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Fetal ultrasound standard plane recognition plays a vital role in ensuring accurate
prenatal assessment but remains challenging due to intrinsic factors such as
poor tissue contrast, indistinct anatomical boundaries, and variability in image
quality caused by operator differences. To address these issues, we introduce
a plug-and-play Adaptive Contrast Adjustment Module (ACAM), inspired by
how clinicians manually adjust image contrast to highlight clearer structural
cues. The proposed module integrates a lightweight, texture-aware subnetwork
that learns to generate clinically meaningful contrast parameters, producing
multiple contrast-enhanced representations of the same image through a
differentiable transformation process. These enhanced views are then fused
within subsequent classifiers to enrich discriminative features. Experiments
conducted on a multi-center dataset containing 12,400 fetal ultrasound images
across six anatomical planes demonstrate consistent performance gains: the
accuracy of lightweight models rises by 2.02%, conventional architectures
by 1.29%, and state-of-the-art models by 1.15%. The key novelty of ACAM
lies in its content-adaptive and clinically aligned contrast modulation, which
replaces random preprocessing with physics-guided transformations mimicking
sonographers’ diagnostic workflows. By leveraging multi-view contrast fusion,
our approach enhances robustness against image quality variations and
effectively links low-level texture cues with high-level semantic understanding,
offering a new framework for medical image analysis in realistic clinical settings.
Our code is available at: https://github.com/sysll/ACAM.

KEYWORDS

fetal ultrasound, clinically-inspired module, adaptive contrast adjustment, robust
medical image analysis, plug and play (PnP)

1 Introduction

Ultrasound offers several advantages, including safety, convenience, non-invasiveness,
and the absence of ionizing radiation, which has led to its widespread application in critical
areas such as prenatal fetal screening Maher and Seed (2024); Wittek et al. (2025); Al-
Dahim et al. (2024); Miller et al. (2020); Wang (2018). The acquisition of standardized fetal
ultrasound planes is essential for improving diagnostic precision and minimizing the risk of
overlooking severe fetal abnormalities. Nevertheless, achieving this standardization remains
challenging: it requires operators to have comprehensive knowledge of fetal anatomy, while

01 frontiersin.org


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1689936
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1689936&domain=pdf&date_stamp=2025-11-11
mailto:gustafedu@yeah.net
mailto:gustafedu@yeah.net
https://doi.org/10.3389/fphys.2025.1689936
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1689936/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1689936/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1689936/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1689936/full
https://github.com/sysll/ACAM
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Chen et al.

clinical expertise and equipment conditions may sometimes be
inadequate. Furthermore, the increasing complexity of screening
settings, the rising demand for fetal examinations, and the shortage
of skilled ultrasound practitioners make manual acquisition of high-
quality planes even more difficult. In this context, there is a pressing
need for automated recognition systems to support sonographers
in efficiently and accurately identifying standard fetal trunk planes.
These systems can help reduce missed diagnoses, improve workflow
efficiency, and provide more reliable and safer technical assistance
for prenatal evaluation.

Deep learning has demonstrated remarkable capabilities and
has been widely applied across various domains Cai et al. (2024);
Zhu et al. (2024); Ou et al. (2024); Mykula et al. (2024); Zhao et al.
(2024a); Zhao et al. (2024b); Jin et al. (2025); Zhao et al
(2025). In recent years, there has been growing interest in
algorithms for fetal ultrasound plane analysis Zhu et al. (2025b),
Zhu et al. (2025a); Boumeridja et al. (2025); Montero et al. (2021);
Yousefpour Shahrivar et al. (2023); Krishna and Kokil (2024);
Krishna and Kokil (2023); Fiorentino et al. (2025a); Migliorelli et al.
(2024). However, most studies primarily focus on feature extraction
modules, emphasizing information in intermediate network layers
or increasing dataset size to improve model performance. For
example, Zhu et al. (2025b) aimed to optimize pooling layer
performance; while insightful, this approach overlooks the impact of
the input layer. Similarly, Montero et al. (2021) employed generative
adversarial networks (GANs) to generate additional training images,
thereby enlarging the dataset. Only a few studies consider the
interaction between the model and the input image in relation
to image quality. For instance, Zhu et al. (2025a) highlighted the
importance of selecting appropriate contrast and gain for medical
image performance and proposed an attention mechanism to focus
on regions with critical gain. However, in their approach, contrast
and gain are fixed rather than adaptively generated, which limits
the model’s capability. To address these limitations, we propose an
Adaptive Contrast Adjustment Module (ACAM) that dynamically
adjusts image contrast based on image content. By generating
multiple contrast-enhanced versions and fusing their information,
the module not only enriches texture representations but also
significantly improves the classification accuracy of complex fetal
plane images.

Our approach is motivated by the practical workflow of
clinicians when identifying fetal planes during ultrasound
examinations. In routine practice, sonographers often manipulate
image contrast to emphasize key anatomical structures, which
helps produce clearer and more discriminative images Smith and
Lopez (1982); Mehta et al. (2017). Drawing from this idea, we
incorporate an adaptive contrast adjustment module into our model.
Specifically, the input image is first processed by a decision network
that predicts K potential contrast parameters. These predicted
parameters are then mapped to a predefined fixed range using a
differentiable function to ensure numerical stability and preserve
trainability. Using these contrast parameters, the input image is
transformed to produce K contrast-enhanced variants, effectively
introducing multiple perspectives or styles during training. These
enhanced images are then passed through a convolutional neural
network for feature extraction and classification. Since contrast
adjustment relies more on local texture information rather than
high-level semantic cues, we employ a shallow convolutional
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network as the decision module. This network captures fine-
grained details, such as edges and textures, to generate the
contrast parameters. This design provides both interpretability
and generalization benefits. The parameters directly control image
brightness and contrast, making the transformations intuitive and
visually interpretable, in contrast to black-box manipulations of
abstract features. Additionally, by explicitly generating multiple
contrast scenarios, the model learns representations that are
more robust to variations in illumination and contrast, which
improves generalization across different acquisition settings or
imaging domains.

Furthermore, our module adopts a plug-and-play architecture
and is applied solely to the lower layers of the network,
allowing for easy integration. We evaluated its effectiveness
by embedding it into conventional robust models, lightweight
networks, and cutting-edge architectures, performing ablation
studies to quantify its impact. Comparative experiments were
subsequently conducted against eight baseline models. The results
indicate that incorporating our module consistently improves
performance. The main benefits of the module are summarized as
follows:

o The module emulates the way clinicians adjust image contrast,
allowing adaptive generation of multiple images with different
contrast levels. This enables the model to learn from diverse
representations, enhancing its sensitivity to fine details and
improving overall robustness.

o In our framework, a shallow convolutional network first
extracts local texture information from the input image. Using
these features, the network predicts several candidate contrast
values, which are then applied to enhance the image and enrich
feature representation.

e« We incorporated the module into lightweight CNNs,
conventional robust models, and state-of-the-art architectures,
performing  comprehensive  evaluations. ~Comparative

experiments, ablation studies, and heatmap visualizations

that the consistently boosts

performance and generalizability.

confirm module model

2 Methods
2.1 Linear contrast

Image contrast enhancement can be achieved through either
linear or nonlinear gray-level transformations, with the basic goal of
stretching or compressing the distribution range of pixel intensities,
thereby emphasizing the intensity differences across regions of the
image. Let the original grayscale image be denoted as I(x, y), where
(x,y) represents the pixel location in the image. A commonly used
linear contrast adjustment method can be formulated as shown in
Equation 1:

I'(oy)=a-(I(oy)—u)+u, )

where I'(x,y) represents the adjusted pixel intensity, a« > 0 is the
contrast scaling factor (typically referred to as the contrast gain),
and y is the mean intensity (brightness center) of the image, defined
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as shown in Equation 2:

H W
HW Z Z %) )
with Hand W denoting the image height and width, respectively.
When a > 1, the contrast of the image is increased, whereas o <
1 reduces the contrast.

2.2 The mechanism of the ACAM module

The structure of our module is illustrated in Figure 1. First,
the input is a grayscale image with dimensions [1, H, W]. The
first step of the model is to generate a set of contrast values
from this image for subsequent processing. We posit that contrast
prediction primarily relies on the detailed information within the
image rather than semantic-level features. Therefore, this module
employs a shallow architecture composed of convolutional layers, a
global average pooling layer, and fully connected layers. This design
is chosen because shallow convolutional neural networks are more
adept at extracting high-frequency detail information from images,
whereas deeper convolutions mainly capture semantic features.
Moreover, using a low-level structure introduces fewer parameters.
The predicted contrast values are then mapped to the range [1, 3]
to align with the adjustment range typically used by clinicians. This
process can be expressed as Equation 3.

C = Function (FC(GAP (Conv (Image)))) (3)

where C=[c},¢y,...,¢;]. The Function(x) function is shown in
Equation 4.
. 1
Function(x) =1+2 — (4)
1+e

These contrast values are then fed into the model as contrast
parameters. The specific formula is given in Equation 5.

1 1
Ikﬁ”k(“«f‘ WZ%)* v 2l
y )

Where I;; denotes the pixel at row i, column j of the k-th image.

(5)

The final output (I) is with dimensions of [K x H x W], representing
k images generated under k different contrast conditions. These
images constitute the output of our module and serve as input to
subsequent decision-making models such as MedMamba. Clinicians
typically begin by adjusting image contrast to enhance clarity
before proceeding to in-depth analysis for diagnostic classification.
Our ACAM module mimics this contrast enhancement process
to optimize visual clarity, operating primarily on low-level texture
information. In contrast, downstream decision-making models such
as MedMamba simulate the clinician’s diagnostic reasoning process,
which necessitates the extraction of high-level semantic features, so
they have deeper layers.

2.3 Implementation details

This study is based on a large-scale prenatal screening
ultrasound image dataset Burgos-Artizzu et al. (2020), which was
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collected from two hospitals and encompasses multiple operators as
well as different ultrasound device models. Allimages were manually
annotated by a single obstetrics expert and categorized into six
classes: four commonly used fetal standard planes (abdominal,
brain, femur, and thoracic), the maternal cervix plane for preterm
screening, and a general class including other less common planes.
The names of these standard planes and their corresponding
encoded categories are shown in Figure 2. The number of images
for each standard plane category is shown in the Table 1. The final
dataset comprises over 12,400 images from 1,792 patients, and it
was split into training and test sets at a ratio of 7:3. All experiments
were conducted using Python 3.9 and the PyTorch 2.0.1+cull7
framework, on a system equipped with an Intel i7-12650H processor
and an NVIDIA RTX2080Ti GPU. Detailed settings of the model
parameters and baseline models are provided in Table 2, with the
number of generated contrast images n set to 10.

We justify our hyperparameter choices as follows. The contrast
range is set to [1,3], based on clinical practice. The study Zhu et al.
(2025c¢) discussed the changes in ultrasound images with contrast
ranging from 1 to 2.5, illustrating the advantages of this range.
Clinicians typically adjust image contrast within this range to
enhance the visibility of anatomical structures while avoiding image
distortion—values below 1.0 excessively compress the dynamic
range, whereas values above 3.0 may cause key regions to become
oversaturated. The number of contrast variants is configured at
K =10, taking into account clinical practices. While clinicians
may experiment with various contrast adjustments for a single
image, they seldom employ an excessive number. In the study by
Zhu et al. (2025a), nine contrast groups with fixed gain settings
were used, which is close to our setting. Therefore, choosing 10
variants strikes a balance between computational efficiency and
feature diversity. For the network architecture, we use a shallow
convolutional network for contrast prediction to extract texture
features, as contrast adjustment mainly relies on low-level image
statistics rather than high-level semantic information. Studies
Zhang et al. (2019); Gao et al. (2020); Cimpoi et al. (2015) have
all highlighted the role of shallow neural networks in extracting
texture information. In terms of training configuration, the batch
size is set to 64 to efficiently utilize GPU memory and follow
the powers-of-two convention; the learning rate is set to 0.001 to
ensure stable convergence; and the model is trained for 20 epochs
to achieve sufficient convergence while avoiding overfitting. This
setup is based on the experience reported in previous studies on
related datasets Burgos-Artizzu et al. (2020); Zhu et al. (2025a);
Montero et al. (2021).

3 Results
3.1 Evaluation metrics and baseline models

In this study, multiple widely adopted evaluation metrics are
employed to systematically analyze model performance. Accuracy
(ACQ) reflects the overall correctness of predictions; however, it
may be misleading in scenarios with imbalanced class distributions.
Recall measures the model’s ability to correctly identify positive
samples, which is particularly crucial in medical image analysis, as
higher recall helps reduce the risk of missed diagnoses. Precision

frontiersin.org


https://doi.org/10.3389/fphys.2025.1689936
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Chen et al. 10.3389/fphys.2025.1689936

Contrast Generation / Contrast Adjustment\

classifier

CNN

FIGURE 1
Architecture of the proposed module. It consists of two components: contrast generation and contrast adjustment. The contrast generation

component predicts k distinct contrast parameters, which are subsequently used by the contrast adjustment component to transform the input image
accordingly

Fetal abdomen (class 0) Fetal femur (class 1) Maternal cervix (class 2)

5

e
T

S -

Fetal brain (class 4) Other (class 5)

FEM ESQ,

FIGURE 2
Sample images from each class of the dataset

evaluates the proportion of predicted positive samples that are truly o TP (True Positive): number of correctly predicted positive

positive, thereby reducing the likelihood of false alarms. The F1-
samples,

score, defined as the harmonic mean of precision and recall, provides

a balanced assessment of both metrics. o TN (True Negative): number of correctly predicted negative

Here, we denote the standard confusion matrix terms as follows: samples,
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TABLE 1 The number of each fetal ultrasound standard plane in
the dataset.

10.3389/fphys.2025.1689936

TABLE 3 Ablation study results of our module integrated into different
models, as well as comparisons with other models.

Model ’ ACC | Precision Recall F1-score
Fetal abdomen (class 0) 711 ACAM-ResNet 0.9301 0.9318 0.9301 0.9300
Fetal femur (class 1) 1,040 RCJ-ResNet 0.9202 0.9216 0.9202 0.9183
Maternal cervix (class 2) 1,626 ResNet 0.9172 0.9203 0.9172 0.9167
Fetal thorax (class 3) 1718 ACAM-MedMamba 0.9347 0.9351 0.9347 0.9347
Fetal brain (class 4) 3,092 RCJ-Medmamba 0.9248 0.9284 0.9248 0.9253
Other (class 5) 4,213 MedMamba 0.9232 0.9266 0.9232 0.9236

ACAM-ShuffleNet 0.9130 0.9125 0.9130 0.9125

TABLE 2 Hyperparameter settings used during model training. RCJ-ShuffleNet 0.8939 | 0.8932 0.8939 0.8908
Hyperparameter Value ShuffleNet 0.8928 | 0.8920 0.8928 0.8894
Batch size 64 EfficientNet 0.9226 0.9237 0.9226 0.9226
Epoch 20 InceptionV3 0.9232 0.9240 0.9232 0.9216
Lr 0.001 MobileNet 0.9027 0.9076 0.9027 0.9036
Optimizer Adam (Bock and Weif3, 2019) VGG 0.9073 0.9100 0.9073 0.9075
Loss function Crossentropy (Mao et al., 2023) ConVNeXt 0.8923 0.8951 0.8923 0.8899

EfficientVMamba 0.8953 0.8943 0.8953 0.8921
OrthoNets 0.9218 0.9253 0.9218 0.9223

« FP (False Positive): number of negative samples incorrectly
predicted as positive, Efficientvit 0.9205 0.9238 0.9205 0.9209

o FN (False Negative): number of positive samples incorrectly
predicted as negative.

Based on these definitions, the metrics are computed as
Equations 6-9:

Accuracy = __ IP+IN (6)
TP+ TN+ FP+FN
TP

Precision = ———— 7

recision TP+ FP (7)
TP

Recall = ———— 8
T TPy EN ®
Fl = 2 X Precision x Recall )

Precision + Recall

In addition, to comprehensively characterize the model’s
classification capability across different decision thresholds, we
introduce the Receiver Operating Characteristic (ROC) curve and
employ the Area Under the Curve (AUC) as a performance indicator.
Similarly, the Precision-Recall (PR) curve is utilized to illustrate
prediction accuracy at varying recall levels, with the Average
Precision (AP) computed to intuitively reflect the model’s ability in
target detection tasks.

To evaluate the effectiveness of the proposed model, we compare
it against several established deep learning architectures, including
EfficientNet Kashyap et al. (2023), InceptionV3 Szegedy et al. (2016),
VGG Gunasekaran and Vivekasaran (2024), ResNet Xu et al. (2023),
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The best-performing values are highlighted in bold.

MobileNet Han et al. (2022), ShuffleNet Hou et al. (2025), ConvNeXt
Sangeetha and Geetha (2024), MedMamba Bansal et al. (2024),
EfficientVMamba Pei et al. (2025), OrthoNets Salman et al. (2023),
and Efficientvit Liu et al. (2023).

3.2 Comparison experiment

The performance comparison of the models is presented
in Table3. As shown, all evaluated models—ranging from
lightweight networks such as ShuffleNet, MobileNet, and
EfficientNet to traditional robust architectures including ResNet,
VGG, InceptionV3, and ConVNeXt, as well as state-of-the-
art deep learning models such as MedMamba variants and
EfficientViT—achieved strong performance on the test set,
with overall accuracy consistently exceeding the 90% baseline.
Specifically, classical architectures like EfficientNet and InceptionV3
achieved top-1 accuracies of 92.26% and 92.32%, respectively,
while MobileNet and VGG attained slightly lower accuracies
of 90.27% and 90.73%. In addition to these baseline models,
we evaluated RCJ-based models, which use Random Contrast
Jittering as a data augmentation strategy. The incorporation of RCJ
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FIGURE 3
Comparison of confusion matrices for three models before and after integrating the proposed module. (a—c) show the classification performance of
the baseline models, while (d—f) illustrate the improvements achieved after incorporating the module.

generally led to modest improvements across different backbones.
For instance, RCJ-ResNet improved the accuracy from 91.72%
to 92.02%, RCJ-MedMamba increased from 92.32% to 92.48%,
and RCJ-ShuffleNet improved from 89.28% to 89.39%. These
results indicate that contrast-based augmentation contributes
to better robustness against intensity variations. The proposed
ACAM module (Adaptive Contrast Adjustment Module), when
integrated into different backbone networks, consistently improved
model performance. ACAM-MedMamba achieved the highest
accuracy of 93.47% and an Fl-score of 93.47%, surpassing both
the original MedMamba (92.32% accuracy, 92.36% F1-score) and
RCJ-MedMamba (92.48% accuracy, 92.53% F1-score). Similarly,
ACAM-ResNet improved accuracy from 91.72% to 93.01%, and
ACAM-ShuffleNet increased accuracy from 89.28% to 91.30%.
These results demonstrate the generalization capability of the
ACAM module across different architectures. Overall, Table 3 shows
that ACAM not only outperforms baseline and RCJ-enhanced
models but also effectively enhances feature discrimination
and complements existing data augmentation strategies,
providing a robust approach for medical image classification

tasks.

Frontiers in Physiology

3.3 Ablation study

The results of the ablation study are summarized in Table 3.
It can be seen that, regardless of whether the backbone is a
traditional model (ResNet), a lightweight model (ShuffleNet), or
a state-of-the-art model (MedMamba), integrating the proposed
module leads to a significant performance improvement, with an
average gain of 1.48%. This consistent enhancement across different
architectures demonstrates the effectiveness and generality of the
proposed module.

A comparison of confusion matrices, as shown in Figure 3,
reveals that the ACAM module consistently improves classification
performance across lightweight models (ShuffleNet), traditional
models (ResNet), and state-of-the-art models (MedMamba).
In particular, the classification accuracy for classes 0 and 1 is
significantly enhanced in all models, with a substantial reduction
in misclassifications. For class 5, most cases also show improved
precision after module integration. These results highlight
that ACAM can robustly optimize feature discrimination for
both common and challenging classes across various backbone
networks. Furthermore, the module effectively mitigates inter-
class confusion, especially in models prone to overfitting or with
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FIGURE 4
Comparison of ROC curves for three models before and after integrating the proposed module. (a—c) depict the classification performance of the
baseline models, while (d—f) demonstrate the improvements achieved after incorporating the module.

limited representational capacity, confirming its generalization and
robustness.

As shown in Figure 4, the ROC curve analysis demonstrates
that integrating the ACAM module significantly improves the
classification performance of various models. Across the lightweight
ShuffleNet, the conventional ResNet, and the advanced MedMamba,
the trade-off between true positive rate (TPR) and false positive
rate (FPR) is markedly enhanced for most classes. Specifically,
after incorporating ACAM, MedMamba achieves notable AUC
improvements of approximately 3%, 2%, and 2% for classes 0, 3, and
5, respectively; ResNet shows clear AUC gains of about 10%, 7%, and
1% for classes 0, 2, and 3; while ShuffleNet also exhibits appreciable
AUC improvements of around 10% and 4% for classes 0 and 2. These
observations further validate that ACAM provides consistent AUC
enhancement and robustness across different model architectures.
The precision-recall (PR) curves, shown in Figure 5, indicate that
the module significantly enhances classification performance for
key classes. In ShuffleNet, ACAM effectively improves the balance
between precision and recall for classes 0, 1, and 2, with AP increases
of approximately 15%, 2%, and 6%, respectively. For ResNet, notable
improvements are observed in classes 0, 1, and 2, with AP increases
of about 18%, 2%, and 12%. In MedMamba, classes 0, 3, and
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5 clearly benefit from the module, with AP increases of roughly
3%, 3%, and 2%. These results suggest that ACAM can adaptively
enhance the recognition of challenging samples according to the
characteristics of different backbone networks, achieving higher
recall while maintaining high precision, thereby demonstrating its
broad applicability and effectiveness in improving classification
performance.

3.4 Heatmap-based and t-SNE visualization
and analysis of detailed classification
results

To further assess the effectiveness of the proposed ACAM
module, we utilized the Grad-CAM technique to visualize the
model’s attention regions. It should be noted that the visualizations
are primarily based on ResNet, because Grad-CAM depends on
the spatial feature maps of convolutional layers, which allow
the generation of heatmaps with improved spatial alignment and
interpretability in convolutional networks. As illustrated in Figure 6,
the first column displays the original ultrasound images, while
the second and third columns show the heatmaps produced by
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FIGURE 5
Comparison of PR curves for three models before and after integrating the proposed module. (a—c) Illustrate the classification performance of the
baseline models, while (d—f) demonstrate the improvements obtained after incorporating the module.

the baseline ResNet and the ACAM-enhanced ResNet (ACAM-
ResNet), respectively. The results suggest that, unlike the baseline
ResNet where attention areas are often scattered or misaligned with
the relevant anatomical structures, ACAM-ResNet can concentrate
more precisely on clinically important regions. For fetal thoracic
planes, the baseline ResNet tends to distribute attention broadly
across the thoracic cavity, whereas ACAM-ResNet significantly
improves focus on critical organs, such as the heart and lungs. In
the fetal femur planes, the baseline model may assign attention
to surrounding soft tissues, but the ACAM-enhanced network
accurately highlights the femoral shaft. In abdominal plane analysis,
ACAM-ResNet shows more distinct attention toward structures
such as the stomach bubble and umbilical cord insertion point,
whereas the heatmaps from the baseline model are often diffuse.
For fetal brain planes, the enhanced model clearly targets the
lateral ventricles and midline structures, avoiding distraction from
irrelevant brain regions. Moreover, in maternal cervical planes,
ACAM-ResNet effectively emphasizes the internal cervical os and
the cervical lumen, while the baseline model is easily diverted by
adjacent tissues.

To analyze the feature distribution and inter-class relationships
learned by different models, we plotted the t-SNE visualizations
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as shown in Figure7. Analysis of the t-SNE visualization
reveals that the feature clusters corresponding to the fetal
brain and femur categories exhibit the most distinct separation,
demonstrating clear isolation from other categories in the
embedded space. With the exception of the “Other” category,
all remaining classes maintain reasonably well-defined spatial
boundaries. In the baseline ResNet model prior to integrating
our ACAM module, feature representations of different categories
appear in closer proximity, with substantial overlap observed
particularly between the fetal thorax and “Other” categories.
Following the incorporation of the ACAM module, the feature
distributions show noticeable improvement in category separation,
as evidenced by the more dispersed spatial arrangement
of clusters. This observed expansion in inter-class distances
demonstrates the module’s effectiveness in enhancing feature
discriminability.

As shown in Table4, the model performs well on most
standard fetal planes, with the highest recognition achieved for
the fetal femur (F1 = 0.9764) and fetal brain (F1 = 0.9869). This
can be attributed to the distinctive anatomical features of these
regions—specifically, the femur’s linear hyperechoic structure and
the brain’s midline pattern—which provide stable cues for the
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Heatmap visualizations of the ResNet model before and after integrating our module, illustrated on five representative image categories.

model’s discrimination. However, the recall for the maternal cervix
plane is relatively low (0.7442), primarily due to the following
factors: first, the cervix exhibits significant morphological variation
across different gestational weeks, ranging from a cylindrical to
a funnel shape, resulting in large intra-class differences; second,
even slight deviations in the probe angle can lead to incomplete
visualization of the endometrial line, causing some positive samples
to lack critical discriminative features; additionally, acoustic artifacts
from the cervix plane overlapping with parts of the vaginal fornix
introduce feature confusion. The precision for the fetal abdomen
plane is also relatively low (0.8224), mainly because the abdominal
plane often contains multiple solid organs (e.g., liver, intestines)
with mixed echogenic patterns, which vary considerably across
gestational ages and fetal positions. In particular, when the fetal
abdomen includes amniotic fluid regions, it can be acoustically
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confused with fluid-filled structures in the thoracic cavity. Despite
these challenges, the model maintains stable performance on
most standard planes, demonstrating its ability to handle the
inherent variability in fetal ultrasound images. Future work will
incorporate attention mechanisms and domain adaptation strategies
to further enhance the model’s discriminative capability on difficult
samples.

4 Discussion

4.1 Module significance and comparison
with existing methods
most

In fetal ultrasound standard plane recognition,

methods rely on CNNs for texture and edge feature extraction
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FIGURE 7
t-SNE visualization of feature embeddings extracted by ResNet and ACAM-ResNet models.

TABLE 4 The detailed performance of our integrated model on each
fetal plane category based on MedMamba.

Class Recall Precision F1-score
Fetal abdomen 0.8756 0.8224 0.8482
Fetal femur 0.9702 0.9828 0.9764
Maternal cervix 0.7442 0.9327 0.8279
Fetal thorax 0.9343 0.9089 0.9214
Fetal brain 0.9741 1.0000 0.9869
Other 0.9267 0.8703 0.8976

Venkatareddy et al. (2024); Diniz et al. (2020); Wang et al. (2021),
assuming input images of stable quality and moderate contrast. In
clinical practice, however, factors such as fetal position, gestational
age, device settings, and operator habits often cause substantial
contrast variations, obscuring critical anatomical details. Clinicians
typically adjust contrast to highlight essential structures, inspiring
the design of our ACAM. Unlike conventional data augmentation,
which applies random transformations without adapting to image
content, ACAM dynamically models contrast in a content-aware
manner, enhancing texture details and exploring multiple contrast
perspectives. This approach preserves discriminative capability
even with blurred structures or low signal-to-noise ratios. Beyond
technical improvement for plane classification, ACAM reflects a
paradigm aligning deep learning with clinical imaging practices,
offering insights into medical AI by modeling contrast—a low-level
yet clinically significant attribute.

Krishna and Kokil (2024) employed a stacked ensemble
approach using three pre-trained deep CNNs: AlexNet, VGG-
19, and DarkNet-19. Predictions from these networks were
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obtained via Softmax and random forest classifiers. In Krishna
and Kokil (2023), AlexNet and VGG-19 were used to extract
deep features, with a global average pooling layer as the final
pooling layer for feature integration. Fusing deep features extracted
from different convolutional networks enhances the overall feature
representation. In contrast to their studies, which primarily focus
on the diversity of extracted features, our work emphasizes
adaptive adjustment of image contrast to improve image quality.
Moreover, Venkatareddy et al. (2024) introduced explainable AI
(XAI) methods—specifically Local Interpretable Model-agnostic
Explanations (LIME)—to increase the transparency and reliability
of model decisions. Our approach, however, introduces adaptive
contrast generation, which not only enhances model performance
but also improves the interpretability of the model design.

4.2 Secondary training strategy

Our model further supports

Specifically, the system can record clinicians’ contrast adjustment

an extended application.

operations across various fetal ultrasound planes and use these
records to supervise the training of the convolutional module in the
contrast generation stage (Stage 1 in Figure 8). In the subsequent
classification stage, the parameters of the first convolutional layer are
frozen (Stage 2 in Figure 8). The core design of ACAM intrinsically
simulates the clinical decision-making process: clinicians first
adjust image contrast until the plane becomes sufficiently clear,
and only then proceed with diagnosis. Our two-stage strategy
closely aligns with this workflow by decomposing the task into
two sequential objectives—first training the model to predict
contrast, and then training the classification model using the
contrast-enhanced images. This staged training paradigm not only
improves model performance but also enhances interpretability,
as the feature generation process explicitly reflects clinicians’
operational preferences. Furthermore, the method demonstrates
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Two-stage training strategy of ACAM, contrast generation (Stage 1) and classification (Stage 2).

strong extensibility, allowing adaptation to data acquired from
different devices or operators, thereby further improving robustness
and clinical applicability.

4.3 Limitations and future directions

Although our method can automatically generate multiple contrast
values from input images—enhancing the models sensitivity to
fine-grained details—the number of generated contrast values is
currently fixed. This design may limit adaptability when the model
encounters extreme or previously unseen contrast variations. Future
work could explore more flexible contrast generation mechanisms,
such as variable-size or continuously parameterized approaches,
to better capture a wider spectrum of contrast distributions and
furtherimprove robustness and generalization. Incorporating clinician
adjustment records or prior clinical knowledge also represents a
promising direction to enhance interpretability and clinical relevance.

Moreover, while our study demonstrates the effectiveness of
ACAM on a widely used public fetal ultrasound benchmark,
we acknowledge that relying on a single dataset may restrict
generalizability. As highlighted by Fiorentino etal. (2025b), this dataset
contains several biases, including class imbalance, demographic
underrepresentation, and acquisition heterogeneity. These factors can
affect model performance and may not fully reflect clinical variability
in broader populations. By explicitly addressing these challenges, our
work underscores the value of modules like ACAM in improving
model robustness to image-level variations. Future studies will aim to
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validate ACAM on more diverse clinical datasets to further assess its
generalizability and practical applicability in real-world settings.

5 Conclusion

This work presents ACAM, a novel paradigm for fetal ultrasound
plane classification that fundamentally mitigates performance
degradation caused by low-contrast tissue boundaries. Inspired by
clinical practice, where sonographers routinely adjust image contrast
to obtain clearer and more discriminative views, we incorporate
this insight into the design of ACAM. By integrating contrast
adjustment directly into feature learning through a dynamically
parameterized module, ACAM generates anatomically meaningful
multi-contrast views guided by local texture cues, significantly
enhancing detail discriminability without compromising semantic
extraction. Its seamless integration across convolutional, lightweight,
and modern architectures demonstrates universal effectiveness,
with an average accuracy gain of 1.48% validated on multi-
center clinical data. Furthermore, we validated through Grad-
CAM heatmaps that the proposed module enables the model to
focus more on detailed information. Future work will explore
physician-guided training via adjustment records and dynamic
parameterization for broader contrast scenarios. ACAM provides
a practical way of embedding imaging physics into deep learning
pipelines, contributing to more reliable medical image analysis under
heterogeneous clinical conditions.
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