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Objective: To quantify the relationship between the longest apnea duration 
(LAD) and the lowest oxygen saturation (LSaO2) in patients with obstructive 
sleep apnea (OSA) and to develop a predictive model for the risk of
LSaO2 decline.
Methods: A total of 1716 OSA patients were enrolled and grouped by severity 
(236 non-OSA, 395 mild, 365 moderate, and 720 severe). Multiple linear 
regression was used to analyze the dose-effect relationship between LAD and 
LSaO2. A logistic regression model was developed to predict LSaO2 grade, with 
the dataset partitioned into a training set (n = 1,372) and a testing set (n = 344) 
using random sampling.
Results: (1) For every 1-s increase in LAD, LSaO2 decreased by 0.280% (95% CI: 
−0.291%∼-0.269%) in a univariate model and still decreased by 0.183% (95% CI: 
−0.197%∼-0.170%) after adjusting for sex, age, BMI, and AHI; (2) Critical points 
were identified: LSaO2 was 85% when LAD was 34.20 s and 80% when LAD was 
52.07 s; (3) The predictive model showed excellent identification performance 
for severe (AUC = 0.93) and moderate-severe LSaO2 (AUC = 0.96).
Conclusion: The study first quantifies the dose-response relationship between 
LAD and LSaO2 and establishes relevant clinical thresholds. The developed 
model can accurately identify patients at risk of severe and moderate-severe 
hypoxia, offering a new tool for individualized intervention.
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dose-response relationship, hypoxia, longest apnea duration, lowest oxygen saturation, 
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 1 Introduction

Obstructive sleep apnea (OSA) is a heterogeneous disorder and the second most 
common sleep disorder in adults after insomnia. It is characterized by recurrent episodes
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of apnea and hypopnea during sleep, involving repetitive events 
of complete (apnea) or partial (hypopnea) collapse of the 
pharyngeal airway. These events can lead to intermittent hypoxemia, 
hypercapnia, sleep fragmentation, and cardiac sympathetic 
alterations, among others (Falla et al., 2023; Heinzer et al., 2015). 
As the most prevalent type of sleep-disordered breathing, OSA 
accounts for approximately 80% of all sleep apnea syndrome 
cases (Gresova et al., 2023). The core pathological injury in OSA 
stems from the intermittent hypoxia induced by these respiratory 
events. Current clinical practice relies on the apnea-hypopnea 
index (AHI) to assess disease severity. However, AHI solely 
quantifies event frequency and fails to reflect the duration of 
individual apneic events and the severity of associated oxygen 
desaturation (Wang et al., 2025). This limitation leads to two 
major clinical dilemmas: (1) risk misclassification, where patients 
with the same AHI (e.g., 30 events/hour) classified as severe 
exhibit substantial differences in organ damage risk depending 
on apnea duration (e.g., 10 s vs. 60 s) (Punjabi, 2016); and (2) 
a therapeutic gap, as persistent hypoxemia is observed in some 
patients achieving CPAP treatment targets (AHI <5 events/hour), 
significantly increasing their risk of cardiovascular events
(Peker et al., 2016).

Unlike the AHI, which only counts respiratory events, apnea 
duration directly quantifies both single-event and cumulative 
hypoxia exposure, aligning more with the pathophysiology of 
hypoxic injury and offering a more direct and sensitive reflection of 
actual hypoxia levels. Research shows that longer apnea/hypopnea 
events are linked to lower nocturnal minimum oxygen saturation 
and more severe hypoxia (Wang et al., 2025; Ma et al., 2024). 
While the longest apnea duration (LAD) indicates the maximum 
respiratory event duration, its quantitative link to minimum SaO2
(LSaO2) remains unclear. Although physiological studies have 
shown that there is generally a linear relationship between the 
duration of apnea and the degree of desaturation under controlled 
conditions, this relationship can be regulated by sleep stage, baseline 
lung volume, and metabolic factors (Badran and Gozal, 2025; 
Prabhakar and Kline, 2002; Richardson et al., 2009). In addition, 
there is a lack of large-sample validation, and key clinical thresholds 
(such as the critical point of LAD leading to LSaO2 < 85%) are often 
left blank.

This study proposes the “LAD-driven LSaO2 desaturation” dose-
effect hypothesis and achieves three key advances through a large-
scale investigation: (1) Quantifying the dose-effect relationship: 
Establishing a linear equation for LAD-LSaO2 after adjusting 
for confounders; (2) Identifying critical clinical thresholds: 
Discovering two hypoxemia-alert thresholds at 34 s and 52 s; 
and (3) Developing a predictive tool: Creating an LAD-based 
model for predicting LSaO2 (AUC >0.93). This work will facilitate 
a paradigm shift in OSA management from a “frequency-
oriented” approach (AHI) to an “intensity-oriented” approach 
(LAD). This shift echoes the growing recognition that metrics 
capturing the “intensity” or “hypoxic burden” of OSA—such as 
the total area under the desaturation curve—provide a more 
pathophysiologically relevant risk stratification than AHI alone. 
Our study contributes to this paradigm by focusing on LAD, a 
single, readily available metric that serves as a potent driver of 
acute, profound hypoxic episodes, a key component of the overall
hypoxic burden. 

2 Materials and methods

2.1 Research design and patients

A total of 1716 patients who presented to the Sleep Medicine 
Center of West China Fourth Hospital, Sichuan University, 
with symptoms such as snoring and witnessed apnea between 
January 2023 and December 2024 and underwent overnight 
polysomnography (PSG) were enrolled. Participants were 
categorized into four groups based on the American Academy of 
Sleep Medicine (AASM) criteria (Berry et al., 2012): non-OSA 
group (AHI <5 events/hour), mild group (5 events/hour ≤ AHI 
≤15 events/hour), moderate group (15 events/hour < AHI ≤30 
events/hour), and severe group (AHI >30 events/hour).

Inclusion Criteria: (1) Age between 18 and 70 years; (2) 
Complete clinical data, including gender, age, body mass index 
(BMI), and sleep monitoring parameters; (3) Total PSG monitoring 
duration ≥7 h. Exclusion Criteria: (1) History of prior OSA 
treatment (e.g., oral appliance therapy, OSA-related surgery, 
continuous positive airway pressure [CPAP] therapy); (2) Presence 
of other severe comorbidities potentially affecting sleep architecture 
or respiratory function, including respiratory, cardiovascular, or 
neurological diseases or malignancies, as well as special populations 
such as pregnant or lactating women. 

2.2 Definition of key variables

AHI is the average number of apneas and hypopneas per 
hour. LAD is the longest apnea event duration during the night. 
LSaO2 is the lowest pulse oxygen saturation during the night. 
PSG automatically analyzes these metrics, which are then manually 
checked by technicians. 

2.3 Polysomnography

Overnight polysomnography was performed on all patients 
using the SOMNOscreen™ plus PSG + system. Recorded 
parameters included oronasal airflow, oxygen saturation (SpO2), 
electroencephalography (EEG), electrooculography (EOG), 
submental electromyography (EMG), thoracic and abdominal 
respiratory effort, body position, and tibialis anterior EMG. Patients 
were instructed on the day of monitoring to avoid napping and 
to refrain from consuming coffee, tea, alcohol, or other beverages 
known to interfere with sleep. They were also asked to maintain 
clean facial skin and fingers to facilitate signal acquisition. Upon 
arrival at the hospital, all patients were instrumented by trained 
sleep technicians for overnight PSG monitoring. The total sleep 
monitoring duration was required to be ≥7 h. Prior to the PSG 
study, height and weight were measured for each patient, and BMI 
was calculated. 

2.4 Research methods

Before developing the machine learning model, the following 
data preprocessing steps were performed. First, the gender categorical 
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variable was converted to a numerical variable (male = 0, female = 1) 
for model compatibility. Second, feature variables were standardized 
to have a zero mean and unit variance. Third, synthetic minority 
oversampling technique (SMOTE) was applied to address data 
imbalance. The standardized dataset was used for model training and 
prediction.

The preprocessed dataset was split into training and testing 
sets in a 8:2 ratio. Specifically, 80% of the data were allocated 
for training the model, while 20% were reserved for testing and 
validating its performance. Logistic regression is selected as the main 
machine learning algorithm. 

2.5 Statistical analyses

The Kolmogorov-Smirnov method was used to test the 
normality. The quantitative data did not satisfy the normal 
distribution, and the quartile M (P25, P75) was used to describe 
it. The qualitative data were described by percentage (%). The 
Kruskal–Wallis H test was used for inter-group comparisons of 
quantitative data. For qualitative data, inter-group comparisons 
were conducted using the Pearson chi-square test or Fisher’s exact 
probability test. The dose-effect relationship between LAD and 
LSaO2 was analyzed by linear regression analysis. Unless otherwise 
specified, all tests were two-tailed with a significance level of α = 
0.05. Data imputation, standardization, splitting, model building, 
model evaluation and comparison, as well as the analysis of the 
relationship between LAD and LSaO2 and result plotting, were 
implemented using the Python 3.11 scikit-learn and matplotlib 
libraries. The training set and test set were split in a ratio of 8:2. 

3 Results

3.1 Patient baseline characteristics

This study included 1716 participants, comprising 236 with 
non-OSA OSA, 395 with mild OSA, 365 with moderate OSA, and 
720 with severe OSA, with severe OSA patients accounting for 
42.0%. Among the 1716 participants, 1,370 were male (79.8%). The 
mean age of patients was 42.0 (34.0, 51.0) years, and the mean 
BMI was 25.6 (23.5, 27.8) kg/m2. Demographic characteristics and 
sleep monitoring results varied among patients with different OSA 
severities. As the condition worsened, AHI and LAD progressively 
increased, whereas LSaO2 gradually decreased (p < 0.001) (Table 1).

3.2 The dose-effect relationship between 
LAD and LSaO2

In the univariate model, the regression coefficient B of LAD was 
−0.280, with a 95% CI of (−0.291, −0.269), indicating a negative 
correlation between LAD and LSaO2. This means that for every 1-s 
increase in LAD, LSaO2 decreased by an average of 0.280 percentage 
points without considering other variables. In the adjusted model, 
controlling for gender, age, BMI, AHI, and other variables, the 
regression coefficient B of LAD was −0.183, with a 95% CI of 
(−0.197, −0.170). Despite the reduced regression coefficient, LAD 

remained negatively correlated with LSaO2. After controlling for 
gender, age, BMI, AHI, etc., each 1-s increase in LAD was associated 
with an average 0.183-percentage-point decrease in LSaO2 (Table 2).

3.3 The ability of LAD to predict the degree 
of LSaO2

We randomly split 1716 samples into a training set (n = 1,372) 
and a testing set (n = 344) according to 8:2. The two groups showed 
good consistency in the distribution of AHI severity (Table 3), 
and both showed the same distribution pattern (severe > mild > 
moderate > non-OSA). The maximum difference in the percentage 
distribution of the training set and test set under each severity 
was only 3.7%.

In this study, LSaO2 levels were categorized into four groups: 
normal (LSaO2 ≥90%), mild (85%–90%), moderate (80%–85%), and 
severe (<80%). A Logistic regression model was used to evaluate 
LAD’s predictive capacity for different LSaO2 severities. The model 
was developed using a training set (n = 1,372) and assessed 
on a testing set (n = 344). Figure 1's confusion matrix offers a 
visual overview of the classification accuracy for mild, moderate, 
severe, and combined moderate-severe LSaO2, showing good 
performance in severe and combined moderate-severe categories. 
As indicated in Figure 2, the ROC curve analysis yielded AUC values 
of 0.77, 0.61, 0.93, and 0.96 for mild, moderate, severe, and combined 
moderate-severe LSaO2 predictions, respectively, highlighting the 
model’s excellent ability to distinguish severe and moderate-severe 
LSaO2 cases.

3.4 The linear relationship between LAD 
and LSaO2

To visually illustrate the relationship between LAD and LSaO2, 
this study employed Matplotlib to generate scatter plots with fitted 
regression lines. The scatter plots display the actual data points, 
reflecting the distribution of LSaO2 across varying apnea durations. 
The fitted lines represent predictions from linear regression 
models, demonstrating the linear association between the variables. 
Additionally, two horizontal reference lines were incorporated at the 
LSaO2 thresholds of 85% and 80% to facilitate visual assessment 
of LAD’s impact on LSaO2. As shown in Figure 3, an LAD of 
34.20 s corresponded to an LSaO2 of 85%, while an LAD of 52.07 s 
corresponded to an LSaO2 of 80%.

4 Discussion

This study analyzed 1716 OSA patients to quantify the dose-
response relationship between LAD and LSaO2 for the first time, 
determining critical LAD thresholds of 34 s (LSaO2 = 85%) and 
52 s (LSaO2 = 80%). These findings enhance our understanding of 
OSA’s pathophysiology and offer valuable guidance for clinical risk 
stratification and therapeutic strategies.

Our dose-response model demonstrated that for every 1-s 
increase in LAD, LSaO2 decreased by an average of 0.183 percentage 
points (95% CI: −0.197 to −0.170). This linear relationship remained 
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TABLE 1  Baseline characteristics of 1716 patients.

Variables All (n = 1716) Non-OSA 
group

(n = 236)

Mild group
(n = 395)

Moderate 
group

(n = 365)

Severe group 
(n = 720)

p

Male/% 1,370 (79.8) 151 (64.0) 270 (68.4) 295 (80.8) 654 (90.8) <0.001

Age/yr 42.0 (34.0, 51.0) 38.0 (26.0, 47.0) 39.0 (31.0, 48.0) 44.0 (35.0, 54.0) 44.0 (36.0, 53.0) <0.001

BMI/(kg/m2) 25.6 (23.5, 27.8) 24.0 (21.6, 27.0) 24.3 (22.3, 26.4) 25.5 (23.7, 27.4) 26.8 (25.0, 28.7) <0.001

AHI/h-1 22.9 (8.8, 47.1) 1.5 (0.8, 3.0) 8.9 (6.5, 11.6) 20.8 (17.6, 24.9) 50.9 (40.0, 59.7) <0.001

LAD/s 43.5 (30.0, 63.0) 19.0 (10.3, 24.0) 32.0 (25.0, 41.0) 43.0 (35.0, 56.0) 63.0 (50.0, 82.0) <0.001

LSaO2/% 83.0 (76.0, 88.0) 91.0 (89.0, 93.0) 88.0 (86.0, 90.0) 83.0 (79.0, 86.0) 75.0 (68.0, 81.0) <0.001

TABLE 2  Linear regression analysis between LAD and LSaO2.

Variables Single-factor model Adjustment model

B 95%CI p B 95%CI p

LAD −0.280 (-0.291, −0.269) <0.001 −0.183 (-0.197, −0.170) <0.001

Gender −0.932 (-1.595, −0.268) 0.006

Age/yr −0.024 (-0.046, −0.002) 0.029

BMI/(kg/m2) −0.516 (-0.596,-0.436) <0.001

AHI/h-1 −0.153 (-0.170, −0.135) <0.001

TABLE 3  Distribution of training set and test set in AHI severity.

AHI severity Total data set (n = 1716) Training set (n = 1,372) Testing set (n = 344)

Non-OSA 234 (13.6%) 177 (12.9%) 57 (16.6%)

Mild 394 (23.0%) 325 (23.7%) 69 (20.1%)

Moderate 367 (21.4%) 300 (21.9%) 67 (19.5%)

Severe 721 (42.0%) 570 (41.5%) 151 (43.9%)

statistically significant after adjusting for confounders, including 
AHI and BMI. These results provide compelling support for the 
emerging theory (Oksenberg and Leppanen, 2023a; Oksenberg and 
Leppanen, 2023b; Kulkas et al., 2017) that respiratory event duration 
is a core driver of hypoxic severity. A primary determinant of 
desaturation event duration, depth, and area is the duration of 
apnea and hypopnea events. Whereas the traditional AHI—the 
gold standard for OSA diagnosis—quantifies event frequency 
while ignoring temporal dimensions, this approach results in 
substantial heterogeneity in hypoxic burden among patients with 
identical AHI values. Specifically, within the same OSA severity 
stratum, longer apnea-hypopnea durations and deeper desaturations 
may carry distinct clinical implications compared to briefer, 
shallower events (Yilmaz Durmaz and Gunes, 2020).

Although prior research has addressed the association between 
respiratory event duration and hypoxia, the predominant focus has 
been on averaged temporal measures (e.g., total event duration per 
hour (Wang et al., 2025; Ma et al., 2024; Sarac and Afsar, 2020)) 
or inter-event variations (e.g., differential oxygen reduction efficacy 
between hypopneas and apneas (Kulkas et al., 2017)). Yılmaz et al. 
(Yilmaz Durmaz and Gunes, 2020; Muraja-Murro et al., 2012) 
demonstrated that among respiratory events, obstructive apnea 
duration exhibits the strongest correlation with oxygen desaturation. 
By concentrating on the pivotal metric of “single longest apnea 
duration (LAD),” this study establishes individual LAD episodes 
as predictors of hypoxia severity, thereby augmenting the 
pathophysiological framework through event intensity—prolonged 
apneas induce sustained ventilatory arrest, accelerating depletion 
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FIGURE 1
Confusion matrix of prediction model based on Logistic regression in LSaO2 test set with different severity. (A) Mild LSa02 (B) Moderate LSa02 (C)
Severe LSa02 180 (D) Moderate-Severe LSa02.

of alveolar oxygen reserves. This finding elucidates the clinical 
paradox wherein certain patients with high AHI exhibit mild 
hypoxia (shorter events) while others with low AHI develop 
severe hypoxia (longer events), resonating with Oksenberg et al.'s 
(Oksenberg and Leppanen, 2023a; Oksenberg and Leppanen, 
2023b) theory of “distinct pathological significance of extended 
respiratory events.” Our work further reveals a unique mechanism 
for acute profound hypoxia: protracted apneas exacerbate 
desaturation through prolonged tissue hypoxia exposure and 
compromised reoxygenation intervals (Badran and Gozal, 2025), 
a process potentially conferring preferential injury to hypoxia-
vulnerable organs (e.g., cardiocerebrovascular systems) (Martinez-
Garcia et al., 2023). Clinical evidence (Sufioglu et al., 2012; 
Li et al., 2011) indicates nasal surgery reduces apnea-hypopnea 
durations and improves quality of life/daytime somnolence without 
altering AHI. Moreover, animal studies (Wu et al., 2019) establish 
that apnea-hypopnea duration correlates strongly with vascular 
inflammation, endothelial dysfunction, and hypertension; longer 
events (accompanied by deeper desaturations) provoke heightened 
systemic inflammation, endothelial impairment, and blood pressure 
elevation independent of AHI.

Our study overcomes the limitations of AHI and mean event 
duration (Sarac and Afsar, 2020; Zhan et al., 2018) by focusing on 
single-peak duration as a core hypoxia predictor for the first time. 
This approach aligns with clinical reality. For instance, A long time 
apnea may directly cause myocardial ischemia (e.g., ST-segment 
depression), while short-term frequent events can be compensated 
for to alleviate hypoxic damage (Oksenberg and Leppanen, 2023a). 
This shift echoes the new trend of assessing OSA based on 
“frequency to severity.” (Martinez-Garcia et al., 2023) Moreover, the 
linear regression model (B = −0.183) enables clinicians to quantify 
patient-specific hypoxia risks, offering an advantage over traditional 
AHI stratification. It is particularly useful for high-risk groups 
with non-severe AHI but long-duration apneas (e.g., AHI = 15 
events/hour but LAD >50 s). The thresholds of 34 s (LSaO2 = 85%) 
and 52 s (LSaO2 = 80%) carry multifaceted clinical implications: 
(1) In-home sleep testing, these cutoffs can be integrated into 
reports to automatically flag high-risk hypoxic events; (2) For 
patients with prolonged LAD, CPAP pressure titration should 
be prioritized over behavioral interventions alone; (3) LAD may 
serve as an early warning signal for cardiovascular complications; 
(4) Longer LAD before upper airway surgery may indicate poor 
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FIGURE 2
The ROC curve of the prediction model based on Logistic regression in different severity of LSaO2. (A) Mild LSa02 (B) Moderate LSa02 (C) Severe LSa02 
180 (D) Moderate-Severe LSa02.

efficacy, and OSA patients with longer apnea duration are more 
likely to suffer from the risk of surgical failure (Suen et al., 2019; 
Bostanci et al., 2016). Bostanci et al. (Bostanci et al., 2016) identified 
associations between surgical failure and multiple parameters (mean 
obstructive apnea duration >26.75 s, total apnea duration, minimum 
SaO2, mean SaO2, mean O2 desaturation, and oxygen desaturation 
index), yet only mean obstructive apnea duration >26.75 s remained 
an independent predictor of adverse outcomes after multivariable 
adjustment [OR (95% CI) = 3.92 (1.08-14.17), p = 0.041]. The 
thresholds of 34 s (LSaO2 = 85%) and 52 s (LSaO2 = 80%) offer clear 
reference points for identifying patients approaching the critical 
decompensation point.

Despite the significant value of the results, the following 
limitations should be carefully considered: (1) The sample was 
predominantly male (79.8%) with a mean age of 42 years. 
Extrapolation of the results to female, older adult, or adolescent OSA 
patients should be done with caution. Data from a single center may 
be subject to regional selection bias. (2) The 34-s/52-s thresholds 
were derived from a statistical model and need to be validated 

by prospective studies to determine if they can improve patient 
prognosis when used to guide clinical interventions such as CPAP 
titration. (3) The study focused on statistical associations rather than 
biological mechanisms. It did not analyze the physiological pathways 
through which LAD affects oxygenation (e.g., upper airway collapse 
patterns, ventilation/perfusion ratios). Further basic research is 
needed to supplement these findings. (4) While we used LAD as our 
primary exposure, it can theoretically be susceptible to rare artifacts. 
Future studies could consider using even more robust measures, 
such as 95% of the longest apnea duration, to corroborate our 
findings. (5) Future studies can explore how to incorporate baseline 
SaO2 to improve the prediction model for individual patients. 

5 Conclusion

This study confirms that LAD is an independent risk factor 
driving LSaO2 decline in OSA patients and establishes 34-s and
52-s thresholds as early-warning indicators for moderate and severe 
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FIGURE 3
Linear relationship between LAD and LSaO2.

hypoxia, respectively. These findings catalyze a paradigm shift in 
OSA evaluation—from event frequency (AHI) to event harmfulness 
(hypoxic depth). Although further validation is required regarding 
the generalizability of these thresholds and their association 
with hard endpoints, LAD as a key component of “hypoxic 
burden” holds promise as a novel biomarker for individualized 
risk stratification and targeted therapeutic interventions. Future 
research should integrate multidimensional hypoxic indicators 
(peak duration, cumulative burden, reoxygenation rate) to develop 
precision prediction models for OSA-related end-organ damage.
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