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Intermuscular coherence during 
arm movement changes 
significantly with shoulder 
abduction and age, but not with 
limb dominance
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Introduction: Intermuscular coherence (IMC) has the potential to become a 
clinical biomarker to quantify disruptions of shared neural drive to muscles in 
individuals with upper and lower extremity motor impairments. Here we test 
whether shoulder abduction, limb dominance and age affect IMC in unimpaired 
individuals to serve as a baseline for studies with clinical populations.
Methods: Twenty-five unimpaired participants performed an established single-
arm reaching task: rotating an ergometer in the horizontal plane while 
surface electromyography signals were recorded from the biceps, triceps and 
deltoids arm muscles. We compared IMC within the alpha, beta, and gamma 
frequency bands across three experimental factors: shoulder posture (neutral vs. 
abducted), arm (dominant vs. non-dominant), and age (younger {18–42 years. 
N = 12, 6 female} vs. older {51–74 years. N = 13, 7 female} adults).
Results: We found that there was a significant effect on IMC due to shoulder 
posture in the alpha-band (F = 22.4, p = 0.0007), beta-band (F = 44.6, p = 5×
10−5), and gamma-band (F = 57.9, p = 4× 10−6). In addition, IMC was lower in the 
older group and significantly so in the alpha-band (F = 6.6, p = 0.03), but not in 
the beta- (F = 4.5, p = 0.07) and gamma-bands (F = 0.52, p = 0.42). Although 
the non-dominant arm tended to have higher IMC, no significant differences 
due to limb dominance were found.
Discussion: We provide what, to our knowledge, is the first overall comparison 
of patterns of IMC in unimpaired individuals across arms and the adult lifespan to 
help future studies quantify and interpret disruptions in neuromuscular control. 
Beyond confirming the expected increase in IMC with shoulder abduction, 
we critically demonstrate that age significantly affects IMC in the alpha-band 
associated with propriospinal sensorimotor processes. We speculate this may be 
a result of spinal reorganization of spinal motor nuclei due to α-motoneurone 
death with healthy aging. Given the supporting evidence in this study that limb 
dominance does not significantly affect IMC, common drive to muscles (as
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quantified by IMC) is likely driven by subcortical processes that predate the neural 
lateralization of human upper extremity function.

KEYWORDS

alpha-band, beta-band, electromyography, gamma-band, intermuscular coherence, 
lateralization, movement, upper extremity 

1 Introduction

Coherence analysis provides a non-invasive (albeit indirect) 
method to quantify the strength of shared neural drive to muscles 
across frequency bands relevant to motor function (Farmer, 1998; 
Boonstra and Breakspear, 2012; Boonstra, 2013). Shared neural 
drive to muscles contains a signature frequency component in 
the action potentials generated by motoneuron unit pools. This 
signature frequency originates from the oscillatory neural circuits 
across the neuraxis (e.g., brain, brainstem, spinal cord) that 
generate the neural drive to muscles for voluntary and involuntary 
movement. Quantifying task-specific shared neural drive across 
muscles, sometimes called ‘synergies,’ could enable understanding 
coordination strategies across brain regions during voluntary 
movements (Baker et al., 2003; Boonstra, 2013; Farmer, 1998; 
Farina et al., 2014b; Gross et al., 2002; Grosse et al., 2002; Heckman 
and Enoka, 2004) and, most importantly, could serve 
as a biomarker for disruptions in muscle coordination 
in movement disorders following neurological conditions
and stroke.

The use of coherence analysis can help clarify and quantify 
the concept of ‘synergies’ in health and disease, which have 
received multiple definitions and passionate interpretations 
(Alessandro et al., 2013; Bizzi and Cheung, 2013; Cheung et al., 2009; 
d’Avella and Bizzi, 2005; Singh et al., 2018; Tresch and Jarc, 2009; 
Kutch and Valero-Cuevas, 2012; Latash, 2009). To bring clarity 
to the interpretation of synergies, we distinguish descriptive from 
prescriptive synergies (Bartsch-Jimenez et al., 2023; Brock and 
Valero-Cuevas, 2016; Mulla and Keir, 2023; Valero-Cuevas, 2016; 
Niyo and Valero-Cuevas, 2024). Descriptive synergies are 
correlations observed when analyzing the activity of multiple 
muscles without specifying the origin of such correlations, while 
prescriptive synergies are those that are thought to be the result 
of actual intended and coordinated common control signals to 
multiple muscles. Both prescriptive and descriptive synergies 
can be detected by dimensionality reduction methods (e.g., 
principal component analysis, non-negative matrix factorization), 
but the critical difference is that prescriptive synergies can be 
demonstrated to originate within the nervous system (i.e., have 
a causal explanation) and are not just correlations in the data 
(Kutch and Valero-Cuevas, 2012; Brock and Valero-Cuevas, 2016; 
Valero-Cuevas, 2016). Common drive (as per IMC at specific 
frequencies) could therefore help quantify the neural origin of 
prescriptive synergies (Laine et al., 2021). Synergies of neural 
origin (which we call ‘synergies’ from now on) are conceptually and 
physiologically distinct from the ubiquitously observed amplitude-
based muscle activity synergies found from smoothed (i.e., low-pass 
filtered) EMG signals to muscles (Kutch and Valero-Cuevas, 2012; 
Laine et al., 2021; Laine and Valero-Cuevas, 2017).

As a promising approach to quantify synergies of neural origin, 
intermuscular coherence (IMC) has been widely studied and 
adopted in studies involving human motor control (Boonstra and 
Breakspear, 2012; De Marchis et al., 2015; Farina et al., 2014b; 
Nazarpour et al., 2012; Mohr et al., 2018; Reyes et al., 2017). 
These motor control studies measured intermuscular coherence 
during dexterous manipulation (Laine and Valero-Cuevas, 2017), 
precision grip (Popp et al., 2023), wrist movement (Hu et al., 2018), 
and whole-arm movement (Laine et al., 2021; Bartsch-Jiménez 
and Valero-Cuevas, 2025). Across studies, IMC analysis revealed 
neural synergies that emerge in typical upper extremity function. 
In dysfunction, IMC has been used to investigate neural synergies 
in medical conditions such as stroke to evaluate alteration in shared 
neural drive due to motor overflow (Chen et al., 2018), corticospinal 
tract integrity (Ko et al., 2023), functional coordination 
(Liu et al., 2022), and shoulder abduction (Lan et al., 2017).

After hemiparetic stroke, shoulder abduction is known to 
further compromise the function of the more affected arm by 
exacerbating ‘pathological flexion synergies’ that tend to shift the 
resting posture of the arm, wrist, and hand towards the body 
(Dewald et al., 1995; Lan et al., 2014). It is thought that, in 
unimpaired individuals, the reticulospinal tract provides descending 
commands that contribute to ‘gross’ reaching movements using 
proximal arm segments (as opposed to fine dexterous manipulation 
of the hand), such as the shoulder and elbow (Brownstone and 
Chopek, 2018). Thus, these same pathways may be upregulated after 
stroke in response to damage to the corticospinal tract, manifesting 
as the pathological flexion synergy (Hammerbeck et al., 2021; 
McPherson et al., 2018). In a study with stroke survivors, significant 
coherence was found in the alpha-band (8–16 Hz) between shoulder 
and wrist/finger muscles when opening or grasping the hand 
with the shoulder abducted (Lan et al., 2017). Interestingly, the 
reticulospinal tract has a frequency signature in the alpha-band, 
as demonstrated by acoustic startle (Grosse and Brown, 2003). 
Therefore, we propose that IMC in the alpha-band among upper 
extremity arm muscles could serve as an informative biomarker of 
altered reticulospinal drive in hemiparetic stroke survivors.

It is for this reason that our group created an arm cycling 
task that generates stationary data of sufficient duration to allow 
IMC analysis to quantify shared neural drive during voluntary arm 
reaching movement with the shoulder either abducted or in a neutral 
posture (Laine et al., 2021). Motivated by the foundational work of 
Dewald et al. (1995), we have previously demonstrated an increase 
in alpha-band IMC with shoulder abduction (Laine et al., 2021; 
Bartsch-Jiménez and Valero-Cuevas, 2025), but no prior study 
to our knowledge has set out to describe baseline interactions 
across limb dominance and age. Since motor impairment in 
the upper extremity is more pronounced in the contralateral 
arm innervated by the corticospinal tract of the lesioned brain 
hemisphere (Dewald et al., 1995; Hammerbeck et al., 2021)—which 
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can be either arm—it is necessary to establish a baseline IMC for 
both arms. As a critical first step to assess how synchronous neural 
drive to muscles is disregulated after stroke, here we seek to establish 
a baseline for whether and to what extent IMC in the alpha-band 
(8–16 Hz), beta-band (16–30 Hz), and gamma-band (30–50 Hz) 
changes in unimpaired individuals with (i) shoulder abduction, (ii) 
limb dominance and (iii) healthy aging. 

2 Materials and methods

We conducted a single-arm cyclical movement experiment 
to study the extent to which shared neural control of arm 
movement—as quantified by IMC among arm muscles—is altered 
by shoulder abduction, limb dominance, and age in unimpaired 
individuals. The single-arm upper extremity motor task involved 
rotating a custom ergometer in the horizontal plane for 30 full 
rotations at a target pace of 2 seconds per rotation cycle. During 
the task, participants were seated and equipped with surface EMG 
electrodes placed on the biceps, triceps, and deltoid muscles. 
Shared neural drive among muscle pairs was quantified through 
IMC analysis in the alpha-band (8–16 Hz), beta-band (16–30 Hz), 
and gamma-band (30–50 Hz) frequency ranges. All participants 
completed the upper extremity task under four experimental 
conditions to measure the effects of shoulder posture (neutral or 
abducted) and arm (dominant or non-dominant) on IMC during 
single-arm movements. Individuals who participated in our study 
ranged in age across the adult human lifespan (18–74 years), and 
so we evaluated the effect of age on IMC by comparing across 
participants sorted into younger (18–42 years) and older (51–74 
years) adult subgroups. An overview of the experimental methods 
is illustrated in Figure 1.

2.1 Ethical approval

All procedures were approved by the University of Southern 
California internal review board (USC IRB: HS-17-00304). Written 
consent was obtained from each participant prior to starting 
experimental conditions. 

2.2 Study participants

We recruited 25 unimpaired individuals (13 females/12 males) 
with an age range of 18–74 years (mean age ± one standard 
deviation: 46 ± 17 years) to complete our study. Study participants 
had the capacity to move their upper extremities and were free 
of impairments affecting motor control of either arm. Twenty-
one participants self-reported as right-hand dominant and four 
participants self-reported as left-hand dominant. In our analysis, we 
compare across dominant and non-dominant arms to account for 
individual differences in limb dominance. Supplementary Table S1 
provides additional demographic data for the younger (ages 18–42 
years: n = 12) and older (ages 51–74 years: n = 13) adult subgroups 
used in the analysis of age effects. Compared to lifespan definitions 
used in the literature (Medley, 1980), our age range for younger 
adults closely reflects early adulthood to middle age, while our 

age range for older adults is reflective of middle age to late
adulthood. 

2.3 Arm cycling task

To quantify IMC during upper extremity movement in general, 
participants performed a single-arm cycling task by rotating a 
custom ergometer. Participants rotated the ergometer by lightly 
grasping a handle affixed to a mechanical crank that rotated 
in the horizontal plane (Figure 1A). Throughout the experiment, 
participants were seated and instructed to maintain a stable trunk 
and shoulder abduction posture. In addition, muscle activity 
was recorded from surface EMG sensors placed on the arm 
completing the task.

The task commenced with the ergometer handle at the furthest 
point from the participant’s body. To initiate movement in the 
clockwise direction, a participant needed to flex their elbow and 
extend their shoulder (in the horizontal plane) in order to move 
the handle towards their body along the circular ergometer rotation 
path. Ergometer rotations were made in a clockwise direction for 
the right arm and in a counterclockwise direction for the left 
arm. Movements were mirrored across arms so that the anatomical 
joint angles of each arm were similar. For both clockwise and 
counterclockwise rotations, the rotation angle (which was measured 
by an encoder) was defined to increase in the direction of rotation 
from the starting point (see Figure 1D).

To ensure a smooth and steady rotation, real-time angular 
velocity was communicated to the user through visual feedback 
displayed on a computer monitor set in front of the user. The visual 
feedback consisted of a cartoon dolphin that moved vertically up 
and down on the display based on actual angular velocity and a 
stationary line that indicated the target velocity (Figure 1B). The 
graphical user interface was implemented by a custom Unity3D 
Engine application. Rotation data was sampled by an Arduino Nano 
Every circuit board and was streamed to the Unity application 
using a Python script. A separate data acquisition board collected 
all signals used in data analysis, which included the surface EMG 
signals and the ergometer position signal. Both the ergometer and 
visual display used in this study are newer versions of those used in 
our group’s prior work (Laine et al., 2021).

Prior to data collection, surface EMG sensors were placed 
on the arm used to rotate the ergometer. Then, participants 
were provided with instructions on how to rotate the ergometer 
and familiarized themselves with the arm cycling task, including 
the velocity-feedback display. Task familiarization typically lasted 
1–3 min. Once the experimental setup and task familiarization were 
complete, participants performed the single-arm cycling task. For 
all experimental conditions, participants rotated the ergometer 30 
cycles at a rate of 2 s per cycle (which we confirmed after the 
experiment, although participants did have a tendency to rotate 
slightly faster as indicated by a grand mean cycle pace of 1.84 s per 
cycle). This rotation rate resulted in a nominal task completion time 
of 60 s, which ensured sufficient data for coherence analysis based on 
our prior work (Laine et al., 2021). After completion of the ergometer 
task, participants rested for 1–2 min before carrying out the next 
experimental condition. 
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FIGURE 1
Overview of the single-arm upper extremity motor experiment. (A) Participants rotated an ergometer while muscle activity was acquired with sEMG 
electrodes placed on the biceps, triceps, and deltoid muscles. (B) Real-time visual feedback of angular velocity was provided to ensure steady rotation 
during the task. (C) The task was completed in 4 conditions: with the dominant and non-dominant arms and with a neutral (‘Elbow Down’) and 
abducted (‘Elbow Up’) shoulder posture. (D) The rotation angle definitions used in IMC analysis were mirrored across arm conditions so that the same 
rotation angle represents similar anatomical joint angles for either arm. (E) EMG data acquired during the task were high-pass filtered and rectified prior 
to coherence analysis. (F) Intermuscular coherence was computed between two processed EMG signals at each phase of the rotation cycle and then 
converted to ‘band’ coherence by taking the maximum coherence within each of the alpha-, beta-, and gamma-bands respectively.

2.4 Experimental conditions

We implemented a within subjects factorial design to study 
the main effects of shoulder posture (neutral vs. abducted) 
and arm (dominant vs. non-dominant) on IMC during arm 
movement. The two shoulder postures will now be referred to 
respectively as ‘elbow-down’ for the neutral shoulder posture 
(which consisted of approximately 45 degrees of shoulder 
abduction); and ‘elbow up’ for the abducted shoulder posture 
(which consisted of approximately 90 degrees of shoulder 
abduction) since the elbow was ‘up’ at the individual’s shoulder 
height. Both shoulder postures (illustrated in (Figure 1C) were 
unrestricted and were verbally communicated to the participant 
during task completion based on visual inspection by the 
experimenter of participant arm position. For the elbow-up 
posture, participants were instructed to keep the vertical position 
of the elbow at their shoulder height. During the experiment, 
participants were verbally encouraged to keep this position 
if they departed from it. Limb dominance, as used in data 

analysis, was self-reported by participants at the beginning 
of the study.

The four conditions were completed by first selecting either the 
dominant or non-dominant arm to perform the single-arm cycling 
task for both shoulder postures; followed by completing the task 
with the other arm and both shoulder postures. Presentation of 
conditions were randomized to mitigate possible effects related to 
order of conditions, such as learning and attention. Specifically, 
the dominant arm was assigned first to 11 of the 25 participants, 
and the elbow-up posture was assigned first to 13 of the 25 
participants. The entire experiment lasted about 60 min with a 
standard deviation of 10 min. 

2.5 Data acquisition

2.5.1 Ergometer rotation angle
We created an instrumented ergometer to standardize arm 

movement within and across participants. The ergometer consisted 
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of a handle affixed to the end of a 15.2 cm long ‘crank’ (i.e., 
mechanical link) mounted to a bracket that housed a shaft. The 
shaft rotated in a ball bearing (i.e., a revolute joint), which 
resulted in circular motion of the ergometer handle. A hall effect 
rotary position sensor (RTY360LVNAX, Honeywell Sensing and 
Productivity Solutions, North Carolina, United States) was mounted 
to the end of the bracket to incrementally measure the ergometer 
rotation angle. Between the handle and end of the crank arm, an 
additional ball bearing was incorporated for ergonomic reasons 
to accommodate natural wrist rotations throughout the rotation 
cycle. The ergometer was a passive device without actuators, thereby 
providing minimal resistance to arm movements. As a result, 
movements made with the crank were in principle as similar as 
possible to unconstrained arm movements of the same kind. 

2.5.2 EMG recording
Muscle activity was recorded from arm muscles relevant to 

the task at hand via surface EMG electrodes placed on the 
long head of the biceps (lbi), lateral head of the triceps (tri), 
anterior deltoid (adelt), middle deltoid (mdelt), and posterior 
deltoid (pdelt) muscles. Surface EMG signals were acquired using 
pre-amplified bipolar sensors with a 20 Hz–460 Hz bandwidth 
and 1,000x gain (SX230-1,000, Biometrics Ltd., Newport, United 
Kingdom). The EMG and ergometer position signals were sampled 
at 1,000 Hz using a DataLINK data acquisition system (DLK 900, 
Biometrics Ltd., Newport, United Kingdom). The selection of 
elbow and shoulder muscles in this study is likely only a subset 
of those relevant to the task at hand. Characterizing the full-
dimensionality of arm movement in this upper extremity task 
would require measuring muscle activity of all arm muscles at each 
anatomical joint (Cohn et al., 2018), and is beyond the scope of 
this study.

After all sensors were placed on the surface of the skin, 
EMG signal quality was visually inspected on real-time plots of 
EMG data on a computer monitor. Signal quality was verified 
for each individual muscle during voluntary contraction of each 
muscle based on their main function. We further verified signal 
quality by monitoring muscle activity during task familiarization. 
Electromyography sensors were positioned on the arm according to 
standard recommendations (Hermens et al., 2000). To mount the 
sensors, first the arm surface was cleaned with isopropyl alcohol and 
then sensors were secured to the skin with a double-sided adhesive 
tape. A ground electrode was placed on a bony protrusion, usually 
the wrist ulna, on the uninvolved contralateral arm.

As in our prior study (Laine et al., 2021), we also recorded muscle 
activity from the short head of the biceps and the upper trapezius 
muscles. Muscle activity from these muscles are not included in this 
work. From our prior work, the upper trapezius was found to have 
minimal coherence with other muscles, and the short of the head 
biceps has similar coherence to the long head of the biceps, but at 
lower magnitude, thus providing mostly redundant information. 

2.6 Data analysis

All signal processing and statistical procedures were 
implemented offline in MATLAB (Mathworks, Natick, MA, United 
States). IMC values were computed using custom processing 

functions as the magnitude-squared coherence between two EMG 
signals (i.e., EMG-EMG coherence). Statistical analyses were 
implemented using the ‘Statistics and Machine Learning Toolbox’ in 
MATLAB. The IMC analysis used in this work is similar to that used 
in our prior work (Laine et al., 2021), which facilitates comparison 
across studies. 

2.6.1 Intermuscular coherence
Measured EMG signals were first digitally processed by a 4th-

order high-pass Butterworth filter with a 250 Hz cutoff frequency 
and zero-phase lag. The high-pass filtered EMG signals were then 
rectified using the absolute value function (Figure 1E). High-
pass filtering and rectification of the EMG signals facilitates 
calculating coherence by removing motion artifacts and is thought to 
accentuate motor unit activity, increasing the accurate classification 
of shared neural drive to muscles (Boonstra and Breakspear, 2012; 
Farina et al., 2014a; Laine and Valero-Cuevas, 2017). Processed 
time-domain EMG signals were then converted to a time-
frequency representation to facilitate computation of magnitude-
squared coherence. Using a time-frequency representation is 
appropriate given the non-stationary nature (see (White and 
Boashash, 1990)) of our time-series electromyography data 
generated during arm movement. Converting time-series data to 
the time-frequency domain to compute coherence has been used 
in electroencephalogram studies (Lachaux et al., 1999; Roach and 
Mathalon, 2008) and in our prior work (Laine et al., 2021).

Time-frequency signals were generated by convolution of time-
domain signals with complex Morlet wavelets. We used 7 wavelets 
that spanned a frequency range of 5 Hz–250 Hz. The practical 
implementation of the wavelets used a frequency interval of 0.25 Hz 
in the lower frequencies of interest (5 Hz–50 Hz) and an interval of 
5 Hz in the higher frequencies (50 Hz–250 Hz). We found the use 
of a finer interval for the lower frequency range (used in primary 
analyses) and the coarser intervals at higher frequencies (used for 
removing signal bias) to be an appropriate compromise between 
signal resolution and computation time. At each frequency interval, 
time-frequency represented signals generated over the 30 rotation 
cycles were grouped (i.e., concatenated) into 36 phase bins of 10°
width. Time-frequency represented data were binned based on the 
continuous ergometer rotation angle, with the 36 bin centers spaced 
every 10° from 0° to 350 degrees of the rotation cycle. With a desired 
cycle rate of 2 s per cycle, this resulted in a nominal 1.67 s of EMG 
data (about 1,670 samples) per 10-degree phase bin.

Magnitude-squared coherence was computed within each of the 
36 phase bins between two muscle activity signals (i.e., IMC), which 
had been converted to a time-frequency representation. For each 
phase bin, we computed the maximum IMC value within the alpha 
(8–16 Hz), beta (16–30 Hz), and gamma (30–50 Hz) frequency 
bands—which we refer to in short as alpha-band IMC, beta-band 
IMC, and gamma-band IMC, respectively (Figure 1F). To evaluate 
strength of coherence for each muscle pair throughout the task, most 
IMC values presented in the Results section have been averaged 
across the entire rotation cycle within each frequency band. Finally, 
an aggregate response metric was computed as IMC averaged across 
the cycle and muscle pairs—which we define as overall IMC—to 
serve as the dependent (response) variable used in group-level 
statistical analyses.
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Prior to computing IMC, magnitude-squared coherence values 
(which are not normally distributed) were converted to standard 
Z-scores to facilitate statistical analyses (Baker et al., 2003; 
Laine and Valero-Cuevas, 2017). The first step was to apply 
Fisher’s z-transformation by taking the square-root of magnitude-
squared coherence (i.e., conversion to a Pearson correlation 
coefficient) and then applying the inverse hyperbolic tangent 
function, mathematically described in Equation 1:

Fz = atanh(√coh) , (1)

where coh is a magnitude-squared coherence (i.e., IMC) value. 
Assuming that each of the 30 rotations are independent, coherence 
can then be expressed as a Z score as shown in Equation 2:

Z = Fz
√2L = 7.746Fz (2)

with L = 30 cycles. Any bias introduced when converting coherence 
values to standard Z scores was removed by subtracting the average 
coherence between 100 Hz and 250 Hz. At such high frequency 
intervals, any signal is likely due to measurement noise or irrelevant 
to our analysis (Laine et al., 2021).

The described signal processing methodology used to compute 
IMC was repeated for each participant and all experimental 
conditions. As a result, this procedure generated Z score IMC values 
for 25 participants, 4 experimental conditions, 36 phase bins, 10 
muscle pairs, and 3 frequency bands used to compute the response 
variable overall IMC used in statistical analyses. A summary of signal 
processing parameters is provided in Supplementary Table S2.

Contrasts of Z score IMC values across conditions (or groups) 
measured the effect size (Cohen’s d) of an experimental factor. When 
presenting results, we use the following effect size definitions: trivial 
( < 0.2), small (≥0.2 and < 0.5), medium (≥0.5 and < 0.8), and large 
(≥0.8). 

2.6.2 Statistical procedures
To evaluate statistical significance of IMC on experimental 

factors, we ran a within subjects repeated measures ANOVA. The 
within subjects model evaluated if differences in the response 
variable of overall IMC were statistically significant due to three 
experimental factors of shoulder posture (elbow up and elbow 
down), arm (dominant and non-dominant), and age (younger and 
older adults). The repeated measures ANOVA was implemented 
using the function ranova in MATLAB. Statistical significance for 
all tests was evaluated at the 95% confidence level (p < α, where α =
0.05).

The dependent variable (overall IMC) was grouped by 
experimental condition (within each frequency band) and evaluated 
to see if the requirements for an ANOVA were met. When the 
requirements were not met, we applied corrections to the statistical 
procedure (e.g., Popp et al., 2023). Specifically, we tested whether the 
dependent variable was normally distributed through the Shapiro-
Wilk and Shapiro-Francia normality test; and we tested if the 
dependent variable had compound symmetry through Mauchly’s 
test of sphericity. In cases where normality were not satisfied, 
the data were square-root transformed to increase the degree of 
normality. When data were found to not satisfy criteria for sphericity, 
we applied the Greenhouse-Geisser correction to adjust the F-
statistic degrees of freedom (within and between subjects) by a 

multiple ϵ, which tends to increase the p-value reported by the 
F-statistic.

Post-hoc comparisons were carried out for any statistically 
significant differences found due to contrasts of main effects 
(i.e., across posture within the same arm or across arm for 
the same posture). Specifically, when significant differences were 
found between conditions, dependent t-tests were used to evaluate 
significant differences in IMC averaged across the rotation cycle 
within individual muscle pairs. A Bonferroni correction was applied 
within each condition to account for multiple comparisons between 
all 10 muscle pairs by multiplying calculated p values by 10 (i.e., a p-
value was significant if 10∗ p < α). To evaluate whether age effects 
were significant, independent t-tests were computed to compare 
overall IMC across the two subgroups categorized by age (younger 
and older adults) within each condition. All statistical procedures 
were carried out separately for alpha-band, beta-band, and gamma-
band IMC. 

3 Results

3.1 IMC across the frequency range

Grand mean (across all n = 25 participants) overall IMC (i.e., 
coherence averaged across the rotation cycle and muscle pairs) 
converted to a Z score was greater than 0.5 at each frequency interval 
within the frequency range of interest (i.e., 8 Hz–50 Hz) for each 
of the four experimental conditions (Figure 2A, right). This level of 
grand mean IMC is statistically significant according to Stouffer’s 
composite Z-score method, which sets 0.33 as the significance 
threshold at the 95% confidence level (one tail: 1.65/√n). Across the 
frequency range of interest, the maximum grand mean overall IMC 
peaked between 11 and 13 Hz suggesting that IMC was strongest 
in the alpha-band in our arm cycling task (Figure 2A). The peak 
in grand mean overall IMC within the alpha-band descended into 
the beta-band (i.e., 16.25 Hz) and reached a valley floor around 
20 Hz that then climbed to a smaller secondary peak between 30 
and 35 Hz within the gamma-band (Figure 2A). In addition to the 
IMC results at each frequency interval across participants, IMC for a 
single participant is shown in Figure 2B within the frequency range 
of interest.

3.2 Statistical significance of overall IMC 
within each band

Statistical significance on overall IMC (i.e., coherence 
averaged across the rotation cycle and muscle pairs) due to 
main effects was evaluated with a repeated measures ANOVA 
carried out separately for alpha-band, beta-band, and gamma-
band IMC (see Supplementary Figure S1), but only after making 
the following transformations: (i) In each case, overall IMC data 
were not normally distributed, so we adjusted them by the square 
root transform; and (ii) Overall IMC data were also found to 
not satisfy sphericity, and so the Greenhouse-Geisser correction 
was applied by multiplying F statistic degrees of freedom (which 
was 1 between groups and 23 within groups) by 0.682 for alpha-
band IMC, 0.631 for beta-band IMC and 0.706 for gamma-band 
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FIGURE 2
Intermuscular coherence is most pronounced in the alpha-band during arm cycling. Specific and general data are shown to highlight this point across 
all participants (A) and for a sample participant (B). The left column is specific to coherence between the long head of the biceps (lbi) and the middle 
deltoid (mdelt) muscles. For IMC in the left and center columns, the task was completed with the dominant arm and the elbow up. The plots for the 
right column show coherence across frequency for all conditions with the grand mean represented by solid lines and one standard deviation by 
dashed lines.

IMC. In the reported F statistics that follow, degrees of freedom 
are omitted for readability. Statistically significant differences in 
overall alpha-band IMC were found due to the main effects of 
shoulder posture (F = 22.4, p = 0.0007) and participant age (F =
6.6, p = 0.03). The main effect of limb dominance for alpha-band 
IMC did not result in significant differences (F = 2.2, p = 0.15). 
Interaction effects that included posture were nearly significant at 
the 95% confidence level for arm and posture (F = 4.4, p = 0.06) 
as well as for age and posture (F = 3.9, p = 0.08) in alpha-band 
IMC. Differences in overall beta-band IMC were significant for 
shoulder posture (F = 44.6, p = 5× 10−5), while differences were not 
significant for limb dominance (F = 1.3, p = 0.25) or participant 
age (F = 4.5, p = 0.07). Similarly, differences in overall gamma-
band IMC were significant for shoulder posture (F = 57.9, p = 4×
10−6) but not for limb dominance (F = 1.1, p = 0.3) or participant 
age (F = 0.52, p = 0.42). 

3.3 Alpha-band IMC

Coherence matrices were created to illustrate alpha-band IMC 
of all 10 muscle pairs for each experimental condition (Figure 3A). 

Each entry of a coherence matrix for a given experimental condition 
displays IMC values expressed as a Z score of the grand mean 
(across all n = 25 participants) and 95% confidence intervals of 
alpha-band IMC. For these coherence matrices, alpha-band IMC 
was averaged across the rotation cycle. Effect size contrasts and post 
hoc comparisons due to the main effect of shoulder posture on IMC 
were computed between all possible muscle pairs (Figure 3B), and 
contrasts of limb dominance are shown in Figure 4.

Grand mean overall alpha-band IMC was 2.65 (standard 
deviation: 0.69) with the non-dominant arm and the elbow up, 2.47 
(0.69) with the dominant arm and the elbow up, 2.20 (0.47) with the 
non-dominant arm and the elbow down, and 2.18 (0.54) with the 
dominant arm and the elbow down. Grand mean values reported 
in the same order in terms of magnitude-squared coherence were: 
0.19 (0.06), 0.17 (0.06), 0.14 (0.04), and 0.14 (0.05). Coherence 
matrices of alpha-band IMC expressed as raw magnitude-squared 
coherence are provided in Supplementary Figures S2, S3 plots 
alpha-band IMC across the rotation cycle for several of the 
significant muscle pairs shown in (Figure 3B). A detailed report 
of significant differences found between individual muscle-pairs 
for alpha-band (as well as beta- and gamma-band) IMC are 
provided in the Supplementary Data Sheet 1.
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FIGURE 3
(A) Grand mean alpha-band IMC for all muscle pairs and the four experimental conditions. Alpha-band IMC expressed as a Z score was averaged 
across the rotation cycle (36 bins) within participants, and then the grand mean was computed across all 25 participants. The 95% confidence intervals 
are included within brackets below the grand mean score in each matrix entry. Arm muscles are abbreviated as the long head of the biceps (lbi), lateral 
head of the triceps (tri), anterior deltoid (adelt), middle deltoid (mdelt), and posterior deltoid (pdelt). (B) Effect size (Cohen’s d) for the postural contrast 
of the elbow-up and elbow-down conditions within the same arm (dominant or non-dominant) for all muscle pairs. Significant differences across 
postures within each arm, denoted by an asterisk, were identified at the 95% confidence level through post hoc dependent pair-wise t-tests for each 
muscle pair using a Bonferroni adjusted threshold for multiple comparisons.

The effect of age on overall alpha-band IMC was evaluated 
within each condition across younger and older adult subgroups 
(see Figure 5). Differences in grand mean overall alpha-band IMC
were significant between groups when completing the single-arm 
cycling task with the elbow-up posture for both the dominant 
(p = 0.03) and non-dominant (p = 0.005) arms. When completing 
the task with the elbow up, younger adults had a grand mean Z 
score coherence of 2.8 (±0.7, standard deviation) with the dominant 
arm and 3.0 with the non-dominant arm (±0.8); while older adults 
had a grand mean of 2.2 (±0.6) with the dominant arm and 2.3 
(±0.3) with the non-dominant arm. As a result, comparison across 
groups with the elbow-up posture yielded medium effect sizes of 0.6 
for the dominant arm and 0.7 for the non-dominant arm. Grand 
mean coherence values tended to be higher for younger adults with 
the elbow down: younger adult grand mean values of 2.3 for the 
dominant arm and 2.4 for the non-dominant arm compared to 
grand means from older adults of 2.0 for the dominant arm and 

2.0 for the non-dominant arm. Differences between groups with the 
elbow-down posture, which yielded small 0.3 (dominant arm) to 
0.4 (non-dominant arm) effect sizes, were however not statistically 
significant for either the dominant (p = 0.18) or non-dominant 
(p = 0.07) arms. Supplementary Figure S4 plots overall alpha-band 
IMC for each condition with respect to participant age.

3.4 Beta-band and gamma-band IMC

Intermuscular coherence across all muscle pairs within the 
beta and gamma frequency bands for the elbow-up conditions 
is also presented in Figure 6 with alpha-band IMC included for 
reference. The coherence matrices highlight that across all muscle 
pairs IMC was greatest in the alpha-band, and that beta-band 
IMC was greater than gamma-band IMC. Differences across the 
dominant and non-dominant arms had at most small ( < 0.5) effect 
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FIGURE 4
Coherence is not lateralized in the alpha-band when comparing across the dominant and non-dominant arms within the same shoulder posture. 
Alpha-band IMC for each muscle pair has been averaged across the rotation cycle. A repeated measures ANOVA reported no significant effect of arm 
on IMC averaged across muscle pairs within each condition. The 95% confidence intervals are depicted in brackets below grand mean scores.

sizes within each frequency band. Furthermore, coherence matrices 
of postural contrasts in all three frequency bands for both arms are 
presented in Figure 7.

With respect to comparison across age subgroups, for overall 
beta-band IMC younger adults had small effect sizes with the 
elbow up of 0.4 (2.27 for younger adults compared to 1.87 for 
older adults with overall IMC as a Z score) for the dominant arm 
and 0.3 (2.38 vs. 2.07) for the non-dominant arm. While younger 
adults had increased overall beta-band IMC with the elbow down 
for both arms, effect sizes were trivial (0.14 dominant and 0.04 
non-dominant). Finally, for overall gamma-band IMC all contrasts 
yielded trivial effect sizes (magnitude less than 0.16) with older 
adults having increased coherence (of 0.04) with the elbow down 
for the non-dominant arms and younger adults having increased 
coherence for the other three conditions. 

4 Discussion

Our study evaluated the effects of shoulder posture, limb 
dominance, and age on IMC within the alpha (8–16 Hz), 
beta (16–30 Hz), and gamma (30–50 Hz) frequency bands 
when performing a cyclical analogue to reaching movements 
in the horizontal plane. This innovative cyclical task allows 
the collection of EMG signals of sufficient consistency and 
duration to perform coherence analysis on reaching movements 
(Laine et al., 2021; Bartsch-Jiménez and Valero-Cuevas, 2025). We 
defined alpha-band IMC, beta-band IMC, and gamma-band IMC 
as the maximum value of the magnitude squared coherence within 

each frequency band of interest evaluated within 10 deg width bins 
of the rotation cycle. IMC was evaluated for all possible pairings 
of two functional elbow muscles (the long head of the biceps and 
lateral head of the triceps) and three shoulder muscles (middle, 
anterior, and posterior deltoid muscles), which resulted in 36 
values of IMC for 10 muscle pairs within 3 frequency bands for 25 
participants across 4 conditions. Effects of experimental condition 
were evaluated on overall IMC (an aggregate metric of IMC averaged 
across the rotation cycle and muscle pairs for each participant) as 
well as individual muscle pairs. Finally, the effect of participant age 
on IMC was evaluated by sorting participants into younger (18–42 
years) and older (51–74 years) adult subgroups.

The single-arm cycling task was completed using a 2 × 2 study 
design with two experimental factors of shoulder posture (elbow up 
and elbow down) and arm (dominant and non-dominant). In our 
analysis, age was included as a within subjects experimental factor. 
Our main findings are that (i) shoulder abduction significantly 
increased overall IMC—as well as IMC across several functional 
elbow and shoulder muscles—in the alpha, beta, and gamma 
frequency bands for both the dominant and non-dominant arms. (ii) 
Limb dominance did not result in significant differences in overall 
IMC within any frequency band for either the elbow up or elbow 
down shoulder postures. And (iii) younger adults had greater overall 
alpha-band IMC compared to older adults, which were significant 
with the elbow-up posture for both the dominant and non-dominant 
arms, but not for the elbow-down posture. However, age effects 
across groups only approached significance for overall beta-band 
IMC and were far from significance for overall gamma-band IMC.
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FIGURE 5
The effect of age on overall alpha-band IMC was evaluated by sorting participants into younger and older adult subgroups. Overall IMC for individual 
muscle pairs was computed within each condition as the average across the rotation cycle and across all muscle pairs. Alpha-band IMC significantly 
decreased with age when completing the arm cycling task with the elbow up shoulder posture when using either the dominant or non-dominant arm. 
Significant differences were not found when completing the task with either arm and the elbow-down. Differences between groups found to be 
statistically significant through independent t-tests are reported with an asterisk. For the boxplots shown, the red line in the middle of each box is the 
median, the box edges represent the 25% and 75% quartiles, and the whiskers extend to the extreme values not considered to be outliers (which are 
indicated by the plus sign symbol). Individual participant values are plotted in front of each box as circles with the younger adult subgroup on the left 
box and the older adult subgroup on the right box.

It is worth noting that while differences due to limb dominance 
were not significant, the non-dominant arm tended to have higher 
IMC than the dominant arm. In addition, interaction effects for 
overall alpha-band IMC between posture and arm, as well as posture 
and age, approached significance. These interaction effects may 
have significant physiological importance related to interconnected 
neural mechanisms, and may warrant further investigation. Further, 
our data analysis and results focused on overall IMC, which may 
mask some effects related to coherence within subsets of the rotation 
cycle. Evaluating coherence within subsets of the rotation cycle 
could be valuable to study in future work. The remainder of the 
Discussion now focuses on results that were significantly different 
and overall IMC. 

4.1 Shoulder posture

Across both arms and all frequency bands, IMC significantly 
increased in 39 of 60 comparisons due to shoulder abduction (17 
for the dominant arm, 22 for the non-dominant arm), while 3 
comparisons showed significant decreases (all between adelt and 

mdelt). Interestingly, several muscle pairs had significant increases 
in all 3 frequency bands with small to large effect sizes: lbi with 
mdelt, lbi with pdelt, tri with mdelt, tri with pdelt, and mdelt with 
pdelt. Of note, significant differences involving the anterior deltoid 
were only due to higher coherence with the middle deltoid with 
the elbow-down within alpha-band IMC across both arms (medium 
and large effect sizes), and beta-band IMC with the dominant 
arm (small effect size). Coherence between the long head of the 
biceps and short head of the triceps were only significant in beta-
band and gamma-band IMC with medium effect size (compared 
to small effect sizes within alpha-band IMC). In our group’s prior 
work (Laine et al., 2021), alpha-band IMC was evaluated with the 
dominant arm in ten young participants with the same task but 
some minor changes in experimental methods (e.g., visual tracking 
of a cursor instead of a dolphin, previous version of the ergometer), 
Laine et al. (2021) reported similar trends in alpha-band IMC with 
the elbow up (with the dominant arm) with relatively high IMC 
values found between lbi and tri, mdelt and lbi, pdelt and lbi, tri 
and mdelt, tri and pdelt, as well as mdelt and pdelt, similar to what 
we found in this work. For completeness, Supplementary Figure S5 
presents smoothed muscle activity (as derived from surface EMG 
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FIGURE 6
Coherence matrices for alpha-, beta-, and gamma-band IMC were generated for experimental conditions with the elbow-up. Across all muscle pairs, 
coherence is greatest in the alpha-band, while coherence in the beta-band is higher than the gamma-band. Intermuscular coherence has been 
averaged across the rotation cycle. Values presented are the grand mean across participants with 95% confidence intervals depicted in brackets.

signals) across participants and experimental conditions, which are 
also similar to that observed in Laine et al. (2021). 

4.2 Limb dominance

The results from our study suggest that IMC is not lateralized 
during arm movements as differences were not significant 
when comparing across the dominant and non-dominant arms 
for the same shoulder posture (either elbow up or elbow 
down) within the alpha, beta, or gamma frequency bands. A 
hallmark trait of behavioral lateralization in humans is limb 
dominance (Sainburg, 2014), the manifestation of which is 
often attributed to higher levels of the central nervous system 
(Haaland et al., 2004). The absence of differences in shared neural 
drive to arm muscles between dominant and non-dominant 

arms strongly suggests that ‘lateralization’ or ‘limb dominance’ 
does not apply to shared control of the reaching movements 
studied here. That is, their shared drive is likely originating below 
the cortical mediators of limb dominance (such as the lateral 
frontal pole prefrontal cortex (Neubert et al., 2014), inferior 
parietal lobe (Goldenberg and Spatt, 2009) or monosynaptic 
corticomotoneuronal pathways (Sobinov and Bensmaia, 2021; 
Lemon, 2008)), as understood to have evolved in humans for 
dexterous function and tool use (Sainburg, 2014). 

4.3 Age effects

Beyond confirming the expected increase in IMC with shoulder 
abduction (most recently reported by Bartsch-Jiménez and Valero-
Cuevas (2025) in this same task), we critically demonstrate that 
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FIGURE 7
Coherence matrices of grand mean effect size for postural contrasts by and large reveal similar trends across the three frequency bands. IMC for each 
band has been averaged across the rotation cycle. Grand mean values are presented with 95% confidence intervals depicted in brackets. Significant 
differences due to posture are identified by an asterisk.

age significantly affects IMC in the alpha-band. Specifically, alpha-
band IMC significantly decreased in older adults compared to 
younger adults. With reference to the literature, a study with 92 
unimpaired participants found no significant changes of IMC in the 
beta-band (15–30 Hz) during a pinch-grip task (Jaiser et al., 2016). 
As a result, the age effect found here might be unique to the 
alpha-band during voluntary movements. Alpha-band coherence 
decreasing with age may suggest that neurophysiological effects, 
such as degeneration of motoneuron synapses (Castro et al., 2023) or 
loss of proprioception (Ribeiro and Oliveira, 2007), might be related 
to the functional IMC observed in our task as the alpha-band is 
associated with propriospinal sensorimotor processes.

We speculate that the decrease in alpha-band IMC found in 
our study is perhaps a result of spinal reorganization of motor 
nuclei due to α-motoneurone death with healthy aging (Cruz-
Jentoft and Sayer, 2019; Hepple and Rice, 2016; Larsson et al., 2019). 

One potential mechanism is that α-motoneurone death (usually 
Type II) is known to produce the adoption of ‘orphaned’ muscle 
fibers by Type I motoneurones. The reinnervation of muscle 
fibers by a different type of motoneuron results in fiber type 
conversion and fiber type grouping (DiStefano, 1993). This 
would in turn disrupt propriospinal sensorimotor processing 
by increasing effective innervation numbers in the remaining 
α-motoneurones, which also no longer receive the appropriate 
proprioceptive spindle input from the orphaned intrafusal fibers. 
This would at the very least disorganize the propriospinal 
mechanisms associated with alpha-band IMC, and potentially 
reduce its strength. However, other mechanism may be at work. This 
justifies and motivates further investigations into the mechanisms 
that explain the change in alpha-band IMC we report, which 
suggest disruption of propriospinal sensorimotor circuitry in 
healthy aging. 
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4.4 Study limitations

Like most human subjects experiments, our study had 
limitations. Although we found many results to be significant, our 
study could have benefited from recruiting additional participants, 
in particular for the analysis on limb dominance and participant 
age. While differences in IMC across limb dominance were not 
found to be significant, IMC tended to be stronger in the non-
dominant arm, and so significant differences might be observed 
with additional participants. For the age-group analysis, increasing 
the distribution of participants across the adult lifespan would have 
been beneficial. In addition, one younger participant was identified 
as an outlier and excluded from the analysis as their average raw 
alpha-band coherence across the rotation cycle exceeded 0.8 (Z 
score of 12) for several muscle pairs. Future work might consider 
reporting coherence after each task to further investigate such data 
collection that may have been due to unexpected crosstalk not seen 
in all other 25 participants included in this paper. With respect 
to the experimental methods, one limitation is that the shoulder 
abduction angle was not measured during the experiment. As a 
result, some of the observed differences may be due to unaccounted 
for variations in shoulder abduction. Future experiments could use 
motion capture to measure joint angles to quantify the shoulder 
abduction angle throughout the experiment, and possibly to present 
the information in real time to participants. Our study also did 
not rely on physical constraints (like a wrist splint or trunk strap), 
which could have introduced unmeasured variability. We found 
these limitations acceptable and natural, as participants were able to 
perform the task in a comfortable way that might ease translation to 
clinical settings. 

4.5 Future work

Quantifying the strength of shared neural drive to arm muscles 
in unimpaired individuals during reaching movements is essential 
to understand the type, strength and source of pathological 
synchrony of neural drive to groups of muscles following stroke. 
The impaired movement of the arm contralateral to the brain 
lesion in hemiparetic stroke—which is exacerbated by shoulder 
abduction (Dewald et al., 1995)—is thought to come from 
dysregulation of brainstem-mediated neural drive to groups of 
muscles (Gross et al., 2002). In unimpaired individuals, shoulder 
abduction leads to increased coherence across several functional 
muscles. After stroke, movement of the more affected arm may 
be exacerbated by shoulder abduction, which might result in a 
lack of functional coherent drive necessary to smoothly move the 
arm across the workspace. Our findings underscore the importance 
of phylogenetically older brainstem mechanisms of limb control 
associated with alpha-band coherence that predate the emergence of 
lateralization of arm and hand function in humans (Sainburg, 2014), 
but which are presumed to influence the clinical presentation of 
stroke (Krakauer and Carmichael, 2022; Dewald et al., 1995).

The absence of significant differences in IMC between dominant 
and non-dominant arms in unimpaired adults found in this study 
serves as an important reference when evaluating (potential) changes 
in IMC between the paretic and non-paretic arms in hemiplegia. 
Our results suggest that the shared neural drive we recorded in 

both arms (particularly in the alpha-band) likely does not emanate 
from the higher levels of the central nervous system presumed to 
underlie the lateralization of arm and hand function, a hallmark 
behavioral trait in humans. As a result, any unbalance in alpha-band 
IMC patterns observed across arms in clinical populations completing 
our experimental task could predominantly, though not exclusively, 
be attributed to disruptions of subcortical structures, such as the 
reticulospinal tract or propriospinal processes, caused by hemiparetic 
stroke (and not limb dominance). Lastly, the decrease in IMC found 
in this study with healthy aging is an important consideration when 
evaluating IMC—of either arm—in stroke survivors. We conclude that 
IMC increases with shoulder abduction in unimpaired individuals for 
both the dominant and non-dominant arms across the alpha, beta, and 
gamma frequency bands. This natural feature of muscle coordination 
in typical function may provide a pathway for exacerbation after 
hemiparetic stroke in which shoulder abduction alters and exacerbates 
typical co-activation patterns quantified in this study. 
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