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Fetal ultrasound standard plane recognition plays a vital role in ensuring accurate 
prenatal assessment but remains challenging due to intrinsic factors such as 
poor tissue contrast, indistinct anatomical boundaries, and variability in image 
quality caused by operator differences. To address these issues, we introduce 
a plug-and-play Adaptive Contrast Adjustment Module (ACAM), inspired by 
how clinicians manually adjust image contrast to highlight clearer structural 
cues. The proposed module integrates a lightweight, texture-aware subnetwork 
that learns to generate clinically meaningful contrast parameters, producing 
multiple contrast-enhanced representations of the same image through a 
differentiable transformation process. These enhanced views are then fused 
within subsequent classifiers to enrich discriminative features. Experiments 
conducted on a multi-center dataset containing 12,400 fetal ultrasound images 
across six anatomical planes demonstrate consistent performance gains: the 
accuracy of lightweight models rises by 2.02%, conventional architectures 
by 1.29%, and state-of-the-art models by 1.15%. The key novelty of ACAM 
lies in its content-adaptive and clinically aligned contrast modulation, which 
replaces random preprocessing with physics-guided transformations mimicking 
sonographers’ diagnostic workflows. By leveraging multi-view contrast fusion, 
our approach enhances robustness against image quality variations and 
effectively links low-level texture cues with high-level semantic understanding, 
offering a new framework for medical image analysis in realistic clinical settings. 
Our code is available at: https://github.com/sysll/ACAM.

KEYWORDS

fetal ultrasound, clinically-inspired module, adaptive contrast adjustment, robust 
medical image analysis, plug and play (PnP) 

 1 Introduction

Ultrasound offers several advantages, including safety, convenience, non-invasiveness, 
and the absence of ionizing radiation, which has led to its widespread application in critical 
areas such as prenatal fetal screening Maher and Seed (2024); Wittek et al. (2025); Al-
Dahim et al. (2024); Miller et al. (2020); Wang (2018). The acquisition of standardized fetal 
ultrasound planes is essential for improving diagnostic precision and minimizing the risk of 
overlooking severe fetal abnormalities. Nevertheless, achieving this standardization remains 
challenging: it requires operators to have comprehensive knowledge of fetal anatomy, while
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clinical expertise and equipment conditions may sometimes be 
inadequate. Furthermore, the increasing complexity of screening 
settings, the rising demand for fetal examinations, and the shortage 
of skilled ultrasound practitioners make manual acquisition of high-
quality planes even more difficult. In this context, there is a pressing 
need for automated recognition systems to support sonographers 
in efficiently and accurately identifying standard fetal trunk planes. 
These systems can help reduce missed diagnoses, improve workflow 
efficiency, and provide more reliable and safer technical assistance 
for prenatal evaluation.

Deep learning has demonstrated remarkable capabilities and 
has been widely applied across various domains Cai et al. (2024); 
Zhu et al. (2024); Ou et al. (2024); Mykula et al. (2024); Zhao et al. 
(2024a); Zhao et al. (2024b); Jin et al. (2025); Zhao et al. 
(2025). In recent years, there has been growing interest in 
algorithms for fetal ultrasound plane analysis Zhu et al. (2025b), 
Zhu et al. (2025a); Boumeridja et al. (2025); Montero et al. (2021); 
Yousefpour Shahrivar et al. (2023); Krishna and Kokil (2024); 
Krishna and Kokil (2023); Fiorentino et al. (2025a); Migliorelli et al. 
(2024). However, most studies primarily focus on feature extraction 
modules, emphasizing information in intermediate network layers 
or increasing dataset size to improve model performance. For 
example, Zhu et al. (2025b) aimed to optimize pooling layer 
performance; while insightful, this approach overlooks the impact of 
the input layer. Similarly, Montero et al. (2021) employed generative 
adversarial networks (GANs) to generate additional training images, 
thereby enlarging the dataset. Only a few studies consider the 
interaction between the model and the input image in relation 
to image quality. For instance, Zhu et al. (2025a) highlighted the 
importance of selecting appropriate contrast and gain for medical 
image performance and proposed an attention mechanism to focus 
on regions with critical gain. However, in their approach, contrast 
and gain are fixed rather than adaptively generated, which limits 
the model’s capability. To address these limitations, we propose an 
Adaptive Contrast Adjustment Module (ACAM) that dynamically 
adjusts image contrast based on image content. By generating 
multiple contrast-enhanced versions and fusing their information, 
the module not only enriches texture representations but also 
significantly improves the classification accuracy of complex fetal 
plane images.

Our approach is motivated by the practical workflow of 
clinicians when identifying fetal planes during ultrasound 
examinations. In routine practice, sonographers often manipulate 
image contrast to emphasize key anatomical structures, which 
helps produce clearer and more discriminative images Smith and 
Lopez (1982); Mehta et al. (2017). Drawing from this idea, we 
incorporate an adaptive contrast adjustment module into our model. 
Specifically, the input image is first processed by a decision network 
that predicts K potential contrast parameters. These predicted 
parameters are then mapped to a predefined fixed range using a 
differentiable function to ensure numerical stability and preserve 
trainability. Using these contrast parameters, the input image is 
transformed to produce K contrast-enhanced variants, effectively 
introducing multiple perspectives or styles during training. These 
enhanced images are then passed through a convolutional neural 
network for feature extraction and classification. Since contrast 
adjustment relies more on local texture information rather than 
high-level semantic cues, we employ a shallow convolutional 

network as the decision module. This network captures fine-
grained details, such as edges and textures, to generate the 
contrast parameters. This design provides both interpretability 
and generalization benefits. The parameters directly control image 
brightness and contrast, making the transformations intuitive and 
visually interpretable, in contrast to black-box manipulations of 
abstract features. Additionally, by explicitly generating multiple 
contrast scenarios, the model learns representations that are 
more robust to variations in illumination and contrast, which 
improves generalization across different acquisition settings or 
imaging domains.

Furthermore, our module adopts a plug-and-play architecture 
and is applied solely to the lower layers of the network, 
allowing for easy integration. We evaluated its effectiveness 
by embedding it into conventional robust models, lightweight 
networks, and cutting-edge architectures, performing ablation 
studies to quantify its impact. Comparative experiments were 
subsequently conducted against eight baseline models. The results 
indicate that incorporating our module consistently improves 
performance. The main benefits of the module are summarized as
follows:

• The module emulates the way clinicians adjust image contrast, 
allowing adaptive generation of multiple images with different 
contrast levels. This enables the model to learn from diverse 
representations, enhancing its sensitivity to fine details and 
improving overall robustness.

• In our framework, a shallow convolutional network first 
extracts local texture information from the input image. Using 
these features, the network predicts several candidate contrast 
values, which are then applied to enhance the image and enrich 
feature representation.

• We incorporated the module into lightweight CNNs, 
conventional robust models, and state-of-the-art architectures, 
performing comprehensive evaluations. Comparative 
experiments, ablation studies, and heatmap visualizations 
confirm that the module consistently boosts model 
performance and generalizability.

2 Methods

2.1 Linear contrast

Image contrast enhancement can be achieved through either 
linear or nonlinear gray-level transformations, with the basic goal of 
stretching or compressing the distribution range of pixel intensities, 
thereby emphasizing the intensity differences across regions of the 
image. Let the original grayscale image be denoted as I(x,y), where 
(x,y) represents the pixel location in the image. A commonly used 
linear contrast adjustment method can be formulated as shown in 
Equation 1:

I′ (x,y) = α ⋅ (I (x,y) − μ) + μ, (1)

where I′(x,y) represents the adjusted pixel intensity, α > 0 is the 
contrast scaling factor (typically referred to as the contrast gain), 
and μ is the mean intensity (brightness center) of the image, defined 
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as shown in Equation 2:

μ = 1
HW

H

∑
x=1

W

∑
y=1

I (x,y) , (2)

with H and W denoting the image height and width, respectively.
When α > 1, the contrast of the image is increased, whereas α <

1 reduces the contrast. 

2.2 The mechanism of the ACAM module

The structure of our module is illustrated in Figure 1. First, 
the input is a grayscale image with dimensions [1, H, W]. The 
first step of the model is to generate a set of contrast values 
from this image for subsequent processing. We posit that contrast 
prediction primarily relies on the detailed information within the 
image rather than semantic-level features. Therefore, this module 
employs a shallow architecture composed of convolutional layers, a 
global average pooling layer, and fully connected layers. This design 
is chosen because shallow convolutional neural networks are more 
adept at extracting high-frequency detail information from images, 
whereas deeper convolutions mainly capture semantic features. 
Moreover, using a low-level structure introduces fewer parameters. 
The predicted contrast values are then mapped to the range [1, 3] 
to align with the adjustment range typically used by clinicians. This 
process can be expressed as Equation 3.

C = Function (FC (GAP (Conv (Image)))) (3)

where C = [c1,c2,…,ck]. The Function(x) function is shown in
Equation 4.

Function (x) = 1+ 2 1
1+ e−x

(4)

These contrast values are then fed into the model as contrast 
parameters. The specific formula is given in Equation 5.

Ikij = ck(Ikij −
1

HW
∑
ij

Ikij)+
1

HW
∑
ij

Ikij (5)

Where Ikij denotes the pixel at row i, column j of the k-th image. 
The final output (I) is with dimensions of [K×H×W], representing 
k images generated under k different contrast conditions. These 
images constitute the output of our module and serve as input to 
subsequent decision-making models such as MedMamba. Clinicians 
typically begin by adjusting image contrast to enhance clarity 
before proceeding to in-depth analysis for diagnostic classification. 
Our ACAM module mimics this contrast enhancement process 
to optimize visual clarity, operating primarily on low-level texture 
information. In contrast, downstream decision-making models such 
as MedMamba simulate the clinician’s diagnostic reasoning process, 
which necessitates the extraction of high-level semantic features, so 
they have deeper layers. 

2.3 Implementation details

This study is based on a large-scale prenatal screening 
ultrasound image dataset Burgos-Artizzu et al. (2020), which was 

collected from two hospitals and encompasses multiple operators as 
well as different ultrasound device models. All images were manually 
annotated by a single obstetrics expert and categorized into six 
classes: four commonly used fetal standard planes (abdominal, 
brain, femur, and thoracic), the maternal cervix plane for preterm 
screening, and a general class including other less common planes. 
The names of these standard planes and their corresponding 
encoded categories are shown in Figure 2. The number of images 
for each standard plane category is shown in the Table 1. The final 
dataset comprises over 12,400 images from 1,792 patients, and it 
was split into training and test sets at a ratio of 7:3. All experiments 
were conducted using Python 3.9 and the PyTorch 2.0.1+cu117 
framework, on a system equipped with an Intel i7-12650H processor 
and an NVIDIA RTX2080Ti GPU. Detailed settings of the model 
parameters and baseline models are provided in Table 2, with the 
number of generated contrast images n set to 10.

We justify our hyperparameter choices as follows. The contrast 
range is set to [1,3], based on clinical practice. The study Zhu et al. 
(2025c) discussed the changes in ultrasound images with contrast 
ranging from 1 to 2.5, illustrating the advantages of this range. 
Clinicians typically adjust image contrast within this range to 
enhance the visibility of anatomical structures while avoiding image 
distortion—values below 1.0 excessively compress the dynamic 
range, whereas values above 3.0 may cause key regions to become 
oversaturated. The number of contrast variants is configured at 
K = 10, taking into account clinical practices. While clinicians 
may experiment with various contrast adjustments for a single 
image, they seldom employ an excessive number. In the study by 
Zhu et al. (2025a), nine contrast groups with fixed gain settings 
were used, which is close to our setting. Therefore, choosing 10 
variants strikes a balance between computational efficiency and 
feature diversity. For the network architecture, we use a shallow 
convolutional network for contrast prediction to extract texture 
features, as contrast adjustment mainly relies on low-level image 
statistics rather than high-level semantic information. Studies 
Zhang et al. (2019); Gao et al. (2020); Cimpoi et al. (2015) have 
all highlighted the role of shallow neural networks in extracting 
texture information. In terms of training configuration, the batch 
size is set to 64 to efficiently utilize GPU memory and follow 
the powers-of-two convention; the learning rate is set to 0.001 to 
ensure stable convergence; and the model is trained for 20 epochs 
to achieve sufficient convergence while avoiding overfitting. This 
setup is based on the experience reported in previous studies on 
related datasets Burgos-Artizzu et al. (2020); Zhu et al. (2025a);
Montero et al. (2021). 

3 Results

3.1 Evaluation metrics and baseline models

In this study, multiple widely adopted evaluation metrics are 
employed to systematically analyze model performance. Accuracy 
(ACC) reflects the overall correctness of predictions; however, it 
may be misleading in scenarios with imbalanced class distributions. 
Recall measures the model’s ability to correctly identify positive 
samples, which is particularly crucial in medical image analysis, as 
higher recall helps reduce the risk of missed diagnoses. Precision 
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FIGURE 1
Architecture of the proposed module. It consists of two components: contrast generation and contrast adjustment. The contrast generation 
component predicts k distinct contrast parameters, which are subsequently used by the contrast adjustment component to transform the input image 
accordingly.

FIGURE 2
Sample images from each class of the dataset.

evaluates the proportion of predicted positive samples that are truly 
positive, thereby reducing the likelihood of false alarms. The F1-
score, defined as the harmonic mean of precision and recall, provides 
a balanced assessment of both metrics.

Here, we denote the standard confusion matrix terms as follows:

• TP (True Positive): number of correctly predicted positive 

samples,

• TN (True Negative): number of correctly predicted negative 

samples,
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TABLE 1  The number of each fetal ultrasound standard plane in 
the dataset.

Plane Number

Fetal abdomen (class 0) 711

Fetal femur (class 1) 1,040

Maternal cervix (class 2) 1,626

Fetal thorax (class 3) 1718

Fetal brain (class 4) 3,092

Other (class 5) 4,213

TABLE 2  Hyperparameter settings used during model training.

Hyperparameter Value

Batch size 64

Epoch 20

Lr 0.001

Optimizer Adam (Bock and Weiß, 2019)

Loss function Crossentropy (Mao et al., 2023)

• FP (False Positive): number of negative samples incorrectly 
predicted as positive,

• FN (False Negative): number of positive samples incorrectly 
predicted as negative.

Based on these definitions, the metrics are computed as 
Equations 6–9:

Accuracy = TP+TN
TP+TN+ FP+ FN

(6)

Precision = TP
TP+ FP

(7)

Recall = TP
TP+ FN

(8)

F1 = 2×Precision×Recall
Precision+Recall

(9)

In addition, to comprehensively characterize the model’s 
classification capability across different decision thresholds, we 
introduce the Receiver Operating Characteristic (ROC) curve and 
employ the Area Under the Curve (AUC) as a performance indicator. 
Similarly, the Precision–Recall (PR) curve is utilized to illustrate 
prediction accuracy at varying recall levels, with the Average 
Precision (AP) computed to intuitively reflect the model’s ability in 
target detection tasks.

To evaluate the effectiveness of the proposed model, we compare 
it against several established deep learning architectures, including 
EfficientNet Kashyap et al. (2023), InceptionV3 Szegedy et al. (2016), 
VGG Gunasekaran and Vivekasaran (2024), ResNet Xu et al. (2023), 

TABLE 3  Ablation study results of our module integrated into different 
models, as well as comparisons with other models.

Model ACC Precision Recall F1-score

ACAM-ResNet 0.9301 0.9318 0.9301 0.9300

RCJ-ResNet 0.9202 0.9216 0.9202 0.9183

ResNet 0.9172 0.9203 0.9172 0.9167

ACAM-MedMamba 0.9347 0.9351 0.9347 0.9347

RCJ-Medmamba 0.9248 0.9284 0.9248 0.9253

MedMamba 0.9232 0.9266 0.9232 0.9236

ACAM-ShuffleNet 0.9130 0.9125 0.9130 0.9125

RCJ-ShuffleNet 0.8939 0.8932 0.8939 0.8908

ShuffleNet 0.8928 0.8920 0.8928 0.8894

EfficientNet 0.9226 0.9237 0.9226 0.9226

InceptionV3 0.9232 0.9240 0.9232 0.9216

MobileNet 0.9027 0.9076 0.9027 0.9036

VGG 0.9073 0.9100 0.9073 0.9075

ConVNeXt 0.8923 0.8951 0.8923 0.8899

EfficientVMamba 0.8953 0.8943 0.8953 0.8921

OrthoNets 0.9218 0.9253 0.9218 0.9223

Efficientvit 0.9205 0.9238 0.9205 0.9209

The best-performing values are highlighted in bold.

MobileNet Han et al. (2022), ShuffleNet Hou et al. (2025), ConvNeXt 
Sangeetha and Geetha (2024), MedMamba Bansal et al. (2024), 
EfficientVMamba Pei et al. (2025), OrthoNets Salman et al. (2023), 
and Efficientvit Liu et al. (2023). 

3.2 Comparison experiment

The performance comparison of the models is presented 
in Table 3. As shown, all evaluated models—ranging from 
lightweight networks such as ShuffleNet, MobileNet, and 
EfficientNet to traditional robust architectures including ResNet, 
VGG, InceptionV3, and ConVNeXt, as well as state-of-the-
art deep learning models such as MedMamba variants and 
EfficientViT—achieved strong performance on the test set, 
with overall accuracy consistently exceeding the 90% baseline. 
Specifically, classical architectures like EfficientNet and InceptionV3 
achieved top-1 accuracies of 92.26% and 92.32%, respectively, 
while MobileNet and VGG attained slightly lower accuracies 
of 90.27% and 90.73%. In addition to these baseline models, 
we evaluated RCJ-based models, which use Random Contrast 
Jittering as a data augmentation strategy. The incorporation of RCJ 
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FIGURE 3
Comparison of confusion matrices for three models before and after integrating the proposed module. (a–c) show the classification performance of 
the baseline models, while (d–f) illustrate the improvements achieved after incorporating the module.

generally led to modest improvements across different backbones. 
For instance, RCJ-ResNet improved the accuracy from 91.72% 
to 92.02%, RCJ-MedMamba increased from 92.32% to 92.48%, 
and RCJ-ShuffleNet improved from 89.28% to 89.39%. These 
results indicate that contrast-based augmentation contributes 
to better robustness against intensity variations. The proposed 
ACAM module (Adaptive Contrast Adjustment Module), when 
integrated into different backbone networks, consistently improved 
model performance. ACAM-MedMamba achieved the highest 
accuracy of 93.47% and an F1-score of 93.47%, surpassing both 
the original MedMamba (92.32% accuracy, 92.36% F1-score) and 
RCJ-MedMamba (92.48% accuracy, 92.53% F1-score). Similarly, 
ACAM-ResNet improved accuracy from 91.72% to 93.01%, and 
ACAM-ShuffleNet increased accuracy from 89.28% to 91.30%. 
These results demonstrate the generalization capability of the 
ACAM module across different architectures. Overall, Table 3 shows 
that ACAM not only outperforms baseline and RCJ-enhanced 
models but also effectively enhances feature discrimination 
and complements existing data augmentation strategies, 
providing a robust approach for medical image classification
tasks. 

3.3 Ablation study

The results of the ablation study are summarized in Table 3. 
It can be seen that, regardless of whether the backbone is a 
traditional model (ResNet), a lightweight model (ShuffleNet), or 
a state-of-the-art model (MedMamba), integrating the proposed 
module leads to a significant performance improvement, with an 
average gain of 1.48%. This consistent enhancement across different 
architectures demonstrates the effectiveness and generality of the 
proposed module.

A comparison of confusion matrices, as shown in Figure 3, 
reveals that the ACAM module consistently improves classification 
performance across lightweight models (ShuffleNet), traditional 
models (ResNet), and state-of-the-art models (MedMamba). 
In particular, the classification accuracy for classes 0 and 1 is 
significantly enhanced in all models, with a substantial reduction 
in misclassifications. For class 5, most cases also show improved 
precision after module integration. These results highlight 
that ACAM can robustly optimize feature discrimination for 
both common and challenging classes across various backbone 
networks. Furthermore, the module effectively mitigates inter-
class confusion, especially in models prone to overfitting or with 
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FIGURE 4
Comparison of ROC curves for three models before and after integrating the proposed module. (a–c) depict the classification performance of the 
baseline models, while (d–f) demonstrate the improvements achieved after incorporating the module.

limited representational capacity, confirming its generalization and 
robustness.

As shown in Figure 4, the ROC curve analysis demonstrates 
that integrating the ACAM module significantly improves the 
classification performance of various models. Across the lightweight 
ShuffleNet, the conventional ResNet, and the advanced MedMamba, 
the trade-off between true positive rate (TPR) and false positive 
rate (FPR) is markedly enhanced for most classes. Specifically, 
after incorporating ACAM, MedMamba achieves notable AUC 
improvements of approximately 3%, 2%, and 2% for classes 0, 3, and 
5, respectively; ResNet shows clear AUC gains of about 10%, 7%, and 
1% for classes 0, 2, and 3; while ShuffleNet also exhibits appreciable 
AUC improvements of around 10% and 4% for classes 0 and 2. These 
observations further validate that ACAM provides consistent AUC 
enhancement and robustness across different model architectures. 
The precision–recall (PR) curves, shown in Figure 5, indicate that 
the module significantly enhances classification performance for 
key classes. In ShuffleNet, ACAM effectively improves the balance 
between precision and recall for classes 0, 1, and 2, with AP increases 
of approximately 15%, 2%, and 6%, respectively. For ResNet, notable 
improvements are observed in classes 0, 1, and 2, with AP increases 
of about 18%, 2%, and 12%. In MedMamba, classes 0, 3, and 

5 clearly benefit from the module, with AP increases of roughly 
3%, 3%, and 2%. These results suggest that ACAM can adaptively 
enhance the recognition of challenging samples according to the 
characteristics of different backbone networks, achieving higher 
recall while maintaining high precision, thereby demonstrating its 
broad applicability and effectiveness in improving classification 
performance. 

3.4 Heatmap-based and t-SNE visualization 
and analysis of detailed classification 
results

To further assess the effectiveness of the proposed ACAM 
module, we utilized the Grad-CAM technique to visualize the 
model’s attention regions. It should be noted that the visualizations 
are primarily based on ResNet, because Grad-CAM depends on 
the spatial feature maps of convolutional layers, which allow 
the generation of heatmaps with improved spatial alignment and 
interpretability in convolutional networks. As illustrated in Figure 6, 
the first column displays the original ultrasound images, while 
the second and third columns show the heatmaps produced by 
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FIGURE 5
Comparison of PR curves for three models before and after integrating the proposed module. (a–c) Illustrate the classification performance of the 
baseline models, while (d–f) demonstrate the improvements obtained after incorporating the module.

the baseline ResNet and the ACAM-enhanced ResNet (ACAM-
ResNet), respectively. The results suggest that, unlike the baseline 
ResNet where attention areas are often scattered or misaligned with 
the relevant anatomical structures, ACAM-ResNet can concentrate 
more precisely on clinically important regions. For fetal thoracic 
planes, the baseline ResNet tends to distribute attention broadly 
across the thoracic cavity, whereas ACAM-ResNet significantly 
improves focus on critical organs, such as the heart and lungs. In 
the fetal femur planes, the baseline model may assign attention 
to surrounding soft tissues, but the ACAM-enhanced network 
accurately highlights the femoral shaft. In abdominal plane analysis, 
ACAM-ResNet shows more distinct attention toward structures 
such as the stomach bubble and umbilical cord insertion point, 
whereas the heatmaps from the baseline model are often diffuse. 
For fetal brain planes, the enhanced model clearly targets the 
lateral ventricles and midline structures, avoiding distraction from 
irrelevant brain regions. Moreover, in maternal cervical planes, 
ACAM-ResNet effectively emphasizes the internal cervical os and 
the cervical lumen, while the baseline model is easily diverted by 
adjacent tissues.

To analyze the feature distribution and inter-class relationships 
learned by different models, we plotted the t-SNE visualizations 

as shown in Figure 7. Analysis of the t-SNE visualization 
reveals that the feature clusters corresponding to the fetal 
brain and femur categories exhibit the most distinct separation, 
demonstrating clear isolation from other categories in the 
embedded space. With the exception of the “Other” category, 
all remaining classes maintain reasonably well-defined spatial 
boundaries. In the baseline ResNet model prior to integrating 
our ACAM module, feature representations of different categories 
appear in closer proximity, with substantial overlap observed 
particularly between the fetal thorax and “Other” categories. 
Following the incorporation of the ACAM module, the feature 
distributions show noticeable improvement in category separation, 
as evidenced by the more dispersed spatial arrangement 
of clusters. This observed expansion in inter-class distances 
demonstrates the module’s effectiveness in enhancing feature
discriminability.

As shown in Table 4, the model performs well on most 
standard fetal planes, with the highest recognition achieved for 
the fetal femur (F1 = 0.9764) and fetal brain (F1 = 0.9869). This 
can be attributed to the distinctive anatomical features of these 
regions—specifically, the femur’s linear hyperechoic structure and 
the brain’s midline pattern—which provide stable cues for the 
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FIGURE 6
Heatmap visualizations of the ResNet model before and after integrating our module, illustrated on five representative image categories.

model’s discrimination. However, the recall for the maternal cervix 
plane is relatively low (0.7442), primarily due to the following 
factors: first, the cervix exhibits significant morphological variation 
across different gestational weeks, ranging from a cylindrical to 
a funnel shape, resulting in large intra-class differences; second, 
even slight deviations in the probe angle can lead to incomplete 
visualization of the endometrial line, causing some positive samples 
to lack critical discriminative features; additionally, acoustic artifacts 
from the cervix plane overlapping with parts of the vaginal fornix 
introduce feature confusion. The precision for the fetal abdomen 
plane is also relatively low (0.8224), mainly because the abdominal 
plane often contains multiple solid organs (e.g., liver, intestines) 
with mixed echogenic patterns, which vary considerably across 
gestational ages and fetal positions. In particular, when the fetal 
abdomen includes amniotic fluid regions, it can be acoustically 

confused with fluid-filled structures in the thoracic cavity. Despite 
these challenges, the model maintains stable performance on 
most standard planes, demonstrating its ability to handle the 
inherent variability in fetal ultrasound images. Future work will 
incorporate attention mechanisms and domain adaptation strategies 
to further enhance the model’s discriminative capability on difficult
samples. 

4 Discussion

4.1 Module significance and comparison 
with existing methods

In fetal ultrasound standard plane recognition, most 
methods rely on CNNs for texture and edge feature extraction 

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2025.1689936
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1689936

FIGURE 7
t-SNE visualization of feature embeddings extracted by ResNet and ACAM-ResNet models.

TABLE 4  The detailed performance of our integrated model on each 
fetal plane category based on MedMamba.

Class Recall Precision F1-score

Fetal abdomen 0.8756 0.8224 0.8482

Fetal femur 0.9702 0.9828 0.9764

Maternal cervix 0.7442 0.9327 0.8279

Fetal thorax 0.9343 0.9089 0.9214

Fetal brain 0.9741 1.0000 0.9869

Other 0.9267 0.8703 0.8976

Venkatareddy et al. (2024); Diniz et al. (2020); Wang et al. (2021), 
assuming input images of stable quality and moderate contrast. In 
clinical practice, however, factors such as fetal position, gestational 
age, device settings, and operator habits often cause substantial 
contrast variations, obscuring critical anatomical details. Clinicians 
typically adjust contrast to highlight essential structures, inspiring 
the design of our ACAM. Unlike conventional data augmentation, 
which applies random transformations without adapting to image 
content, ACAM dynamically models contrast in a content-aware 
manner, enhancing texture details and exploring multiple contrast 
perspectives. This approach preserves discriminative capability 
even with blurred structures or low signal-to-noise ratios. Beyond 
technical improvement for plane classification, ACAM reflects a 
paradigm aligning deep learning with clinical imaging practices, 
offering insights into medical AI by modeling contrast—a low-level 
yet clinically significant attribute.

Krishna and Kokil (2024) employed a stacked ensemble 
approach using three pre-trained deep CNNs: AlexNet, VGG-
19, and DarkNet-19. Predictions from these networks were 

obtained via Softmax and random forest classifiers. In Krishna 
and Kokil (2023), AlexNet and VGG-19 were used to extract 
deep features, with a global average pooling layer as the final 
pooling layer for feature integration. Fusing deep features extracted 
from different convolutional networks enhances the overall feature 
representation. In contrast to their studies, which primarily focus 
on the diversity of extracted features, our work emphasizes 
adaptive adjustment of image contrast to improve image quality. 
Moreover, Venkatareddy et al. (2024) introduced explainable AI 
(XAI) methods—specifically Local Interpretable Model-agnostic 
Explanations (LIME)—to increase the transparency and reliability 
of model decisions. Our approach, however, introduces adaptive 
contrast generation, which not only enhances model performance 
but also improves the interpretability of the model design. 

4.2 Secondary training strategy

Our model further supports an extended application. 
Specifically, the system can record clinicians’ contrast adjustment 
operations across various fetal ultrasound planes and use these 
records to supervise the training of the convolutional module in the 
contrast generation stage (Stage 1 in Figure 8). In the subsequent 
classification stage, the parameters of the first convolutional layer are 
frozen (Stage 2 in Figure 8). The core design of ACAM intrinsically 
simulates the clinical decision-making process: clinicians first 
adjust image contrast until the plane becomes sufficiently clear, 
and only then proceed with diagnosis. Our two-stage strategy 
closely aligns with this workflow by decomposing the task into 
two sequential objectives—first training the model to predict 
contrast, and then training the classification model using the 
contrast-enhanced images. This staged training paradigm not only 
improves model performance but also enhances interpretability, 
as the feature generation process explicitly reflects clinicians’ 
operational preferences. Furthermore, the method demonstrates 
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FIGURE 8
Two-stage training strategy of ACAM, contrast generation (Stage 1) and classification (Stage 2).

strong extensibility, allowing adaptation to data acquired from 
different devices or operators, thereby further improving robustness 
and clinical applicability. 

4.3 Limitations and future directions

Although our method can automatically generate multiple contrast 
values from input images—enhancing the model’s sensitivity to 
fine-grained details—the number of generated contrast values is 
currently fixed. This design may limit adaptability when the model 
encounters extreme or previously unseen contrast variations. Future 
work could explore more flexible contrast generation mechanisms, 
such as variable-size or continuously parameterized approaches, 
to better capture a wider spectrum of contrast distributions and 
further improve robustness and generalization. Incorporating clinician 
adjustment records or prior clinical knowledge also represents a 
promising direction to enhance interpretability and clinical relevance. 

Moreover, while our study demonstrates the effectiveness of 
ACAM on a widely used public fetal ultrasound benchmark, 
we acknowledge that relying on a single dataset may restrict 
generalizability. As highlighted by Fiorentino et al. (2025b), this dataset 
contains several biases, including class imbalance, demographic 
underrepresentation, and acquisition heterogeneity. These factors can 
affect model performance and may not fully reflect clinical variability 
in broader populations. By explicitly addressing these challenges, our 
work underscores the value of modules like ACAM in improving 
model robustness to image-level variations. Future studies will aim to 

validate ACAM on more diverse clinical datasets to further assess its 
generalizability and practical applicability in real-world settings. 

5 Conclusion

This work presents ACAM, a novel paradigm for fetal ultrasound 
plane classification that fundamentally mitigates performance 
degradation caused by low-contrast tissue boundaries. Inspired by 
clinical practice, where sonographers routinely adjust image contrast 
to obtain clearer and more discriminative views, we incorporate 
this insight into the design of ACAM. By integrating contrast 
adjustment directly into feature learning through a dynamically 
parameterized module, ACAM generates anatomically meaningful 
multi-contrast views guided by local texture cues, significantly 
enhancing detail discriminability without compromising semantic 
extraction. Its seamless integration across convolutional, lightweight, 
and modern architectures demonstrates universal effectiveness, 
with an average accuracy gain of 1.48% validated on multi-
center clinical data. Furthermore, we validated through Grad-
CAM heatmaps that the proposed module enables the model to 
focus more on detailed information. Future work will explore 
physician-guided training via adjustment records and dynamic 
parameterization for broader contrast scenarios. ACAM provides 
a practical way of embedding imaging physics into deep learning 
pipelines, contributing to more reliable medical image analysis under 
heterogeneous clinical conditions. 
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