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Introduction: Cardiovascular disease (CVD) remains the leading global cause
of mortality, with hypertension (HT) being a significant contributor, responsible
for 56% of CVD-related deaths. Masked hypertension (MHT), a condition where
patients exhibit normotensive blood pressure (BP) in clinical settings but elevated
BP in out-of-clinic measurements, poses an elevated risk for cardiovascular
complications and often goes undiagnosed. Current diagnostic methods, such
as ambulatory BP monitoring (ABPM) and home BP monitoring (HBPM), have
limitations in feasibility and accessibility.

Methods: This study aimed to address these challenges by leveraging machine
learning (ML) models to predict MHT based on clinical data from a single
outpatient visit. Utilizing a dataset from the African-PREDICT study, which
included comprehensive clinical, biomarker, body composition, and physical
activity data from a young, healthy cohort (aged 20-30 years) in South Africa,
we developed a predictive framework for MHT detection.

Results: The ML models demonstrated the potential to enhance early
identification and treatment of MHT, reducing reliance on resource-intensive
methods like ABPM. Specifically, we found that utilizing a Least Absolute
Shrinkage and Selection Operator (LASSO) feature selection method with an
extreme gradient boosting model had an accuracy of 0.83 and a ROC AUC
score of 0.86 while relying predominantly on four features: systolic blood
pressure, body weight, left ventricular mass at systole, and circulating levels of
dehydroepiandrosterone sulfate.

Discussion: This approach could enable targeted interventions, particularly
in resource-limited settings, thereby mitigating the progression of MHT and
its associated risks. These findings underscore the importance of integrating
advanced computational techniques into clinical practice to address global
health challenges.

KEYWORDS

machine learning, masked hypertension, African-PREDICT, cardiovascular disease,
predictive modeling

1 Introduction

Cardiovascular disease (CVD) is the leading cause of death globally, claiming
approximately 17.9 million lives annually (World Health Organization, 2023;
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Mathers et al., 2009). Hypertension (HT) is one of the strongest
risk factors for CVD and is associated with coronary disease, left
ventricular hypertrophy, valvular heart disease, cardiac arrhythmias,
cerebral stroke, and renal failure (Kjeldsen, 2018). HT accounts
for approximately 56% of all CVD-related deaths (10 million) and
is incredibly prevalent, affecting an estimated 1.3 billion people
worldwide (World Heart Federation, 2022). This number has been
increasing and is expected to reach 1.56 billion deaths annually
by the year 2025 due to multiple factors, including population
aging, increased prevalence of chronic kidney disease (CKD),
diabetes mellitus, and obesity, suboptimal clinical treatments,
and poor adherence to treatment plans (Kearney et al, 2005;
Hunter et al., 2021). HT is defined clinically as a blood pressure
(BP) of 140/90 mmHg or higher and can be prevented or
managed through lifestyle and pharmacological interventions
(Messerli et al., 2007; Nguyen et al., 2010).

While HT can be managed, it often remains untreated as several
population studies have found 12.7%-37.3% of all cases of HT were
not diagnosed clinically (Huguet et al., 2021; Shukla et al., 2015;
Essaetal., 2022). This is due in part to a subset of these patients (10%
of the general population) having normotensive BP measurements
within the clinic while their out-of-clinic BP as measured by
ambulatory BP monitoring is elevated to the point of being
considered hypertensive (Pickering et al., 2007). This condition
has been classified as masked hypertension (MHT) and has been
shown to have equal, if not increased, risk for adverse cardiovascular
morbidity due to the lack of any clinical diagnosis and corresponding
clinical intervention (Stergiou et al., 2014; Thakkar et al., 2020;
Bobrie et al., 2008). Furthermore, this condition has been associated
with increased organ damage, altered cardiovascular dysfunction
and structural changes, and higher incidence of cardiovascular
and cerebral events (including stroke and cognitive decline)
(Bobrie et al., 2008; Trachsel et al., 2015; Fujiwara et al., 2018).

One recent meta-analysis has suggested that nearly one in
three patients who have normotensive office blood pressure
measurements have MHT. While this condition is more commonly
present in older populations, MHT has even been identified in
young and apparently healthy populations in the absence of clinically
relevant risk factors (such as dyslipidemia, hyperglycemia, obesity,
etc.) (Bobrie et al., 2008). Other studies have also reported similar
findings, with one study reporting that approximately 11% of
children under the age of 15 had MHT (Stergiou G. S. et al., 2005)
and another study reported the prevalence of MHT in young to
middle-aged adults (44 £ 19 years of age) to be 23% (Bendov et al.,
2005). Other studies found MHT present in populations that
appeared to be in peak physical condition, such as endurance
runners and professional soccer players (Trachsel et al., 2015;
Berge et al., 2013). These studies demonstrate the need to monitor
the out-of-office BP of the general population to diagnose and treat
MHT in a timely and effective manner. The most common methods
for detecting MHT are ambulatory BP monitoring (ABPM) and
home BP monitoring (HBPM), however both methods come with
significant drawbacks (Hermida et al., 2015; Anstey et al., 2018).
HBPM, while convenient and easy to obtain, has been shown to
have a reduced ability to detect MHT when compared to ABPM
and research published by Stergiou etal., suggests that HBPM
should only be used in conjunction with ABPM to detect MHT
(Stergiou G. et al., 2005). ABPM, on the other hand, has been shown
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to successfully detect MHT with a high degree of accuracy; however,
it requires the use of cumbersome equipment that may not be
available to certain population groups, particularly in children or
in populations in low-and-middle income countries (Flynn et al.,
2022; Shimbo et al., 2015; Stergiou et al., 2021; Abdalla, 2017).
Thus, the feasibility of ABPM for population-level detection of MHT
is unknown (Abdalla, 2017). One potential alternative would be
to develop a method for assessing risk for MHT based on clinical
measurements obtained from a single outpatient visit. This could
serve as a preliminary screening method that would allow the
patients most at risk for MHT to be identified while reducing the
need for all patients to undergo ABPM. Patients that are classified
as being at risk for MHT could then undergo ABPM to confirm
the presence of MHT and the need for further medical and lifestyle
intervention to prevent the advent of CVD.

Several studies have recently developed machine learning
(ML) models to predict adverse cardiovascular events such as
coronary heart disease, heart failure, and stroke that have shown
potential to assist clinicians in early disease detection and diagnosis
(Krittanawong et al., 2020; Sevakula et al., 2020). These models
evaluate clinical features to determine which patients are most at
risk for these events using a combination of statistical methods and
computational algorithms that can be automatically fine-tuned to
these specific applications based on the input data. Researchers have
found that these data-driven models can outperform traditional
models in applications involving a multitude of different variables
due to their inherent ability to capture the non-linear relationships
between these features and the variable that is being predicted
(Sevakula et al., 2020; Motwani et al., 2016; Churpek et al., 2016).
ML models are also useful for establishing a predictive model in
which an experimentally validated model is not readily available.
The goal of this study was to develop an ML model to detect patients
with MHT in the hopes of improving MHT detection, diagnosis, and
treatment in a young and relatively healthy population.

2 Materials and methods
2.1 Patient data acquisition

The dataset used in this model was derived from the
African-PREDICT study, which aims at preemptively identifying
cardiovascular disease in young adults from South Africa
(Mokwatsi, 2022). The African-PREDICT study design and specific
research methods used to collect the data have been described
previously (Schutte et al., 2019). In brief, a total of 1202 black (N
= 606) and white (N = 596) young men and women (aged 20-30
years) in South Africa were screened to be healthy and clinically
normotensive and without complicating factors such as pregnancy
or previous self-reported diagnosis of any chronic diseases. Different
clinical measures relevant to hypertension were collected from each
patient. Each of the measured features could be broadly categorized
into the following groups:

1. Questionnaire data (e.g., medical history, social status, diet,
psychosocial profile)

2. Biomarker data (e.g., lipids, glucose, multiplex cytokines,
RAS-Fingerprint, adipokines, oxidative stress, nitric oxide
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and coagulation markers, urinary sodium, metabolomics,
proteomics)

3. Body composition data (physical measurements)

4. Physical activity (vigorous, moderate, and sedentary activity
levels)

5. BP (office, 24-h cuff monitoring, central, reactivity)

6. Target organ damage (arterial stiffness, carotid wall

thickness, electrocardiography, echocardiography, retinal

microvasculature, renal function).

Each data type was obtained at a single time-point upon patient
enrollment in the study, with no follow-up data included in the
present analysis. Office BP was measured 4 times, twice on both
arms; 24-h BP was obtained over a single 24-h period; biomarker
samples were obtained once, but appropriate duplicate/triplicate
readings were used for biochemical panel measurements. All
measurements were conducted in accordance with current gold
standard methodologies and were carried out by trained research
nurses, postgraduate students, and academic staff. The necessary
ethical clearance was obtained from the Health Research Ethics
Committee of North-West University (ethics number: NWU-
00001-12-A1), with all participants providing written informed
consent prior to data collection; the study is registered on
ClinicalTrials.gov (Identifier: NCT03292094).

2.2 Machine learning model overview

Figure 1 depicts the overall process implemented during
machine learning model development. The original African-
PREDICT dataset contains health records with 526 different features
from a cohort of 1,202 de-identified patients. This dataset was
preprocessed prior to modeling and then split into a training set for
constructing the ML model and a testing set for validating the model.
One of five different feature selection strategies was then applied to
the training set to identify the relevant features in the dataset and
eliminate the unnecessary features. The relevant features were used
to train the model using four different classification models as well
as a stacked model assembled with all the base models combined.
This resulted in 25 different pipelines in total (5 feature selection
algorithms x five different ML classification models).

The overall goal was to correctly classify patients with MHT.
In this cohort, MHT was defined as the absence of hypertension
in clinical measurements (i.e., clinic systolic blood pressure
<140 mmHg and diastolic blood pressure <90 mmHg based on
European Society of Hypertension guidelines) combined with
high blood pressure in 24-h ambulatory cuff monitoring (i.e.,
systolic blood pressure 2130 mmHg and/or diastolic blood pressure
>80 mmHg). These ambulatory blood pressure measurements were
acquired by fitting a cuff to participants’ non-dominant arms, and
instructions given to ensure successful inflations. The cuff was
programmed for readings every 30 min during the day and every
60 min during the night. Successful blood pressure readings were
averaged across the measurement period and then compared to the
systolic and diastolic pressure thresholds.

The model performance for each feature selection strategy
was compared using the area under their receiver operating
characteristic curve (ROC AUC). The classifier with the highest
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ROC AUC was then tuned, and the results of the final model
were reported. Shapley Additive explanations (SHAP) values were
used to investigate the individual contributions of each feature to
the model predictions, and partial dependence plots (PDPs) were
created to assess the relationship between each feature and the
predicted outcome (Gramegna and Giudici, 2022).

2.3 Data preprocessing

The first step in building the ML model was to load the de-
identified patient data and store it as a data frame in Python
(version 3.12.2) using an open-source integrated development
environment (IDE) (Visual Studio Code V1.93). The dataset was first
cleaned by dropping any patient who was clinically diagnosed with
hypertension, any patient who was missing more than 10% of feature
measurements, and any feature that was missing in more than 10%
of patients. Any features that contained only one unique value in the
dataset were also dropped.

After cleaning the data, the next preprocessing step was to drop
irrelevant features and perform feature engineering to reduce the
number of features in the dataset. The purpose of this step was
two-fold: first, reducing the number of features in the dataset by
removing unnecessary features helps to improve model performance
and reduce computational cost (Guyon and De, 2003), and second,
this step helps to improve the overall interpretability of the model.
Several features in the original dataset were not considered relevant
to the model based on the intended use case for the model
These features could be broadly classified as ambulatory blood
pressure measurements and certain questionnaire features. Next,
we performed a literature review of known risk factors for HT
(Franklin et al., 2015; Franklin et al., 2016; Booth et al., 2016;
du Toit et al,, 2023). Of these, several categorical features were
identified that could be determined from numerical features in the
dataset. Given that these categorical features could potentially help
improve the performance of certain ML models and potentially
serve as important predictors of MHT, these features were created
using the criteria outlined in Table 1 and were included as additional
features in the data frame.

Once the dataset had been cleaned and feature engineering
had been conducted, there was a total of 335 features across
1042 patients. Next, any remaining missing numerical values
in the dataset were imputed using the Multivariate Imputation
by Chained Equations (MICE) algorithm (van Buuren and
Groothuis-Oudshoorn, 2011). The MICE algorithm assumes that
the missing values are missing at random without any underlying
relationship between the instances where features are missing and
a detailed explanation of the algorithm has been described by
Azur etal., (Azur et al,, 2011). For this work, MICE imputation
was implemented using the iterative imputer class in scikit-learn.
More details of how this algorithm was implemented in the scikit-
learn library are described elsewhere (van Buuren and Groothuis-
Oudshoorn, 2011; Pedregosa, 2011). For the categorical features,
missing values were filled in using the mode of the entire column.

After imputing missing values in the dataset, the final step
in the data preprocessing stage was to scale the continuous
features to increase model efficiency and prevent feature bias from
occurring in the ML algorithms that weigh feature importance
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FIGURE 1
Overview of pipeline development process. The original dataset was imported as a 1202 x 526 matrix. It underwent preprocessing that consisted of
feature engineering, data cleaning, imputation, and scaling to make a transformed dataset that was a 1042 x 335 matrix. The data was split into testing
and training sets using a 1:4 split ratio. Five feature selection methods were evaluated on four different base ML models and a fifth ensemble ML model,
resulting in 25 different pipelines (feature selection algorithm + ML model). The best performing pipelines were evaluated and SHAP analysis was used
in conjunction with PDP plots to interpret the pipeline predictions.

TABLE 1 List of engineered categorical features and corresponding definitions based on previous analyses (Franklin et al., 2015; Franklin et al., 2016;
Booth et al., 2016; du Toit et al., 2023).

Feature Name Variable type | Classification Definition
Prehypertensive Categorical 0-healthy, 1-diseased 140mmHg > SBP >119mmHg OR 90mmHg > DBP >79mmHg
Overweight Categorical 0-healthy, 1-diseased | BMI >25
Left Ventricular Hypertrophy | Categorical 0-healthy, 1-diseased | Left Ventricular Mass Index >115 g/m? AND Sex is Male

Left Ventricular Mass Index >95 g/m? AND Sex is Female

Physically Inactive Categorical 0-healthy, 1-diseased | <600 METs for moderate and/or vigorous activity
Smoker Categorical 0-healthy, 1-diseased = Self-identified smoker AND continine >11 ng/mL
Excessive Alcohol Use Categorical 0-healthy, 1-diseased | Self-identified alcohol consumption AND GGT 249 U/L
Dyslipidemic Categorical 0-healthy, 1-diseased = LDL >3.4 mmol/L
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based on Euclidean distance measures. This is a crucial step
for those ML algorithms, as features of high magnitude can be
biased toward higher weights than features of lower magnitude
(Jadhav et al,, 2019). Scaling the dataset was implemented using
a MinMaxScaler class from the scikit-learn.preprocessing library
(scikit-learn v. 1:3:0) (Pedregosa, 2011).

2.4 Feature selection

The next step in ML model development was to perform feature
selection, which is a crucial to preparing a dataset for training
a ML model (Kumar, 2014). This phase was especially important
in the present study because of a high participant-to-variable ratio
(1042:335). Feature selection enabled a drastic reduction in the
number of features fed into the subsequent ML models, which can
improve training performance. For this work, a total of five different
feature selection methods were explored:

1. RFE-SVM-a wrapper feature selection method known as
recursive feature elimination which utilizes a support vector
machine classifier

BorutaSHAP-a wrapper feature selection method which
utilizes the Boruta algorithm wrapped around an extreme
gradient boosted classifier (XGB) to select features based on
their SHapley Additive exPlanation (SHAP) values

LASSO - an embedded feature selection method that uses an
L1 regularization technique to eliminate unimportant features
by shrinking the coeflicients of these features to zero and
effectively removing them from the model, known as Least
Absolute Shrinkage and Selection Operator regression.
Manual-features based on relevant predictors reported in
scientific literature

None-all features included

RFE-SVM is a popular wrapper feature selection method that
has been used in multiple previous studies to select important
features using the backward feature elimination algorithm in
conjunction with a SVM linear classifier (Samb et al, 2012).
SVM classifiers are a class of generalized linear classifiers
that operate under the guiding principle of simultaneously
minimizing classification error and maximizing the geometric
margin by identifying the hyperplane that maximizes the
Euclidian distance between the plane and the dataset features in a
multidimensional space (Brereton and Lloyd, 2010). For this study,
the Recursive Feature Elimination was implemented using the RFE
class in the scikit-learn.feature_selection library.

The second automatic feature selection technique that was
evaluated for this study was the Boruta-SHAP technique. Briefly,
the Boruta method determines feature importance by comparing
the relevance of real features in the dataset to randomized copies
of the features. A more detailed overview of the Boruta algorithm
has been described previously by Kursa et al., (Kursa et al., 2010).
For this study, the standard Boruta-SHAP algorithm was slightly
modified to utilize SHAP values as the metric for importance
scoring. This metric was selected based on previous research
which has evaluated different automatic feature selection techniques
and found that feature selection techniques based on SHAP
values are more stable (less lightly to alter selected features for
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different permutations of the training data) and can improve overall
model performance compared to other automatic feature selection
techniques (Gramegna and Giudici, 2022; Ma and Huang, 2008).
The Boruta-SHAP feature selection algorithm was implemented
in python using the BorutaSHAP function BorutaSHAP library
(BorutaSHAP v. 1.0.17) (Keany, 2020). A Random Forest Classifier
class from the scikit-learn.ensemble library was fit to a training
dataset containing all the features and implemented as the wrapper
for the BortuaSHAP instance.

The third and final automatic feature selection method that was
assessed in this study was LASSO regression. At a high level, LASSO
regression performs feature selection by shrinking the coeflicient of
unimportant features in the regression model towards zero through
the introduction of an L1 regularization penalty term (Ranstam
and Cook, 2018). LASSO regression feature selection was
implemented using the LassoCV class in the scikit-learn.linear_
model library.

For the manual feature selection, a literature review was
conducted to determine which features in the original dataset were
correlated with the incidence of MHT. Features from our dataset that
were found to be relevant to MHT are shown in Table 2.

2.5 Machine learning models

The overall goal of this model was to detect patients that were at
risk for MHT, so patient classification was the ML task chosen to be
modeled using the African-PREDICT dataset. Several ML classifier
algorithms were employed and evaluated for this purpose using
the features from each feature selection strategy. These algorithms
included:

Multivariate logistic regression (LR) classifier
Random forest (RF) classifier

Extreme Gradient Boosting (XGB) classifier
Artificial Neural Network (ANN) classifier
Stacking (STK) classifier

SU I

2.6 Hyperparameter & decision threshold
tuning

A Bayesian Optimization grid search strategy was employed
to evaluate a range of hyperparameters for each model (Table 3).
Hyperparameters in a set were mapped to a corresponding score
probability to create a probabilistic model that enabled the grid
search to converge to the optimal hyperparameter values, rather
than blindly testing each combination of values individually. A
more detailed discussion of this algorithm is presented by Wu et al.
(2019). Five-fold cross-validation was used for hyperparameter
tuning and model training to help improve how the fitted values
would generalize to a test dataset.

The final step in constructing the overall pipelines was
to tune the decision threshold value for classifying patients
as “at risk” for MHT. For every model, the predicted MHT
probability for each patient was calculated. This decision threshold
was again cross-validated with a ten-fold repetitive split of the
training data.
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TABLE 2 Manual selected features based on literature reviews.

Patient information

Blood lipid levels

10.3389/fphys.2025.1684693

Personal/Family medical history

« Sex (Bobrie et al., 2008; Franklin et al., 2015;
Franklin et al., 2016; Booth et al., 2016; Longo et al.,
2005; Hung et al., 2021; Barochiner et al., 2013;
Mallion et al., 2006; Hianninen et al., 2011)

« Ethnicity (Franklin et al., 2015; Franklin et al., 2016;
Booth et al., 2016)

« Age (Bobrie et al., 2008; Franklin et al.,, 2015;
Franklin et al., 2016; Booth et al., 2016; Longo et al.,
2005; Hung et al., 2021; Hanninen et al., 2011)

Clinical Measurements

Systolic Blood Pressure (Bobrie et al., 2008;
Franklin et al., 2016; Booth et al., 2016; Hung et al.,
2021; Barochiner et al., 2013; Mallion et al., 2006;
Hianninen et al., 2011)

Diastolic Blood Pressure (Franklin et al., 20165
Booth et al,, 2016; Hung et al., 2021;

Glucose (Franklin et al., 2016; Hung et al., 2021)
Triglycerides (Franklin et al.,, 2016; Hung et al.,
2021)

LDL (Franklin et al., 2016; Hung et al., 2021)

HDL (Franklin et al., 2016; Hung et al., 2021)
Total Cholesterol (Franklin et al., 2016; Hung et al.,
2021)

MCP-1 (Thompson et al., 2016)

CRP (Thompson et al., 2016)

‘ Lifestyle Factors

« Smoking (Bobrie et al., 2008; Franklin et al., 2015;
Franklin et al., 2016; Booth et al., 2016; Longo et al.,
2005; Hanninen et al., 2011)

« Alcohol Consumption (Bobrie et al., 2008;

Franklin et al., 2015; Longo et al., 2005;
Barochiner et al., 2013; Mallion et al., 2006;

Prehypertension (Bobrie et al., 2008; Franklin et al.,
2015; Booth et al., 2016)

Obesity (Longo et al., 2005; Hung et al., 2021)
Stroke (Franklin et al., 2015; Longo et al., 2005)
Diabetes Mellitus (Franklin et al., 2015;

Franklin et al., 2016; Booth et al., 2016; Longo et al.,
2005; Hanninen et al., 2011)

.

’ Echocardiogram Measures

o Left Ventricular Mass (Franklin et al., 2015;
Franklin et al., 2016; Longo et al., 2005)

o Left Ventricular Hypertrophy (Franklin et al., 2015;
Hanninen et al., 2011)

« Intima-media Carotid Thickness (Longo et al.,
2005)

Hinninen et al., 2011)

Mean Arterial Pressure (Hung et al., 2021)
Pulse Pressure (Hung et al., 2021)

Clinic Heart Rate (Hinninen et al., 2011)
Pulse Wave Velocity (Thompson et al., 2016)

Hinninen et al,, 2011)

.

Longo et al., 2005)

o Physical Activity Level (Franklin et al., 2015;

TABLE 3 List of ML models and their associated sets of evaluated
hyperparameters.

ML model

Hyperparameters ‘

LR C:[0.1,1,10]

‘penalty’: ['117,12']

‘solver’: ['liblinear','saga']
‘class_weight': [None, balanced']

RF ‘n_estimators’: [100, 200, 300]
‘max_depth’: [None, 5, 10, 15]
‘min_samples_split’: [2, 5, 10]
‘min_samples_leaf™: [1, 2, 4]
‘max_features’: [None,'sqrt’,1og2']
‘criterion’: ['gini, 'entropy’]
‘class_weight': [None, balanced']

XGB ‘n_estimators’: [100, 200, 300]
‘learning_rate’: [0.1, 0.05, 0.01]
‘max_depth’: [3, 5, 10]
‘subsample’: [0.5, 1.0, 'uniform']
‘gamma’: [0, 5.0]
‘colsample_bytree’: [0.8, 0.9, 1.0]

MLP ‘activation: ['relu’,'tanh']

‘solver": ['sgd','adam']
‘learning_rate': ['constant’,'adaptive']
‘alpha': [0.0001, 0.001, 0.01]

2.7 Evaluation metrics

This study evaluated several classification metrics commonly
used to evaluate the performance of an ML model on an imbalanced
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dataset. These metrics include the accuracy, precision, recall (also
known as sensitivity or true positive rate), specificity (equal to
one minus the false positive rate), the F1 score, area under the
receiver operator characteristic curve (ROC AUC), area under the
precision-recall curve (PR AUC), and the odds ratio. Each of these
metrics provides information on how well the model was able to
identify patient outcomes based on the features in the dataset.
ROC AUC is one of the most common evaluation metrics for
binary classification problems and is constructed by plotting the true
positive rate (TPR) vs. the false positive rate (FPR) for a range of
decision thresholds between 0 and one and then calculating the area
under the resulting curve.

2.8 Model interpretation

Model interpretability is a key factor when developing a ML
model for clinical applications as end users, such as clinicians and
other medical professionals, need to be able to understand how a
prediction was made in order to confirm that the prediction is valid
and aligns with their own medical knowledge and understanding.
Thus, a method for helping model end users to make sense of the
model is imperative when the final model involves more complex
ML algorithms (Cina, 2022). Two common methods used in ML
model development include SHAP Values and Partial Dependence
Plots (PDPs). SHAP values are used to access the contribution of
a feature to a model’s predicted outcome for a particular instance
is a concept rooted in game theory (Hart, 1989). In its original
context, Shapley values were created as a means of evaluating a
player’s contribution to a game’s outcome. It has since been applied
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in the field of ML as a model-agnostic means of interpreting how a
model operates (Shih et al., 2022). In this case, each feature in the
model is considered a player in the game and the model prediction
is the outcome.

PDPs are a valuable tool for interpreting and explaining the
behavior of ML models by providing insights into how the model’s
predicted outcome changes as a function of a specific feature while
holding other features constant. By isolating the effect of a single
feature on the model’s predictions, PDPs highlight the relationship
between that feature and the output feature in an intuitive and
visual manner. These plots can then be used to identify trends,
patterns, and potential nonlinearities that might not be evident from
simple summary statistics or coeflicients. PDPs can also facilitate the
detection of interaction effects between variables, showcasing how
their combined influence impacts the model’s output.

3 Results

3.1 Feature selection and relative
importance of selected features

Five different feature selection strategies were evaluated in
this study: RFE-SVM, BorutaSHAP, LASSO, manual, and none
(all features). The number of selected features for each feature
selection strategy are reported in Figure 2A with common features
found across the selection strategies shown in Figure 2B. Of all
the feature selection strategies that were evaluated, the LASSO
method produced the highest ROC AUC value using the XGB
classifier, with a total of 21 features selected. Dyslipidemic, LV
posterior wall thickness at diastole, phosphorus, prehypertensive,
medication for alimentary tract and metabolism, socio-economic
education, socio-economic household income, and socio-economic
skill were unique to LASSO; body weight, chromium, blood
pressure grades, c-peptide, and LV posterior wall thickness at
systole were shared between LASSO and BorutaSHAP; participant
age, alcohol consumption, ethnicity, obesity, and sex were shared
between LASSO and the manual selections; LV mass at systole and
dehydroepiandrosterone sulfate (DHEA-S) was shared between the
LASSO, RFE-SVM and BorutaSHAP strategies; and systolic blood
pressure was shared by all strategies. It is important to note that
this selection includes a variety class of features from biochemical
analyses, general questionnaire, and anthropometry measurements.

3.2 Comparison of classifiers across
different feature selection strategies

Each permutation of feature selection strategy and machine
learning algorithm was implemented to create a total of 25 different
MHT classifier pipelines. Five-fold cross-validation was used to
obtain the mean and standard deviation of the ROC AUC for
each model, seen in Figure 3. The LASSO feature selection strategy
combined with a XGB classifier obtained the highest average ROC
AUC score out of the entire set of models when evaluated on the
test set, with a ROC AUC of 0.89 + 0.03. Conversely, the ANN
classifier tuned using the features selected with LASSO obtained the
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lowest average ROC AUC score out of the entire set of models when
evaluated on the test set, with a ROC AUC of 0.44 + 0.22.

3.3 Evaluation of final model performance

After examining all ROC AUC scores, the XGB classifier with
LASSO feature selection strategy was chosen as the final pipeline
for the MHT classifier due to it having the highest ROC AUC
score. To assess the overall model performance, the pipeline’s
accuracy, ROC AUC, PR AUC, F1 score, sensitivity, speciﬁcity, and
odds ratio within the test set were calculated. We also compared
these performance metrics to a binary prediction model previously
proposed by Thompson et al. that classified MHT risk based on
a simple cutoff for office systolic blood pressure greater than
120 mmHg (Thompson et al., 2016). The results of the comparison
are outlined in Table4 and Figure 4. The XGB classifier with
LASSO features outperformed the binary classifier across all metrics
evaluated, except for sensitivity where the binary had a slightly better
sensitivity.

3.4 Model explanation

SHAP analysis was used to evaluate the overall contribution
of each selected feature to the predictions made by the best five
pipelines. SHAP values were calculated for each feature for each
instance in the optimized dataset. The absolute value of each SHAP
value for a particular feature across all instances were summed
together, averaged, and normalized to indicate the importance of the
feature relative to the other features in the optimized dataset. The
normalized values were aggregated across the five pipelines with the
highest test ROC AUC, and the top 15 features are shown in Figure 5.
Plots of original and normalized values for each of the five best
pipelines can be seen in supplemental figures, along with ‘bee swarm’
plots for each model. The top five features used in the best pipeline
(LASSO XGB) were the same as the top five features across the
aggregate of the five best pipelines: systolic BP, prehypertensive
diagnosis, body weight, DHEA-S, and LV mass.

The relationship between the predicted outcome of the model
using each of the top 15 LASSO XGB features, and the top 15
aggregated features were also assessed with PDPs (Figure 6). This
analysis indicated that the best pipelines’ chances of classifying
a patient with MHT increased in conjunction with elevated BPs,
body weight, body surface area, LV mass/thickness, and several
biochemical markers (DHEA-S, chromium, human sex hormone-
binding globulin). Conversely, the risk of MHT decreased in
conjunction with elevated glucose levels. Individual PDPs for each
of the five best pipelines can be seen in the Supplementary Material.

4 Discussion

The aim of this study was to develop a machine learning pipeline
that would be able to detect MHT in a seemingly young and
healthy individual from the African-PREDICT cohort. To develop
the pipeline, several popular feature selection methods and ML
algorithms were evaluated. The results of this study found that
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Actual

MHT

Accuracy

ROC AUC

F1 score

Sensitivity

Specificity

Odds ratio
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Binary Prediction 0.742 0.719 0.557 0.481 0.676 0.756 6.45
+ 42 25
- 149 13
ML Prediction 0.828 0.855 0.622 0.571 0.649 0.866 11.96
+ 23 24
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the LASSO feature selection strategy in conjunction with a XGB
classifier resulted in a ML model that had the highest ROC AUC
score out of the set of 25 different pipelines that were constructed.
The final ML pipeline was compared to a simple binary classifier
that served as a “rule-of-thumb” for evaluating a patient’s risk for
MHT in LMIC and was found to perform much better in each
evaluation metric that was considered, except for sensitivity where
the binary model had a slightly better performance (Thompson et al.,
2016). SHAP analysis and PDP plots were also implemented
to help interpret the contributions of different features to the
model predictions. SHAP analysis revealed that the most important
predictors of MHT for this ML model were related to systolic blood
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pressure and patient body weight. Individual patient analysis using
this model could be used to identify which of these features need to
be focused on and could help clinicians in implementing a clinical
action plan. Overall, the results of this study show that an ML
pipeline could be utilized to identify patients most at risk for MHT
and highlight which features provide the greatest predictive value.
The final model’s performance was evaluated on the test set,
resulting in an accuracy of 0.828, a ROC AUC score of 0.855, a
PR AUC score of 0.622, a precision score of 0.511, a sensitivity
score of 0.649, a specificity score of 0.866, and an F1 score of
0.571. These evaluation metrics are comparable to the reported
evaluation metrics for other recently published ML models for MHT
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FIGURE 6
Partial Dependence Plots for features selected from the aggregated rankings. PDPs are shown for only the top 15 most important features determined
by SHAP values in Figure 5, averaged for the five best ML pipelines. Note that not every one of these features was included in the top five pipelines,
which is why some features only include 1, 2, or 4 PDP curves.

(Hung et al.,, 2021; Shih et al., 2022; Lip et al.,, 2021) or better
(Baeetal., 2022; Meng et al., 2022). In a previous study that evaluated
the African-PREDICT dataset, an office measurement of systolic
blood pressure over 120 mmHg could be used as a cut-off value for
classifying someone as at-risk for MHT (Thompson et al., 2016).
Therefore, for comparison with this study, a simple binary model was
created that classified patients as having MHT if they had an office
systolic blood pressure of 120 mmHg. With just this single predictor
alone, this basic classification model resulted in an accuracy of 0.742,
a ROC AUC score of 0.719, a PR AUC score of 0.557, an F1 score of
0.481, a sensitivity score of 0.676, a specificity score of 0.756, and
precision score of 0.373. While the simple binary model performed
fairly well, the ML pipeline did perform better in all aspects except
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for sensitivity. The primary strength to the new pipeline, and the
potential argument for clinical adoption of this model, is the number
of individuals that were successfully identified as not having MHT.
When comparing the ML model results with the binary systolic
pressure cutoff model, the ML model was able to correctly classify
19 more individuals as true negatives, while the simple binary model
incorrectly classified those individuals as false positives. That means
19 people might have been prescribed unnecessary treatment or
follow-up monitoring based on the binary prediction, resulting in
wasted financial costs, potential side-effects, etc.

Model interpretability is crucial for promoting clinical use
because it provides the clinician and patient with insight into why
the model makes a particular prediction one way or the other. In
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addition, model explanations help point to potential underlying
physiological relationships that provide a deeper understanding of
the pathology and possible interventional strategies. Using SHAP
analysis, it was shown that the five most important features for the
best ML pipeline (LASSO + XGB) were the same five most important
on average across the five best ML pipelines. These features included
systolic BP measured in the clinic, a prehypertensive designation
(based on clinic BP measurements), body weight, circulating
serum levels of DHEA-S, and LV mass at systole measured with
echocardiography. These features are all noninvasive measurements
that could be performed in any clinic. It is important to note
that four of these five features (BPs, DHEA-S, and LV mass) have
all been directly linked to physiological stress and sympathetic
control, and the fifth feature (body weight) is often related to waist
circumference which has also been linked to physiological stress
(Grassi et al., 2018; Borovac et al., 2020; Maninger et al., 2009;
Kithnel et al., 2023; Tryon et al., 2013). During acute mental stress,
DHEA-S levels typically increase transiently, peaking immediately
after stress exposure and then gradually returning to baseline
within about an hour - however, long-term or chronic psychosocial
stress is associated with reduced basal levels of DHEA-S and
a diminished capacity to produce DHEA-S during acute stress,
suggesting an impaired adrenal response and potential link to
adverse health outcomes and accelerated aging (Lennartsson et al.,
2013). SBP increases during physiological stress due to sympathetic
nervous system activation, causing vasoconstriction and increased
cardiac output. The magnitude of SBP reactivity to stress varies
among individuals and can be influenced by factors such as
sex and lifestyle. For example, in women, higher DHEA-S levels
have been linked to greater blood pressure reactivity to stress
(Hirokawa et al., 2016). Chronic stress-induced hemodynamic
load can also promote left ventricular hypertrophy, reflecting the
cumulative impact of stress on cardiac structure (Wentzel et al.,
2025). The fact that these factors played large roles in our
ML model supports a connection between MHT and a possible
pathological mechanism related to underlying stress—a relationship
worth testing more directly in future studies. Further, interventions
aimed at mitigating stress control could be a route to reduce MHT
risk even without pharmacological interventions. Of course, it is
important to note that SHAP values and PDPs indicate feature
importance in modeling predictions but do not necessarily imply
causal relationships.

There are several limitations to this study that are worth
highlighting. First, the number of participants in the dataset was
relatively small for the number of features that were evaluated, and
it is likely that the model performance would increase given a larger
set of training data. A broader population would especially improve
the model’s predictive capabilities for more focused demographic
subgroups based on sex, race, age, etc. Secondly, the model was
not validated on a test set from an external cohort; thus, the
general utility of this model has not been tested. Thirdly, our
analyses are cross-sectional, and temporal ordering cannot be
established. The reported findings should not be interpreted as
causal and should be confirmed in future prospective analysis. Still,
the ML approach enables efficient pattern discovery by identifying
multivariate and nonlinear associations between clinical variables
and outcomes, which conventional statistics may miss. This enables
discovery of novel risk markers or biomarker combinations relevant
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to disease prediction or prognosis—even when cross sectional data
is used. In application, this ML pipeline can be integrated into
electronic health records or clinical decision support systems to
provide physicians with data-driven risk assessments or intervention
recommendations for conditions influenced by vascular and
endocrine profiles. For example, an algorithm predicting elevated
cardiometabolic risk based on a cross-sectional panel (including
DHEA-S, blood pressure, and other labs) could prompt early lifestyle
or pharmacological intervention, improving patient outcomes at
both the individual and population level. Of course, some of the
key features identified in this study are more feasible from a
data collection perspective, so the ultimate utility of these types
of tools will depend on practice cost-benefit analyses in real-
world contexts.

5 Conclusion

This study proposed an XGB framework with LASSO feature
selection as a ML model for predicting the incidence of MHT in a
young, apparently healthy population from a LMIC. The proposed
model achieved a higher ROC AUC and demonstrated higher
scoring metrics compared to the current “rule-of-thumb” classifier
for MHT. SHAP analysis found that the office measurements of
blood pressure, body weight, DHEA-S biochemical levels, and LV
mass were the most important predictors of MHT. PDP revealed
the relationships between each LASSO selected feature and the
prediction of MHT. Overall, this study demonstrated the promise
of using LASSO with an XGB framework model to detect MHT and
further development of the model could potentially lead to a viable
tool for aiding clinicians in identifying which patients are most at
risk for MHT.
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