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Introduction: In today’s 24/7 society, circadian misalignment caused by 
environmental and lifestyle factors is associated with various adverse health 
consequences. Understanding tissue-specific pathology is required to counter 
this growing public health challenge. A potential association of environmental 
circadian misalignment with sarcopenia, or accelerated loss of skeletal muscle 
strength and mass, is poorly documented.
Methods: 14-week-old wild-type C57BL/6J male mice were exposed to a 
chronic jet lag (CJL) paradigm consisting of an 8-h phase advance every 4 days 
(the ADV group) or a fixed light-dark cycle (the LD group) for 64 weeks. Grip 
strength was measured during the experiment, and hindlimb muscle weight 
was assessed after the 64-week CJL. In addition, transcriptomic and histological 
analysis of the hindlimb muscles were performed in all animals.
Results: ADV mice exhibited significant reductions in grip strength and muscle 
weight relative to LD mice. Transcriptomic and histological analyses showed 
activation of TWEAK/Fn14 signaling and reduced myofiber cross-sectional area, 
hallmark features of sarcopenia, in the ADV group. Somewhat surprisingly, ADV 
mice showed increased centrally nucleated fibers, myosin heavy chain co-
expressing fibers, and myogenic gene expression, suggesting that compensatory 
muscle regeneration and remodeling processes are activated but remain 
insufficient to counter muscle atrophy.
Conclusion: These findings demonstrate that circadian misalignment is a 
potential risk factor for sarcopenia, underscoring circadian rhythms as a key 
regulator and actionable target for sarcopenia prevention.
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1 Introduction

The circadian clock is our biological time-keeping machinery 
that orchestrates myriad physiological and behavioral processes 
over the 24-h daily cycle. The circadian system consists of a 
central clock, the hypothalamic suprachiasmatic nucleus (SCN), and 
peripheral clocks in various tissues throughout the body, including 
skeletal muscle (Bollinger and Schibler, 2014; Patke et al., 2020). 
In coordination with environmental cycles, the SCN synchronizes 
peripheral clocks to regulate tissue-specific and systemic circadian 
rhythms to maintain physiological homeostasis (Pilorz et al., 2018). 
Whereas different species have distinct intrinsic circadian period 
lengths, their alignment with environmental cycles is essential for 
maintaining physiological homeostasis and survival (Eastman et al., 
2015; Eckel-Mahan and Sassone-Corsi, 2015). Conversely, studies 
in a variety of experimental organisms have reported that a 
misalignment between the intrinsic circadian period and the 
external cycle is associated with impaired growth and reduced 
lifespan (Highkin and Hanson, 1954; Hurd and Ralph, 1998; 
Ouyang et al., 1998; Pittendrigh and Minis, 1972; Takasu et al., 
2015). Likewise, in our modern society, the prevalent 24/7 lifestyles 
perturb the harmony between endogenous oscillations and the 
natural light:dark cycles, disrupting intrinsic circadian physiological 
rhythms. Particularly, circadian misalignment in shift workers 
has been associated with aggravated risk for various diseases 
including diabetes, metabolic syndrome, cardiovascular disease, 
menstrual irregularities, infertility, mood disorders, and breast and 
prostate cancer (Boivin et al., 2021). Since shift workers constitute 
approximately 20% of the world’s workforce (Ward et al., 2019), the 
adverse health consequences of circadian misalignment represent 
a critical public health crisis. It is imperative to decipher the 
tissue-specific consequences toward the development of efficacious 
interventional strategies.

Skeletal muscles are essential for movement and posture 
(Frontera and Ochala, 2015). At the cellular level, myofibrils 
within multinucleated muscle fibers contract to perform locomotor 
functions (Sweeney and Hammers, 2018). When myofibers are 
damaged by overloading, such as during resistance exercise, 
satellite cells surrounding the myofiber are activated and undergo 
myoblast proliferation and differentiation. These myoblasts then 
fuse with myotubes and mature into fast or slow muscle fibers, 
thereby maintaining skeletal muscle mass and strength (Chargé and 
Rudnicki, 2004). However, an imbalance between the degenerative 
and regenerative processes in the skeletal muscle can reduce its 
weight and function (Blau et al., 2015; Muñoz-Cánoves et al., 
2020; Thorley et al., 2015). Aging is known to be accompanied 
by a progressive decline in skeletal muscle mass, strength, and 
function, referred to as sarcopenia (Cruz-Jentoft and Sayer, 2019). 
Sarcopenia is a major public health problem because it increases the 
risk of fractures and frailty in the elderly, leading to compromised 
quality of life and increased mortality (Wilson et al., 2017; 
Xu et al., 2021; Zhang et al., 2018). The pathophysiology of 
sarcopenia, however, remains incompletely understood due to its 
multifactorial complexity and interrelated causes, such as reduced 
physical activity and inadequate nutritional intake.

The circadian clock is known to play an important role in skeletal 
muscle physiology. While circadian functions deteriorate over 
aging, whether circadian dysfunction accelerates the progression 

of sarcopenia is unknown (Choi et al., 2019; Harfmann et al., 
2015). It has been reported that the genetic disruption of core 
clock genes, including ablation of Bmal1, leads to sarcopenia like 
phenotypes in mice. Specifically, global Bmal1 knockout mice 
exhibit severe systemic abnormalities with marked reductions 
in skeletal muscle mass and strength (Andrews et al., 2010; 
Kondratov et al., 2006). In addition, muscle-specific Bmal1 knockout 
mice show reductions in muscle mass and function (Fernández-
Martínez et al., 2024), suggesting that both systemic and muscle 
intrinsic circadian disruptions can contribute to sarcopenia like 
changes. However, these genetic models may not adequately 
recapitulate human pathophysiology of sarcopenia, given the 
various confounding factors including lifestyle, activity level, and 
dietary habits (Choi et al., 2019; Palmese et al., 2025). Therefore, it is 
necessary to establish an experimental animal model that captures 
key etiological processes relevant to human disease and aging. 
Previously, we established a long-term circadian misalignment 
cohort model using wild-type C57BL/6 mice subjected to a chronic 
jet-lag (CJL) paradigm mimicking shift work. We discovered that 
chronic circadian misalignment, specifically the phase advance 
condition (ADV) described herein, exacerbates immune senescence, 
chronic inflammation, mortality, and non-alcoholic steatohepatitis 
of the liver (Inokawa et al., 2020; Koike et al., 2024).

Recognizing the paucity of evidence linking environmental 
circadian disruption to skeletal muscle loss in mice and humans, 
we leveraged the chronic circadian misalignment model over the 
prolonged experimental duration to investigate the relationship 
between circadian misalignment and sarcopenia. Wild-type 
C57BL/6J mice were exposed to the CJL of 8-h phase advance every 
4 days (the ADV condition) for 64 weeks or the fixed light-dark 
cycle (the LD condition). The results showed that the ADV group 
displayed significantly lower grip strength and normalized muscle 
weight than the 12-week-old young mice and the LD control group, 
indicating that chronic circadian misalignment accelerated the 
progression of sarcopenia with reduced muscle weight and strength. 
Transcriptome and histological analysis under the CJL condition 
revealed activation of the TWEAK/Fn14 signaling pathway and 
reduced myofiber cross-sectional area (CSA), suggesting that this 
mouse model recapitulates the pathophysiology of sarcopenia. 
Furthermore, we observed enhancing expression of myogenic 
regulators and an increase in centrally nucleated fibers and myosin 
heavy chain (MHC) co-expressing fibers in ADV mice, suggesting 
that a compensatory muscle regeneration under the circadian 
misalignment condition was insufficient to prevent muscle atrophy. 
These results suggest a close link between circadian misalignment 
and the pathogenesis of sarcopenia, and provide evidence that 
circadian rhythms represent an interventional target for sarcopenia. 

2 Materials and methods

2.1 Mice

Male C57BL/6JJcl mice (10 weeks old) were purchased from 
CLEA Japan, Inc. (Tokyo, Japan). Mice were randomly assigned to 
LD and ADV groups (n = 16) and housed in individual cages. The 
group was housed (170 × 350 × 145 mm) with a 120-mm diameter 
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running wheel (SANKO, Osaka, Japan). All mice were kept in light-
shielded mouse housing boxes at the room temperature of 25.0 °C 
± 1.5 °C with food and water available ad libitum, as described 
previously (Koike et al., 2024). The mice were entrained to a 12:12-h 
light-dark cycle with an 8:00–20:00 light period for 2 weeks, followed 
by 2 weeks in the constant darkness (DD). After DD exposure, mice 
were returned to the normal light condition (8:00–20:00) followed 
by the same LD condition (light–dark condition with an 8:00–20:00 
light period) or the ADV condition (8-h phase advance once every 
4 days) for 64 weeks. Body weight of each mouse was measured once 
every 2 weeks during these CJL conditions, and relative body weight 
was calculated by comparing each mouse’s weight at the time of 
purchase (10 weeks old). Food intake was measured by providing 
a pre-weighted food pellet (CRF-1; Oriental Yeast Co., Ltd., Tokyo, 
Japan) in the top hopper of each home and weighing the remaining 
food once every 2 weeks. Criteria for humane endpoints established 
at the beginning of the study included: exhibiting gait abnormalities 
or showing weight below 20% of what is expected for the animal. 
Two mice in the LD group were excluded from analysis, as one 
exhibited gait abnormalities due to injuries was euthanized (4% 
isoflurane inhalation followed by cervical dislocation), and the other 
was found dead. Tissue sampling from LD (n = 14), ADV (n = 16) 
mice was performed from 9:30 to 17:30 after 64 weeks under the CJL 
paradigm, when ADV mice were in the same light-dark cycle as LD 
mice with an 8:00–20:00 light period. Young mice were evaluated 
separately as a control group. At 10 weeks of age, the mice (n = 
30) entrained to the same 12:12-h light-dark cycle protocol as the 
experimental groups for 2 weeks. The sample size for the young 
group was calculated based on grip strength data from the LD and 
ADV groups using a power analysis (α = 0.05, power = 0.8). After 
this entrainment period, body weight, food intake, and grip strength 
were measured. For tissue collection, mice were anesthetized with 
4% isoflurane inhalation and blood was collected from the heart. 
Then the mice were decapitated, and the gastrocnemius, soleus, 
and tibialis anterior muscles were collected. The muscle weights 
were measured using an electronic analytical balance (ER-180A, 
A&D Company, Tokyo, Japan). The plantaris muscle shares a similar 
fiber type composition with the gastrocnemius, making it difficult 
to separate the two. Therefore, it was collected together as a part 
of gastrocnemius muscle (Adamovich et al., 2021). Muscle weights 
were determined as the average of both legs and normalized to body 
weight at the time of sampling (Shang et al., 2020). After weighing, 
for RNA-seq analysis, the gastrocnemius muscle was incubated with 
RNAlater (Thermo Fisher Scientific) for several hours according to 
the manufacturer’s instructions and snap-frozen in liquid nitrogen. 
For histological analysis, the soleus muscle was fixed in 10% 
neutral buffered formalin. All experiments were approved by the 
Experimental Animals Committee, Kyoto Prefectural University of 
Medicine (approval No. M2022-194-1, M2023-191, M2024-180-1), 
and were performed in accordance with the institutional guidelines 
and Guidelines for Proper Conduct of Animal Experiments by the 
Science Council of Japan. 

2.2 Behavioral analysis

The behavioral analysis of the mice exposed to the CJL 
conditions was performed as described in our previous reports 

(Inokawa et al., 2020; Koike et al., 2024). The wheel-running 
frequency was measured by counting the number of signals 
from a magnet sensor (59070-010, Littelfuse Inc., Chicago, IL, 
United States). Clocklab software (Actimetrics, Wilmette, IL, 
United States) was used to analyze the behavioral activity in 
wheel revolutions per 1-min bin collected using CompACT AMS 
(Muromachi Kikai Co. Ltd., Tokyo, Japan) and ClockLab data 
collection (Actimetrics, Wilmette, IL, US). The mean activities 
every 4 weeks were calculated using the daily activities. Relative 
activity was calculated based on activity levels during the 3 
weeks prior to the start of the CJL condition (Koike et al., 
2024). Chi-square periodogram analysis was carried out in 
R using the Rethomics package on 14-day activity segments
(Geissmann et al., 2019). 

2.3 Four-limb grip strength test

The four-limb grip strength test was performed with the 
timing of light conditions aligned between the LD and ADV 
groups, using a digital force meter (GPM-101B; Melquest, 
Toyama, Japan). Mice gripped a metal net with all four limbs, 
and their tails were gently pulled backward in a horizontal 
direction. The maximum grip force exerted when the mice 
released the net was recorded as the grip strength. Each 
mouse underwent the test three times, and the average of the 
three measurements was recorded as the final grip strength
(Shang et al., 2020). 

2.4 Histological analysis

The gastrocnemius and soleus muscles were fixed in 10% neutral 
buffered formalin at room temperature for 2 days. Haematoxylin 
and eosin (HE) staining and immunohistochemical staining 
were performed by KAC Co., Ltd. (Kyoto, Japan). To identify 
MHC co-expressing fibers, immunohistochemical staining for 
fast and slow MHC was performed on serial sections, and 
corresponding fibers were identified by positional matching 
across adjacent sections. Monoclonal anti-fast MHC antibody 
(M4276, Sigma-Aldrich) and anti-slow MHC antibody (ab234431, 
Abcam) were used, respectively. Images of all muscle fibers 
were obtained with a BZ-X710 microscope (Keyence, Osaka, 
Japan). The CSA of the gastrocnemius and soleus muscles was 
calculated from the entire HE-stained sections using the BZ-
X700 Analyzer (Keyence, Osaka, Japan). In the gastrocnemius 
muscle, fiber size distribution and mean CSA were quantified 
by measuring at least 100 fibers from HE-stained sections 
(Wang et al., 2018). Centrally nucleated fibers were defined as 
fibers with nuclei not in contact with the sarcolemma (Kay et al., 
2022), and their number was normalized to muscle CSA. In the 
soleus muscle, the number of MHC co-expressing fibers was 
determined from immunohistochemically stained sections. For each 
sample, the average of three sections was used for quantification, 
and values were normalized to muscle CSA. Centrally 
nucleated fibers were also counted on the same immunostained
sections. 
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2.5 RNA-seq

Frozen gastrocnemius muscle was homogenized twice for 30 s 
in TRIzol reagent (Thermo Fischer Scientific) with 5-mm- and 
3-mm-diameter stainless beads using a desktop bead Crusher 
Shakeman 6 (Bio Medical Science Inc., Tokyo, Japan) at 3,500 rpm. 
Poly (A)-enriched stranded RNA sequencing was carried out by 
the NGS core facility at the Research Institute for Microbial 
Diseases of Osaka University on Illumina NovaSeq X with 101-
bp paired-end reads. After adaptor sequences were trimmed using 
Trimmomatic, the sequence reads were mapped to the mouse 
genome (GRCm39/mm39) using STAR as described previously 
(Bolger et al., 2014; Dobin et al., 2013; Koike et al., 2024). To 
obtain reliable alignments, the reads with a mapping quality of 
less than 10 were removed by SAM tools (Li et al., 2009). The 
University of California, Santa Cruz (UCSC) known canonical 
gene set (57,186) were used for annotation, and the reads mapped 
to the exons were quantified using analyzeRNA.pl script in the 
Homer software with an option of–rpkm or -noadj for FPKM 
or raw read counts, respectively (Heinz et al., 2010). Since the 
Homer treat each half of the read separately and count each as 
0.5 reads for paired-end reads, the raw read counts were rounded 
to the nearest integer before transforming rlog using DESeq2 
(Love et al., 2014). To report one isoform per locus (gene symbol), 
the longest expressed isoform was chosen. We assumed that a 
gene was expressed if there were more than 20 reads mapped 
on average in the exons of the gene. The expression level cutoff, 
average FPKM >0.5, was used for the downstream data analysis. 
Differentially expressed genes in the RNA-seq data were determined 
using DESeq2 with thresholds of false discovery rate (FDR) < 
0.05 and fold change >1.3. Gene ontology enrichment analysis of 
differentially gene expressed genes and gene set enrichment analysis 
was carried out using clusterprofiler in R language (Yu et al., 
2012) with a threshold of false discovery rate (FDR) < 0.05. 
The enriched GO terms with less than 5 gene counts were
excluded. 

2.6 Statistical analysis

Data are presented as mean ± SD. Statistical analysis 
was performed by the statistical methods stated in each 
legend using GraphPad Prism version 10.0 or R software. 
The significance level was set at p < 0.05 unless otherwise
noted. 

3 Results

3.1 Circadian misalignment accelerates the 
progression of sarcopenia

Wild-type C57BL/6J male mice were exposed to either 
the normal LD cycles or the previously established circadian 
misalignment paradigm, the aforementioned ADV conditions 
(Inokawa et al., 2020). Given that mice aged 18 months or older 
are commonly used as a natural aging model exhibiting early 
features of age-related sarcopenia, including reduced grip strength 

and muscle weight, we subjected 14-week-old mice to 64 weeks 
under the LD and ADV conditions, when all mice reached 
approximately 18 months of age (Shang et al., 2020; Xie et al., 
2021). Before the initiation of the CJL paradigm, all mice were 
first entrained to a 12-h/12-h LD cycle for 2 weeks, followed 
by 2 weeks in constant darkness (DD) to measure baseline free-
running activities (Figure 1A). In the ADV group, the circadian 
period progressively diverged from their intrinsic circadian rhythm 
with age, indicating that ADV mice underwent chronic circadian 
misalignment (Supplementary Figure 1). To assess whether these 
mice developed age-related sarcopenia based on human clinical 
criteria (e.g., reduced muscle mass and strength compared to 
younger populations) (Cruz-Jentoft et al., 2019), we evaluated grip 
strength and muscle weight normalized to body weight relative to 
young 12-week-old mice. Longitudinal assessments revealed that, 
after 53-week CJL treatment, ADV mice were impaired in grip 
strength compared to LD mice (Figure 1B). Furthermore, ADV 
mice exhibited significant decreases in not only grip strength, 
but also the normalized weights of soleus, gastrocnemius, and 
tibialis anterior muscles relative to both young mice and LD mice 
(Figures 1B,C). On the other hand, LD mice showed significant 
reductions in the normalized weights of gastrocnemius and tibialis 
anterior muscles, whereas grip strength and the normalized weight 
of soleus muscle were not significantly reduced compared to 
young mice (Figures 1B,C). ADV mice also showed increased 
body weight and reduced activity levels compared with LD mice, 
without an increase in food intake (Supplementary Figure 2), 
consistent with a previous report (Koike et al., 2024). These 
experiments using the CJL model reveal that environmental 
circadian misalignment accelerates the progression of
sarcopenia.

3.2 CJL induces myogenic gene expression

To investigate the molecular basis for the distinct effects 
of circadian misalignment on the grip strength and muscle 
weight, we performed RNA-seq analysis using gastrocnemius 
muscles from the mice exposed to LD and ADV conditions 
for 64 weeks. Analysis of differentially expressed genes (DEGs) 
identified differential expression of 304 genes between LD and 
ADV groups (Figure 2A; Supplementary Table 1). GO enrichment 
analysis of the DEGs showed that GO terms including circadian 
rhythm, rhythmic process, muscle organ development, and skeletal 
muscle cell differentiation were significantly enriched (Figure 2B; 
Supplementary Table 2). These enriched GO terms included key 
myogenic regulators such as Myod1, a master transcription factor 
involved in myoblast proliferation and differentiation. In addition, 
myogenesis-related genes such as Myog and Myf6, which promote 
myotube formation by myoblast fusion (Aziz et al., 2010; Hasty et al., 
1993), and Dll1, which is activated by Myod1 and promotes 
the myogenic process (Kollias et al., 2006; Zhang et al., 2021), 
were significantly upregulated in the ADV group compared to 
the LD group (Figure 2C). These findings suggest that circadian 
misalignment may promote muscle regeneration and remodeling 
processes.
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FIGURE 1
Circadian misalignment accelerates the progression of sarcopenia. (A) Schematic illustration of the experimental design. (B) Longitudinal changes in 
grip strength in LD and ADV groups. The grip strength was measured in young mice (12 weeks old) and in aged mice after 63 weeks on CJL. (C) The 
muscle weights normalized to body weight of soleus, gastrocnemius, and tibialis anterior muscles were measured in young mice (12 weeks old) and in 
aged mice after 64 weeks on CJL. Each circle represents the data from one animal. Bar plots shown are mean ± SD (Young, n = 30; LD, n = 14; ADV,
n = 16). The significance was determined using two-sided Wilcoxon rank-sum test corrected by Benjamini–Hochberg multiple testing.
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FIGURE 2
CJL induces myogenic gene expression. (A) Heatmap views of DEGs between LD and ADV condition in gastrocnemius muscle. A total of 304 DEGs 
were represented as a horizontal line ordered vertically by log2 fold changes determined by DESeq2. (B) Bubble plots of top 10 enriched GO terms in 
up- and downregulated DEGs. Color gradients ranging from red to blue correspond to in order of increasing FDR and the gene count of each GO term 
is shown. (C) FPKM expression levels of key myogenic regulatory factors. Bar plots shown are mean ± SD (LD, n = 14; ADV, n = 16). P values indicated 
are based on two-sided Wilcoxon rank-sum test.

3.3 Altered expression of the TWEAK/Fn14 
signaling pathway in CJL mice

To further investigate the paradoxical observation of increased 
expression of myogenic regulators alongside reduced grip strength 
and muscle weight, gene set enrichment analysis (GSEA) was 
performed using the Hallmark gene set from the Molecular 
Signature Database (MSigDB) (Castanza et al., 2023). The most 
significantly enriched gene set was the TNFα signaling pathway 
via NF-κB (Figure 3A; Supplementary Table 3), which is interesting 
because tumor necrosis factor (TNFα) is known to be associated 
with sarcopenia with its ability to promote protein catabolism, 
muscle degeneration and muscle atrophy (Sishi and Engelbrecht, 
2011; Zhou et al., 2016). Therefore, we next examined the 
expression of genes in the TNFα signaling pathway. Whereas 
Tnf  expression was not significantly increased in muscle tissues 
from the ADV group compared to the LD, Tnfsf12, encoding 

TNF-like Weak Inducer of Apoptosis (TWEAK), was significantly 
increased in the ADV group, along with its receptor Fn14 
encoded by Tnfrsf12a (Figure 3B; Supplementary Figure 3A). This 
is interesting because TWEAK is a pro-inflammatory cytokine 
of the TNF superfamily, and recognized as a key mediator of 
muscle wasting during aging (Dogra et al., 2007; Tajrishi et al., 
2014a). In addition, the expressions of Myod1, NF-κB-related 
transcription factors (Rela, Nfkb1, and Nfkb2), and unfolded 
protein response-related genes (Atf4 and Ddit3) involved in 
the repression of protein synthesis were significantly higher 
under the ADV condition (Figure 2C; Supplementary Figure 3B). 
These genes are known downstream targets of the TWEAK/Fn14 
signaling pathway (Tomaz da Silva et al., 2025; Zhou et al., 2016), 
suggesting that CJL activates the TWEAK/Fn14 signaling pathway. 
Collectively, the observed transcriptional changes in our CJL 
mouse model recapitulates key molecular features known to 
be associated with sarcopenia.
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FIGURE 3
Altered expression of the TWEAK/Fn14 signaling pathway in CJL mice. (A) GSEA enrichment plots in the top 10 HALLMARK datasets. Normalized 
enrichment scores and FDR values are shown. (B) FPKM expression levels of Tnfsf12 and Tnfrsf12a. Bar plots shown are mean ± SD (LD, n = 14; ADV,
n = 16). P values were calculated using two-sided Wilcoxon rank-sum test.

3.4 CJL causes muscle atrophy despite 
elevated histological markers for muscle 
regeneration and remodeling

To investigate the effects of CJL on skeletal muscle morphology, 
we examined the CSA of gastrocnemius muscle fiber using HE 
staining. The mean CSA of the muscle fiber was significantly 
smaller in the ADV group compared to the LD group (Figure 4A), 
indicating circadian misalignment induces muscle atrophy. These 
results are consistent with the observed reductions in grip 
strength and muscle weight, as well as with RNA-seq-based 
predictions involving activation of the TWEAK/Fn14 signaling 
pathway, suggesting that our mouse model also recapitulates 
histopathological features of sarcopenia. To experimentally validate 
RNA-seq-predicted enhancement of regenerative activity, we next 
quantified centrally nucleated fibers, a well-established histological 
marker of regenerated myofibers known to increase following 
muscle injury or exercise (Meyer, 2018; Narita and Yorifuji, 1999; 
Soffe et al., 2016; Wernig et al., 1990). The number of centrally 
nucleated fibers was significantly elevated in the ADV group 
compared to the LD group (Figure 4B), suggesting an accumulation 
of regenerating myofibers under CJL. Notably, despite reduced 
wheel-running activity levels in the ADV group relative to the 

LD group (Supplementary Figure 2), the observed increase in 
centrally nucleated fibers indicates that CJL itself promotes muscle 
regeneration. To further assess increased remodeling process, 
we quantified MHC co-expressing fibers (Andersen et al., 1999; 
Snow et al., 2005; Yoshimura et al., 1998). Skeletal muscle is 
composed of fast and slow muscle fibers, which generally express 
either fast muscle- or slow muscle-specific MHC (Blaauw et al., 
2013). However, some muscle fibers are known to co-express 
both MHC markers. The presence of fibers co-expressing fast 
and slow muscle-specific MHC isoforms has been observed 
in intermediate fiber-type transitions such as the regenerative 
process or reinnervation following denervation (Jerkovic et al., 
1997; Launay et al., 2006; Marini et al., 1991; Snow et al., 
2005; Yoshimura et al., 1998). Therefore, we used MHC co-
expressing fibers for semiquantitative analysis as a marker of 
ongoing remodeling. Because soleus muscle is relatively rich in 
slow twitch (Type I) muscle fibers and is commonly used for 
histological analysis of MHC markers (Snow et al., 2005), we 
performed quantitative analysis of MHC co-expressing fibers in 
soleus muscle. Immunohistochemical staining of muscle tissue 
was performed using monoclonal anti-fast and anti-slow MHC 
antibodies, and as expected, most fibers expressed only one 
MHC isoform (Figure 4C). Importantly, the number of MHC 
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co-expressing fibers, along with centrally nucleated fibers, was 
significantly increased under the ADV condition compared to 
the LD group (Figure 4D; Supplementary Figures 4A, B). These 
results support the notion that chronic circadian misalignment 
enhances regeneration and remodeling processes including fiber-
type transitions in skeletal muscle. However, these processes appear 
insufficient to maintain muscle homeostasis, which ultimately 
contributes to progressive muscle atrophy.

4 Discussion

While it is well established that circadian clocks play important 
roles in both skeletal muscle function and aging physiology in 
general (Harfmann et al., 2015), how circadian rhythms influence 
sarcopenia remains poorly characterized. Our study demonstrates 
that environmental circadian misalignment contributes to the 
progression of sarcopenia. To date, few reports have provided 
evidence linking shift work with muscle dysfunction and 
sarcopenia (Choi et al., 2019), leaving open the important question 
of whether circadian rhythms constitute an actionable target 
for sarcopenia prevention. In human epidemiological studies, 
it is challenging to determine the direct impact of circadian 
misalignment on muscle health since they are influenced by 
many confounding factors, including genetic background, lifestyle, 
and dietary habits. To overcome this limitation, we conducted 
a 64-week functional study in genetically homogeneous wild-
type C57BL/6J mice using an established CJL paradigm devoid 
of major confounding factors. We observed that ADV mice 
exhibited exacerbation of age-related reductions in grip strength 
and normalized muscle weight compared to young mice and LD 
mice. These results underscore the physiological importance of 
an environmentally aligned lifestyle to maintain muscle health and 
suggest that circadian rhythms should be considered as an important 
factor in the prevention of sarcopenia.

Importantly, unlike previous genetic models, our results show 
that prolonged light cycle perturbation, even in the absence of 
genetic predisposition, is sufficient to reduce grip strength and 
cause muscle atrophy. While circadian misalignment, known as 
a mismatch between the intrinsic circadian oscillation and the 
external cycle, is associated with reduced survival and systemic 
maladaptation, its impact on organ-specific, especially skeletal 
muscle, pathophysiology has remained poorly understood (Highkin 
and Hanson, 1954; Hurd and Ralph, 1998; Ouyang et al., 1998; 
Pittendrigh and Minis, 1972; Takasu et al., 2015). Previous studies 
showed that genetic disruption of core clock genes impairs muscle 
function. In particular, both global and muscle-specific Bmal1
knockout mice display sarcopenia-like phenotypes (Fernández-
Martínez et al., 2024; Kondratov et al., 2006). Conversely, muscle-
specific Bmal1 rescue restored muscle strength and glucose 
tolerance, but did not affect muscle mass or fiber size (Gutierrez-
Monreal et al., 2024). Moreover, reconstitution of endogenous Bmal1
only in the SCN or in skeletal muscle fails to fully reverse the 
muscle atrophy, and restoration of both clocks is required to prevent 
the decline in muscle function (Kumar et al., 2024). Whereas 
these observations underscore the need for the coordination of 
central and peripheral clocks to maintain muscle homeostasis, 
it remains challenging to disentangle the effects of circadian 

misalignment itself from those of genetic disruption. Considering 
our previous studies (Inokawa et al., 2020; Koike et al., 2024), the 
CJL paradigm represents a systemic circadian misalignment model, 
encompassing not only local effects within skeletal muscle but 
also multifaceted physiological consequences in other organs, such 
as the liver. Accordingly, our study provides compelling evidence 
that environmental circadian misalignment alone without genetic 
manipulation can drive sarcopenia, highlighting the importance of 
maintaining alignment between endogenous circadian rhythms and 
external environmental cycles.

Activation of the TWEAK/Fn14 signaling pathway has been 
shown to be activated in aged mice (Tajrishi et al., 2014a). 
Our study revealed that circadian misalignment activates the 
TWEAK/Fn14 signaling pathway relative to age-matched control 
mice, suggesting that chronic circadian misalignment exaggerates 
age-related molecular alterations. Consistently, the ADV group also 
exhibited phenotypic features commonly observed in sarcopenia, 
including reductions in grip strength and muscle weight, activation 
of the TWEAK/Fn14 pathway, and associated muscle atrophy. These 
findings suggest that chronic circadian misalignment promotes the 
pathophysiological processes underlying sarcopenia.

Progressive muscle degeneration in sarcopenia can be driven 
by both molecular abnormalities, such as decreased regeneration 
efficiency, chronic inflammation, and disrupted protein 
homeostasis, and systemic changes including degeneration of the 
neuromuscular junction and anabolic resistance (Damanti et al., 
2025). Mammalian skeletal muscle is a stable tissue with minimal 
turnover under normal conditions, but severe injury can trigger 
rapid and extensive regeneration (Tedesco et al., 2010). Our 
transcriptomic analysis revealed upregulation of key myogenic 
regulatory factors including Myod1, Myog, and Myf6, suggesting 
activation of muscle repair or remodeling processes. Although 
circadian misalignment may contribute to muscle degeneration, 
detailed histological analysis of degenerative changes was not 
performed in this study. Therefore, how circadian misalignment 
induces muscle degeneration remains to be elucidated in future 
investigations.

Interestingly, circadian misalignment activated the muscle 
regeneration and remodeling processes, accompanied by higher 
amounts of centrally nucleated fibers and MHC co-expressing 
fibers, whereas the mean CSA of the muscle fiber was decreased. 
These histological features suggest that regeneration and remodeling 
processes are insufficient, thereby leading to muscle atrophy. 
Previous studies have shown that the TWEAK/Fn14 signaling 
pathway contributes to muscle regeneration by regulating 
myoblast differentiation and proliferation, but excessive or 
sustained activation impairs regeneration by hindering myogenic 
differentiation and fusion, and suppresses protein synthesis, 
and enhances muscle protein catabolism through NF-κB-driven 
activation of the ubiquitin-proteasome system (Dogra et al., 2006; 
Dogra et al., 2007; Enwere et al., 2012; Tajrishi et al., 2014b; 
Tomaz da Silva et al., 2025). In line with these findings, our analysis 
revealed upregulation of the unfolded protein response–related 
genes Atf4 and Ddit3, which are known to suppress protein synthesis 
(Harding et al., 2000; Tomaz da Silva et al., 2025). Furthermore, 
the intrinsic muscle clock is known to play a cell-autonomous 
role in coordinating anabolism and catabolism. The muscle clock 
contributes to the coordination of daily metabolic rhythms by 
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FIGURE 4
CJL causes muscle atrophy despite elevated histological markers for muscle regeneration and remodeling. (A) Histogram of gastrocnemius muscle 
fiber cross-sectional area (CSA). The distribution and mean CSA of muscle fiber are shown for the LD and ADV groups. The x-axis represents the CSA 
(µm2), and the y-axis indicates the relative frequency of muscle fibers within each bin of the histogram. P values were calculated using two-sided 
Wilcoxon rank-sum test. (B) Representative images of centrally nucleated fibers in gastrocnemius muscle from LD and ADV groups, and quantification 
of centrally nucleated fibers normalized to muscle CSA (mm2). Black arrow heads indicate centrally nucleated fibers. Scale bars: 50 µm for magnified 
regions. P values were calculated using two-sided Wilcoxon rank-sum test. (C) Representative immunohistochemical images of soleus muscle in LD 
and ADV groups stained with anti-fast myosin heavy chain (MHC) antibody and anti-slow MHC antibody. Black arrow heads indicate MHC 
co-expressing fibers, marked by overlapping staining of fast and slow MHC. Scale bars: 50 µm for magnified regions, 300 µm for overall views. (D)
Quantification of MHC co-expressing fibers normalized to muscle CSA (mm2). Bar plots shown are mean ± SD (LD, n = 14; ADV, n = 16). P values were 
calculated using one-sided unpaired t-test.

enhancing lipid storage and restricting proteolytic activity before 
the active phase, and regulates the ubiquitin–proteasome system 
(UPS) and autophagy (Dyar et al., 2018; Kelu and Hughes, 

2025). Under the CJL condition, it is plausible that activation of 
TWEAK/Fn14 signaling may impair myogenic differentiation or 
maturation, contributing to incomplete regeneration or remodeling. 
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In addition, disruption of the intrinsic muscle clock, which normally 
maintains the balance between protein synthesis and degradation, 
may ultimately accelerate the progression of muscle atrophy and 
functional decline observed in ADV mice. 

5 Conclusion

In conclusion, we show that circadian rhythm misalignment 
in the CJL paradigm aggravates the progression of sarcopenia. 
Although this study has several limitations: first, as all experiments 
were performed exclusively in male mice, future studies in females 
are needed to clarify potential sex differences in circadian and 
muscular physiology; second, although our data implicate activation 
of the TWEAK/Fn14 pathway, future studies incorporating 
detailed analyses of inflammation, as well as pharmacological 
inhibition or genetic manipulation, are expected to provide deeper 
mechanistic insight and clarify the causal relationship between 
aging, circadian misalignment, and muscle atrophy; and third, 
the analyses did not resolve which specific compartments or 
cell populations within skeletal muscle (e.g., fiber types, satellite 
cells, or neuromuscular junctions) are most affected by circadian 
misalignment. Nevertheless, our findings highlight the importance 
of circadian rhythms as an actionable target in sarcopenia prevention 
strategies.
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