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Objective: To quantify the relationship between the longest apnea duration
(LAD) and the lowest oxygen saturation (LSaO,) in patients with obstructive
sleep apnea (OSA) and to develop a predictive model for the risk of
LSaO, decline.

Methods: A total of 1716 OSA patients were enrolled and grouped by severity
(236 non-OSA, 395 mild, 365 moderate, and 720 severe). Multiple linear
regression was used to analyze the dose-effect relationship between LAD and
LSaO,. A logistic regression model was developed to predict LSaO, grade, with
the dataset partitioned into a training set (n = 1,372) and a testing set (n = 344)
using random sampling.

Results: (1) For every 1-s increase in LAD, LSaO, decreased by 0.280% (95% CI:
—0.291%~-0.269%) in a univariate model and still decreased by 0.183% (95% CI:
—-0.197%~-0.170%) after adjusting for sex, age, BMI, and AHI; (2) Critical points
were identified: LSaO, was 85% when LAD was 34.20 s and 80% when LAD was
52.07 s; (3) The predictive model showed excellent identification performance
for severe (AUC = 0.93) and moderate-severe LSaO, (AUC = 0.96).
Conclusion: The study first quantifies the dose-response relationship between
LAD and LSaO, and establishes relevant clinical thresholds. The developed
model can accurately identify patients at risk of severe and moderate-severe
hypoxia, offering a new tool for individualized intervention.

dose-response relationship, hypoxia, longest apnea duration, lowest oxygen saturation,
obstructive sleep apnea, predictive model

1 Introduction

Obstructive sleep apnea (OSA) is a heterogeneous disorder and the second most
common sleep disorder in adults after insomnia. It is characterized by recurrent episodes
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of apnea and hypopnea during sleep, involving repetitive events
of complete (apnea) or partial (hypopnea) collapse of the
pharyngeal airway. These events can lead to intermittent hypoxemia,
hypercapnia, sleep fragmentation, and cardiac sympathetic
alterations, among others (Falla et al., 2023; Heinzer et al., 2015).
As the most prevalent type of sleep-disordered breathing, OSA
accounts for approximately 80% of all sleep apnea syndrome
cases (Gresova et al.,, 2023). The core pathological injury in OSA
stems from the intermittent hypoxia induced by these respiratory
events. Current clinical practice relies on the apnea-hypopnea
index (AHI) to assess disease severity. However, AHI solely
quantifies event frequency and fails to reflect the duration of
individual apneic events and the severity of associated oxygen
desaturation (Wang et al., 2025). This limitation leads to two
major clinical dilemmas: (1) risk misclassification, where patients
with the same AHI (e.g., 30 events/hour) classified as severe
exhibit substantial differences in organ damage risk depending
on apnea duration (e.g., 10s vs. 60s) (Punjabi, 2016); and (2)
a therapeutic gap, as persistent hypoxemia is observed in some
patients achieving CPAP treatment targets (AHI <5 events/hour),
significantly increasing their risk of cardiovascular events
(Peker et al., 2016).

Unlike the AHI, which only counts respiratory events, apnea
duration directly quantifies both single-event and cumulative
hypoxia exposure, aligning more with the pathophysiology of
hypoxic injury and offering a more direct and sensitive reflection of
actual hypoxia levels. Research shows that longer apnea/hypopnea
events are linked to lower nocturnal minimum oxygen saturation
and more severe hypoxia (Wang et al., 2025; Ma et al.,, 2024).
While the longest apnea duration (LAD) indicates the maximum
respiratory event duration, its quantitative link to minimum SaO,
(LsaO,) remains unclear. Although physiological studies have
shown that there is generally a linear relationship between the
duration of apnea and the degree of desaturation under controlled
conditions, this relationship can be regulated by sleep stage, baseline
lung volume, and metabolic factors (Badran and Gozal, 2025;
Prabhakar and Kline, 2002; Richardson et al., 2009). In addition,
there is a lack of large-sample validation, and key clinical thresholds
(such as the critical point of LAD leading to LSaO, < 85%) are often
left blank.

This study proposes the “LAD-driven LSaO, desaturation” dose-
effect hypothesis and achieves three key advances through a large-
scale investigation: (1) Quantifying the dose-effect relationship:
Establishing a linear equation for LAD-LSaO, after adjusting
for confounders; (2) Identifying critical clinical thresholds:
Discovering two hypoxemia-alert thresholds at 34s and 52s;
and (3) Developing a predictive tool: Creating an LAD-based
model for predicting LSaO, (AUC >0.93). This work will facilitate
a paradigm shift in OSA management from a “frequency-
oriented” approach (AHI) to an “intensity-oriented” approach
(LAD). This shift echoes the growing recognition that metrics
capturing the “intensity” or “hypoxic burden” of OSA—such as
the total area under the desaturation curve—provide a more
pathophysiologically relevant risk stratification than AHI alone.
Our study contributes to this paradigm by focusing on LAD, a
single, readily available metric that serves as a potent driver of
acute, profound hypoxic episodes, a key component of the overall
hypoxic burden.
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2 Materials and methods
2.1 Research design and patients

A total of 1716 patients who presented to the Sleep Medicine
Center of West China Fourth Hospital, Sichuan University,
with symptoms such as snoring and witnessed apnea between
January 2023 and December 2024 and underwent overnight
polysomnography (PSG) enrolled. Participants
categorized into four groups based on the American Academy of
Sleep Medicine (AASM) criteria (Berry et al, 2012): non-OSA
group (AHI <5 events/hour), mild group (5 events/hour < AHI

were were

<15 events/hour), moderate group (15 events/hour < AHI <30
events/hour), and severe group (AHI >30 events/hour).

Inclusion Criteria: (1) Age between 18 and 70 years; (2)
Complete clinical data, including gender, age, body mass index
(BMI), and sleep monitoring parameters; (3) Total PSG monitoring
duration >7h. Exclusion Criteria: (1) History of prior OSA
treatment (e.g., oral appliance therapy, OSA-related surgery,
continuous positive airway pressure [CPAP] therapy); (2) Presence
of other severe comorbidities potentially affecting sleep architecture
or respiratory function, including respiratory, cardiovascular, or
neurological diseases or malignancies, as well as special populations
such as pregnant or lactating women.

2.2 Definition of key variables

AHI is the average number of apneas and hypopneas per
hour. LAD is the longest apnea event duration during the night.
LSaO, is the lowest pulse oxygen saturation during the night.
PSG automatically analyzes these metrics, which are then manually
checked by technicians.

2.3 Polysomnography

Overnight polysomnography was performed on all patients
using the SOMNOscreen™ plus PSG + system. Recorded
parameters included oronasal airflow, oxygen saturation (SpO,),
(EEG), electrooculography (EOG),
submental electromyography (EMG), thoracic and abdominal

electroencephalography

respiratory effort, body position, and tibialis anterior EMG. Patients
were instructed on the day of monitoring to avoid napping and
to refrain from consuming coffee, tea, alcohol, or other beverages
known to interfere with sleep. They were also asked to maintain
clean facial skin and fingers to facilitate signal acquisition. Upon
arrival at the hospital, all patients were instrumented by trained
sleep technicians for overnight PSG monitoring. The total sleep
monitoring duration was required to be >7 h. Prior to the PSG
study, height and weight were measured for each patient, and BMI
was calculated.

2.4 Research methods

Before developing the machine learning model, the following
data preprocessing steps were performed. First, the gender categorical
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variable was converted to a numerical variable (male = 0, female = 1)
for model compatibility. Second, feature variables were standardized
to have a zero mean and unit variance. Third, synthetic minority
oversampling technique (SMOTE) was applied to address data
imbalance. The standardized dataset was used for model training and
prediction.

The preprocessed dataset was split into training and testing
sets in a 8:2 ratio. Specifically, 80% of the data were allocated
for training the model, while 20% were reserved for testing and
validating its performance. Logistic regression is selected as the main
machine learning algorithm.

2.5 Statistical analyses

The Kolmogorov-Smirnov method was used to test the
normality. The quantitative data did not satisfy the normal
distribution, and the quartile M (P25, P75) was used to describe
it. The qualitative data were described by percentage (%). The
Kruskal-Wallis H test was used for inter-group comparisons of
quantitative data. For qualitative data, inter-group comparisons
were conducted using the Pearson chi-square test or Fisher’s exact
probability test. The dose-effect relationship between LAD and
LSaO, was analyzed by linear regression analysis. Unless otherwise
specified, all tests were two-tailed with a significance level of o =
0.05. Data imputation, standardization, splitting, model building,
model evaluation and comparison, as well as the analysis of the
relationship between LAD and LSaO2 and result plotting, were
implemented using the Python 3.11 scikit-learn and matplotlib
libraries. The training set and test set were split in a ratio of 8:2.

3 Results
3.1 Patient baseline characteristics

This study included 1716 participants, comprising 236 with
non-OSA OSA, 395 with mild OSA, 365 with moderate OSA, and
720 with severe OSA, with severe OSA patients accounting for
42.0%. Among the 1716 participants, 1,370 were male (79.8%). The
mean age of patients was 42.0 (34.0, 51.0) years, and the mean
BMI was 25.6 (23.5, 27.8) kg/m?. Demographic characteristics and
sleep monitoring results varied among patients with different OSA
severities. As the condition worsened, AHI and LAD progressively
increased, whereas LSaO, gradually decreased (p < 0.001) (Table 1).

3.2 The dose-effect relationship between
LAD and LSaO,

In the univariate model, the regression coeflicient B of LAD was
-0.280, with a 95% CI of (-0.291, —0.269), indicating a negative
correlation between LAD and LSaO,. This means that for every 1-s
increase in LAD, LSaO, decreased by an average of 0.280 percentage
points without considering other variables. In the adjusted model,
controlling for gender, age, BMI, AHI, and other variables, the
regression coefficient B of LAD was —0.183, with a 95% CI of
(=0.197, —0.170). Despite the reduced regression coefficient, LAD
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remained negatively correlated with LSaO,. After controlling for
gender, age, BMI, AHI, etc., each 1-s increase in LAD was associated
with an average 0.183-percentage-point decrease in LSaO, (Table 2).

3.3 The ability of LAD to predict the degree
of LSaO,

We randomly split 1716 samples into a training set (n = 1,372)
and a testing set (n = 344) according to 8:2. The two groups showed
good consistency in the distribution of AHI severity (Table 3),
and both showed the same distribution pattern (severe > mild >
moderate > non-OSA). The maximum difference in the percentage
distribution of the training set and test set under each severity
was only 3.7%.

In this study, LSaO, levels were categorized into four groups:
normal (LSaO, 290%), mild (85%-90%), moderate (80%-85%), and
severe (<80%). A Logistic regression model was used to evaluate
LAD?’s predictive capacity for different LSaO, severities. The model
was developed using a training set (n = 1,372) and assessed
on a testing set (n = 344). Figure 1's confusion matrix offers a
visual overview of the classification accuracy for mild, moderate,
severe, and combined moderate-severe LSaO,, showing good
performance in severe and combined moderate-severe categories.
As indicated in Figure 2, the ROC curve analysis yielded AUC values
0f0.77,0.61,0.93,and 0.96 for mild, moderate, severe, and combined
moderate-severe LSaO, predictions, respectively, highlighting the
model’s excellent ability to distinguish severe and moderate-severe
LSa0, cases.

3.4 The linear relationship between LAD
and LSaO,

To visually illustrate the relationship between LAD and LSaO,,
this study employed Matplotlib to generate scatter plots with fitted
regression lines. The scatter plots display the actual data points,
reflecting the distribution of LSaO, across varying apnea durations.
The fitted lines represent predictions from linear regression
models, demonstrating the linear association between the variables.
Additionally, two horizontal reference lines were incorporated at the
LSaO, thresholds of 85% and 80% to facilitate visual assessment
of LAD’s impact on LSaO,. As shown in Figure 3, an LAD of
34.20 s corresponded to an LSaO, of 85%, while an LAD of 52.07 s
corresponded to an LSaO, of 80%.

4 Discussion

This study analyzed 1716 OSA patients to quantify the dose-
response relationship between LAD and LSaO, for the first time,
determining critical LAD thresholds of 34s (LSaO, = 85%) and
52 s (LSaO, = 80%). These findings enhance our understanding of
OSA’s pathophysiology and offer valuable guidance for clinical risk
stratification and therapeutic strategies.

Our dose-response model demonstrated that for every 1-s
increase in LAD, LSaO, decreased by an average of 0.183 percentage
points (95% CI: —0.197 to —0.170). This linear relationship remained
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TABLE 1 Baseline characteristics of 1716 patients.

10.3389/fphys.2025.1691994

Variables All (n = 1716) Non-OSA Mild group Moderate Severe group
group (n = 395) group (n =720)
(n = 236) (n = 365)

Male/% 1,370 (79.8) 151 (64.0) 270 (68.4) 295 (80.8) 654 (90.8) <0.001
Agelyr 42,0 (34.0,51.0) 38.0 (26.0, 47.0) 39.0 (31.0, 48.0) 44.0 (35.0, 54.0) 44.0 (36.0, 53.0) <0.001
BMI/(kg/m?) 25.6 (23.5,27.8) 24.0 (21.6,27.0) 24.3(22.3,26.4) 25.5(23.7,27.4) 26.8 (25.0,28.7) <0.001
AHI/h! 22.9(8.8,47.1) 1.5 (0.8, 3.0) 8.9 (6.5,11.6) 20.8 (17.6, 24.9) 50.9 (40.0, 59.7) <0.001
LAD/s 435 (30.0, 63.0) 19.0 (10.3, 24.0) 32.0 (25.0, 41.0) 43.0 (35.0, 56.0) 63.0 (50.0, 82.0) <0.001
1520,/% 83.0 (76.0, 88.0) 91.0 (89.0, 93.0) 88.0 (86.0, 90.0) 83.0 (79.0, 86.0) 75.0 (68.0, 81.0) <0.001

TABLE 2 Linear regression analysis between LAD and LSaO,.

Variables Single-factor model Adjustment model
95%ClI 95%CI
LAD -0.280 (-0.291, -0.269) <0.001 -0.183 (-0.197, -0.170) <0.001
Gender -0.932 (-1.595, -0.268) 0.006
Agelyr ~0.024 (-0.046, ~0.002) 0.029
BMI/(kg/m?) -0.516 (-0.596,-0.436) <0.001
AHI/h! -0.153 (-0.170, -0.135) <0.001

TABLE 3 Distribution of training set and test set in AHI severity.

AHI severity Total data set (n = 1716) Training set (n = 1,372) Testing set (n = 344)
Non-OSA 234 (13.6%) 177 (12.9%) 57 (16.6%)
Mild 394 (23.0%) 325 (23.7%) 69 (20.1%)
Moderate 367 (21.4%) 300 (21.9%) 67 (19.5%)
Severe 721 (42.0%) 570 (41.5%) 151 (43.9%)

statistically significant after adjusting for confounders, including
AHI and BML These results provide compelling support for the
emerging theory (Oksenberg and Leppanen, 2023a; Oksenberg and
Leppanen, 2023b; Kulkas et al., 2017) that respiratory event duration
is a core driver of hypoxic severity. A primary determinant of
desaturation event duration, depth, and area is the duration of
apnea and hypopnea events. Whereas the traditional AHI—the
gold standard for OSA diagnosis—quantifies event frequency
while ignoring temporal dimensions, this approach results in
substantial heterogeneity in hypoxic burden among patients with
identical AHI values. Specifically, within the same OSA severity
stratum, longer apnea-hypopnea durations and deeper desaturations
may carry distinct clinical implications compared to briefer,
shallower events (Yilmaz Durmaz and Gunes, 2020).

Frontiers in Physiology

04

Although prior research has addressed the association between
respiratory event duration and hypoxia, the predominant focus has
been on averaged temporal measures (e.g., total event duration per
hour (Wang et al., 2025; Ma et al., 2024; Sarac and Afsar, 2020))
or inter-event variations (e.g., differential oxygen reduction efficacy
between hypopneas and apneas (Kulkas et al., 2017)). Yilmaz et al.
(Yilmaz Durmaz and Gunes, 2020; Muraja-Murro et al., 2012)
demonstrated that among respiratory events, obstructive apnea
duration exhibits the strongest correlation with oxygen desaturation.
By concentrating on the pivotal metric of “single longest apnea
duration (LAD),” this study establishes individual LAD episodes
as predictors of hypoxia severity, thereby augmenting the
pathophysiological framework through event intensity—prolonged
apneas induce sustained ventilatory arrest, accelerating depletion
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Severe LSa02 180 (D) Moderate-Severe LSa02.

of alveolar oxygen reserves. This finding elucidates the clinical
paradox wherein certain patients with high AHI exhibit mild
hypoxia (shorter events) while others with low AHI develop
severe hypoxia (longer events), resonating with Oksenberg et al.'s
(Oksenberg and Leppanen, 2023a; Oksenberg and Leppanen,
2023b) theory of “distinct pathological significance of extended
respiratory events” Our work further reveals a unique mechanism
for acute profound hypoxia: protracted apneas exacerbate
desaturation through prolonged tissue hypoxia exposure and
compromised reoxygenation intervals (Badran and Gozal, 2025),
a process potentially conferring preferential injury to hypoxia-
vulnerable organs (e.g., cardiocerebrovascular systems) (Martinez-
Garcia et al., 2023). Clinical evidence (Sufioglu et al., 2012;
Li et al, 2011) indicates nasal surgery reduces apnea-hypopnea
durations and improves quality of life/daytime somnolence without
altering AHI. Moreover, animal studies (Wu et al., 2019) establish
that apnea-hypopnea duration correlates strongly with vascular
inflammation, endothelial dysfunction, and hypertension; longer
events (accompanied by deeper desaturations) provoke heightened
systemic inflammation, endothelial impairment, and blood pressure
elevation independent of AHI.
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Our study overcomes the limitations of AHI and mean event
duration (Sarac and Afsar, 2020; Zhan et al., 2018) by focusing on
single-peak duration as a core hypoxia predictor for the first time.
This approach aligns with clinical reality. For instance, A long time
apnea may directly cause myocardial ischemia (e.g., ST-segment
depression), while short-term frequent events can be compensated
for to alleviate hypoxic damage (Oksenberg and Leppanen, 2023a).
This shift echoes the new trend of assessing OSA based on
“frequency to severity” (Martinez-Garcia et al., 2023) Moreover, the
linear regression model (B = —0.183) enables clinicians to quantify
patient-specific hypoxia risks, offering an advantage over traditional
AHI stratification. It is particularly useful for high-risk groups
with non-severe AHI but long-duration apneas (e.g., AHI = 15
events/hour but LAD >50 s). The thresholds of 34 s (LSaO, = 85%)
and 52 s (LSaO, = 80%) carry multifaceted clinical implications:
(1) In-home sleep testing, these cutoffs can be integrated into
reports to automatically flag high-risk hypoxic events; (2) For
patients with prolonged LAD, CPAP pressure titration should
be prioritized over behavioral interventions alone; (3) LAD may
serve as an early warning signal for cardiovascular complications;
(4) Longer LAD before upper airway surgery may indicate poor
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efficacy, and OSA patients with longer apnea duration are more
likely to suffer from the risk of surgical failure (Suen et al., 2019;
Bostanci et al., 2016). Bostanci et al. (Bostanci et al., 2016) identified
associations between surgical failure and multiple parameters (mean
obstructive apnea duration >26.75 s, total apnea duration, minimum
Sa0,, mean Sa0,, mean O, desaturation, and oxygen desaturation
index), yet only mean obstructive apnea duration >26.75 s remained
an independent predictor of adverse outcomes after multivariable
adjustment [OR (95% CI) = 3.92 (1.08-14.17), p = 0.041]. The
thresholds of 34 s (LSaO, = 85%) and 52 s (LSaO, = 80%) offer clear
reference points for identifying patients approaching the critical
decompensation point.

Despite the significant value of the results, the following
limitations should be carefully considered: (1) The sample was
predominantly male (79.8%) with a mean age of 42 years.
Extrapolation of the results to female, older adult, or adolescent OSA
patients should be done with caution. Data from a single center may
be subject to regional selection bias. (2) The 34-s/52-s thresholds
were derived from a statistical model and need to be validated
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by prospective studies to determine if they can improve patient
prognosis when used to guide clinical interventions such as CPAP
titration. (3) The study focused on statistical associations rather than
biological mechanisms. It did not analyze the physiological pathways
through which LAD affects oxygenation (e.g., upper airway collapse
patterns, ventilation/perfusion ratios). Further basic research is
needed to supplement these findings. (4) While we used LAD as our
primary exposure, it can theoretically be susceptible to rare artifacts.
Future studies could consider using even more robust measures,
such as 95% of the longest apnea duration, to corroborate our
findings. (5) Future studies can explore how to incorporate baseline
Sa0, to improve the prediction model for individual patients.

5 Conclusion

This study confirms that LAD is an independent risk factor
driving LSaO, decline in OSA patients and establishes 34-s and
52-s thresholds as early-warning indicators for moderate and severe
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hypoxia, respectively. These findings catalyze a paradigm shift in  draft, Formal Analysis, Visualization, Writing - review and

OSA evaluation—from event frequency (AHI) to event harmfulness
(hypoxic depth). Although further validation is required regarding
the generalizability of these thresholds and their association
with hard endpoints, LAD as a key component of “hypoxic
burden” holds promise as a novel biomarker for individualized
risk stratification and targeted therapeutic interventions. Future
research should integrate multidimensional hypoxic indicators
(peak duration, cumulative burden, reoxygenation rate) to develop
precision prediction models for OSA-related end-organ damage.
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