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Sensory reweighting for postural
stability in individuals with low
vision and blindness: balance
adaptation and muscle
co-contraction

Yue Li, Shilun Hou*, Xin Zhang and Anli Wang

College of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China

Background: Individuals with visual impairments frequently experience postural
instability during daily activities, considerably increasing the risk of falls.
However, the mechanisms by which visually impaired individuals maintain
balance through sensory reweighting remain unclear. We therefore aimed to
investigate sensory reweighting for postural control in individuals with low vision
and blindness by integrating measures of postural performance, biomechanical
forces, and muscle co-contraction.

Methods: Seventy-four participants were recruited (19 participants with normal
vision, 36 participants with low vision, and 19 participants being blind). Each
participant completed postural tasks under two conditions: open/closed eyes
and firm/foam surfaces. Postural performance was evaluated with single-leg
and tandem stance durations. The center of pressure (COP) during bipedal
stance was collected using a force platform. Simultaneously, integrated EMG
was acquired via wireless surface electromyography from six dominant-side
muscles: erector spinae, rectus abdominis, rectus femoris, biceps femoris, tibialis
anterior, and gastrocnemius.

Results: We observed significant group X vision interactions for COP Path
Length and Sway Area. The blind group exhibited the highest AP_HF% on
a firm surface, confirming that individuals with visual impairment exhibit
somatosensory compensation to maintain postural control. Individuals with
low vision presented heightened sensitivity to partial sensory deprivation, with
significantly increased Path Length and Sway Velocity. Additionally, a significant
interaction between vision and somatosensation was observed, along with
significant main effects of vision and somatosensation of all COP parameters.
Muscle activity further supported these findings. The rectus abdominis/erector
spinae ratio decreased significantly with somatosensory deprivation, whereas
the gastrocnemius/tibialis anterior co-contraction index increased significantly
under both visual and somatosensory deprivation, with higher co-contraction
observed in both low-vision and blind participants.

Conclusion: Blind individuals rely primarily on somatosensory input
for sensory reweighting, while those with low vision show impaired
compensation due to residual vision, resulting in the most impaired
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postural control. Ankle muscle co-contraction serves as the primary strategy for
maintaining postural stability in visually impaired individuals.
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of pressure

1 Introduction

Postural stability refers to the ability of the body to maintain
balance both during static positions and dynamic tasks (Lin et al.,
2022). Nevertheless, individuals with visual impairments frequently
experience instability during daily activities (Zarei et al., 2023;
Pennell et al., 2024), which significantly increases the risk of falls
and functional decline (Bhorade et al., 2021). Specifically, blind or
partially sighted individuals are approximately 1.9 times more likely
to fall than their sighted counterparts (Dhital et al., 2010). Therefore,
the postural control underlying instability and fall prevention in this
population remain a pressing challenge for public health.

The visual deprivation induces adaptive reorganization of
sensory weighting for postural control in individuals with visual
impairments (Chung and Barnett-Cowan, 2023; Zarei et al,
2025). Postural control relies on the central nervous system
(CNS) to integrate sensory inputs from the visual, vestibular,
and somatosensory systems and generate motor responses to
maintain upright stability (Aubonnet et al., 2022). The absence of
visual input in blind individuals compromises postural stability
and necessitates compensatory reliance on proprioceptive and
vestibular inputs through sensory reweighting (Parreira et al,
2023b; Helmich and Gemmerich, 2024; Bednarczuk et al.,
2025). For instance, blind individuals demonstrate comparable
stability to sighted individuals under eyes-closed conditions
(Walicka-Cupry$ et al., 2022; Parreira et al., 2023a), but exhibit
reduced stability on unstable surfaces (Alghadir et al., 2019). This
suggests that blind individuals primarily rely on somatosensory
input to maintain postural control. Although this population
demonstrates superior ankle proprioceptive acuity (Ozdemir et al.,

2013) and non-visual sensory reweighting, their balance
remains unstable, indicating insufficient and deficient
compensation.

Additionally, residual vision in individuals with low vision
may be associated with different sensory reweighting strategies
(Chan et al, 2023). Compared to those with normal vision,
individuals with low vision exhibit increased instability, such
as more body sway, larger step width and slower gait during
tandem walking (Tomomitsu et al., 2013). Within visually impaired
populations, individuals with low vision demonstrate better static
balance than those with total blindness (Bednarczuk et al., 2021).
These studies suggest a linear relationship between the severity of

Abbreviations: PC, Postural control; VI, Visual impairment; COP,
Center of Pressure; iIEMG, Integrated electromyography; sEMG, Surface
electromyography; GRF, Ground reaction force; CCl, Co-contraction index;
EO, Eye-open; EC, Eye-closed; FFT, Fast Fourier transform; RA, Rectus
Abdominis; ES, Erector Spinae; BFlh, Biceps Femoris (Long Head); QF,
Quadriceps Femoris; TA, Tibialis Anterior; MG, Medial Gastrocnemius.

Frontiers in Physiology

02

visual impairment and postural instability (Bednarczuk et al., 2025).
Nevertheless, some other studies highlight a nonlinear relationship
contrasted to the aforementioned pattern. For example, under eyes-
closed conditions, individuals with low vision were least stable
in right single-leg stance (Bednarczuk et al., 2021). Also, another
study reported that individuals with cataracts or retinal/optic
nerve damage were less stable than those with normal vision or
congenital blindness under eyes-open firm surface (Schwesig et al.,
2011). These findings suggest that individuals with low vision
remain highly dependent on visual input, and such reliance on
residual vision may hinder the reweighting and compensation
of other sensory modalities. Therefore, the combination of
residual vision and non-visual sensory reweighting is not only
insufficient to maintain postural stability in individuals with low
vision, but may also represent a more severe deficit in sensory
integration.

Given the sensory reweighting deficits observed, individuals
with visual impairment may adopt an active stiffening strategy with
muscle activation to maintain postural stability (Mohapatra et al.,
2012; Dideriksen et al., 2015; Calalo et al., 2023). For example,
a study on blind soccer players found that their adaptation to
visual loss typically manifests as increased co-activation of the
tibialis anterior and gastrocnemius muscles, thereby enhancing
ankle stability and ensuring postural safety (Campayo-Piernas et al.,
2017). Similar increases in muscle activation of ankle muscles
have been observed in individuals with moderate myopia and
in eyes-closed conditions (Huang and Xiao, 2022). These studies
have quantified muscle activation magnitude during postural
tasks. Specifically, muscle co-contraction, involving sagittal-
plane activation of trunk and lower limb muscles, serves as
a crucial mechanism for maintaining a stable upright posture
(Cimadoro et al., 2013; Minamisawa et al., 2023). Therefore, the
modulation of muscle co-contraction in postural control remains
unclear. Additionally, the broader populations of individuals
with blindness and low vision deserve further research attention
(Zhang et al., 2024).

This study aims to investigate the sensory reweighting in
postural control across varying severities of visual impairment,
integrating postural performance, biomechanical forces, and
muscle co-contraction. We hypothesize that: (1) individuals
with visual impairment exhibit sensory reweighting, with
increased reliance on somatosensory input, (2) individuals
with low vision demonstrate reduced postural stability under
visual ~deprivation, suggesting insufficient somatosensory
compensation, (3) neuromuscular co-contraction is amplified
in visually impaired individuals, particularly among those with

low vision.
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2 Materials and methods
2.1 Participants

We determined the sample size using G*Power 3.1. Assuming
a medium-large effect size (f = 0.5), an alpha level of 0.05, and
statistical power of 0.80, an analysis of variance indicated that a
total sample size of 45 participants (15 participants per group) was
required. Ultimately, we recruited 74 university students aged 18-25,
including 19 individuals with normal vision (20.00 + 0.82 years,
62.68 + 14.91 kg, 1.68 + 0.07 m), 36 participants with low vision
(21.19 £ 2.08 years, 67.67 + 1539kg, 1.71 + 0.11 m), and 19
participants being completely blind (21.00 + 2.33 years, 64.05 *
10.39 kg, 1.68 £ 0.09 m). All groups exceeded the minimum required
sample size, thus ensuring adequate statistical power. No significant
differences in age, height, or weight were found across groups.

Prior to participation, all individuals reviewed and signed
informed consent forms, thereby confirming their understanding of
the study’s objectives and procedures. The study protocol received
ethical approval from the Ethics Committee of Sports Science
Experiments at Beijing Sport University (Approval No. 2023134H).

2.1.1 Inclusion criteria

Participants were classified according to the World Health
Organization guidelines and the 11th edition of the International
Classification of Diseases (Dawson-Squibb et al., 2023). Visual
acuity values are reported using the Snellen fraction. For reference, a
Snellen fraction of 6/6 represents normal vision; 3/60 indicates very
low vision, where a person can see at 3 m what a person with normal
vision can see at 60 m.

i. Blind group: Defined as no light perception or light
perception with visual acuity less than 3/60 in the better eye.
Participants had congenital or early-onset total vision loss
and demonstrated independent, proficient mobility in daily
environments.

ii. Low vision group: Defined as visual acuity in the better

eye equal to or greater than 3/60 but less than 6/18.

Participants, including moderate and severe visual impairment

but excluding mild impairment (Tomomitsu et al., 2013), had

congenital or early-onset partial vision loss and demonstrated
independent, proficient mobility in daily environments.

iii. Normal vision group: Defined as visual acuity in the better eye

greater than 6/12 with no light perception issues.

2.1.2 Exclusion criteria

Participants were excluded if they: (i) were currently enrolled
in structured physical activity programs; (ii) had a history of
musculoskeletal injuries or medical conditions affecting balance;
(iil) were taking medications that affect the central nervous system,
coordination, or balance; (iv) experienced vestibular symptoms (e.g.,
vertigo, dizziness); (v) had metabolic or neurological disorders, or
signs of vestibular or peripheral neuropathy; (vi) had undergone
surgery of the lower limbs or lumbar spine, or had any pathologies
known to affect balance, foot sensitivity, or gait.
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2.2 Procedure

The experimental protocol consisted of two stages: (i) postural
performance was assessed in a fleld setting using standardized
single-leg and tandem stance duration tests; (ii) biomechanical
profiling was conducted in the laboratory using force platforms and
surface electromyography (sSEMG).

2.2.1 Single-leg and tandem stance

Participants performed single-leg stances on both legs and
tandem stances (heel-to-toe, non-dominant leg behind) under
four conditions combining visual input (eyes open/closed) and
somatosensory input (firm/foam surface) (Willis et al., 2013). All
tests were conducted on a flat, non-slip surface in a randomized
order. Each test was repeated three times and timed with a stopwatch
by the same examiner. A 30-s familiarization period was provided
prior to testing.

During single-leg stance, participants kept their arms relaxed at
their sides while the non-supporting leg was lifted approximately
15 cm, maintaining about 20° of hip flexion and 45° of knee flexion.
For tandem stance, participants aligned one foot directly in front
of the other, maintaining a stable posture until balance was lost
(e.g., foot shift or ground contact). The maximum trial duration was
capped at 60 s.

2.2.2 Static standing in the laboratory

Prior to testing, examiners explained all procedures in detail. To
minimize learning effects, participants practiced each condition 3
times to ensure performance consistency. During testing, they wore
tight-fitting shorts and short-sleeved shirts, and all performed the
tasks in standardized athletic shoes to eliminate variability from
personal footwear.

Participants completed static standing tasks on a force platform
(Kistler 5695ADAQ, Switzerland) under systematically manipulated
visual and somatosensory conditions. Muscle activity of the
dominant leg was recorded using wireless surface electromyography
(Delsys Trigno, United States) from the erector spinae, rectus
abdominis, rectus femoris, biceps femoris (lateral head), tibialis
anterior, and gastrocnemius (medial head). The dominant leg was
determined as the specific leg that participants would normally
use to kick a ball (Sadeghi et al, 2000; Alonso et al., 2011).
Electrode placement followed guidelines from The ABC of EMG
and SENIAM (Avdan et al., 2023).

Each trial was conducted in a natural double-leg stance and
lasted 20 s (Nagai et al, 2011). Participants were instructed to
remain as still as possible. Testing was performed under four
randomized sensory conditions: (i) Eyes open on firm surface
(baseline; all sensory inputs available); (ii) Eyes open on foam
surface (somatosensory input altered, visual and vestibular inputs
available); (iii) Eyes closed on firm surface (visual input removed,
somatosensory and vestibular inputs available); (iv) Eyes closed on
foam surface (visual input removed, somatosensory input altered,
vestibular input available). In the eyes-closed condition, participants
wore a lightproof eye mask to ensure complete visual occlusion. This
approach minimized uncontrolled light perception and attention-
related variability associated with voluntary eye closure.

In the eyes-open condition, participants focused on a fixed
target at eye level to standardize visual input. A foam pad (60 x
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50 x 8 cm) was placed on the platform to alter somatosensory
feedback. Standing on a compliant surface has been shown to distort
and delay plantar pressure distribution and ankle proprioceptive
feedback, thereby reducing the reliability of somatosensory input
without completely eliminating it (Willis et al., 2013). This foam-
surface condition is therefore commonly used as an experimental
manipulation of somatosensory disruption in postural control
research. The order of conditions was randomized, and a 30-s seated
rest period was provided between trials to allow adequate light
adaptation when switching between visual conditions (Helmich
and Gemmerich, 2024; Sugimoto et al., 2024). Participants could
take additional rest if needed, and none reported any fatigue
during testing. Participants with low vision and blindness were
instructed not to wear any glasses or assistive visual devices during
all tests to ensure consistent sensory conditions. All procedures were
conducted by the same examiner to ensure consistency.

2.3 Data recording and analysis

Ground reaction force (GRFs) were collected using a three-
dimensional force platform, embedded flush with the laboratory
floor. Data were sampled at 1,000 Hz while participants maintained
a natural double-leg stance on the platform for 20s. To eliminate
initial and terminal transients, the first and last 2 s of each trial
were excluded, yielding a 16-s analysis window (from second 3-18).
The GRF signals were then filtered using a fourth-order low-
pass Butterworth filter with a cutoff frequency of 40 Hz. Based
on the processed GRF signals, four center of pressure (COP)
parameters were calculated to quantify postural stability: path length
(mm), sway area (mm?), anteroposterior sway standard deviation
(AP Sway SD, mm) and anteroposterior mean velocity (AP mean
velocity, mm/s).

To further examine the effects of different sensory inputs on
postural control, frequency-domain analysis was performed on
COP_AP signals using Fast Fourier transform (FFT). The power
spectra were divided into three frequency bands: low frequency (LE,
0-0.3 Hz), medium frequency (ME, 0.3-1 Hz), and high frequency
(HE 1-3 Hz). The LE, ME, and HF bands represent visual, vestibular,
and proprioceptive contributions to postural control, respectively
(Vieiraetal., 2009; Kanekar et al., 2014). The power within each band
was normalized to the total power across the three bands, expressed
as a percentage, yielding frequency-domain indices (AP_LF%, AP_
MF%, and AP_HF%).

To examine individual variability in sensory reweighting,
we calculated frequency-domain parameters of COP in the
anteroposterior direction (AP_LF%, AP_MF%, and AP_HF%).
Based on the sensory contribution percentages during the
baseline condition (eyes open on a firm surface), participants
in each group were categorized into visual-, vestibular-, and
somatosensory-dependent types. To explore the relationship
between baseline sensory weighting and postural performance
under sensory perturbation, paired scatterplots were generated
using baseline frequency-domain ratios as predictors (X-axis) and
COP parameters (AP sway SD or AP mean velocity) under baseline
(Y,) and comparison (Y,) conditions as dependent variables.
Linear regression analyses were performed, and the coefficients of
determination (R?) and significance levels (p-values) were reported.
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Surface electromyographic (SEMG) signals were recorded using
awireless Delsys Trigno EMG system (Delsys, Trigno Wireless EMG,
United States) at a sampling frequency of 2000 Hz. Raw signals
were processed using Delsys EMGworks Analysis software. They
underwent 4th-order Butterworth band-pass filtering (10-400 Hz)
to reduce noise, followed by full-wave rectification.

Ground reaction force (GRF) and electromyography (EMG)
data were analyzed using MATLAB 2020 (The MathWorks, Natick,
MA, United States). To account for inter-subject variability due
to factors such as skin temperature and electrode impedance,
EMG amplitude normalization was performed separately for each
muscle within each participant. Normalization referenced the
maximum integrated electromyography (iEMG) value observed for
that muscle across all experimental trials (Tankisi et al., 2020),
enabling standardized comparison of relative muscle contraction
across participants. An external synchronization protocol ensured
temporal alignment of all recorded signals.

The flexor-extensor contraction ratio was calculated as
the quotient of the normalized iIEMG values of the agonist
flexor muscles to those of the antagonist extensor muscles.
Additionally, the co-contraction index (CCI) was computed for
the trunk, knee, and ankle during the tests. The calculation
method is shown in formula, where N denotes the number of
samples within the time window, and “EMGlow” and “EMGhigh”
correspond to the relative magnitudes of EMG signals from the
two postural muscles at each sampling point (Nelson-Wong and
Callaghan, 2010; McDonnell et al., 2025).

N
lowerEMG,;
CCI= J _
higherEMG;

i=1

x (lowerEMG; + higherEMG;)

2.4 Statistical analysis

Statistical analyses were performed with SPSS Statistics (version
26.0, IBM Corp). Normality of data distribution was assessed using
the Shapiro-Wilk test, and homogeneity of variances was evaluated
with Levene’s test.

A three-way mixed-design ANOVA was conducted to examine:
(i) the three-way interaction among Group, Visual condition, and
Somatosensory condition (Group x Visual x Somatosensory); (ii)
two-way interactions: Group x Visual, Group x Somatosensory, and
Visual x Somatosensory; (iii) main effects of Participant Group
(normal vision, low vision, blind), Visual Condition (eyes open, eyes
closed), and Surface (firm, foam).

Significant effects were followed by post hoc comparisons using
Fisher’s LSD test with Bonferroni correction. Effect sizes were
reported as partial eta squared (17;). Data meeting assumptions of
normality and homogeneity of variance are presented as mean + SD.
Statistical significance was set at a = 0.05.

3 Results
3.1 Single-leg stance and tandem stance

Figure 1 demonstrated the radar plot of standing duration across
four conditions for each group, with larger areas indicating better
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FIGURE 1
Single-leg and tandem stance duration of visual-somatosensory conditions. (A) Left leg stance Duration (s); (B) Right leg stance Duration (s); (C)
Tandem stance Duration (s).

postural performance. Significant group X vision interactions were
found in left- and right-leg stance (p < 0.05), indicating that visual
input influenced balance differently across groups (Suppl.1). The
normal vision group relied heavily on visual input, as evidenced
by significantly better performance under eyes-open conditions (p
< 0.001) (Figure I, top and right axes), whereas this advantage
diminished under visual deprivation (Figure 1, left and bottom
axes). The normal vision group demonstrated no difference from the
visually impaired group under eyes-closed firm surface conditions
(p > 0.05) (Figure 1, left axis). In contrast, visually impaired groups
depended primarily on somatosensory inputs, demonstrating a
significant decrease in standing duration on the foam surface (p
<0.001) (Figure 1, right and bottom axes).

3.2 Center of pressure (COP)

We found a significant interaction between the visual x
somatosensory (V x S, p < 0.05), as well as significant main effects
of visual (p < 0.05) and somatosensory (p < 0.001) conditions on all
COP parameters (Table 1). These results indicated that both visual
and somatosensory deprivation independently impaired postural
stability, and that their combined disturbance produced the most
deterioration in balance performance. We also observed significant
group X vision interactions (G x V, p < 0.05) in Path Length and
Sway Area. Pairwise comparisons further revealed that, compared
to the blind group, the low vision group was more sensitive to visual
deprivation (Figures 2A,B).

Pairwise comparisons of COP parameters revealed the
following patterns (Figure 2). First, a significant somatosensory
effect was observed: nearly all COP parameters differed significantly
between the Firm and Foam conditions (p < 0.05), indicating a
consistent impact of somatosensory deprivation on postural control.
Second, Path Length and AP Mean Velocity showed highly similar
results, reflecting not only the significant effect of somatosensory
deprivation but also a significant effect of visual deprivation on the
normal vision and low vision groups (p < 0.05). Third, Sway Area
and AP Sway SD were largely consistent, with the low vision group
exhibiting heightened sensitivity to both visual and somatosensory
deprivation.

Frontiers in Physiology

To further investigate sensory weighting in postural control
among individuals with visual impairment, we performed
frequency-domain analysis on COP_AP signals using the fast
Fourier transform (FFT) (Table2). We found a significant
interaction between visual and group across all three frequency
bands (p < 0.05). This indicates that visual input affected COP
frequency-domain characteristics differently across groups. We also
observed a significant interaction between visual and somatosensory
conditions for all indicators (p < 0.05), demonstrating that the
two sensory modalities jointly influenced COP frequency-domain
features. In addition, visual condition significantly affected all three
frequency bands (p < 0.01), and somatosensory condition had a
highly significant effect on all bands (p < 0.001). These findings
demonstrate that both vision and somatosensation contribute to
postural control across different frequency bands.

Given the considerable individual variability in sensory
reweighting, we examined the associations between sensory
weighting and AP sway SD in three groups. In the normal-vision
group, several significant associations were observed between
sensory weighting and AP sway SD (Figure 3). Under the EO-Firm
condition, higher low-frequency power (AP_LF%) was associated
with increased AP sway SD (p = 0.015, R? = 0.300), indicating that
visually dependent participants made more postural adjustments
to maintain balance. Under the EC-Firm condition, medium-
frequency power (AP_MF%) was negatively correlated with AP
sway SD under both EC-Firm and EC-Foam conditions (p = 0.032,
R? =0.242; p =0.021, R?= 0.275), suggesting that participants with
stronger vestibular weighting maintained steadier posture when
somatosensory input was perturbed. Additionally, higher high-
frequency power (AP_HF%) under EO-Firm was associated with
reduced AP sway SD (p =0.034, R?=0.237), indicating that stronger
proprioceptive weighting was linked to more stable postural control
on a firm surface.
blind and
associations were found between sensory weighting and AP

Across  the low-vision groups, significant
mean velocity (Figure 4). In the blind group, low-frequency power
(AP_LF%) was negatively correlated with AP mean velocity under
EO-Firm and EO-Foam conditions (p = 0.032, R?=0.242; p = 0.006,
R?=0.361), indicating reduced reliance on visual input during static

balance. Medium-frequency power (AP_MF%) under EC-Firm
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TABLE 1 Main and interaction effects of visual-somatosensory conditions on center of pressure (COP).

10.3389/fphys.2025.1684671

Dependent  Group (G) Visual (V) Somatosensory GxV GXS VXS GxVxS
variables (S) interaction interaction interaction interaction
Path length (mm)
F value 1.624 28.014 79.523 2.974 0.446 22387 0.13
P value 0.204 Do.oor Do.oor 0.048 0.642 Po.oor 0.878
n 0.044 0.283 0.528 0.077 0.012 0.24 0.004
Sway area (mm?)
F value 142.051 4.745 19.092 3.337 0.76 56 0.186
P value Po.vor 0.033 Do.oor 0.041 0.471 0.021 0.831
n 0.667 0.063 0.212 0.086 0.021 0.073 0.005
AP sway SD (mm)
F value 2.773 7.393 40.853 0.993 0.288 5.888 0.231
P value 0.069 0.008 Do.oor 0.376 0.751 0.018 0.794
n 0.073 0.096 0.369 0.028 0.008 0.078 0.007
AP mean velocity (mm/s)
F value 0.381 31.453 67.311 2.200 0.358 21214 0.164
P value 0.685 Do.vor Do.vor 0.118 0.7 Po.oor 0.849
n; 0.011 0.310 0.490 0.059 0.01 0.233 0.005

Po.oor represent for p < 0.001. Bold values indicate statistical significance (p < 0.05).

was positively associated with AP mean velocity (p = 0.019, R* =
0.281), and high-frequency power (AP_HF%) under EO-Firm was
positively associated with AP mean velocity (p = 0.018, R? =0.284),
suggesting enhanced vestibular and proprioceptive weighting for
refined postural control in the absence of vision. In the low-vision
group, medium-frequency power (AP_MF%) demonstrated positive
correlations with AP mean velocity under EC-Firm and EC-Foam
conditions (p = 0.007, R* = 0.194; p = 0.006, R* = 0.204), indicating
more reliance on vestibular input when visual cues were unavailable.

3.3 Muscle co-contraction

The RA/ES (F = 4.294, p = 0.042, qf, = 0.058) and MG/TA (F
= 3.878, p = 0.053, n; = 0.052) ratios were significantly influenced
by the main effect of somatosensory input (Table 3), indicating that
both the trunk and ankle are highly sensitive to somatosensory input
from the surface. The MG/TA co-contraction index demonstrated
significant increases under the main effects of vision (p < 0.001) and
surface condition (p < 0.001), along with a significant group x vision
interaction (p = 0.016) (Table 4). These results revealed that the ankle
acted as a primary compensatory joint under sensory deprivation.

Pairwise comparisons demonstrated that when either visual or
somatosensory input was compromised, all three groups exhibited
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a reduction in the trunk flexor-to-extensor ratio (p = 0.032-0.09).
Specifically, in the low-vision group, the RA/ES ratio significantly
decreased from EO-Firm to EO-Foam (p = 0.032), indicating a
substantial increase in extensor activation to prevent and control
the slight forward-leaning tendency during upright stance (Figure 5,
iEMG Ratio of Low vision).

The ankle CCI in the normal vision group was significantly
influenced by both visual and surface conditions (p < 0.01),
demonstrating higher values during eyes-closed and foam-surface
standing compared with the eyes-open and firm-surface conditions
(Figure 5, CCI of Normal Vision). In the visually impaired group,
however, ankle CCI was mainly affected by surface conditions
(p < 0.05), being higher on a foam surface under both visual
conditions (Figure 5, CCI of Low Vision and Blindness).

In summary, the results demonstrate sensory reweighting for
static postural control across three groups. Blind participants
relied more heavily on somatosensory input when standing on
a firm surface. The low-vision group showed reduced stability
when visual input was partially unavailable, indicating incomplete
somatosensory compensation. Neuromuscular co-contraction may
contribute to changes in COP parameters, with the low-vision group
exhibiting distinct ankle and trunk muscle co-contraction patterns.
These findings indicate the adjustments in sensory and postural
control across the severities of visual impairment.
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Pairwise analyses of visual-somatosensory effects on center of pressure (COP). (A) Path Length; (B) Sway Area; (C) AP Sway SD; (D) AP Mean Velocity.

4 Discussion

4.1 Sensory reweighting effects between
groups

The present study confirmed that individuals with visual
impairment exhibit somatosensory compensation in postural
control. This was evidenced by the finding that, in the blindness
group, single-leg stance duration increased and all COP parameters
decreased from eyes-open to eyes-closed standing on a firm
surface, suggesting that visual deprivation did not compromise
postural stability when somatosensory feedback was available. In
contrast, their stability declined substantially on a foam surface,
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indicating that disruption of somatosensory input markedly
impaired balance. Furthermore, analysis of COP frequency-
domain characteristics quantitatively confirmed this conclusion,
demonstrating that the blind group exhibited the highest AP_
HF% on a firm surface, indicating a predominant reliance on
proprioceptive input for postural control. Consistent with previous
studies (Gerber et al, 2024; Helmich and Gemmerich, 2024;
Zarei et al., 2025), blind participants relied heavily on somatosensory
and vestibular inputs, performing as well as or better than normal
vision individuals during eyes-closed standing on a firm surface.
However, their balance deteriorated more on a foam surface
despite disruptions in all groups, consistent with neurophysiological
evidence from Helmich (Helmich and Gemmerich, 2024) showing
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TABLE 2 Main and interaction effects of visual-somatosensory conditions on COP frequency domain characteristic.

EO-firm EO-foam EC-firm EC-foam F value  Pvalue ’ 11,2J
Normal vision 62.07 + 18.62 65.04 + 18.34 59.19 £21.28 39.99 +21.03 Group 2.090 0.131 0.056
Low vision 61.5+18.86 46.93 +19.56 5591 £20.43 36.53 £17.75 Visual 11.836 0.001 0.145
Blindness 51.07 +21.24 44.08 + 23.45 54.21 + 18.35 45.01+19.8 Somatosensory 21.923 Do.oor 0.238
AP_LF% GxV 5.005 0.009 0.125
GxS 1.909 0.156 0.052
VxS§ 6.058 0.016 0.08
GxVxS 2.276 0.11 0.061
Normal vision 32.65 £ 16.6 30.79 £17.17 32.58 +16.86 52.82+19.79 Group 2.294 0.108 0.062
Low vision 33.21+16.7 46.62 +17.69 36.39 +16.48 57.97 £17.18 Visual 8.820 0.004 0.112
Blindness 40.09 +17.13 49.49 +21.94 35.83+1338 | 4933+19.52 | Somatosensory 34.671 Do.oor 0.331
AP_MF% GxV 4.151 0.020 0.106
GxS 1.575 0.214 0.043
VxS§ 11.316 0.001 0.139
GxVxS 2.256 0.112 0.061
Normal vision 4.67 £2.85 3.67 £1.93 7.44 +£5.33 6.10 +2.63 Group 2.294 0.108 0.062
Low vision 485+3.8 5.58 +3.36 6.96 + 6.06 4.72+3.13 Visual 8.820 0.004 0.112
Blindness 7.91+£5.93 5.63+3.5 8.54 +£6.09 5.00 £2.74 Somatosensory 34.671 Po.oo1 0.331
AP_HF% GxV 4.151 0.020 0.106
GxS 1.575 0.214 0.043
VxS 11.316 0.001 0.139
GxVxS 2.256 0.112 0.061

Po.or represent for p < 0.001. Bold values indicate statistical significance (p < 0.05).

sustained hyperactivation of the sensorimotor cortex in blind
individuals during postural tasks.

Low vision group presented a distinct sensory reweighting strategy.
When visual or somatosensory inputs were compromised (eyes-
closed or foam surface), participants demonstrated reduced single-leg
stance duration and elevated COP parameters. This suggests that
partial visual loss may hinder proprioceptive reweighting more than
total blindness, possibly due to interference from residual visual
input. This finding contrasts with BednarczuKs report of a linear
increase in somatosensory dependence with impairment severity in
adolescents (Bednarczuk et al., 2025). The difference is likely due to
developmental factors, as our participants were young adults with
stable motor skills, whereas adolescents are still acquiring them. The
severity of partial vision loss may mark a critical threshold where vision
is insufficient for stable balance, yet proprioceptive adaptation remains
incomplete compared to total blindness.
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4.2 Sensory reweighting effects within
groups

Theloss of either visual or somatosensory input alone undoubtedly
leads to postural instability. Which is more important for postural
control? In this study, we found that somatosensory loss has more
impact on static balance than vision loss, and this effect was not limited
to individuals with visual impairments. Among COP parameters,
all groups exhibited reduced sway on the eyes-closed firm surface
compared to the eyes-open foam surface (Figure2). The main
effect of somatosensory condition was all significant (p < 0.001)
of COP parameters and COP frequency domain parameters, with
very large effect sizes. For instance, the effect size of somatosensory
deprivation on Path Length (1112J = 0.528) exceeded that of visual
deprivation (r]lz7 = 0.283). Muscle co-contraction strategies supported
these findings. MG/TA CCI was mainly modulated by somatosensory
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Relationship between sensory weighting and AP_SD.

input (q; = 0.311), with visual input having a smaller effect (1]127
= 0.218) (Table 4). RA/ES contraction ratio was highly sensitive to
somatosensory feedback, but not to vision (Table 3). This finding
appears inconsistent with some previous studies, which suggest
that vision plays a dominant role in balance control (Ryan, 1940;
Hutmacher, 2019; Liu et al, 2024). The static standing in our
study and the simplified sensory input conditions in the laboratory
may have contributed to this result. For instance, under eyes-open
conditions, participants were instructed to fixate on a specific point
straight ahead, which limited visual exploration. Previous studies
have demonstrated that vision is essential for motor control in
dynamic tasks, particularly in determining movement direction
and coordinating interactions with the environment (Patla, 1997;
Gautier et al., 2007; Krigolson et al., 2015). When somatosensory
input is reliable, such as on a firm surface, vision primarily optimizes
postural adjustments and perceive environmental cues (Goodale and
Haffenden, 1998; Cullen, 2019; Petty, 2021).

The effect of visual deprivation on COP parameters revealed a
different pattern. While the removal of visual input increased postural
sway across all measures, the magnitude of change varied among
parameters. Path Length and AP Mean Velocity showed the strongest

Frontiers in Physiology

main effects of visual deprivation (p < 0.001), whereas Sway Area
and AP Amplitude exhibited smaller yet significant increases (p <
0.05). Path Length and AP Mean Velocity collectively reflect the
dynamics and velocity of postural adjustments (Raymakers et al.,
2005). Meanwhile, Sway Area and AP Sway SD primarily describe the
spatial extent of body sway (Raymakers et al., 2005). In other words,
the absence of vision alters the dynamics of balance regulation more
than its spatial extent, implying that visual input mainly contributes to
the fine-tuning of movement precision rather than gross stabilization
during standing (Luo et al., 2025).

However, the relationship between corrective adjustments and
sway spatial extent may not be synchronous, providing insights into
the quality of postural control. For instance, when Path Length
increases markedly while Sway Area and AP Sway SD increase
only slightly or remain stable, it suggests that the body maintains
sway within a confined spatial range by increasing the frequency
of postural adjustments (Sozzi et al., 2023). This pattern represents
effective and effortful control. Conversely, when all parameters rise
substantially in tandem, it reflects a decline in postural control
efficiency. This phenomenon was observed in the blind group. Under
the EC-Firm condition, they exhibited a tendency toward longer Path
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Relationship between sensory weighting and AP mean velocity.

Length compared with the sighted group, while Sway Area did not
increase proportionally (Figure 2). This pattern aligns with the non-
synchronous changes described above and suggests an active control
strategy. It further implies that long-term visual deprivation may
promote a more proprioception-dependent and fine-tuned postural
control mechanism, allowing blind individuals to better constrain the
spatial range of sway in the absence of visual input.

Contrary to the overall trend observed for somatosensory
dominance, single-leg stance duration in individuals with normal
vision did not follow the EO-Foam and EC-Firm conditions.
Participants were able to maintain balance longer under the EO-Foam
condition than under the EC-Firm condition (Figure 2). However,
COP-based results indicated more postural sway under the EO-
Foam condition, although the differences between conditions were not
statistically significant (Figure 2). This finding suggests that individuals
with normal vision can effectively utilize visual input to compensate
for diminished somatosensory information and actively adjust their
posture to maintain stability. Consequently, in this population,
increased sway may not necessarily reflect impaired postural control
but rather indicate a more flexible and adaptive postural strategy.

Frontiers in Physiology

10

Dual sensory deprivation exerts a significant interactive effect on
postural control across three groups, especially in the low vision group,
leading to the most severe instability among all tested conditions.
When both visual and somatosensory inputs are removed, individuals
primarily rely on vestibular input to maintain balance (Karim et al.,
2013). However, marked increases in all COP parameters indicate that
vestibular input alone is insufficient for maintaining postural stability.
These findings align with previous studies (Khadive et al., 2022;
Linetal., 2022; Zarei etal., 2025), demonstrating that the simultaneous
loss of two sensory modalities exceeds the limits of compensatory
capacity. Extending this insight, our results demonstrate that even
individuals with normal vision have limited compensatory responses
when postural demandsare elevated, underscoring the task-dependent
nature of sensory reweighting and the critical role of multisensory
integration in maintaining balance.

4.3 Muscle co-contraction

This study further investigated neuromuscular co-contraction
across four sensory conditions among severities of visual
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TABLE 3 Main and interaction effects of visual-somatosensory conditions on flexor-extensor muscle contraction intensity ratios (iIEMG Ratio).

Dependent  Group (G) Visual (V) Somatosensory GXxV GXxS VXS GxVxS
variables (S) interaction interaction interaction interaction
RA/ES
F value 0.304 1.188 4294 2234 0.016 0.058 2.557
P value 0.739 0.279 0.042 0.115 0.984 0.81 0.085
n2 0.009 0.017 0.058 0.06 0 0.001 0.068
BFLlh/QF
F value 1.916 0.136 0.396 0.982 0.056 1.869 0.887
P value 0.155 0.714 0.531 0.38 0.946 0.176 0.417
n2 0.052 0.002 0.006 0.027 0.002 0.026 0.025
MG/TA
F value 1.263 0.341 3.878 0.625 0.334 0.234 041
P value 0.289 0.561 0.053 0538 0.717 0.63 0.665
n? 0.035 0.005 0.052 0.018 0.009 0.003 0.012

RA, Rectus Abdominis; ES, Erector Spinae; BFlh, Biceps Femoris (Long Head); QF, Quadriceps Femoris; TA, Tibialis Anterior; MG, Medial Gastrocnemius. Bold values indicate statistical
significance (p < 0.05).

TABLE 4 Main and interaction effects of visual-somatosensory conditions on CCI.

Dependent  Group (G) Visual (V) Somatosensory GxV GxS VxS GxVxS
variables (S) interaction interaction interaction interaction
RA/ES
F value 0.813 0.997 0 0.582 1.965 0.56 1.036
P value 0.448 0.321 0.986 0.561 0.148 0.457 0.36
n? 0.023 0.014 0 0.016 0.053 0.008 0.029
BFlh/QF
F value 0.358 0.014 1.195 0.269 0.41 0711 0.237
P value 0.7 0.906 0.278 0.765 0.665 0.402 0.79
n 0.01 0 0.017 0.008 0.012 0.01 0.007
MG/TA
F value 1.509 19.516 31.558 4372 0.471 0.488 1.762
P value 0.228 Do.vor Do.oor 0.016 0.626 0.487 0.179
n; 0.041 0.218 0311 0.111 0.013 0.007 0.048

Po.oor represent for p < 0.001. RA, Rectus Abdominis; ES, Erector Spinae; BFlh, Biceps Femoris (Long Head); QF, Quadriceps Femoris; TA, Tibialis Anterior; MG, Medial Gastrocnemius. Bold
values indicate statistical significance (p < 0.05).

impairment. Under sensory deprivation, the ankle primarily  differences observed in COP results. This reweighting strategy may
compensates by increasing co-contraction (CCI), with strategies  result from long-term cortical plasticity (Schieppati et al., 2014),
differing between groups: individuals with normal vision rely on ~ which facilitates proprioceptive reweighting through enhanced
visual feedback, whereas those with visual impairment depend on ~ muscle co-contraction without compromising postural stability.
proprioceptive feedback. This is also consistent with the intergroup ~ Proprioception provides afferent information on segment position
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Pairwise analyses of visual-somatosensory effects on iEMG ratio and CCI.

and movement via receptors in joints, muscles, and tendons (Proske
and Gandevia, 2012; Crevecoeur et al., 2016). In the upright stance,
tactile cues from the feet, especially pressure information from the
soles, play a crucial role in maintaining balance (Li et al., 2019).
This is also consistent with Sugimoto’s (Sugimoto et al., 2024)
observation that individuals with chronic ankle instability adopt
environment-specific compensatory mechanisms that prioritize
ankle strategies, underscoring the flexibility and adaptability
of the neuromuscular system in response to sensory deficits.
The low vision group adopts an ankle-dominant compensation
strategy for postural control but demonstrates instability due to
interference from residual vision. Clinically, emphasis should be
placed on foam surface training to enhance proprioceptive reliance.
Closing the eyes during tasks can reduce visual interference.
Meanwhile, monitoring trunk compensation under eyes-closed
firm surface conditions is important to prevent instability and falls
(Pigeon et al., 2019; Taneda et al., 2021).

The ankle, thigh, and trunk extensor-flexor muscles contribute
to static balance through distinct yet complementary mechanisms
(Hill et al., 2023). The ankle muscles execute high-frequency,
small-amplitude adjustments via dorsiflexion and plantarflexion
(Donath et al., 2016). EMG analyses revealed that ankle muscle
co-activation exhibited the most pronounced changes under
sensory deprivation. These adjustments were accompanied by
increases in COP Path Length and AP Sway Velocity, suggesting
persistent corrective activity but with reduced efficiency. In
contrast, the thigh muscles (quadriceps and hamstrings) primarily
support knee extension and stability through co-contraction
(Hirokawa et al., 1991). Their CCI remained largely invariant
across conditions, confirming that knee locking is crucial for
maintaining an upright stance. The trunk muscles (rectus abdominis
and erector spinae) regulate anterior—posterior trunk tilt through
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coordinated activation to stabilize the center of mass in the
sagittal plane (Claus et al., 2009). When this regulation is insufficient,
the COP Sway Area increases. We found that standing on a
foam surface induced a decrease in the RA/ES ratio in all three
groups, with a statistically significant reduction particularly in
the low-vision group. This reflects enhanced extensor activation
as a compensatory strategy. Nevertheless, both COP Sway Area
and AP Sway SD still increased, suggesting that this compensation
may involve mechanical overcorrection, thereby exacerbating
anterior—posterior instability.

Under somatosensory disruption, participants demonstrated
increased COP parameters. This was accompanied by elevated
co-contraction of the ankle muscles (MG/TA CCI), reflecting
active distal-level postural adjustments to compensate for reduced
proprioceptive feedback (Stoffregen and Bardy, 2014; Vette et al.,
2017). At the same time, the RA/ES ratio decreased, reflecting more
activation of extensor trunk muscles. This proximal adjustment
likely stabilized the upper body and counterbalanced the instability
caused by reduced ankle feedback. These findings suggest a
coordinated proximal-distal postural control strategy, in which
distal (ankle) muscles provide primary postural adjustments, and
proximal (trunk) muscles contribute additional stabilization when
distal control is insufficient (Shiratori and Latash, 2000). While COP
alone cannot specify which muscles are active, combining COP and
EMG results enables inferences of how postural control is distributed
across distal and proximal segments.

4.4 Limitations

Although this study presented the sensory reweighting strategies
in postural control across varying severities of visual impairment,
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three aspects still need further exploration. First, our participants
were not stratified by the etiology or onset (congenital or acquired)
of visual impairment, factors that may influence neural adaptations
and compensatory mechanisms (Kupers and Ptito, 2014). Future
research should consider stratifying subjects by etiology and
onset to better understand their specific effects on sensorimotor
adaptation. Second, we analyzed sagittal-plane antagonist muscle
co-contraction using SEMG. Incorporating coronal-plane muscles
and employing functional near-infrared spectroscopy (fNIRS) could
provide a clearer understanding of medio-lateral COP dynamics
and sensorimotor cortex activity (Helmich and Gemmerich, 2024).
Third, the study tested only four sensory conditions. Real-life
environments present more complex challenges such as unstable
surfaces, multidirectional auditory inputs, and high attentional
demands. In future research, we will investigate the effects of
multisensory deprivation or overload on postural control in this
population.

5 Conclusion

This study identified sensory reweighting and ankle muscle

co-contraction as critical strategies for maintaining static
postural stability in individuals with visual impairments. Low-
vision individuals showed the highest instability under sensory
deprivation, as their residual vision interfered with effective
somatosensory compensation. These findings emphasize the
importance of enhancing proprioceptive function and ankle
neuromuscular control under low-visibility conditions to improve
fall-prevention strategies. Future studies should further investigate
the neurophysiology of these mechanisms and their contributions

to dynamic postural control.
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