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Patients with severe myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CEFS) are bedridden and suffer from hypersensitivities to light and noise,
severe orthostatic intolerance reducing cerebral blood flow, and skeletal muscle
symptoms, including loss of force, fatigue, pain, fasciculations, and cramps.
Because neurological investigations exclude neuronal causes of myasthenia, we
hypothesize a muscular pathomechanism. In previous articles, we considered
insufficient activity of the Na*/K*-ATPase to be the main cause of mitochondrial
damage via high intracellular sodium that reverses the transport mode of
the sodium-calcium-exchanger to import calcium, causing calcium overload.
Low Na*/K*-ATPase activity also causes sarcolemmal depolarization, leading
to less effective action potential propagation and loss of force. Depolarization
brings the membrane potential closer to the threshold potential, causing
hyperexcitability that explains fasciculations and cramps. These increase sodium
influx during excitation to further increase the workload of Na*/K*-ATPase.
Thereby, depolarization causes further depolarization. Higher intracellular
sodium favors calcium overload and mitochondrial damage, which lowers the
energy supply of Na*/K*-ATPase and increases the reactive oxygen species,
further inhibiting Na*/K*-ATPase. The muscle is in a state of depolarization even
at rest. Depolarization and mitochondrial damage reinforce each other. Thus,
dysfunction of Na*/K*-ATPase as a single mechanism can explain the different
skeletal muscle symptoms of severely ill ME/CFS patients, comprising loss of
force, fatigue, and fasciculations.

myalgic encephalomyelitis/chronic fatigue syndrome, long COVID, post-acute infection
syndrome, myasthenia, loss of force, fasciculation, severely ill ME/CFS patient, Na*/K*-
ATPase

1 Introduction

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CEFS) is a severe, frequent,
and debilitating disease. There is an overlap with post-acute infection syndromes
(PAISs), which demonstrate similar symptom profiles irrespective of the infectious
agent (Choutka et al., 2022; Kedor et al., 2022; Peter et al., 2025). The prevalence of
ME/CFS and PAIS has increased significantly because of SARS-CoV-2 infections. During
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the first wave of the COVID-19 pandemic, the incidence of
developing PAIS was 6.5%-15% of those infected (Hill et al., 2022).
PAIS after SARS-CoV-2 infection contributes substantially to the
cumulative health burden in populations (Choutka et al., 2022;
Kedor et al., 2022; Peter et al., 2025; Bowe et al., 2023; Steinacker
and Klinkisch, 2025). ME/CFS presents with a plethora of
symptoms, including severe fatigue, cognitive dysfunction, and
exercise intolerance with post-exertional malaise (PEM), which are
exacerbated by physical, emotional, or cognitive stress. Chronic
whole-body pain, joint and muscle aches, and dyspnea have
also been reported (Peter et al, 2025; Carruthers et al., 2011;
Ballouz et al, 2023). Orthostatic intolerance, tachycardia, and
palpitations are prevalent. An inability to stand upright or even
to sit for a long time is found in more severely ill ME/CFS patients,
who are often housebound or bedridden (van Campen et al., 2020;
van Campen et al, 2023). Neurocognitive symptoms include
the inability to concentrate, read, or memorize, and a cognitive
cloudiness described as “brain fog” Hypersensitivities to light, noise,
and smell are reported. Sleep disorders are common, along with
gastrointestinal symptoms (Peter et al., 2025; Carruthers et al.,, 2011;
Ballouz et al., 2023). Despite these partially debilitating symptoms
and the increasing prevalence, medicine has failed to define a
pathophysiological picture. Clinical neurological investigations
have not found disturbances in nerve conduction velocity;
neuroimaging does not reveal spinal or cerebral pathologies.
There is limited knowledge of mechanisms. Mechanisms identified
to date include inflammation, formation of reactive oxygen
species (ROS), proinflammatory cytokines, and activation of the
inflammasome, in addition to disturbances in T-cell function
and the secretory immune system and B-cell function, followed
by complement activation, immune thrombosis, and decreased
tissue blood flow (Ryabkova et al., 2019; Cervia-Hasler et al., 2024;
Haunhorst et al., 2024). This article focuses on muscle weakness
as an important contribution to the burden of disease. The
inability to perform even low-intensity endurance exercises,
increasing weakness after a few muscle contractions, and the
loss of muscle strength for single contractions characterize
myasthenia in ME/CFS. Skeletal muscle incapacity and myasthenia
are important signs of disease severity (Carruthers et al., 2011;
Conroy et al.,, 2021; Sommerfelt et al., 2023). Accordingly, handgrip
strength inversely correlates with the severity of fatigue, disability,
and symptoms (Paffrath et al., 2024; Jakel et al., 2021; Nac et al., 2018;
do Amaral et al, 2024). Muscle tremor or fasciculations have
only been reported recently (Blitshteyn et al.,, 2024). In the Yale
LISTEN trial, which included 423 subjects after COVID-19, 37%
retrospectively reported “internal tremors, or buzzing/vibration”
Compared to other patients, participants with internal tremors
reported worse health and had higher rates of new-onset mast
cell disorders (11% vs. 2.6%) and neurological conditions
(22% vs. 8.3%) (Zhou et al., 2024). As no neurological causes
have been found, a muscular pathomechanism explaining loss of
force, fasciculations (or tremor), cramps, and muscular pain should
instead be assumed. The focus of this article is on the potential
causes of disturbed muscle function and muscle symptomatology.
In many other diseases, decisive pathophysiological insights have
been gained from severe cases and have strongly contributed to our
understanding of the pathophysiology of milder cases. Insights
concerning the pathophysiology of ME/CFS, however, mainly
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come from patients with less severe disease because bedridden
patients, unable to leave their homes, have not been accessible to
medical research.

Cardiopulmonary exercise testing (CPET), which provides
objective metabolic data in patients with mild to moderate

symptomatology, demonstrated reduced maximal oxygen
consumption (Appelman et al, 2024; Bizjak et al, 2024;
Joseph et al, 2021), an early appearance of anaerobic

metabolism during exercise, and deregulated energy metabolism
(de Boer et al., 2022; Hoel et al., 2021).

In more than 50% of post-COVID and ME/CFES patients,
skeletal
internal structures (cristae) and shape, including lysis. In

mitochondria in muscles show damage to their
some cases, neighboring sarcomeres also show severe damage
(Bizjak et al., 2024). Local and systemic metabolic disturbances,
decreased oxidative phosphorylation, severe exercise-induced
myopathy, and tissue infiltration of amyloid-containing deposits
have been found (Appelman et al, 2024; Bizjak et al., 2024).
However, these studies only involved patients who were able
to exercise, which means that they had mild-to-moderate
disease severity. Muscular force, measured as handgrip strength,
is known to be decreased in ME/CFS and PAIS, and it has
been shown to correlate with symptoms in patients who
are still able to visit a medical unit (Paffrath et al., 2024;
Nac et al., 2018; do Amaral et al., 2024).

2 Potential causes of myasthenia in
ME/CFS

Four possible causes must be considered in the discussion on the
loss of muscular force:

1. Lack of energy due to mitochondrial dysfunction.

2. Atrophy due to inactivity in the intention to avoid PEM and
due to immobilization (deconditioning).

3. Skeletal muscle damage.

4. Electrophysiological causes that lead to insufficient excitation
and recruitment of muscle fibers upon neuromuscular
activation.

1) Skeletal muscle mitochondrial dysfunction can explain
the loss of endurance and of force-endurance. However, a
significant loss of force, even with the first muscular action after
a sufficiently long rest, is not explained by a lack of energy due
to mitochondrial dysfunction. This is because certain skeletal
muscles are physiologically glycolytic, including the most vigorous
muscles (which are made up of fast-twitch type 2b fibers).
We have learned from SARS-CoV-2 infections that, even in
asymptomatic athletes, VO, max is decreased after 3 months and
much more so in those with symptoms (Vollrath et al., 2022).
Viral likely alter the
through histone modifications or by modulating metabolite
silencing OXPHOS gene

proteins mitochondrial epigenome
substrates, potentially
(Guarnieri et al., 2024).

2) Skeletal muscle atrophy and deconditioning as causes

expression

of muscle weakness have been excluded by a recent, careful
investigation comparing healthy individuals after 6 weeks of bed
rest with ME/CFS patients (Ch et al., 2025). Patients with long
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COVID and ME/CFS did not show muscle atrophy but did have
fewer capillaries and more glycolytic fibers (Appelman et al., 2024;
Ch et al, 2025; Scheibenbogen and Wirth, 2025). In contrast
to healthy subjects after 6 weeks of bed rest, skeletal muscle in
ME/CEFS patients does not really rest, as patients suffer from
cramps and fasciculations. A key assumption in our hypothesis
is that calcium in skeletal muscle is too high and that calcium
overload causes damage (Wirth and Scheibenbogen, 2021).
Calcium pathways are indeed discussed as constituting the
hypertrophic signal (Semsarian et al., 1999). It may oppose the
tendency for atrophy by inactivity and thus prevent atrophy even in
bedridden ME/CFS patients.

3) Although skeletal muscle damage has been shown in a recent
study, this damage is most likely not extensive enough to cause a
severe loss of force (Appelman et al., 2024). Skeletal muscle biopsies
from severely ill patients are needed to clarify this issue.

4) In the section that follows, we argue that the main and
common cause of both loss of force and fasciculations could be a
disturbed electrophysiology of skeletal muscle. We try to explain
how muscular symptoms, including loss of force and endurance,
fasciculations, and pain, are causally related.

3 The Potential role of the
Na*/K"-ATPase in the physiology and
pathophysiology of ME/CFS

A key assumption in our concept of a unifying disease
hypothesis for ME/CEFS, as published in previous articles, is that the
Na*/K*-ATPase is dysfunctional (Wirth and Scheibenbogen, 2021;
Wirth and Lohn, 2024). The causes are insufficient hormonal
stimulation, active inhibition by ROS, and lack of ATP due to
mitochondrial dysfunction. Ouabain, an inhibitor of the Na*/K*-
ATPase, impressively demonstrates that inhibition of the Na*/K*-
ATPase leads to a loss of muscle force upon electrical stimulation in
isolated skeletal muscle and depolarization of the resting membrane
potential (Clausen et al., 1993; Murphy and Clausen, 2007; Nielsen
and Clausen, 1996; Wareham, 1978). Not only is sodium efflux
decreased because of an insufficient Na*/K*-ATPase-activity, but
sodium influx is also strongly increased by complex perfusion
disturbances in PAIS, increasing the activity of the proton-sodium
exchanger subtype 1 (NHE1), which is explained at length in
a previous publication (Wirth and Lohn, 2024). This increases
the workload of the already impaired Na*/K*-ATPase, leading to
intracellular sodium loading, as shown in the skeletal muscles of
ME/CEFS patients (Petter et al., 2022). Sodium overload, in turn,
causes calcium overload and associated calcium-induced damage
at high intracellular sodium concentrations. The sodium-calcium
exchanger (NCX) changes its transport direction to import calcium
instead of exporting it at high intracellular sodium concentrations.
The sodium concentration at which this occurs is referred to
as the reverse mode threshold of the NCX. We see the reverse
mode threshold of the NCX as the biological basis for the
clinical PEM threshold (Wirth and Scheibenbogen, 2021). These
pathomechanisms can also fully explain the observed skeletal muscle
damage after exercise (Appelman et al., 2024).
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4 The Physiological role of the
Na*/K*"-ATPase in muscle
electrophysiology and metabolism

Na®/K*-ATPase generates electrochemical ion gradients
between the intracellular and extracellular spaces by exporting
three Na® ions against the cellular import of two K* ions
(Clausen, 2008; Pirkmajer and Chibalin, 2016). These gradients are
responsible for the physiological resting membrane potential and
the driving forces of excitation and propagation of action potentials.
With diminished Na*/K*-ATPase activity, the resting membrane
potential becomes more positive and gets closer to the threshold
potential (depolarized). The consequence is hyperexcitability: thus,
otherwise subthreshold stimuli can cause excitation, which is
less efficacious, leading to reduced force development. Prolonged
depolarization of the sarcolemma inactivates voltage-gated Na*
channels and impairs neuromuscular transmission. Na*/K*-
ATPase accelerates repolarization and restores the excitability
and contractility of skeletal muscle. Furthermore, by limiting K*
loss from contracting skeletal muscle, Na™/K"-ATPase activity
also helps prevent or at least blunts exercise-induced extracellular
interstitial hyperkalemia, which has depolarizing effects, increasing
hyperexcitability. Na*/K*-ATPase activity also maintains the
high intracellular K* concentration that, together with chloride
conductivity, forms the resting membrane potential in skeletal
muscle.

During exercise, Na*/K*-ATPase is hormonally stimulated
by protein kinase A (PKA) via cyclic adenosine monophosphate
(cAMP), which is activated by f32-adrenergic receptors and
by calcitonin-gene-related peptide (CGRP) (Pirkmajer and
Chibalin, 2016; Clausen, 2003; Nielsen and Harrison, 1998).
At rest, Na*/K*-ATPase is stimulated by low concentrations
of acetylcholine via the nicotinergic receptor and by insulin.
Insulin stimulates Na*/K*"-ATPase directly via protein kinase
C and by its translocation from the cytoplasm to the
cell membrane (Pirkmajer and Chibalin, 2016). A third indirect
mechanism related to its energy supply will be explained
below.

Na*/K"-ATPase is not only responsible for creating membrane
excitability, but it is also involved in energetic processes. By
maintaining low intracellular Na* concentrations, Na*/K*-ATPase
promotes Na'-coupled transport and uptake of substrates (e.g.,
carnitine, inorganic phosphate, and amino acids such as glutamine
and alanine), which play key roles in the energy metabolism
of skeletal muscle (Odoom et al., 1996; Zorzano et al., 2000).
Furthermore, it provides the sodium gradient for proton export
via the sodium-proton exchanger. Pyruvate kinase activity is
dependent on the physiologically intracellular (high) potassium
concentration (Page and Di Cera). Proper Na*/K*-ATPase activity
keeps intracellular potassium high and thus prevents the decrease
in pyruvate kinase activity. The latter is dependent on K,
thus preserving the energy supply via glycolysis even at normal
oxygen pressure (aerobic glucose utilization) for its own energy
supply. Hence, insufficient Na*/K*-ATPase activity can also have
negative effects on skeletal muscle metabolism and not only impair
electrophysiology.
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5 Potential disturbances of
Na*/K*-ATPase in ME/CFS

Autoantibodies against 32-adrenergic receptors and the high
tendency for desensitization of this receptor by the high sympathetic
tone found in ME/CFS (for which orthostatic stress may be the
most important cause) may cause dysfunction of the Na*/K*-
ATPase (Scheibenbogen et al., 2018; Lohse et al., 2003). The G
protein-coupled receptor (CGRP) is released from small nerve
fibers; however, small fiber neuropathy, which is frequently reported
in ME/CFS (Joseph et al., 2021; Abrams et al., 2022; Oaklander
and Nolano, 2019), diminishes CGRP release and availability.
Moreover, TRPM3 dysfunction is present in ME/CFS in leukocytes
(Cabanas et al., 2019; Cabanas et al., 2018; Eaton-Fitch et al., 2022).
TRPM3 is not only present in leukocytes but also expressed and
involved in the release of neuropeptides from sensory nerves,
so its dysfunction may reduce CGRP release even before overt
small nerve fiber degeneration occurs (Alonso-Carbajo et al., 2019;
Held et al., 2015; Held and Toth, 2021). Mitochondrial dysfunction
develops in fully developed ME/CEFS, and the high energy need
of the Na*/K*-ATPase limits its activity. ROS produced due
to mitochondrial dysfunction can even inhibit the Na*/K*-
ATPase through stimulation of glutathionylation (Pirkmajer and
Chibalin, 2016; Clausen, 2003; Jammes et al., 2020).

Insulin resistance of skeletal muscle, likely of a mild degree,
has been reported in ME/CFS patients (Al Masoo et al., 2025;
Allain et al., 1997; Beentjes et al., 2025; Al-Hakeim et al., 2023;
Hoel et al,, 2021). Insulin stimulates Na*/K*-ATPase at rest. Due
to insufficient stimulation, the ionic situation in skeletal muscle in
patients with insulin resistance may not recover sufficiently from
previous muscle work for the next activity. Patients may then start
muscle activity under unfavorable intracellular ionic conditions,
which lead to an early increase in intracellular sodium and calcium,
explaining a low PEM threshold in our hypothesis (Pirkmajer and
Chibalin, 2016; Clausen, 2003; Nielsen and Harrison, 1998).

6 High workload and energy
consumption of the Na*/K"™-ATPase by
sarcolemmal depolarization and
fasciculations

For reasons that will be explained below, central muscle tone
is probably also increased to favor spontaneous, uncoordinated
excitations. Sarcolemmal depolarization brings the membrane at
rest closer to the action potential threshold. As a result, skeletal
muscle is sensitized to increases in central muscle tone and
centrally induced excitations. Uncontrolled excitations caused in
this way become manifest as muscle fasciculations and cramps
and clearly indicate hyperexcitability. It cannot be excluded that
there are frequent, unnoticed excitations of single muscle fibers.
Alterations in EMG activity have indeed been reported in ME/CES
and long COVID in less severe cases (Agergaard et al, 2023;
Jammes et al., 2020). Although these M-wave alterations are rather
nonspecific and therefore do not reveal a particular cause, M-
wave alterations have been previously attributed to a dysfunctional
Na*/K*-ATPase inhibited by ROS (Jammes et al., 2020; Jammes
and Retornaz, 2019). Excitations cause sodium influx during
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depolarization and potassium efflux during repolarization, strongly
increasing the workload of the Na*/K*-ATPase, which is already
insufficient to restore the physiological action potential. Thus, the
workload for the Na*/K"-ATPase also increases ATP consumption.
It is estimated that 5%-10% of oxygen consumption in skeletal
muscle at rest is coupled to Na*/K*-ATPase activity (Pirkmajer and
Chibalin, 2016). In the event of frequent excitations, the workload
and energy consumption of the Na*/K*-ATPase strongly increase,
even at rest. Muscle contractions are the strongest stimulus for
Na*/K*-ATPase activation. In healthy muscles, direct stimulation of
isolated skeletal muscle rapidly increases Na* efflux 20-fold (Nielsen
and Harrison, 1998). It is self-explanatory that an impaired Na*/K*-
ATPase function, which we strongly assume is present in ME/CFS,
cannot increase its activity by a factor of 20 during exercise. This
explains the electrophysiological loss of force, exercise intolerance,
and other pathomechanisms. The latter includes intracellular
sodium loading, leading to subsequent calcium overload via the
reverse mode of the NCX. Additionally, the reverse mode of the
NCX is favored by a more positive membrane potential (Blaustein
and Lederer, 1999). Figure 1 shows the presumed sequence of
skeletal pathomechanisms causing Na*/K* - ATPase dysfunction and
its consequences for skeletal muscle pathophysiology in ME/CEFS.

7 Energy supBly of the Na*/K*-ATPase
and its disturbances

The ATP supply of the Na*/K*-ATPase in skeletal muscle
strongly depends on glycolysis (Dutka and Lamb, 2007). In aerobic
muscle fibers, in contrast to glycolytic muscle fibers, it is very likely
that the pyruvate generated by glycolysis for the Na™/K"-ATPase’s
ATP supply is used up in the citrate cycle after decarboxylation
to acetyl-CoA by the nearby mitochondria, the subsarcolemmal
mitochondria, for the generation of the contractile force and
work. In ME/CFS, however, these subsarcolemmal mitochondria
show signs of damage, and therefore, it is likely that glucose
metabolism becomes anaerobic to produce more lactate, even
in aerobic muscle fibers. Lactate production increases proton
concentrations, which are mainly expelled by the sodium-proton
exchanger NHEL, further increasing intracellular sodium levels and
the workload for the impaired Na"/K*-ATPase, thereby raising
the likelihood of calcium overload. This depolarized state causes
frequent, inadequate excitations with sodium influx and potassium
efflux for repolarization, but the impaired Na*/K*-ATPase can no
longer restore a stable resting membrane potential, which would
put an end to the permanent excitations. The skeletal muscle is
thus caught in the “depolarization trap” Therefore, sarcolemmal
depolarization generates further depolarization. This raises the
workload and energy consumption of Na+/K+-ATPase, but the
energy supply is limited due to ineffective glucose metabolism and
mitochondrial dysfunction.

Physiologically, excitation and skeletal muscle work (ie.,
contraction) are coupled. Therefore, the energetic processes for
electrophysiological activity and physical work should also be
physiologically coupled. Excitations due to a depolarized state of the
sarcolemma and increased excitability, as assumed here, lead to a
high workload of the Na*/K*-ATPase already at rest, dissociating
the (high) electrophysiological energetic demand from the demand
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at rest or are caused by minimal efforts.

Presumed skeletal muscle pathophysiology of severely ill ME/CFS patients. Insufficient Na*/K*-ATPase activity due to dysfunction of its hormonal
stimuli (R2-adrenergic agonism and CGRP), ATP-deficiency, and active inhibition by ROS causes skeletal muscle membrane depolarization. This impairs
muscle force and increases muscle excitability and sensitivity to central stress-induced increases in muscle tone. Depolarization and increased central
muscle tone cause inadequate excitations, such as fasciculations and cramps, leading to sodium influx and potassium efflux, resulting in a higher
workload for the already insufficient Na*/K*-ATPase. The latter becomes even more incapacitated in its ability to restore a stable physiological resting
membrane potential. Thus, depolarization causes further depolarization in a vicious cycle. This increases energy consumption, lactate production, and
intracellular sodium, and, finally, intracellular calcium to further damage the mitochondria by calcium overload. These disturbances are already present

for physical work for contraction (no demand at rest). Pyruvate
would then not be utilized by the citrate cycle, and therefore,
lactate would be generated because pyruvate is in equilibrium with
lactate. This may explain why some patients show elevated lactate
levels at rest (Ghali et al., 2019). This would impair glycolysis and
the energy supply of the Na*/K*-ATPase, thereby weakening its
activity. This does not necessarily mean that there is a positive
correlation between a lactate increase at rest and skeletal muscle
depolarization and muscular symptoms. In resting conditions,
enhanced anaerobic glycolysis can still effectively provide enough
energy for the increased needs of the Na*/K*-ATPase via anaerobic
glycolysis to mitigate or prevent depolarization. However, insulin
resistance is present, reducing glucose uptake in skeletal muscle,
as referenced above, and even impairing anaerobic glycolysis as
the energy source for the Na*™/K"-ATPase and thereby its function,
favoring depolarization and symptoms (Hoel et al., 2021; Pirkmajer
and Chibalin, 2016; Al Masoo et al., 2025; Allain et al., 1997;
Beentjes et al., 2025; Al-Hakeim et al.,, 2023). Insulin resistance
results in lower cellular glucose and pyruvate levels, which could
explain why lactate levels remain (paradoxically) low and, second,
when complex I dysfunction is present, why the import of pyruvate
into the respiratory chain as acetyl-CoA is further diminished.

Overall, insulin is important in the activity of the Na*/K"-
ATPase via several mechanisms: providing glucose for its energy
supply, stimulating its activity via protein kinase C, and promoting
its translocation from the cytoplasm to the cell membrane, as
explained above.

During exercise, Na*/K*-ATPase activity increases, although
probably less in patients with ME/CFS than in healthy controls,
contributing to exercise intolerance. Pyruvate increases from the
glycolytic pathway needed for the ATP supply to the Na*/K*-
ATPase. The limiting factor for pyruvate utilization in aerobic
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muscles is their low oxidative capacity due to skeletal muscle
mitochondrial dysfunction. This can explain the increased lactate
levels during exercise. Thus, the increases in lactate at rest and during
exercise may have different causes in ME/CES patients.

8 Central muscle tone and
depolarized sarcolemma interact to
cause inappropriate excitations

We have mentioned that the central muscle tone is elevated.
Three potential causes for an increased muscle tone that favors
spontaneous skeletal muscle excitations of the depolarized muscle
membrane must be considered based on new recognitions and
findings.

TRPM3 dysfunction.

Autoantibodies against serine/arginine repetitive matrix
protein 3 (SRRM3).

Autoantibodies against the alpha2C-adrenergic receptor
(alpha2C-R).

1) TRPM3 dysfunction is present in many ME/CFS patients
(Cabanas et al., 2019; Cabanas et al., 2018; Eaton-Fitch et al., 2022).
As explained in a previous article, TRPM3 appears to be involved in
the GABA system. Its dysfunction could lower the release of GABA
and thus increase muscle tone (Held and Téth, 2021; Lohn and
Wirth, 2024; Seljeset et al., 2023).

2) Autoantibodies have been reported against SRRM3
(Hoheisel et al., 2024). SRRM3, which is expressed in the brain, is a
regulator of alternative splicing (essential for motor coordination)
and contributes to the switch of GABA-ergic signaling from
excitatory to inhibitory (Nakano et al.,, 2019). Remarkably, a single
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nucleotide variant in SRRM3 was found to be associated with
ME/CEFS, strengthening the role of this protein and GABA in
ME/CFS pathophysiology (Schlauch et al., 2016).

3) Autoantibodies have been reported against alpha2C-R.
Alpha2C-R could be involved in ME/CFS, as already suggested
in a previous article, simply based on its physiological functions
and its tendency to desensitize to catecholamines (Artalejo and
Olivos-Oré, 2018; Wirth et al., 2021). Its dysfunction could explain
some symptoms of ME/CES beyond the effect on skeletal muscle
tone, which will be explained below. Severe sleep disturbance,
likely linked to hypervigilance and high sympathetic tone, is
a hallmark of ME/CSF (Nelson et al., 2019; Wyll et al., 2009).
Recent findings even show autoantibodies against this important
receptor, further strengthening the previous assumption that this
receptor could be relevant and could be dysfunctional in ME/CFS
(Hoheisel et al., 2024). As a postsynaptic receptor, alpha2C-R is
present on veins with a vasoconstrictor function (Gyires et al., 2009).
Inhibition by autoantibodies would cause orthostatic dysfunction
due to insufficient venous contraction, reducing cardiac preload,
which would increase sympathetic tone for compensation
(orthostatic stress). Alpha2C-R is also a presynaptic receptor on
sympathetic nerve endings, acting as an autoreceptor to limit
and modulate catecholamine release (Gyires et al, 2009). Its
dysfunction would cause excessive norepinephrine release and
potentially cause vasoconstriction during sympathetic activation.
Norepinephrine released excessively by the synergistic effects of
the two mechanisms explained above would have overshooting
vasoconstrictor effects because the vasodilatory effect of the intact
endothelium, which physiologically opposes vasoconstriction, is
also dysfunctional (Scherbakov et al., 2020). Thus, vasospasms
in the periphery (Raynaud symptoms) and orthostatic cerebral
vasoconstriction could be explained satisfactorily (van Campen
and Visser, 2025). In the brain, alpha2C-R is expressed in
activating noradrenergic brain regions such as the locus coeruleus
(Gyires et al., 2009; Rosin et al., 1993). Pharmacological agonists
at this presynaptic alpha2C-adrenergic receptor cause sedation,
muscle relaxation, and a mild analgesic effect. This enables us
to understand the (opposite) effects that blocking autoantibodies
could instigate by causing alpha2C-R dysfunction (Hayashi and
Maze, 1993). Its dysfunction might increase pain perception,
muscle tone, vigilance, and arousal, all of which are involved
in the severe sleep disturbances and sympathetic hyperactivity
typically found in ME/CFS (Nelson et al., 2019; Wyll et al., 2009;
Wyller et al., 2008).

The role of the
pathophysiology and tremor in ME/CFS is not fully understood.

histamine system in skeletal muscle
Recent findings have revealed a small mast cell population
in skeletal muscle that is likely responsible for histamine
secretion during exercise. These cells also target myeloid and
vascular cells rather than myofibers in a paracrine manner
(Van der Stede et al., 2025). High mast cell activation is
more frequent in cases of muscle dysfunction and tremor
in ME/CFS, suggesting a potential role (Zhou et al, 2024).
However, the pathomechanisms by which histamine could
disturb skeletal muscle function and cause tremor are not yet
clear.

In this section, we have collected evidence that central skeletal
muscle tone is increased by disturbances of the noradrenergic and
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the GABA neurotransmitter systems, leading to a predominance
of excitatory over inhibitory neurotransmitters for skeletal muscle
tone. In the presence of a depolarized skeletal muscle membrane,
which induces peripheral hyperexcitability, the central increase
in skeletal muscle tone facilitates the generation of irregular
action potentials. These become clinically manifest as fasciculations,
cramps, and tremors.

9 Skeletal muscle depolarization in
severely ill patients is superimposed
on mitochondrial dysfunction: a step
model to explain the condition of
severely ill ME/CFS patients

Overall, the muscles of severely ill ME/CFS patients may be
caught in a state of depolarization and mitochondrial damage, even
at rest. Even the slightest effort aggravates the condition. Energy-
depleted muscles compensatorily release vasoactive mediators,
such as bradykinin, prostaglandins, prostacyclin, and adenosine,
to increase local blood flow and remove the energetic deficit
(Wirth and Scheibenbogen, 2020); they also release histamine
(Van der Stede et al,, 2025). When excessively produced, these
otherwise very labile mediators can reach every organ (spillover into
systemic circulation). There, they can cause symptoms typical for
ME/CES such as edema, pain, and spasms due to their vasoactive,
inflammatory, vascular leakage-inducing, algesic, hyperalgesic, and
spasmogenic effects (Wirth and Scheibenbogen, 2020). In skeletal
muscle itself, these algesic mediators can cause muscular pain. In
the kidney, mediators such as bradykinin and prostacyclin cause
hyperexcretion of sodium and water by increasing renal blood flow
and inhibiting distal tubular sodium reabsorption. These effects
prevent an increase in renin to correct for the resulting hypovolemia
(explaining the renin paradox). This renal mechanism, causing
hypovolemia and increased vascular leakage, could play a significant
role in orthostatic dysfunction and orthostatic stress (Wirth and
Scheibenbogen, 2020).
skeletal in ME/CFS,
mechanisms could be involved, including the release of algesic

Concerning muscle pain several
mediators such as bradykinin, skeletal muscle damage after exercise,
cramps, and central sensitization, as explained above.

Our unifying hypothesis on the causes of the symptoms
and pathophysiology of ME/CFS can explain the condition
of severely ill patients without making new assumptions.
Mitochondrial damage and skeletal muscle depolarization reinforce
each other. They have the same cause: a dysfunction of ion
transport, mainly due to a Na*/K"-ATPase dysfunction. Different
pathomechanisms, including increased sodium influx into skeletal
muscle, central pathomechanisms, risk factors, and triggers,
contribute to these disturbances. It is the stringent application
of the current concept that provides a single pathomechanism
to explain loss of force, fatigue, and fasciculations of skeletal
muscle.

Figure 2 shows a step model of ME/CFS arising from long
COVID. During the long COVID stage, hypoperfusion is present,
mainly caused by microvascular dysfunction (Kruger et al., 2024).
From these perfusion disturbances, in the presence of risk factors,
ME/CFS develops via skeletal muscle mitochondrial dysfunction.
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FIGURE 2

as shown in Figure 1.

Step model that explains the condition of severely ill ME/CFS patients. Post-COVID-19 syndrome is mainly due to severe vascular disturbances due to
an interaction between capillary microvascular and precapillary cardiovascular disturbances triggered by the virus itself or by excessive cytokine and
immune responses, leading to hypoperfusion. In susceptible patients, skeletal muscle mitochondrial dysfunction develops to trigger ME/CFS as a
self-maintaining vicious cycle in which ionic disturbances caused by insufficient Na*/K*-ATPase activity play a key role. In severely ill patients, further
impaired Na*/K*-ATPase activity cannot maintain or restore the physiological resting membrane potential in skeletal muscle. The resulting membrane
depolarization leads to loss of force, hyperexcitability, and further aggravation of mitochondrial dysfunction due to ionic disturbances,

Severe ME/CFS

Healthy
Long COVID | Hypoperfusion
Moderate ME/CFs | Skeletal muscle )
mitochondrial dysfunction

Persistent skeletal muscle
membrane depolarization

Transient depolarization

Exercise ‘1 Improvement

PEM

FIGURE 3

Reversible skeletal muscle membrane depolarization during severe episodes of PEM in patients with moderate ME/CFS. While skeletal muscle
membrane depolarization is persistent in severely ill patients, in patients with moderate ME/CFS, muscle membrane depolarization may only be
transiently present during longer-lasting or more severe episodes of PEM after excessive exertion. The patients, however, may be capable of restoring a
stable physiological membrane potential, at least at rest, and maintaining it during moderate levels of exertion that do not cause PEM.

PEM, as an aggravation of the complaints, occurs with exercise and
effort. The third stage involves severely ill patients with persisting
membrane depolarization that develops because of insufficient
Na*/K*-ATPase
These disturbances are persistent or induced by minimal
effort.

Based on these considerations, one can conclude that the skeletal

activity and  mitochondrial  dysfunction.

muscles of patients with moderate disease that is in a prolonged
episode of PEM could also be in a (transient) depolarized state.
Skeletal muscles may be in a depolarized state for extended periods,
but patients may be able to overcome excessive depolarization to
return to the stage of mitochondrial dysfunction (Figure 3). In
support of this idea, EMG changes were observed in approximately
half of ME/CFS patients after a cycling exercise. The M-wave
amplitude significantly decreased in leg muscles, and the M-
wave duration significantly increased (Retornaz et al., 2023). This
measurement with surface electrodes does not assess membrane
voltage, but a surface summation potential, so it does not directly
reveal sarcolemmal depolarization. The decrease in amplitude and
the longer duration suggest a less effective recruitment of muscle
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fibers and a delayed propagation of the excitation along the skeletal
muscle fibers that, after exclusion of neuronal causes, can be
explained by membrane depolarization, as a fraction of excitatory
sodium channels would have been in the inactivated state. This
suggests that sarcolemmal depolarization can occur even in mild-to-
moderate ME/CFS. Interestingly, in the group of patients developing
exercise-induced M-wave alterations, resting values of handgrip
strength were significantly lower, and symptoms were more serious
than in patients without M-wave abnormalities. Hence, the known
correlation between loss of muscle force and symptoms also seems to
apply to EMG changes (disturbed excitability). This is not surprising,
as we see the disturbed electrophysiology behind the demonstrated
EMG changes as the cause for the loss of force.

These considerations also help explain why a loss of
force after diagnosis correlates with symptoms and poor
prognosis (Paffrath et al., 2024). The main cause for the loss of
force, an insufficient Na*/K*-ATPase activity, is also the main
cause for sodium-induced calcium overload that causes skeletal
muscle mitochondrial dysfunction, the key pathomechanism in our
ME/CEFS disease concept.
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Conclusion

Insufficient Na™/K*-ATPase activity can explain mitochondrial
dysfunction via sodium-induced calcium overload, causing
diminished oxidative phosphorylation in skeletal muscle, leading
to a lack of energy, fatigue, and loss of endurance, along with a
disturbance of skeletal muscle electrophysiology. The latter leads
to chronic depolarization of the sarcolemma, which explains both
loss of force due to impaired action potential propagation and fiber
recruitment and fasciculations (hyperexcitability). Skeletal muscle
depolarization may play a strong role in the myasthenia of these
severely ill ME/CEFS patients. It may also contribute to a vicious circle
that increases sodium loading through inappropriate excitations,
further increasing mitochondrial damage through calcium overload.
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