inability to concentrate, read, or memorize, and a cognitive 
cloudiness described as “brain fog.” Hypersensitivities to light, noise, 
and smell are reported. Sleep disorders are common, along with 
gastrointestinal symptoms (Peter et al., 2025; Carruthers et al., 2011; 
Ballouz et al., 2023). Despite these partially debilitating symptoms 
and the increasing prevalence, medicine has failed to define a 
pathophysiological picture. Clinical neurological investigations 
have not found disturbances in nerve conduction velocity; 
neuroimaging does not reveal spinal or cerebral pathologies. 
There is limited knowledge of mechanisms. Mechanisms identified 
to date include inflammation, formation of reactive oxygen 
species (ROS), proinflammatory cytokines, and activation of the 
inflammasome, in addition to disturbances in T-cell function 
and the secretory immune system and B-cell function, followed 
by complement activation, immune thrombosis, and decreased 
tissue blood flow (Ryabkova et al., 2019; Cervia-Hasler et al., 2024; 
Haunhorst et al., 2024). This article focuses on muscle weakness 
as an important contribution to the burden of disease. The 
inability to perform even low-intensity endurance exercises, 
increasing weakness after a few muscle contractions, and the 
loss of muscle strength for single contractions characterize 
myasthenia in ME/CFS. Skeletal muscle incapacity and myasthenia 
are important signs of disease severity (Carruthers et al., 2011; 
Conroy et al., 2021; Sommerfelt et al., 2023). Accordingly, handgrip 
strength inversely correlates with the severity of fatigue, disability, 
and symptoms (Paffrath et al., 2024; Jäkel et al., 2021; Nac et al., 2018; 
do Amaral et al., 2024). Muscle tremor or fasciculations have 
only been reported recently (Blitshteyn et al., 2024). In the Yale 
LISTEN trial, which included 423 subjects after COVID-19, 37% 
retrospectively reported “internal tremors, or buzzing/vibration.” 
Compared to other patients, participants with internal tremors 
reported worse health and had higher rates of new-onset mast 
cell disorders (11% vs. 2.6%) and neurological conditions 
(22% vs. 8.3%) (Zhou et al., 2024). As no neurological causes 
have been found, a muscular pathomechanism explaining loss of 
force, fasciculations (or tremor), cramps, and muscular pain should 
instead be assumed. The focus of this article is on the potential 
causes of disturbed muscle function and muscle symptomatology. 
In many other diseases, decisive pathophysiological insights have 
been gained from severe cases and have strongly contributed to our 
understanding of the pathophysiology of milder cases. Insights 
concerning the pathophysiology of ME/CFS, however, mainly 

come from patients with less severe disease because bedridden 
patients, unable to leave their homes, have not been accessible to 
medical research.

Cardiopulmonary exercise testing (CPET), which provides 
objective metabolic data in patients with mild to moderate 
symptomatology, demonstrated reduced maximal oxygen 
consumption (Appelman et al., 2024; Bizjak et al., 2024; 
Joseph et al., 2021), an early appearance of anaerobic 
metabolism during exercise, and deregulated energy metabolism 
(de Boer et al., 2022; Hoel et al., 2021).

In more than 50% of post-COVID and ME/CFS patients, 
mitochondria in skeletal muscles show damage to their 
internal structures (cristae) and shape, including lysis. In 
some cases, neighboring sarcomeres also show severe damage 
(Bizjak et al., 2024). Local and systemic metabolic disturbances, 
decreased oxidative phosphorylation, severe exercise-induced 
myopathy, and tissue infiltration of amyloid-containing deposits 
have been found (Appelman et al., 2024; Bizjak et al., 2024). 
However, these studies only involved patients who were able 
to exercise, which means that they had mild-to-moderate 
disease severity. Muscular force, measured as handgrip strength, 
is known to be decreased in ME/CFS and PAIS, and it has 
been shown to correlate with symptoms in patients who 
are still able to visit a medical unit (Paffrath et al., 2024; 
Nac et al., 2018; do Amaral et al., 2024). 

2 Potential causes of myasthenia in 
ME/CFS

Four possible causes must be considered in the discussion on the 
loss of muscular force: 

1. Lack of energy due to mitochondrial dysfunction.
2. Atrophy due to inactivity in the intention to avoid PEM and 

due to immobilization (deconditioning).
3. Skeletal muscle damage.
4. Electrophysiological causes that lead to insufficient excitation 

and recruitment of muscle fibers upon neuromuscular 
activation.

1) Skeletal muscle mitochondrial dysfunction can explain 
the loss of endurance and of force-endurance. However, a 
significant loss of force, even with the first muscular action after 
a sufficiently long rest, is not explained by a lack of energy due 
to mitochondrial dysfunction. This is because certain skeletal 
muscles are physiologically glycolytic, including the most vigorous 
muscles (which are made up of fast-twitch type 2b fibers). 
We have learned from SARS-CoV-2 infections that, even in 
asymptomatic athletes, VO2max is decreased after 3 months and 
much more so in those with symptoms (Vollrath et al., 2022). 
Viral proteins likely alter the mitochondrial epigenome 
through histone modifications or by modulating metabolite 
substrates, potentially silencing OXPHOS gene expression
(Guarnieri et al., 2024).

2) Skeletal muscle atrophy and deconditioning as causes 
of muscle weakness have been excluded by a recent, careful 
investigation comparing healthy individuals after 6 weeks of bed 
rest with ME/CFS patients (Ch et al., 2025). Patients with long 
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COVID and ME/CFS did not show muscle atrophy but did have 
fewer capillaries and more glycolytic fibers (Appelman et al., 2024; 
Ch et al., 2025; Scheibenbogen and Wirth, 2025). In contrast 
to healthy subjects after 6 weeks of bed rest, skeletal muscle in 
ME/CFS patients does not really rest, as patients suffer from 
cramps and fasciculations. A key assumption in our hypothesis 
is that calcium in skeletal muscle is too high and that calcium 
overload causes damage (Wirth and Scheibenbogen, 2021). 
Calcium pathways are indeed discussed as constituting the 
hypertrophic signal (Semsarian et al., 1999). It may oppose the 
tendency for atrophy by inactivity and thus prevent atrophy even in 
bedridden ME/CFS patients.

3) Although skeletal muscle damage has been shown in a recent 
study, this damage is most likely not extensive enough to cause a 
severe loss of force (Appelman et al., 2024). Skeletal muscle biopsies 
from severely ill patients are needed to clarify this issue.

4) In the section that follows, we argue that the main and 
common cause of both loss of force and fasciculations could be a 
disturbed electrophysiology of skeletal muscle. We try to explain 
how muscular symptoms, including loss of force and endurance, 
fasciculations, and pain, are causally related. 

3 The potential role of the 
Na+/K+-ATPase in the physiology and 
pathophysiology of ME/CFS

A key assumption in our concept of a unifying disease 
hypothesis for ME/CFS, as published in previous articles, is that the 
Na+/K+-ATPase is dysfunctional (Wirth and Scheibenbogen, 2021; 
Wirth and Löhn, 2024). The causes are insufficient hormonal 
stimulation, active inhibition by ROS, and lack of ATP due to 
mitochondrial dysfunction. Ouabain, an inhibitor of the Na+/K+-
ATPase, impressively demonstrates that inhibition of the Na+/K+-
ATPase leads to a loss of muscle force upon electrical stimulation in 
isolated skeletal muscle and depolarization of the resting membrane 
potential (Clausen et al., 1993; Murphy and Clausen, 2007; Nielsen 
and Clausen, 1996; Wareham, 1978). Not only is sodium efflux 
decreased because of an insufficient Na+/K+-ATPase-activity, but 
sodium influx is also strongly increased by complex perfusion 
disturbances in PAIS, increasing the activity of the proton–sodium 
exchanger subtype 1 (NHE1), which is explained at length in 
a previous publication (Wirth and Löhn, 2024). This increases 
the workload of the already impaired Na+/K+-ATPase, leading to 
intracellular sodium loading, as shown in the skeletal muscles of 
ME/CFS patients (Petter et al., 2022). Sodium overload, in turn, 
causes calcium overload and associated calcium-induced damage 
at high intracellular sodium concentrations. The sodium–calcium 
exchanger (NCX) changes its transport direction to import calcium 
instead of exporting it at high intracellular sodium concentrations. 
The sodium concentration at which this occurs is referred to 
as the reverse mode threshold of the NCX. We see the reverse 
mode threshold of the NCX as the biological basis for the 
clinical PEM threshold (Wirth and Scheibenbogen, 2021). These 
pathomechanisms can also fully explain the observed skeletal muscle 
damage after exercise (Appelman et al., 2024).

4 The physiological role of the 
Na+/K+-ATPase in muscle 
electrophysiology and metabolism

Na+/K+-ATPase generates electrochemical ion gradients 
between the intracellular and extracellular spaces by exporting 
three Na+ ions against the cellular import of two K+ ions 
(Clausen, 2008; Pirkmajer and Chibalin, 2016). These gradients are 
responsible for the physiological resting membrane potential and 
the driving forces of excitation and propagation of action potentials. 
With diminished Na+/K+-ATPase activity, the resting membrane 
potential becomes more positive and gets closer to the threshold 
potential (depolarized). The consequence is hyperexcitability: thus, 
otherwise subthreshold stimuli can cause excitation, which is 
less efficacious, leading to reduced force development. Prolonged 
depolarization of the sarcolemma inactivates voltage-gated Na+

channels and impairs neuromuscular transmission. Na+/K+-
ATPase accelerates repolarization and restores the excitability 
and contractility of skeletal muscle. Furthermore, by limiting K+

loss from contracting skeletal muscle, Na+/K+-ATPase activity 
also helps prevent or at least blunts exercise-induced extracellular 
interstitial hyperkalemia, which has depolarizing effects, increasing 
hyperexcitability. Na+/K+-ATPase activity also maintains the 
high intracellular K+ concentration that, together with chloride 
conductivity, forms the resting membrane potential in skeletal
muscle.

During exercise, Na+/K+-ATPase is hormonally stimulated 
by protein kinase A (PKA) via cyclic adenosine monophosphate 
(cAMP), which is activated by ß2-adrenergic receptors and 
by calcitonin-gene-related peptide (CGRP) (Pirkmajer and 
Chibalin, 2016; Clausen, 2003; Nielsen and Harrison, 1998). 
At rest, Na+/K+-ATPase is stimulated by low concentrations 
of acetylcholine via the nicotinergic receptor and by insulin. 
Insulin stimulates Na+/K+-ATPase directly via protein kinase 
C and by its translocation from the cytoplasm to the 
cell membrane (Pirkmajer and Chibalin, 2016). A third indirect 
mechanism related to its energy supply will be explained
below.

Na+/K+-ATPase is not only responsible for creating membrane 
excitability, but it is also involved in energetic processes. By 
maintaining low intracellular Na+ concentrations, Na+/K+-ATPase 
promotes Na+-coupled transport and uptake of substrates (e.g., 
carnitine, inorganic phosphate, and amino acids such as glutamine 
and alanine), which play key roles in the energy metabolism 
of skeletal muscle (Odoom et al., 1996; Zorzano et al., 2000). 
Furthermore, it provides the sodium gradient for proton export 
via the sodium–proton exchanger. Pyruvate kinase activity is 
dependent on the physiologically intracellular (high) potassium 
concentration (Page and Di Cera). Proper Na+/K+-ATPase activity 
keeps intracellular potassium high and thus prevents the decrease 
in pyruvate kinase activity. The latter is dependent on K+, 
thus preserving the energy supply via glycolysis even at normal 
oxygen pressure (aerobic glucose utilization) for its own energy 
supply. Hence, insufficient Na+/K+-ATPase activity can also have 
negative effects on skeletal muscle metabolism and not only impair
electrophysiology.
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5 Potential disturbances of 
Na+/K+-ATPase in ME/CFS

Autoantibodies against ß2-adrenergic receptors and the high 
tendency for desensitization of this receptor by the high sympathetic 
tone found in ME/CFS (for which orthostatic stress may be the 
most important cause) may cause dysfunction of the Na+/K+-
ATPase (Scheibenbogen et al., 2018; Lohse et al., 2003). The G 
protein-coupled receptor (CGRP) is released from small nerve 
fibers; however, small fiber neuropathy, which is frequently reported 
in ME/CFS (Joseph et al., 2021; Abrams et al., 2022; Oaklander 
and Nolano, 2019), diminishes CGRP release and availability. 
Moreover, TRPM3 dysfunction is present in ME/CFS in leukocytes 
(Cabanas et al., 2019; Cabanas et al., 2018; Eaton-Fitch et al., 2022). 
TRPM3 is not only present in leukocytes but also expressed and 
involved in the release of neuropeptides from sensory nerves, 
so its dysfunction may reduce CGRP release even before overt 
small nerve fiber degeneration occurs (Alonso-Carbajo et al., 2019; 
Held et al., 2015; Held and Tóth, 2021). Mitochondrial dysfunction 
develops in fully developed ME/CFS, and the high energy need 
of the Na+/K+-ATPase limits its activity. ROS produced due 
to mitochondrial dysfunction can even inhibit the Na+/K+-
ATPase through stimulation of glutathionylation (Pirkmajer and 
Chibalin, 2016; Clausen, 2003; Jammes et al., 2020).

Insulin resistance of skeletal muscle, likely of a mild degree, 
has been reported in ME/CFS patients (Al Masoo et al., 2025; 
Allain et al., 1997; Beentjes et al., 2025; Al-Hakeim et al., 2023; 
Hoel et al., 2021). Insulin stimulates Na+/K+-ATPase at rest. Due 
to insufficient stimulation, the ionic situation in skeletal muscle in 
patients with insulin resistance may not recover sufficiently from 
previous muscle work for the next activity. Patients may then start 
muscle activity under unfavorable intracellular ionic conditions, 
which lead to an early increase in intracellular sodium and calcium, 
explaining a low PEM threshold in our hypothesis (Pirkmajer and 
Chibalin, 2016; Clausen, 2003; Nielsen and Harrison, 1998). 

6 High workload and energy 
consumption of the Na+/K+-ATPase by 
sarcolemmal depolarization and 
fasciculations

For reasons that will be explained below, central muscle tone 
is probably also increased to favor spontaneous, uncoordinated 
excitations. Sarcolemmal depolarization brings the membrane at 
rest closer to the action potential threshold. As a result, skeletal 
muscle is sensitized to increases in central muscle tone and 
centrally induced excitations. Uncontrolled excitations caused in 
this way become manifest as muscle fasciculations and cramps 
and clearly indicate hyperexcitability. It cannot be excluded that 
there are frequent, unnoticed excitations of single muscle fibers. 
Alterations in EMG activity have indeed been reported in ME/CFS 
and long COVID in less severe cases (Agergaard et al., 2023; 
Jammes et al., 2020). Although these M-wave alterations are rather 
nonspecific and therefore do not reveal a particular cause, M-
wave alterations have been previously attributed to a dysfunctional 
Na+/K+-ATPase inhibited by ROS (Jammes et al., 2020; Jammes 
and Retornaz, 2019). Excitations cause sodium influx during 

depolarization and potassium efflux during repolarization, strongly 
increasing the workload of the Na+/K+-ATPase, which is already 
insufficient to restore the physiological action potential. Thus, the 
workload for the Na+/K+-ATPase also increases ATP consumption. 
It is estimated that 5%–10% of oxygen consumption in skeletal 
muscle at rest is coupled to Na+/K+-ATPase activity (Pirkmajer and 
Chibalin, 2016). In the event of frequent excitations, the workload 
and energy consumption of the Na+/K+-ATPase strongly increase, 
even at rest. Muscle contractions are the strongest stimulus for 
Na+/K+-ATPase activation. In healthy muscles, direct stimulation of 
isolated skeletal muscle rapidly increases Na+ efflux 20-fold (Nielsen 
and Harrison, 1998). It is self-explanatory that an impaired Na+/K+-
ATPase function, which we strongly assume is present in ME/CFS, 
cannot increase its activity by a factor of 20 during exercise. This 
explains the electrophysiological loss of force, exercise intolerance, 
and other pathomechanisms. The latter includes intracellular 
sodium loading, leading to subsequent calcium overload via the 
reverse mode of the NCX. Additionally, the reverse mode of the 
NCX is favored by a more positive membrane potential (Blaustein 
and Lederer, 1999). Figure 1 shows the presumed sequence of 
skeletal pathomechanisms causing Na+/K+-ATPase dysfunction and 
its consequences for skeletal muscle pathophysiology in ME/CFS.

7 Energy supply of the Na+/K+-ATPase 
and its disturbances

The ATP supply of the Na+/K+-ATPase in skeletal muscle 
strongly depends on glycolysis (Dutka and Lamb, 2007). In aerobic 
muscle fibers, in contrast to glycolytic muscle fibers, it is very likely 
that the pyruvate generated by glycolysis for the Na+/K+-ATPase’s 
ATP supply is used up in the citrate cycle after decarboxylation 
to acetyl-CoA by the nearby mitochondria, the subsarcolemmal 
mitochondria, for the generation of the contractile force and 
work. In ME/CFS, however, these subsarcolemmal mitochondria 
show signs of damage, and therefore, it is likely that glucose 
metabolism becomes anaerobic to produce more lactate, even 
in aerobic muscle fibers. Lactate production increases proton 
concentrations, which are mainly expelled by the sodium–proton 
exchanger NHE1, further increasing intracellular sodium levels and 
the workload for the impaired Na+/K+-ATPase, thereby raising 
the likelihood of calcium overload. This depolarized state causes 
frequent, inadequate excitations with sodium influx and potassium 
efflux for repolarization, but the impaired Na+/K+-ATPase can no 
longer restore a stable resting membrane potential, which would 
put an end to the permanent excitations. The skeletal muscle is 
thus caught in the “depolarization trap.” Therefore, sarcolemmal 
depolarization generates further depolarization. This raises the 
workload and energy consumption of Na+/K+−ATPase, but the 
energy supply is limited due to ineffective glucose metabolism and 
mitochondrial dysfunction.

Physiologically, excitation and skeletal muscle work (i.e., 
contraction) are coupled. Therefore, the energetic processes for 
electrophysiological activity and physical work should also be 
physiologically coupled. Excitations due to a depolarized state of the 
sarcolemma and increased excitability, as assumed here, lead to a 
high workload of the Na+/K+-ATPase already at rest, dissociating 
the (high) electrophysiological energetic demand from the demand 
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FIGURE 1
Presumed skeletal muscle pathophysiology of severely ill ME/CFS patients. Insufficient Na+/K+-ATPase activity due to dysfunction of its hormonal 
stimuli (ß2-adrenergic agonism and CGRP), ATP-deficiency, and active inhibition by ROS causes skeletal muscle membrane depolarization. This impairs 
muscle force and increases muscle excitability and sensitivity to central stress-induced increases in muscle tone. Depolarization and increased central 
muscle tone cause inadequate excitations, such as fasciculations and cramps, leading to sodium influx and potassium efflux, resulting in a higher 
workload for the already insufficient Na+/K+-ATPase. The latter becomes even more incapacitated in its ability to restore a stable physiological resting 
membrane potential. Thus, depolarization causes further depolarization in a vicious cycle. This increases energy consumption, lactate production, and 
intracellular sodium, and, finally, intracellular calcium to further damage the mitochondria by calcium overload. These disturbances are already present 
at rest or are caused by minimal efforts.

for physical work for contraction (no demand at rest). Pyruvate 
would then not be utilized by the citrate cycle, and therefore, 
lactate would be generated because pyruvate is in equilibrium with 
lactate. This may explain why some patients show elevated lactate 
levels at rest (Ghali et al., 2019). This would impair glycolysis and 
the energy supply of the Na+/K+-ATPase, thereby weakening its 
activity. This does not necessarily mean that there is a positive 
correlation between a lactate increase at rest and skeletal muscle 
depolarization and muscular symptoms. In resting conditions, 
enhanced anaerobic glycolysis can still effectively provide enough 
energy for the increased needs of the Na+/K+-ATPase via anaerobic 
glycolysis to mitigate or prevent depolarization. However, insulin 
resistance is present, reducing glucose uptake in skeletal muscle, 
as referenced above, and even impairing anaerobic glycolysis as 
the energy source for the Na+/K+-ATPase and thereby its function, 
favoring depolarization and symptoms (Hoel et al., 2021; Pirkmajer 
and Chibalin, 2016; Al Masoo et al., 2025; Allain et al., 1997; 
Beentjes et al., 2025; Al-Hakeim et al., 2023). Insulin resistance 
results in lower cellular glucose and pyruvate levels, which could 
explain why lactate levels remain (paradoxically) low and, second, 
when complex I dysfunction is present, why the import of pyruvate 
into the respiratory chain as acetyl-CoA is further diminished.

Overall, insulin is important in the activity of the Na+/K+-
ATPase via several mechanisms: providing glucose for its energy 
supply, stimulating its activity via protein kinase C, and promoting 
its translocation from the cytoplasm to the cell membrane, as 
explained above.

During exercise, Na+/K+-ATPase activity increases, although 
probably less in patients with ME/CFS than in healthy controls, 
contributing to exercise intolerance. Pyruvate increases from the 
glycolytic pathway needed for the ATP supply to the Na+/K+-
ATPase. The limiting factor for pyruvate utilization in aerobic 

muscles is their low oxidative capacity due to skeletal muscle 
mitochondrial dysfunction. This can explain the increased lactate 
levels during exercise. Thus, the increases in lactate at rest and during 
exercise may have different causes in ME/CFS patients. 

8 Central muscle tone and 
depolarized sarcolemma interact to 
cause inappropriate excitations

We have mentioned that the central muscle tone is elevated. 
Three potential causes for an increased muscle tone that favors 
spontaneous skeletal muscle excitations of the depolarized muscle 
membrane must be considered based on new recognitions and 
findings. 

1. TRPM3 dysfunction.
2. Autoantibodies against serine/arginine repetitive matrix 

protein 3 (SRRM3).
3. Autoantibodies against the alpha2C-adrenergic receptor 

(alpha2C-R).

1) TRPM3 dysfunction is present in many ME/CFS patients 
(Cabanas et al., 2019; Cabanas et al., 2018; Eaton-Fitch et al., 2022). 
As explained in a previous article, TRPM3 appears to be involved in 
the GABA system. Its dysfunction could lower the release of GABA 
and thus increase muscle tone (Held and Tóth, 2021; Löhn and 
Wirth, 2024; Seljeset et al., 2023).

2) Autoantibodies have been reported against SRRM3 
(Hoheisel et al., 2024). SRRM3, which is expressed in the brain, is a 
regulator of alternative splicing (essential for motor coordination) 
and contributes to the switch of GABA-ergic signaling from 
excitatory to inhibitory (Nakano et al., 2019). Remarkably, a single 
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nucleotide variant in SRRM3 was found to be associated with 
ME/CFS, strengthening the role of this protein and GABA in 
ME/CFS pathophysiology (Schlauch et al., 2016).

3) Autoantibodies have been reported against alpha2C-R. 
Alpha2C-R could be involved in ME/CFS, as already suggested 
in a previous article, simply based on its physiological functions 
and its tendency to desensitize to catecholamines (Artalejo and 
Olivos-Oré, 2018; Wirth et al., 2021). Its dysfunction could explain 
some symptoms of ME/CFS beyond the effect on skeletal muscle 
tone, which will be explained below. Severe sleep disturbance, 
likely linked to hypervigilance and high sympathetic tone, is 
a hallmark of ME/CSF (Nelson et al., 2019; Wyll et al., 2009). 
Recent findings even show autoantibodies against this important 
receptor, further strengthening the previous assumption that this 
receptor could be relevant and could be dysfunctional in ME/CFS 
(Hoheisel et al., 2024). As a postsynaptic receptor, alpha2C-R is 
present on veins with a vasoconstrictor function (Gyires et al., 2009). 
Inhibition by autoantibodies would cause orthostatic dysfunction 
due to insufficient venous contraction, reducing cardiac preload, 
which would increase sympathetic tone for compensation 
(orthostatic stress). Alpha2C-R is also a presynaptic receptor on 
sympathetic nerve endings, acting as an autoreceptor to limit 
and modulate catecholamine release (Gyires et al., 2009). Its 
dysfunction would cause excessive norepinephrine release and 
potentially cause vasoconstriction during sympathetic activation. 
Norepinephrine released excessively by the synergistic effects of 
the two mechanisms explained above would have overshooting 
vasoconstrictor effects because the vasodilatory effect of the intact 
endothelium, which physiologically opposes vasoconstriction, is 
also dysfunctional (Scherbakov et al., 2020). Thus, vasospasms 
in the periphery (Raynaud symptoms) and orthostatic cerebral 
vasoconstriction could be explained satisfactorily (van Campen 
and Visser, 2025). In the brain, alpha2C-R is expressed in 
activating noradrenergic brain regions such as the locus coeruleus 
(Gyires et al., 2009; Rosin et al., 1993). Pharmacological agonists 
at this presynaptic alpha2C-adrenergic receptor cause sedation, 
muscle relaxation, and a mild analgesic effect. This enables us 
to understand the (opposite) effects that blocking autoantibodies 
could instigate by causing alpha2C-R dysfunction (Hayashi and 
Maze, 1993). Its dysfunction might increase pain perception, 
muscle tone, vigilance, and arousal, all of which are involved 
in the severe sleep disturbances and sympathetic hyperactivity 
typically found in ME/CFS (Nelson et al., 2019; Wyll et al., 2009;
Wyller et al., 2008).

The role of the histamine system in skeletal muscle 
pathophysiology and tremor in ME/CFS is not fully understood. 
Recent findings have revealed a small mast cell population 
in skeletal muscle that is likely responsible for histamine 
secretion during exercise. These cells also target myeloid and 
vascular cells rather than myofibers in a paracrine manner 
(Van der Stede et al., 2025). High mast cell activation is 
more frequent in cases of muscle dysfunction and tremor 
in ME/CFS, suggesting a potential role (Zhou et al., 2024). 
However, the pathomechanisms by which histamine could 
disturb skeletal muscle function and cause tremor are not yet
clear.

In this section, we have collected evidence that central skeletal 
muscle tone is increased by disturbances of the noradrenergic and 

the GABA neurotransmitter systems, leading to a predominance 
of excitatory over inhibitory neurotransmitters for skeletal muscle 
tone. In the presence of a depolarized skeletal muscle membrane, 
which induces peripheral hyperexcitability, the central increase 
in skeletal muscle tone facilitates the generation of irregular 
action potentials. These become clinically manifest as fasciculations, 
cramps, and tremors. 

9 Skeletal muscle depolarization in 
severely ill patients is superimposed 
on mitochondrial dysfunction: a step 
model to explain the condition of 
severely ill ME/CFS patients

Overall, the muscles of severely ill ME/CFS patients may be 
caught in a state of depolarization and mitochondrial damage, even 
at rest. Even the slightest effort aggravates the condition. Energy-
depleted muscles compensatorily release vasoactive mediators, 
such as bradykinin, prostaglandins, prostacyclin, and adenosine, 
to increase local blood flow and remove the energetic deficit 
(Wirth and Scheibenbogen, 2020); they also release histamine 
(Van der Stede et al., 2025). When excessively produced, these 
otherwise very labile mediators can reach every organ (spillover into 
systemic circulation). There, they can cause symptoms typical for 
ME/CFS such as edema, pain, and spasms due to their vasoactive, 
inflammatory, vascular leakage-inducing, algesic, hyperalgesic, and 
spasmogenic effects (Wirth and Scheibenbogen, 2020). In skeletal 
muscle itself, these algesic mediators can cause muscular pain. In 
the kidney, mediators such as bradykinin and prostacyclin cause 
hyperexcretion of sodium and water by increasing renal blood flow 
and inhibiting distal tubular sodium reabsorption. These effects 
prevent an increase in renin to correct for the resulting hypovolemia 
(explaining the renin paradox). This renal mechanism, causing 
hypovolemia and increased vascular leakage, could play a significant 
role in orthostatic dysfunction and orthostatic stress (Wirth and 
Scheibenbogen, 2020).

Concerning skeletal muscle pain in ME/CFS, several 
mechanisms could be involved, including the release of algesic 
mediators such as bradykinin, skeletal muscle damage after exercise, 
cramps, and central sensitization, as explained above.

Our unifying hypothesis on the causes of the symptoms 
and pathophysiology of ME/CFS can explain the condition 
of severely ill patients without making new assumptions. 
Mitochondrial damage and skeletal muscle depolarization reinforce 
each other. They have the same cause: a dysfunction of ion 
transport, mainly due to a Na+/K+-ATPase dysfunction. Different 
pathomechanisms, including increased sodium influx into skeletal 
muscle, central pathomechanisms, risk factors, and triggers, 
contribute to these disturbances. It is the stringent application 
of the current concept that provides a single pathomechanism 
to explain loss of force, fatigue, and fasciculations of skeletal
muscle.

Figure 2 shows a step model of ME/CFS arising from long 
COVID. During the long COVID stage, hypoperfusion is present, 
mainly caused by microvascular dysfunction (Kruger et al., 2024). 
From these perfusion disturbances, in the presence of risk factors, 
ME/CFS develops via skeletal muscle mitochondrial dysfunction. 
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FIGURE 2
Step model that explains the condition of severely ill ME/CFS patients. Post-COVID-19 syndrome is mainly due to severe vascular disturbances due to 
an interaction between capillary microvascular and precapillary cardiovascular disturbances triggered by the virus itself or by excessive cytokine and 
immune responses, leading to hypoperfusion. In susceptible patients, skeletal muscle mitochondrial dysfunction develops to trigger ME/CFS as a 
self-maintaining vicious cycle in which ionic disturbances caused by insufficient Na+/K+-ATPase activity play a key role. In severely ill patients, further 
impaired Na+/K+-ATPase activity cannot maintain or restore the physiological resting membrane potential in skeletal muscle. The resulting membrane 
depolarization leads to loss of force, hyperexcitability, and further aggravation of mitochondrial dysfunction due to ionic disturbances, 
as shown in Figure 1.

FIGURE 3
Reversible skeletal muscle membrane depolarization during severe episodes of PEM in patients with moderate ME/CFS. While skeletal muscle 
membrane depolarization is persistent in severely ill patients, in patients with moderate ME/CFS, muscle membrane depolarization may only be 
transiently present during longer-lasting or more severe episodes of PEM after excessive exertion. The patients, however, may be capable of restoring a 
stable physiological membrane potential, at least at rest, and maintaining it during moderate levels of exertion that do not cause PEM.

PEM, as an aggravation of the complaints, occurs with exercise and 
effort. The third stage involves severely ill patients with persisting 
membrane depolarization that develops because of insufficient 
Na+/K+-ATPase activity and mitochondrial dysfunction. 
These disturbances are persistent or induced by minimal
effort.

Based on these considerations, one can conclude that the skeletal 
muscles of patients with moderate disease that is in a prolonged 
episode of PEM could also be in a (transient) depolarized state. 
Skeletal muscles may be in a depolarized state for extended periods, 
but patients may be able to overcome excessive depolarization to 
return to the stage of mitochondrial dysfunction (Figure 3). In 
support of this idea, EMG changes were observed in approximately 
half of ME/CFS patients after a cycling exercise. The M-wave 
amplitude significantly decreased in leg muscles, and the M-
wave duration significantly increased (Retornaz et al., 2023). This 
measurement with surface electrodes does not assess membrane 
voltage, but a surface summation potential, so it does not directly 
reveal sarcolemmal depolarization. The decrease in amplitude and 
the longer duration suggest a less effective recruitment of muscle 

fibers and a delayed propagation of the excitation along the skeletal 
muscle fibers that, after exclusion of neuronal causes, can be 
explained by membrane depolarization, as a fraction of excitatory 
sodium channels would have been in the inactivated state. This 
suggests that sarcolemmal depolarization can occur even in mild-to-
moderate ME/CFS. Interestingly, in the group of patients developing 
exercise-induced M-wave alterations, resting values of handgrip 
strength were significantly lower, and symptoms were more serious 
than in patients without M-wave abnormalities. Hence, the known 
correlation between loss of muscle force and symptoms also seems to 
apply to EMG changes (disturbed excitability). This is not surprising, 
as we see the disturbed electrophysiology behind the demonstrated 
EMG changes as the cause for the loss of force.

These considerations also help explain why a loss of 
force after diagnosis correlates with symptoms and poor 
prognosis (Paffrath et al., 2024). The main cause for the loss of 
force, an insufficient Na+/K+-ATPase activity, is also the main 
cause for sodium-induced calcium overload that causes skeletal 
muscle mitochondrial dysfunction, the key pathomechanism in our 
ME/CFS disease concept. 
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Conclusion

Insufficient Na+/K+-ATPase activity can explain mitochondrial 
dysfunction via sodium-induced calcium overload, causing 
diminished oxidative phosphorylation in skeletal muscle, leading 
to a lack of energy, fatigue, and loss of endurance, along with a 
disturbance of skeletal muscle electrophysiology. The latter leads 
to chronic depolarization of the sarcolemma, which explains both 
loss of force due to impaired action potential propagation and fiber 
recruitment and fasciculations (hyperexcitability). Skeletal muscle 
depolarization may play a strong role in the myasthenia of these 
severely ill ME/CFS patients. It may also contribute to a vicious circle 
that increases sodium loading through inappropriate excitations, 
further increasing mitochondrial damage through calcium overload.
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