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Introduction: Cardiovascular disease (CVD) remains the leading global cause 
of mortality, with hypertension (HT) being a significant contributor, responsible 
for 56% of CVD-related deaths. Masked hypertension (MHT), a condition where 
patients exhibit normotensive blood pressure (BP) in clinical settings but elevated 
BP in out-of-clinic measurements, poses an elevated risk for cardiovascular 
complications and often goes undiagnosed. Current diagnostic methods, such 
as ambulatory BP monitoring (ABPM) and home BP monitoring (HBPM), have 
limitations in feasibility and accessibility.
Methods: This study aimed to address these challenges by leveraging machine 
learning (ML) models to predict MHT based on clinical data from a single 
outpatient visit. Utilizing a dataset from the African-PREDICT study, which 
included comprehensive clinical, biomarker, body composition, and physical 
activity data from a young, healthy cohort (aged 20–30 years) in South Africa, 
we developed a predictive framework for MHT detection.
Results: The ML models demonstrated the potential to enhance early 
identification and treatment of MHT, reducing reliance on resource-intensive 
methods like ABPM. Specifically, we found that utilizing a Least Absolute 
Shrinkage and Selection Operator (LASSO) feature selection method with an 
extreme gradient boosting model had an accuracy of 0.83 and a ROC AUC 
score of 0.86 while relying predominantly on four features: systolic blood 
pressure, body weight, left ventricular mass at systole, and circulating levels of 
dehydroepiandrosterone sulfate.
Discussion: This approach could enable targeted interventions, particularly 
in resource-limited settings, thereby mitigating the progression of MHT and 
its associated risks. These findings underscore the importance of integrating 
advanced computational techniques into clinical practice to address global 
health challenges.
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 1 Introduction

Cardiovascular disease (CVD) is the leading cause of death globally, claiming 
approximately 17.9 million lives annually (World Health Organization, 2023;
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Mathers et al., 2009). Hypertension (HT) is one of the strongest 
risk factors for CVD and is associated with coronary disease, left 
ventricular hypertrophy, valvular heart disease, cardiac arrhythmias, 
cerebral stroke, and renal failure (Kjeldsen, 2018). HT accounts 
for approximately 56% of all CVD-related deaths (10 million) and 
is incredibly prevalent, affecting an estimated 1.3 billion people 
worldwide (World Heart Federation, 2022). This number has been 
increasing and is expected to reach 1.56 billion deaths annually 
by the year 2025 due to multiple factors, including population 
aging, increased prevalence of chronic kidney disease (CKD), 
diabetes mellitus, and obesity, suboptimal clinical treatments, 
and poor adherence to treatment plans (Kearney et al., 2005; 
Hunter et al., 2021). HT is defined clinically as a blood pressure 
(BP) of 140/90 mmHg or higher and can be prevented or 
managed through lifestyle and pharmacological interventions 
(Messerli et al., 2007; Nguyen et al., 2010).

While HT can be managed, it often remains untreated as several 
population studies have found 12.7%–37.3% of all cases of HT were 
not diagnosed clinically (Huguet et al., 2021; Shukla et al., 2015; 
Essa et al., 2022). This is due in part to a subset of these patients (10% 
of the general population) having normotensive BP measurements 
within the clinic while their out-of-clinic BP as measured by 
ambulatory BP monitoring is elevated to the point of being 
considered hypertensive (Pickering et al., 2007). This condition 
has been classified as masked hypertension (MHT) and has been 
shown to have equal, if not increased, risk for adverse cardiovascular 
morbidity due to the lack of any clinical diagnosis and corresponding 
clinical intervention (Stergiou et al., 2014; Thakkar et al., 2020; 
Bobrie et al., 2008). Furthermore, this condition has been associated 
with increased organ damage, altered cardiovascular dysfunction 
and structural changes, and higher incidence of cardiovascular 
and cerebral events (including stroke and cognitive decline) 
(Bobrie et al., 2008; Trachsel et al., 2015; Fujiwara et al., 2018).

One recent meta-analysis has suggested that nearly one in 
three patients who have normotensive office blood pressure 
measurements have MHT. While this condition is more commonly 
present in older populations, MHT has even been identified in 
young and apparently healthy populations in the absence of clinically 
relevant risk factors (such as dyslipidemia, hyperglycemia, obesity, 
etc.) (Bobrie et al., 2008). Other studies have also reported similar 
findings, with one study reporting that approximately 11% of 
children under the age of 15 had MHT (Stergiou G. S. et al., 2005) 
and another study reported the prevalence of MHT in young to 
middle-aged adults (44 ± 19 years of age) to be 23% (Bendov et al., 
2005). Other studies found MHT present in populations that 
appeared to be in peak physical condition, such as endurance 
runners and professional soccer players (Trachsel et al., 2015; 
Berge et al., 2013). These studies demonstrate the need to monitor 
the out-of-office BP of the general population to diagnose and treat 
MHT in a timely and effective manner. The most common methods 
for detecting MHT are ambulatory BP monitoring (ABPM) and 
home BP monitoring (HBPM), however both methods come with 
significant drawbacks (Hermida et al., 2015; Anstey et al., 2018). 
HBPM, while convenient and easy to obtain, has been shown to 
have a reduced ability to detect MHT when compared to ABPM 
and research published by Stergiou et al., suggests that HBPM 
should only be used in conjunction with ABPM to detect MHT 
(Stergiou G. et al., 2005). ABPM, on the other hand, has been shown 

to successfully detect MHT with a high degree of accuracy; however, 
it requires the use of cumbersome equipment that may not be 
available to certain population groups, particularly in children or 
in populations in low-and-middle income countries (Flynn et al., 
2022; Shimbo et al., 2015; Stergiou et al., 2021; Abdalla, 2017). 
Thus, the feasibility of ABPM for population-level detection of MHT 
is unknown (Abdalla, 2017). One potential alternative would be 
to develop a method for assessing risk for MHT based on clinical 
measurements obtained from a single outpatient visit. This could 
serve as a preliminary screening method that would allow the 
patients most at risk for MHT to be identified while reducing the 
need for all patients to undergo ABPM. Patients that are classified 
as being at risk for MHT could then undergo ABPM to confirm 
the presence of MHT and the need for further medical and lifestyle 
intervention to prevent the advent of CVD.

Several studies have recently developed machine learning 
(ML) models to predict adverse cardiovascular events such as 
coronary heart disease, heart failure, and stroke that have shown 
potential to assist clinicians in early disease detection and diagnosis 
(Krittanawong et al., 2020; Sevakula et al., 2020). These models 
evaluate clinical features to determine which patients are most at 
risk for these events using a combination of statistical methods and 
computational algorithms that can be automatically fine-tuned to 
these specific applications based on the input data. Researchers have 
found that these data-driven models can outperform traditional 
models in applications involving a multitude of different variables 
due to their inherent ability to capture the non-linear relationships 
between these features and the variable that is being predicted 
(Sevakula et al., 2020; Motwani et al., 2016; Churpek et al., 2016). 
ML models are also useful for establishing a predictive model in 
which an experimentally validated model is not readily available. 
The goal of this study was to develop an ML model to detect patients 
with MHT in the hopes of improving MHT detection, diagnosis, and 
treatment in a young and relatively healthy population. 

2 Materials and methods

2.1 Patient data acquisition

The dataset used in this model was derived from the 
African-PREDICT study, which aims at preemptively identifying 
cardiovascular disease in young adults from South Africa 
(Mokwatsi, 2022). The African-PREDICT study design and specific 
research methods used to collect the data have been described 
previously (Schutte et al., 2019). In brief, a total of 1202 black (N 
= 606) and white (N = 596) young men and women (aged 20–30 
years) in South Africa were screened to be healthy and clinically 
normotensive and without complicating factors such as pregnancy 
or previous self-reported diagnosis of any chronic diseases. Different 
clinical measures relevant to hypertension were collected from each 
patient. Each of the measured features could be broadly categorized 
into the following groups: 

1. Questionnaire data (e.g., medical history, social status, diet, 
psychosocial profile)

2. Biomarker data (e.g., lipids, glucose, multiplex cytokines, 
RAS-Fingerprint, adipokines, oxidative stress, nitric oxide 

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2025.1684693
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Miller et al. 10.3389/fphys.2025.1684693

and coagulation markers, urinary sodium, metabolomics, 
proteomics)

3. Body composition data (physical measurements)
4. Physical activity (vigorous, moderate, and sedentary activity 

levels)
5. BP (office, 24-h cuff monitoring, central, reactivity)
6. Target organ damage (arterial stiffness, carotid wall 

thickness, electrocardiography, echocardiography, retinal 
microvasculature, renal function).

Each data type was obtained at a single time-point upon patient 
enrollment in the study, with no follow-up data included in the 
present analysis. Office BP was measured 4 times, twice on both 
arms; 24-h BP was obtained over a single 24-h period; biomarker 
samples were obtained once, but appropriate duplicate/triplicate 
readings were used for biochemical panel measurements. All 
measurements were conducted in accordance with current gold 
standard methodologies and were carried out by trained research 
nurses, postgraduate students, and academic staff. The necessary 
ethical clearance was obtained from the Health Research Ethics 
Committee of North-West University (ethics number: NWU-
00001–12-A1), with all participants providing written informed 
consent prior to data collection; the study is registered on 
ClinicalTrials.gov (Identifier: NCT03292094). 

2.2 Machine learning model overview

Figure 1 depicts the overall process implemented during 
machine learning model development. The original African-
PREDICT dataset contains health records with 526 different features 
from a cohort of 1,202 de-identified patients. This dataset was 
preprocessed prior to modeling and then split into a training set for 
constructing the ML model and a testing set for validating the model. 
One of five different feature selection strategies was then applied to 
the training set to identify the relevant features in the dataset and 
eliminate the unnecessary features. The relevant features were used 
to train the model using four different classification models as well 
as a stacked model assembled with all the base models combined. 
This resulted in 25 different pipelines in total (5 feature selection 
algorithms x five different ML classification models).

The overall goal was to correctly classify patients with MHT. 
In this cohort, MHT was defined as the absence of hypertension 
in clinical measurements (i.e., clinic systolic blood pressure 
<140 mmHg and diastolic blood pressure <90 mmHg based on 
European Society of Hypertension guidelines) combined with 
high blood pressure in 24-h ambulatory cuff monitoring (i.e., 
systolic blood pressure ≥130 mmHg and/or diastolic blood pressure 
≥80 mmHg). These ambulatory blood pressure measurements were 
acquired by fitting a cuff to participants’ non-dominant arms, and 
instructions given to ensure successful inflations. The cuff was 
programmed for readings every 30 min during the day and every 
60 min during the night. Successful blood pressure readings were 
averaged across the measurement period and then compared to the 
systolic and diastolic pressure thresholds.

The model performance for each feature selection strategy 
was compared using the area under their receiver operating 
characteristic curve (ROC AUC). The classifier with the highest 

ROC AUC was then tuned, and the results of the final model 
were reported. Shapley Additive explanations (SHAP) values were 
used to investigate the individual contributions of each feature to 
the model predictions, and partial dependence plots (PDPs) were 
created to assess the relationship between each feature and the 
predicted outcome (Gramegna and Giudici, 2022). 

2.3 Data preprocessing

The first step in building the ML model was to load the de-
identified patient data and store it as a data frame in Python 
(version 3.12.2) using an open-source integrated development 
environment (IDE) (Visual Studio Code V1.93). The dataset was first 
cleaned by dropping any patient who was clinically diagnosed with 
hypertension, any patient who was missing more than 10% of feature 
measurements, and any feature that was missing in more than 10% 
of patients. Any features that contained only one unique value in the 
dataset were also dropped.

After cleaning the data, the next preprocessing step was to drop 
irrelevant features and perform feature engineering to reduce the 
number of features in the dataset. The purpose of this step was 
two-fold: first, reducing the number of features in the dataset by 
removing unnecessary features helps to improve model performance 
and reduce computational cost (Guyon and De, 2003), and second, 
this step helps to improve the overall interpretability of the model. 
Several features in the original dataset were not considered relevant 
to the model based on the intended use case for the model. 
These features could be broadly classified as ambulatory blood 
pressure measurements and certain questionnaire features. Next, 
we performed a literature review of known risk factors for HT 
(Franklin et al., 2015; Franklin et al., 2016; Booth et al., 2016; 
du Toit et al., 2023). Of these, several categorical features were 
identified that could be determined from numerical features in the 
dataset. Given that these categorical features could potentially help 
improve the performance of certain ML models and potentially 
serve as important predictors of MHT, these features were created 
using the criteria outlined in Table 1 and were included as additional 
features in the data frame.

Once the dataset had been cleaned and feature engineering 
had been conducted, there was a total of 335 features across 
1042 patients. Next, any remaining missing numerical values 
in the dataset were imputed using the Multivariate Imputation 
by Chained Equations (MICE) algorithm (van Buuren and 
Groothuis-Oudshoorn, 2011). The MICE algorithm assumes that 
the missing values are missing at random without any underlying 
relationship between the instances where features are missing and 
a detailed explanation of the algorithm has been described by 
Azur et al., (Azur et al., 2011). For this work, MICE imputation 
was implemented using the iterative imputer class in scikit-learn. 
More details of how this algorithm was implemented in the scikit-
learn library are described elsewhere (van Buuren and Groothuis-
Oudshoorn, 2011; Pedregosa, 2011). For the categorical features, 
missing values were filled in using the mode of the entire column.

After imputing missing values in the dataset, the final step 
in the data preprocessing stage was to scale the continuous 
features to increase model efficiency and prevent feature bias from 
occurring in the ML algorithms that weigh feature importance 
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FIGURE 1
Overview of pipeline development process. The original dataset was imported as a 1202 × 526 matrix. It underwent preprocessing that consisted of 
feature engineering, data cleaning, imputation, and scaling to make a transformed dataset that was a 1042 × 335 matrix. The data was split into testing 
and training sets using a 1:4 split ratio. Five feature selection methods were evaluated on four different base ML models and a fifth ensemble ML model, 
resulting in 25 different pipelines (feature selection algorithm + ML model). The best performing pipelines were evaluated and SHAP analysis was used 
in conjunction with PDP plots to interpret the pipeline predictions.

TABLE 1  List of engineered categorical features and corresponding definitions based on previous analyses (Franklin et al., 2015; Franklin et al., 2016; 
Booth et al., 2016; du Toit et al., 2023).

Feature Name Variable type Classification Definition

Prehypertensive Categorical 0-healthy, 1-diseased 140mmHg > SBP >119mmHg OR 90mmHg > DBP >79mmHg

Overweight Categorical 0-healthy, 1-diseased BMI >25

Left Ventricular Hypertrophy Categorical 0-healthy, 1-diseased Left Ventricular Mass Index >115 g/m2 AND Sex is Male
Left Ventricular Mass Index >95 g/m2 AND Sex is Female

Physically Inactive Categorical 0-healthy, 1-diseased <600 METs for moderate and/or vigorous activity

Smoker Categorical 0-healthy, 1-diseased Self-identified smoker AND continine ≥11 ng/mL

Excessive Alcohol Use Categorical 0-healthy, 1-diseased Self-identified alcohol consumption AND GGT ≥49 U/L

Dyslipidemic Categorical 0-healthy, 1-diseased LDL >3.4 mmol/L
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based on Euclidean distance measures. This is a crucial step 
for those ML algorithms, as features of high magnitude can be 
biased toward higher weights than features of lower magnitude 
(Jadhav et al., 2019). Scaling the dataset was implemented using 
a MinMaxScaler class from the scikit-learn.preprocessing library 
(scikit-learn v. 1:3:0) (Pedregosa, 2011). 

2.4 Feature selection

The next step in ML model development was to perform feature 
selection, which is a crucial to preparing a dataset for training 
a ML model (Kumar, 2014). This phase was especially important 
in the present study because of a high participant-to-variable ratio 
(1042:335). Feature selection enabled a drastic reduction in the 
number of features fed into the subsequent ML models, which can 
improve training performance. For this work, a total of five different 
feature selection methods were explored: 

1. RFE-SVM–a wrapper feature selection method known as 
recursive feature elimination which utilizes a support vector 
machine classifier

2. BorutaSHAP–a wrapper feature selection method which 
utilizes the Boruta algorithm wrapped around an extreme 
gradient boosted classifier (XGB) to select features based on 
their SHapley Additive exPlanation (SHAP) values

3. LASSO - an embedded feature selection method that uses an 
L1 regularization technique to eliminate unimportant features 
by shrinking the coefficients of these features to zero and 
effectively removing them from the model, known as Least 
Absolute Shrinkage and Selection Operator regression.

4. Manual–features based on relevant predictors reported in 
scientific literature

5. None–all features included

RFE-SVM is a popular wrapper feature selection method that 
has been used in multiple previous studies to select important 
features using the backward feature elimination algorithm in 
conjunction with a SVM linear classifier (Samb et al., 2012). 
SVM classifiers are a class of generalized linear classifiers 
that operate under the guiding principle of simultaneously 
minimizing classification error and maximizing the geometric 
margin by identifying the hyperplane that maximizes the 
Euclidian distance between the plane and the dataset features in a 
multidimensional space (Brereton and Lloyd, 2010). For this study, 
the Recursive Feature Elimination was implemented using the RFE 
class in the scikit-learn.feature_selection library.

The second automatic feature selection technique that was 
evaluated for this study was the Boruta-SHAP technique. Briefly, 
the Boruta method determines feature importance by comparing 
the relevance of real features in the dataset to randomized copies 
of the features. A more detailed overview of the Boruta algorithm 
has been described previously by Kursa et al., (Kursa et al., 2010). 
For this study, the standard Boruta-SHAP algorithm was slightly 
modified to utilize SHAP values as the metric for importance 
scoring. This metric was selected based on previous research 
which has evaluated different automatic feature selection techniques 
and found that feature selection techniques based on SHAP 
values are more stable (less lightly to alter selected features for 

different permutations of the training data) and can improve overall 
model performance compared to other automatic feature selection 
techniques (Gramegna and Giudici, 2022; Ma and Huang, 2008). 
The Boruta-SHAP feature selection algorithm was implemented 
in python using the BorutaSHAP function BorutaSHAP library 
(BorutaSHAP v. 1.0.17) (Keany, 2020). A Random Forest Classifier 
class from the scikit-learn.ensemble library was fit to a training 
dataset containing all the features and implemented as the wrapper 
for the BortuaSHAP instance.

The third and final automatic feature selection method that was 
assessed in this study was LASSO regression. At a high level, LASSO 
regression performs feature selection by shrinking the coefficient of 
unimportant features in the regression model towards zero through 
the introduction of an L1 regularization penalty term (Ranstam 
and Cook, 2018). LASSO regression feature selection was 
implemented using the LassoCV class in the scikit-learn.linear_
model library.

For the manual feature selection, a literature review was 
conducted to determine which features in the original dataset were 
correlated with the incidence of MHT. Features from our dataset that 
were found to be relevant to MHT are shown in Table 2.

2.5 Machine learning models

The overall goal of this model was to detect patients that were at 
risk for MHT, so patient classification was the ML task chosen to be 
modeled using the African-PREDICT dataset. Several ML classifier 
algorithms were employed and evaluated for this purpose using 
the features from each feature selection strategy. These algorithms 
included: 

1. Multivariate logistic regression (LR) classifier
2. Random forest (RF) classifier
3. Extreme Gradient Boosting (XGB) classifier
4. Artificial Neural Network (ANN) classifier
5. Stacking (STK) classifier

2.6 Hyperparameter & decision threshold 
tuning

A Bayesian Optimization grid search strategy was employed 
to evaluate a range of hyperparameters for each model (Table 3). 
Hyperparameters in a set were mapped to a corresponding score 
probability to create a probabilistic model that enabled the grid 
search to converge to the optimal hyperparameter values, rather 
than blindly testing each combination of values individually. A 
more detailed discussion of this algorithm is presented by Wu et al. 
(2019). Five-fold cross-validation was used for hyperparameter 
tuning and model training to help improve how the fitted values 
would generalize to a test dataset.

The final step in constructing the overall pipelines was 
to tune the decision threshold value for classifying patients 
as “at risk” for MHT. For every model, the predicted MHT 
probability for each patient was calculated. This decision threshold 
was again cross-validated with a ten-fold repetitive split of the
training data. 
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TABLE 2  Manual selected features based on literature reviews.

Patient information Blood lipid levels Personal/Family medical history

• Sex (Bobrie et al., 2008; Franklin et al., 2015; 
Franklin et al., 2016; Booth et al., 2016; Longo et al., 
2005; Hung et al., 2021; Barochiner et al., 2013; 
Mallion et al., 2006; Hänninen et al., 2011)

• Ethnicity (Franklin et al., 2015; Franklin et al., 2016; 
Booth et al., 2016)

• Age (Bobrie et al., 2008; Franklin et al., 2015; 
Franklin et al., 2016; Booth et al., 2016; Longo et al., 
2005; Hung et al., 2021; Hänninen et al., 2011)

• Glucose (Franklin et al., 2016; Hung et al., 2021)
• Triglycerides (Franklin et al., 2016; Hung et al., 

2021)
• LDL (Franklin et al., 2016; Hung et al., 2021)
• HDL (Franklin et al., 2016; Hung et al., 2021)
• Total Cholesterol (Franklin et al., 2016; Hung et al., 

2021)
• MCP-1 (Thompson et al., 2016)
• CRP (Thompson et al., 2016)

• Prehypertension (Bobrie et al., 2008; Franklin et al., 
2015; Booth et al., 2016)

• Obesity (Longo et al., 2005; Hung et al., 2021)
• Stroke (Franklin et al., 2015; Longo et al., 2005)
• Diabetes Mellitus (Franklin et al., 2015; 

Franklin et al., 2016; Booth et al., 2016; Longo et al., 
2005; Hänninen et al., 2011)

Clinical Measurements Lifestyle Factors Echocardiogram Measures

• Systolic Blood Pressure (Bobrie et al., 2008; 
Franklin et al., 2016; Booth et al., 2016; Hung et al., 
2021; Barochiner et al., 2013; Mallion et al., 2006; 
Hänninen et al., 2011)

• Diastolic Blood Pressure (Franklin et al., 2016; 
Booth et al., 2016; Hung et al., 2021; 
Hänninen et al., 2011)

• Mean Arterial Pressure (Hung et al., 2021)
• Pulse Pressure (Hung et al., 2021)
• Clinic Heart Rate (Hänninen et al., 2011)
• Pulse Wave Velocity (Thompson et al., 2016)

• Smoking (Bobrie et al., 2008; Franklin et al., 2015; 
Franklin et al., 2016; Booth et al., 2016; Longo et al., 
2005; Hänninen et al., 2011)

• Alcohol Consumption (Bobrie et al., 2008; 
Franklin et al., 2015; Longo et al., 2005; 
Barochiner et al., 2013; Mallion et al., 2006; 
Hänninen et al., 2011)

• Physical Activity Level (Franklin et al., 2015; 
Longo et al., 2005)

• Left Ventricular Mass (Franklin et al., 2015; 
Franklin et al., 2016; Longo et al., 2005)

• Left Ventricular Hypertrophy (Franklin et al., 2015; 
Hänninen et al., 2011)

• Intima-media Carotid Thickness (Longo et al., 
2005)

TABLE 3  List of ML models and their associated sets of evaluated 
hyperparameters.

ML model Hyperparameters

LR ‘C': [0.1, 1, 10]
‘penalty’: ['l1′, 'l2']
‘solver’: ['liblinear','saga']
‘class_weight': [None,'balanced']

RF ‘n_estimators’: [100, 200, 300]
‘max_depth’: [None, 5, 10, 15]
‘min_samples_split’: [2, 5, 10]
‘min_samples_leaf ’: [1, 2, 4]
‘max_features’: [None,'sqrt','log2']
‘criterion’: ['gini’, 'entropy']
‘class_weight': [None,'balanced']

XGB ‘n_estimators’: [100, 200, 300]
‘learning_rate’: [0.1, 0.05, 0.01]
‘max_depth’: [3, 5, 10]
‘subsample’: [0.5, 1.0, 'uniform']
‘gamma': [0, 5.0]
‘colsample_bytree’: [0.8, 0.9, 1.0]

MLP ‘activation': ['relu','tanh']
‘solver': ['sgd','adam']
‘learning_rate': ['constant','adaptive']
‘alpha': [0.0001, 0.001, 0.01]

2.7 Evaluation metrics

This study evaluated several classification metrics commonly 
used to evaluate the performance of an ML model on an imbalanced 

dataset. These metrics include the accuracy, precision, recall (also 
known as sensitivity or true positive rate), specificity (equal to 
one minus the false positive rate), the F1 score, area under the 
receiver operator characteristic curve (ROC AUC), area under the 
precision-recall curve (PR AUC), and the odds ratio. Each of these 
metrics provides information on how well the model was able to 
identify patient outcomes based on the features in the dataset. 
ROC AUC is one of the most common evaluation metrics for 
binary classification problems and is constructed by plotting the true 
positive rate (TPR) vs. the false positive rate (FPR) for a range of 
decision thresholds between 0 and one and then calculating the area 
under the resulting curve. 

2.8 Model interpretation

Model interpretability is a key factor when developing a ML 
model for clinical applications as end users, such as clinicians and 
other medical professionals, need to be able to understand how a 
prediction was made in order to confirm that the prediction is valid 
and aligns with their own medical knowledge and understanding. 
Thus, a method for helping model end users to make sense of the 
model is imperative when the final model involves more complex 
ML algorithms (Cinà, 2022). Two common methods used in ML 
model development include SHAP Values and Partial Dependence 
Plots (PDPs). SHAP values are used to access the contribution of 
a feature to a model’s predicted outcome for a particular instance 
is a concept rooted in game theory (Hart, 1989). In its original 
context, Shapley values were created as a means of evaluating a 
player’s contribution to a game’s outcome. It has since been applied 
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in the field of ML as a model-agnostic means of interpreting how a 
model operates (Shih et al., 2022). In this case, each feature in the 
model is considered a player in the game and the model prediction 
is the outcome.

PDPs are a valuable tool for interpreting and explaining the 
behavior of ML models by providing insights into how the model’s 
predicted outcome changes as a function of a specific feature while 
holding other features constant. By isolating the effect of a single 
feature on the model’s predictions, PDPs highlight the relationship 
between that feature and the output feature in an intuitive and 
visual manner. These plots can then be used to identify trends, 
patterns, and potential nonlinearities that might not be evident from 
simple summary statistics or coefficients. PDPs can also facilitate the 
detection of interaction effects between variables, showcasing how 
their combined influence impacts the model’s output. 

3 Results

3.1 Feature selection and relative 
importance of selected features

Five different feature selection strategies were evaluated in 
this study: RFE-SVM, BorutaSHAP, LASSO, manual, and none 
(all features). The number of selected features for each feature 
selection strategy are reported in Figure 2A with common features 
found across the selection strategies shown in Figure 2B. Of all 
the feature selection strategies that were evaluated, the LASSO 
method produced the highest ROC AUC value using the XGB 
classifier, with a total of 21 features selected. Dyslipidemic, LV 
posterior wall thickness at diastole, phosphorus, prehypertensive, 
medication for alimentary tract and metabolism, socio-economic 
education, socio-economic household income, and socio-economic 
skill were unique to LASSO; body weight, chromium, blood 
pressure grades, c-peptide, and LV posterior wall thickness at 
systole were shared between LASSO and BorutaSHAP; participant 
age, alcohol consumption, ethnicity, obesity, and sex were shared 
between LASSO and the manual selections; LV mass at systole and 
dehydroepiandrosterone sulfate (DHEA-S) was shared between the 
LASSO, RFE-SVM and BorutaSHAP strategies; and systolic blood 
pressure was shared by all strategies. It is important to note that 
this selection includes a variety class of features from biochemical 
analyses, general questionnaire, and anthropometry measurements.

3.2 Comparison of classifiers across 
different feature selection strategies

Each permutation of feature selection strategy and machine 
learning algorithm was implemented to create a total of 25 different 
MHT classifier pipelines. Five-fold cross-validation was used to 
obtain the mean and standard deviation of the ROC AUC for 
each model, seen in Figure 3. The LASSO feature selection strategy 
combined with a XGB classifier obtained the highest average ROC 
AUC score out of the entire set of models when evaluated on the 
test set, with a ROC AUC of 0.89 ± 0.03. Conversely, the ANN 
classifier tuned using the features selected with LASSO obtained the 

lowest average ROC AUC score out of the entire set of models when 
evaluated on the test set, with a ROC AUC of 0.44 ± 0.22.

3.3 Evaluation of final model performance

After examining all ROC AUC scores, the XGB classifier with 
LASSO feature selection strategy was chosen as the final pipeline 
for the MHT classifier due to it having the highest ROC AUC 
score. To assess the overall model performance, the pipeline’s 
accuracy, ROC AUC, PR AUC, F1 score, sensitivity, specificity, and 
odds ratio within the test set were calculated. We also compared 
these performance metrics to a binary prediction model previously 
proposed by Thompson et al. that classified MHT risk based on 
a simple cutoff for office systolic blood pressure greater than 
120 mmHg (Thompson et al., 2016). The results of the comparison 
are outlined in Table 4 and Figure 4. The XGB classifier with 
LASSO features outperformed the binary classifier across all metrics 
evaluated, except for sensitivity where the binary had a slightly better 
sensitivity.

3.4 Model explanation

SHAP analysis was used to evaluate the overall contribution 
of each selected feature to the predictions made by the best five 
pipelines. SHAP values were calculated for each feature for each 
instance in the optimized dataset. The absolute value of each SHAP 
value for a particular feature across all instances were summed 
together, averaged, and normalized to indicate the importance of the 
feature relative to the other features in the optimized dataset. The 
normalized values were aggregated across the five pipelines with the 
highest test ROC AUC, and the top 15 features are shown in Figure 5. 
Plots of original and normalized values for each of the five best 
pipelines can be seen in supplemental figures, along with ‘bee swarm’ 
plots for each model. The top five features used in the best pipeline 
(LASSO XGB) were the same as the top five features across the 
aggregate of the five best pipelines: systolic BP, prehypertensive 
diagnosis, body weight, DHEA-S, and LV mass.

The relationship between the predicted outcome of the model 
using each of the top 15 LASSO XGB features, and the top 15 
aggregated features were also assessed with PDPs (Figure 6). This 
analysis indicated that the best pipelines’ chances of classifying 
a patient with MHT increased in conjunction with elevated BPs, 
body weight, body surface area, LV mass/thickness, and several 
biochemical markers (DHEA-S, chromium, human sex hormone-
binding globulin). Conversely, the risk of MHT decreased in 
conjunction with elevated glucose levels. Individual PDPs for each 
of the five best pipelines can be seen in the Supplementary Material.

4 Discussion

The aim of this study was to develop a machine learning pipeline 
that would be able to detect MHT in a seemingly young and 
healthy individual from the African-PREDICT cohort. To develop 
the pipeline, several popular feature selection methods and ML 
algorithms were evaluated. The results of this study found that 
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FIGURE 2
Comparison of features selected by each selection method. (A) The number of features selected by each method for each patient data category. (B)
The number of features selected by and shared by each method.

FIGURE 3
ROC AUC comparison of machine learning models.

TABLE 4  ML model evaluation metrics vs. simple binary classifier evaluation metrics.

Actual 
MHT

Accuracy ROC AUC PR AUC F1 score Sensitivity Specificity Odds ratio

- +

Binary Prediction
- 130 12

0.742 0.719 0.557 0.481 0.676 0.756 6.45
+ 42 25

ML Prediction
- 149 13

0.828 0.855 0.622 0.571 0.649 0.866 11.96
+ 23 24
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FIGURE 4
Comparison of MHT ML model performance vs. MHT binary model performance. The confusion matrix, distribution of predictions, ROC AUC, and PR 
AUC for (A) the simple binary classifier and (B) the best ML pipeline.

FIGURE 5
(A) Features ranking according to the mean absolute SHAP value. The absolute SHAP value of each feature for each instance was calculated and 
averaged to get the relative feature importance. (B) Aggregated feature ranking for features across the five top performing pipelines.

the LASSO feature selection strategy in conjunction with a XGB 
classifier resulted in a ML model that had the highest ROC AUC 
score out of the set of 25 different pipelines that were constructed. 
The final ML pipeline was compared to a simple binary classifier 
that served as a “rule-of-thumb” for evaluating a patient’s risk for 
MHT in LMIC and was found to perform much better in each 
evaluation metric that was considered, except for sensitivity where 
the binary model had a slightly better performance (Thompson et al., 
2016). SHAP analysis and PDP plots were also implemented 
to help interpret the contributions of different features to the 
model predictions. SHAP analysis revealed that the most important 
predictors of MHT for this ML model were related to systolic blood 

pressure and patient body weight. Individual patient analysis using 
this model could be used to identify which of these features need to 
be focused on and could help clinicians in implementing a clinical 
action plan. Overall, the results of this study show that an ML 
pipeline could be utilized to identify patients most at risk for MHT 
and highlight which features provide the greatest predictive value.

The final model’s performance was evaluated on the test set, 
resulting in an accuracy of 0.828, a ROC AUC score of 0.855, a 
PR AUC score of 0.622, a precision score of 0.511, a sensitivity 
score of 0.649, a specificity score of 0.866, and an F1 score of 
0.571. These evaluation metrics are comparable to the reported 
evaluation metrics for other recently published ML models for MHT 

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2025.1684693
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Miller et al. 10.3389/fphys.2025.1684693

FIGURE 6
Partial Dependence Plots for features selected from the aggregated rankings. PDPs are shown for only the top 15 most important features determined 
by SHAP values in Figure 5, averaged for the five best ML pipelines. Note that not every one of these features was included in the top five pipelines, 
which is why some features only include 1, 2, or 4 PDP curves.

(Hung et al., 2021; Shih et al., 2022; Lip et al., 2021) or better 
(Bae et al., 2022; Meng et al., 2022). In a previous study that evaluated 
the African-PREDICT dataset, an office measurement of systolic 
blood pressure over 120 mmHg could be used as a cut-off value for 
classifying someone as at-risk for MHT (Thompson et al., 2016). 
Therefore, for comparison with this study, a simple binary model was 
created that classified patients as having MHT if they had an office 
systolic blood pressure of 120 mmHg. With just this single predictor 
alone, this basic classification model resulted in an accuracy of 0.742, 
a ROC AUC score of 0.719, a PR AUC score of 0.557, an F1 score of 
0.481, a sensitivity score of 0.676, a specificity score of 0.756, and 
precision score of 0.373. While the simple binary model performed 
fairly well, the ML pipeline did perform better in all aspects except 

for sensitivity. The primary strength to the new pipeline, and the 
potential argument for clinical adoption of this model, is the number 
of individuals that were successfully identified as not having MHT. 
When comparing the ML model results with the binary systolic 
pressure cutoff model, the ML model was able to correctly classify 
19 more individuals as true negatives, while the simple binary model 
incorrectly classified those individuals as false positives. That means 
19 people might have been prescribed unnecessary treatment or 
follow-up monitoring based on the binary prediction, resulting in 
wasted financial costs, potential side-effects, etc.

Model interpretability is crucial for promoting clinical use 
because it provides the clinician and patient with insight into why 
the model makes a particular prediction one way or the other. In 
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addition, model explanations help point to potential underlying 
physiological relationships that provide a deeper understanding of 
the pathology and possible interventional strategies. Using SHAP 
analysis, it was shown that the five most important features for the 
best ML pipeline (LASSO + XGB) were the same five most important 
on average across the five best ML pipelines. These features included 
systolic BP measured in the clinic, a prehypertensive designation 
(based on clinic BP measurements), body weight, circulating 
serum levels of DHEA-S, and LV mass at systole measured with 
echocardiography. These features are all noninvasive measurements 
that could be performed in any clinic. It is important to note 
that four of these five features (BPs, DHEA-S, and LV mass) have 
all been directly linked to physiological stress and sympathetic 
control, and the fifth feature (body weight) is often related to waist 
circumference which has also been linked to physiological stress 
(Grassi et al., 2018; Borovac et al., 2020; Maninger et al., 2009; 
Kühnel et al., 2023; Tryon et al., 2013). During acute mental stress, 
DHEA-S levels typically increase transiently, peaking immediately 
after stress exposure and then gradually returning to baseline 
within about an hour - however, long-term or chronic psychosocial 
stress is associated with reduced basal levels of DHEA-S and 
a diminished capacity to produce DHEA-S during acute stress, 
suggesting an impaired adrenal response and potential link to 
adverse health outcomes and accelerated aging (Lennartsson et al., 
2013). SBP increases during physiological stress due to sympathetic 
nervous system activation, causing vasoconstriction and increased 
cardiac output. The magnitude of SBP reactivity to stress varies 
among individuals and can be influenced by factors such as 
sex and lifestyle. For example, in women, higher DHEA-S levels 
have been linked to greater blood pressure reactivity to stress 
(Hirokawa et al., 2016). Chronic stress-induced hemodynamic 
load can also promote left ventricular hypertrophy, reflecting the 
cumulative impact of stress on cardiac structure (Wentzel et al., 
2025). The fact that these factors played large roles in our 
ML model supports a connection between MHT and a possible 
pathological mechanism related to underlying stress–a relationship 
worth testing more directly in future studies. Further, interventions 
aimed at mitigating stress control could be a route to reduce MHT 
risk even without pharmacological interventions. Of course, it is 
important to note that SHAP values and PDPs indicate feature 
importance in modeling predictions but do not necessarily imply
causal relationships.

There are several limitations to this study that are worth 
highlighting. First, the number of participants in the dataset was 
relatively small for the number of features that were evaluated, and 
it is likely that the model performance would increase given a larger 
set of training data. A broader population would especially improve 
the model’s predictive capabilities for more focused demographic 
subgroups based on sex, race, age, etc. Secondly, the model was 
not validated on a test set from an external cohort; thus, the 
general utility of this model has not been tested. Thirdly, our 
analyses are cross-sectional, and temporal ordering cannot be 
established. The reported findings should not be interpreted as 
causal and should be confirmed in future prospective analysis. Still, 
the ML approach enables efficient pattern discovery by identifying 
multivariate and nonlinear associations between clinical variables 
and outcomes, which conventional statistics may miss. This enables 
discovery of novel risk markers or biomarker combinations relevant 

to disease prediction or prognosis–even when cross sectional data 
is used. In application, this ML pipeline can be integrated into 
electronic health records or clinical decision support systems to 
provide physicians with data-driven risk assessments or intervention 
recommendations for conditions influenced by vascular and 
endocrine profiles. For example, an algorithm predicting elevated 
cardiometabolic risk based on a cross-sectional panel (including 
DHEA-S, blood pressure, and other labs) could prompt early lifestyle 
or pharmacological intervention, improving patient outcomes at 
both the individual and population level. Of course, some of the 
key features identified in this study are more feasible from a 
data collection perspective, so the ultimate utility of these types 
of tools will depend on practice cost-benefit analyses in real-
world contexts. 

5 Conclusion

This study proposed an XGB framework with LASSO feature 
selection as a ML model for predicting the incidence of MHT in a 
young, apparently healthy population from a LMIC. The proposed 
model achieved a higher ROC AUC and demonstrated higher 
scoring metrics compared to the current “rule-of-thumb” classifier 
for MHT. SHAP analysis found that the office measurements of 
blood pressure, body weight, DHEA-S biochemical levels, and LV 
mass were the most important predictors of MHT. PDP revealed 
the relationships between each LASSO selected feature and the 
prediction of MHT. Overall, this study demonstrated the promise 
of using LASSO with an XGB framework model to detect MHT and 
further development of the model could potentially lead to a viable 
tool for aiding clinicians in identifying which patients are most at 
risk for MHT.
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