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Introduction: Effective energy management for optimizing energy and speed 
allocation for athletes in road cycling individual time trials is crucial due to the 
race’s long distances. Existing strategies often consume excessive body energy 
due to inadequately addressing the impact of slopes and curves.
Methods: We propose an advanced energy allocation strategy using a genetic 
algorithm. Our research focuses on optimizing speed and energy allocation 
specifically in curves and on slopes given factors such as air resistance, friction, 
gravity and weather to maximize athletes’ energy efficiency during time trials. 
For curve optimization, we optimize the athletes' cornering strategies based on 
the parameters including road width, inner curve radius and curve angles.
Results: The simulation results demonstrate that time is reduced by 9.7% on a 
standard 400-m track and time is reduced by 6.35% on bridge testing comparing 
with pre optimization strategies.
Discussion: We validate the optimizing strategy based on the 2024 Paris 
Olympic Games road cycling individual time trial course, which demonstrates 
the effectiveness of the strategy. This research provides athletes with valuable 
guidance for optimal energy distribution.
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 1 Introduction

Cycling has emerged as a global phenomenon, revolutionizing transportation and 
evolving into a highly popular sport. Road cycling includes team and individual time trials. 
Notably, the road cycling individual time trial differs from short-distance time trials. In real 
road cycling individual time trials, the racecourses are typically selected to feature significant 
terrain variations, including curves and gradients (Wang et al., 2022), with races often 
spanning a considerable duration (ranging from 20 to 60 km). In such trials, the distribution 
of physical energy assumes a crucial role. However, existing energy allocation strategies 
frequently fall short in effectively accounting for corners and slopes, and inadequately 
consider the fluctuations in routes and environmental factors. These limitations result 
in suboptimal energy utilization and impede cyclists from attaining peak performance 
during races.

Numerous studies have adopted standardized competition plans, thereby overlooking 
the individual disparities (such as fitness levels, riding positions, and climatic adaptations) 
among different cyclists. Different cyclists may demand distinct plans in terms of fitness
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and tactical strategies, yet this aspect remains unaddressed in 
many investigations. There are numerous precedents for using 
mathematical models to simulate and analyze the process of road 
cycling. For instance, Di Prampero and Swain (Swain, 1997) 
studied and published a model of road cycling performance 
under different slope and wind conditions. The model predicts 
substantial time savings can be realized on hilly and windy 
courses by moderately increasing power on uphill or headwind 
segments while compensating with reduced power on downhill 
or tailwind segments. P. E. Di Prampero establishes a mechanical 
output power function for road bicycles by simulating wind and 
frictional resistance. Atkinson et al. (2007) verified, analyzed, and 
optimized the model proposed by Di Prampero and Swain. The 
largest time savings were observed for the hypothetical cyclist 
with the lowest mean power output who could vary power to the 
greatest extent. G. Atkinson’s findings confirm that time savings 
are feasible in cycling time trials if the cyclist varies power in 
parallel with the hill gradient and wind direction. Jeukendrup and 
Martin (2001) and James Martin used a model by Martin et al. to 
express all performance changes as variations in the 40 km time trial 
performance. Martin et al. (1998) derived a mathematical model 
of cycling power, and the values for each model parameter were 
determined. A bicycle-mounted power measurement system was 
validated by comparing it with a laboratory ergometer. Gordon 
(2005) introduced a model for exertion and used it to identify 
the distribution of power that minimizes time while constraining 
the cyclist’s exertion. It is demonstrated that, for a course with a 
climb followed by a descent, the limitations on exertion prevent 
the cyclist from improving performance by shifting effort towards 
the climb and away from the descent. Burke (2003) conducted 
further research on road cycling, including longitudinal acceleration 
to simulate and analyze road cycling. The above results in this article 
are attributed to the fact that the acceleration of gravity on the uphill 
section has a significant impact on cyclists, causing their physical 
exertion to increase sharply. Cyclists have to reduce their speed to 
reduce physical exertion. If they consume too much physical energy 
while climbing, it may be excessive for them to pass through the 
section (Wells et al., 2013). On the downhill section, due to the 
assistance of gravity acceleration, additional pedaling will increase 
their physical exertion. Therefore, maintaining a high speed on the 
flat section is beneficial for improving performance. At the level of 
event operation, a hybrid genetic algorithm was successfully used to 
deconstruct the player injury problem caused by the high density 
of NBA schedules. By reconstructing back-to-back game sequences, 
genetic algorithms can significantly reduce the distribution of high-
intensity events, providing algorithmic support for the scientific 
management of professional leagues (Dawei, 2025). He et al. (2025) 
proposed a vision-based pose estimation method for assessing 
stationary cycling movements and demonstrated its high agreement 
with inertial sensor data and reliability across repeated tests, offering 
a practical tool for accessible movement assessment in settings like 
homes. In this study, we employ a genetic algorithm (GA), a class 
of bio-inspired optimization algorithms that mimic the process 
of natural selection and evolution. GAs are particularly suitable 
for complex, non-linear optimization problems such as energy 
allocation in cycling, as they efficiently explore large search spaces 
and avoid local optima through mechanisms such as selection, 
crossover, and mutation.

Additionally, individual time trials are susceptible to external 
environmental factors, including weather, terrain, and wind speed. 
However, the current research has not delved deeply into the impact 
of these environmental factors on cyclists’ performance. Some 
studies have relied on traditional empirical methods or simplistic 
mathematical models for optimizing time trial plans, lacking the 
support of intelligent optimization algorithms (such as genetic 
algorithms and machine learning algorithms). Consequently, the 
accuracy and applicability of these plans are restricted, precluding 
more detailed and intelligent optimization of competition strategies. 
Finally, some researches fail to integrate with actual competitions, 
remaining confined to partial optimization and lacking a global 
perspective. This renders it challenging to effectively apply the 
research findings in real competitions, as the unpredictability and 
complexity of the competition sites make it difficult for just partial 
optimization plans to meet global requirements.

To address these challenges, we propose a novel energy allocation 
strategy specifically designed for individual time trials in road 
cycling. This approach aims to optimize cyclists' energy distribution 
throughout the race, enhancing their overall performance. A genetic 
algorithm is employed to determine optimal energy and speed 
allocation, taking into account environmental factors such as weather, 
terrain, and individual cyclist attributes. By calculating external forces 
acting on the cyclists and planning their energy use, the strategy ensures 
feasibility under realistic conditions. The genetic algorithm iteratively 
minimizes race completion time, with a particular focus on optimizing 
performance in corners and on slopes. 

2 Model

2.1 Material

The power profiles of different types of male and female 
cyclists were summarized respectively based on the training 
data of 44 female and 144 male professional cyclists (Mateo-
March et al., 2022; Valenzuela et al., 2022a). Power profiles include 
the maximum power a cyclist can output within various time 
intervals, namely, 5s, 10s, 30 s, 1 min, 5 min, 10 min, 20 min, 
30 min, and 60 min. These power profiles served as a comprehensive 
indicator of a cyclist’s capabilities across multiple aspects including 
sprinting ability, the ability to generate a large amount of power 
in a short period, aerobic and anaerobic capacities, as well as their 
Functional Threshold Power (FTP) value.

The experimental test section selected a real-life bridge 
to simulate the uphill and downhill segments that might be 
encountered in an individual time trial for road cycling. The bridge 
has an elevation of 14.8 m, a length of 1.5 km, and a gradient of 
0.987%. The curved segment was modeled after a standard 400-m 
track, with a total length of 400 m, a curve radius of 36.5 m, and a 
total curve length of 231.22 m. 

2.2 Methods

2.2.1 Equation of motion in the road bicycle race
The power generated by the cyclist is not solely utilized to 

propel the bicycle forward but also to counteract air resistance, the 
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FIGURE 1
(A) Force analysis diagram of a road bicycle; (B) Influence of wind speed and wind direction on a road cyclist.

frictional force between the tires and the road surface, as well as 
the influence of the gravitational component forces during uphill 
and downhill rides. When the forces are in equilibrium, the speed 
stabilizes, and the power output by the cyclist equals the power 
required to overcome the total resistive forces. In other words, 
the power output by the cyclist is equivalent to the power of the 
resistance.

Multiple forces act simultaneously in road cycling. 
(Valenzuela et al., 2022b). As shown in Figure 1. Fc is the 
comprehensive external force exerted by the cyclist, while Fair  is the 
air resistance during the cycling process, with the direction opposite 
to the direction of the ride. Fg  is the radial force component of the 
rider’s gravity, which is opposite to the direction of the ride, while 
Fr  is the frictional resistance, which is opposite to the direction of 
the ride. Facc is a force that provides acceleration in the opposite 
direction of the riding direction. As shown in Formula 1.

FC = Fair + Fg + Fr + Facc (1)

Furthermore, the influence of weather conditions has been taken 
into account in this research. Wind direction and speed are added 
up to the power-velocity model. In the model, the impact of air 
resistance on bicycle riding speed and power has been considered. 
Air resistance represents the reverse force exerted by the air on the 
moving object during riding. When investigating the influence of 
wind on riding, the effect of headwind is included within the air 
resistance. The wind resistance is defined as Fair . The symbols used 
in the force analysis are listed in Table 1.

When analyzing the influence of wind direction on riding, it 
is essential to comprehensively consider the direction of the wind. 
Not all winds are strictly downwind or headwind. The speed of 
the wind relative to the ground is set as Vwind. If the speed of 
the cyclist relative to the ground is set as Vpeople, then a vector 
formula can be found to calculate the relative wind speed Vrel. 
As shown in Formula 2.

Vrel = Vpeople −Vwind cosα (2)

In competitions, the change of slope has a great impact on the 
distribution of cyclists' physical power. When analyzing cyclists' 

TABLE 1  Symbol Significance comparison table.

Symbol Significance

m Mass of people and equipment

g Gravity constant

C air drag coefficient (Based on weather conditions)

S frontal windward area (The average value determined based on 
the dynamic evaluation of elite athletes' riding posture)

Vpeople rider’s travel speed

Vwind wind speed

Vrel relative speed of people and wind

ρ gas density (Determine the atmospheric pressure based on the 
local latitude of Paris and the weather conditions during the 
competition)

α angle of people and wind

μ resistance coefficient of rolling friction between rubber and 
asphalt

μsli resistance coefficient of sliding friction between rubber and 
asphalt

uphill and downhill riding, our model considers that the altitude and 
slope change continuously and smoothly. γ is the slope angle, m is the 
total mass of the cyclist and equipment, and g is the gravity constant. 
The rolling friction coefficients under dry and wet conditions are 
provided in Table 2.

The force required for cyclists to achieve different accelerations 
also varies. Facc is the force that generates acceleration. Therefore, Fc
is shown in Formula 3:

FC =
1
2

CρS(Vrel)
2 + μmgcosγ+mgsinγ+ma (3)
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TABLE 2  Rolling friction coefficient of rubber and asphalt (Yu et al., 2020).

Ground conditions Rolling friction resistance 
coefficient

Average rolling friction 
resistance coefficient

dry 0.010–0.018 0.014

wet 0.0022–0.005 0.0036

FIGURE 2
The optimal path for cornering.

TABLE 3  Speed of elite road bicycle individual time trial cyclists.

Gender Average velocity 
(m/s)

Maximum speed 
(m/s)

male 15.00 20.83

female 13.61 18.06

 

2.2.2 Cornering strategy
Geometrically, we consider a velodrome comprising 

straights, circular arcs, and connecting transition curves. As 
Fitzgerald (Fitzgerald et al., 2021) indicated, the inclusion of 
these elements, which has been commonly overlooked in previous 
studies, presents a mathematical challenge. However, it enhances 
the empirical adequacy of the model.

Cyclists do not blindly accelerate to minimize race time. Instead, 
they need to decelerate on sharp turns and pass at a safe speed 
V to ensure their safety. For the calculation of the safe speed 

during turning, we assume that the cyclists approximately execute 
the circular motion. For safety reasons, setting a maximum speed 
limit is of utmost importance. According to the model, the turning 
speed and the static friction coefficient between the tire and the 
ground are related to the turning radius. The specific formula 
is shown in Formula 4.

F =m V2

r
(4)

It can be seen that the turning speed of players is closely related 
to the quality of tires and the choice of turning radius. Then, to 
make the rider complete the race in a shorter time, we optimized 
the turning process and obtained the optimal route for the rider to 
turn. To let the contestants turn at the fastest speed, they should 
choose a correct turning radius, which should be the radius of the 
largest circle where the two roads cross. This also minimally limits 
the maximum speed of the contestant in turning.

The turning speed of the cyclist is closely associated with the 
tire quality and the choice of turning radius. Subsequently, to enable 
the cyclists to complete the race in a shorter time, we optimized 
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FIGURE 3
Flow Figure of genetic algorithm.

the turning process and determined the optimal turning route. To 
allow the cyclists to turn at the fastest speed, they should select 
the correct turning radius, which is the radius of the largest circle 
where the two roads intersect. This choice also minimally restricts 
the maximum turning speed of the cyclists. The optimal turning path 
is illustrated in Figure 2, where the cyclist follows a trajectory that 
maximizes the turning radius.

According to the figure, the maximum turning radius R of the 
cyclist is shown in Formula 5.

R = r+ d
1− sin θ

2

(5)

In the model, when a cyclist makes a turn, we define the moment 
of entering and leaving the corner as the starting and ending points 
of the arc, respectively. At this time, the path of the cyclist is tangent 
to the outer boundary of the road. During the intermediate stage 
of the turn, the vertex of the inner boundary of the road is tangent 
to the arc, thereby achieving the optimal turning route. In the 
calculation process, to obtain the optimal radius, it is necessary to 
know the width d of the road, the intersection angle θ of the two 
roads, and the radius r of the inner bend of the road. As shown in
Formula 6.

μslimg =m
Vmb

2

R
(6)

μsli is the coefficient of sliding friction between rubber and 
asphalt. It is 0.9 on dry roads and 0.4 on slippery roads. Therefore, 
the expression of Vmb is shown in Formula 7.

Vmb = √μsligr+
μsligd

1− sin θ
2

(7)
 

2.2.3 Cyclists’ physical fitness
In the task of cyclist’s physical fitness allocation, it is essential 

to consider the constraints on each variable. P is the power 
level applied by the cyclist at time t. Cyclists are incapable of 
generating unlimited power for movement; thus, there must exist 
a maximum value to constrain their speed (Wu, 2013). However, 
in reality, the limited physical capacity of cyclists is insufficient to 
sustain the entire competition at maximum power (Shoman and 
Imine, 2020). While limiting the total technique of the cyclists, 
the speed of an elite cyclist in the same event should be used for
limitation.

Recovery power is the power at which an athlete can perform 
work indefinitely based on aerobic metabolism without considering 
muscle fatigue, provided that P is a certain power value higher 
than Precover . When P is less than Precover , Precover  is a power that 
a cyclist can maintain for an extended period; that is, pedaling at 
or below this limit can, theoretically, be continued indefinitely. The 
average and maximum speeds of elite male and female cyclists are 
summarized in Table 3. 

2.2.4 Genetic algorithm (GA)
Our mode is specifically applicable to cyclists who employ 

high-power cycling early in time trials, because maintaining the 
cyclist’s output power can effectively alleviate fatigue caused by the 
variability of the terrain during actual competitions (Atkinson et al., 
2007). There are distinct riding plans for different terrains. How to 
design a reasonable power management strategy? On the premise 
of ensuring that the total energy consumption of the cyclist does 
not exceed the limit, the final performance evaluation index is 
the total time taken from the starting point to the key point. 
Considering the influences of various factors such as different 
terrains, wind forces, and the constant total energy of the cyclists 
on the riding strategy, the genetic algorithm (GA) is employed to 
minimize the total riding time in real road timing competitions. 
During the optimization process, all relevant constraints are taken
into account.

The sections can be divided according to a certain distance 
for the actual competitions. For example, an almost flat road with 
some low slopes can be regarded as a flat road with a slope angle 
of 0. The race section with a small curve can be considered as a 
straight line. For the hillside terrain, the connection between the 
top and bottom of the slope is treated as a slope. After the above 
processing of the competition section, the route in a competition 
can be divided into sections. Then, the solution of changing the 
power (speed) according to the competition distance is adopted, 
and the cyclists use constant power in the same section. From the 
analysis of the motion equation, it can be concluded that there is 
a constant relationship between cyclists' output power and speed, 
which is relevant to internal and external factors such as slope, 
length of divided distances, and bending angles. The determined 
speed can be obtained by changing the power. Therefore, we can do 
discretization processing for each segment of speed and power. We 
can discretize the speed and power of each segment to obtain the Pi
and vi corresponding to each segment.
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FIGURE 4
(A) Speed distribution on the track before optimization; (B) Speed distribution on the track after optimization; (C) Speed comparison before and after 
optimization; (D) Schematic diagram of cornering calculations optimization

Several initial populations encoded by a certain length are 
generated randomly. Each individual was evaluated by the fitness 
function.In the implementation of the genetic algorithm, a real-
valued encoding scheme was employed. The term “Encoding” refers 
to the representation of a potential solution to the optimization 
problem—namely, a vector containing the velocity values for all road 
segments, V = [v1, v2, …, vn]—as an individual (or chromosome) 
within the population. Since velocity is a continuous variable, real-
valued encoding is more direct and efficient than binary encoding 
for this problem. The term “Decoding” refers to the process of 
translating this individual (the velocity vector) into the objective 
and constraint values. This is done by substituting the velocity 
values into the fitness function (Equation 8) and the system of 
constraint equations (e.g., Equations 9, 10) to calculate the total race 
time and energy consumption, thereby evaluating the individual’s 
fitness. Each individual thus directly represents a complete velocity 
allocation strategy for the entire course. Individuals with high 
fitness values were selected to participate in the genetic operation, 
while those with low fitness were eliminated. A new generation of 
population is formed by the collection of genetically manipulated 
individuals. The real-valued linear recombination method was 
used in the genetic process. At the same time, the real-valued 
mutation was used in the mutation process, in which the population 

size is set to 500, the maximum number of iterations is set to 
200, the mutation probability is set to 0.2, and the crossover 
probability is set to 0.8. Until the stop criteria are met, the 
process is shown in Figure 3. The fitness function is shown in
Formula 8.

f(x) = 1
∑nVar

i=1
x(i)

(8)

The time required for each segment can be determined, and 
then time can be summed up to obtain the total time required for 
the cyclists’ movement process. The total riding time is optimized 
by using the established model. The constraint conditions of the 
optimization model are shown in (Equation 9), and the objective 
function is shown in (Equation 10).

V1 = x(count)

Vrel = V1 −Vwind × cos(|Dwind −Dseg(i)|)

Fair = 0.5×C× ρ× Swind ×Vrel
2

Fg =miu_roll×m× cos(γ(i))
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FIGURE 5
(A) Track speed distribution before optimization; (B) Track speed distribution after optimization; (C) Speed comparison before and after optimization.

Fr =m× g× sin(γ(i))

Fc = F_air+ F_g+ F_r

Vrec =
Precover

Fc

c(count) = Vrec −V1

W(i) = Fc × s(i) − Precover ×
s(i)
V1

cep =Wall −∑W (9)

The flow of the genetic algorithm used in this study is 
depicted in Figure 3.

The influence of gravity and friction forces on cyclists within 
a specific road section is fixed, yet different speeds will have an 
effect on the wind resistance endured by the cyclists. Consequently, 
the higher the speed is, the greater the power required to 
sustain it. Simultaneously, more energy will be consumed. In 
contrast, the performance in the descending section is not 
dependent on the power output. Otherwise, it will increase 
energy consumption. If the cyclist does not rotate the crank 
to complete the descent at the same speed, the recovery speed 
prior to the subsequent climb can be improved, which may be 
beneficial for the race results (Atkinson et al., 2007). Therefore, 
it is assumed that at the end of the competition, the total 
amount of the cyclist’s allocable physical capacity is a fixed value, 
and W is just 0. At this time, the W expression is shown in
Formula 10.

W =
n

∑
i=1
(Fcisi − Precoverti) (10)

When ∑n
i=1ti reaches the minimum value, that is, when the 

shortest time of the entire competition is achieved, it represents 
the best performance of the cyclists. At this point, the power P of 
each part is the ideal power for the cyclists when passing through 
each stage. However, this speed needs to be constrained in the 
calculation. Therefore, the upper limit of the speed on the uphill 
and horizontal sections is the maximum speed of elite cyclists when 
passing through this stage, and the lower limit is determined by the 
speed corresponding to their current recovery power.

The genetic algorithm selects all individuals in the population 
as the object, randomizes the values of all individuals under 
specific conditions, and efficiently searches for the required results. 
During the genetic process, the genetic operations of selection, 
crossover, and variation are employed. In the application of the 
genetic algorithm to cycling competitions, the velocity of cyclists in 
different road sections is regarded as the individual population. For 
instance, we use n types of randomization techniques to guide the 
generation of the initial velocity allocation strategy for competition 
venues with different road sections, and then perform binary 
coding to imitate chromosomes in nature. Subsequently, the initial 
population with a population number of N is generated. Fitness 
reflects the competitiveness of individuals. Individuals with higher 
fitness have a greater probability of survival in the selection process. 
The goal of the genetic algorithm is to find the power allocation 
strategy corresponding to the minimum t. Therefore, the smaller the 
individual t is, the smaller the corresponding fitness will be as well. In 
the inheritance process of the genetic algorithm, the real-value linear 
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FIGURE 6
The course for the Individual Time Trial in Road Cycling at the Paris 2024 Olympic Games.

recombination method is adopted. At the same time, the variation 
process uses real-value variation. 

3 Results and discussion

3.1 Validation of the model curve

Based on the tests implemented by the experimenters on a 
standard 400-m track, the results are shown in Figure 4. It took a 
total of 82.04 s in the pre-optimization test. After the model was 
optimized, with the same energy consumption, the test result was 
74.08 s, indicating a performance improvement of 9.7%. 

3.2 Validation of the model slope

According to the tests conducted by the experimenters over a 
distance of 1500 m, the results are depicted in Figure 5. It took a 
total of 284.92 s in the pre-optimization test. After the model was 
optimized, with the same energy consumption, the test result was 
266.82 s, indicating an improvement in performance of 6.35%. 

3.3 The individual time trial for road cycling 
at the Paris 2024 Olympic game

The competition map is shown in Figure 6. After optimization, 
the research findings indicate that the performance of male 

road cycling athletes is 33 min and 12.72 s, representing a 6.62% 
improvement over the winning time of 36 min and 12.16 s achieved 
by the men’s champion at the 2024 Paris Olympics. The result 
is shown in Figure 7. The improvement not only demonstrates 
the potential of the optimization strategy in improving athlete 
performance but also emphasizes the significance of effective power 
distribution and speed management. However, it is important to 
note that the actual performance of cyclists in competitive settings 
may be influenced by various factors, such as weather conditions, 
road surface, and psychological state, which may differ significantly 
from the simulated conditions on which the model is based. 
Therefore, to ensure the model’s accuracy and applicability, further 
research will require validation of the simulation results through 
empirical measurements and field testing. This approach will aid 
in refining the model to better align with real-world competitive 
environments, ultimately providing more scientific guidance for 
cyclists’ training and racing strategies in future competitions. 

4 Discussion

This article synthesizes a comprehensive dataset on the 
competition and training performances of elite male and female 
cyclists, systematically analyzing the optimal power output 
and speed across diverse slopes, wind directions, and wind 
intensities. Based on this in-depth analysis, an optimal physical 
fitness allocation strategy for elite road cyclists is proposed to 
enhance their performance during competitions. The constructed 
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FIGURE 7
(A) Speed distribution after optimization; (B) Power distribution after optimization; (C) Comparison of race time after optimization with the winning 
time in the Paris Olympic Games road cycling individual time trial.

model was rigorously simulated to evaluate its effectiveness, and 
multiple tests have confirmed that using a genetic algorithm 
for physical energy allocation can improve their performance 
under identical track conditions. However, limitations in venue 
availability and equipment have precluded the full replication 
of real competition environments, and further validation is 
urgently needed to assess the impact on cyclist performance in
official events.

The above results indicate that the output power and speed of 
cyclists reach their maximum values on flat slopes. The finding 
that significant time savings can be achieved on hilly and windy 
courses by increasing power on uphill or headwind segments while 
compensating with reduced power on downhill or tailwind segments 
is consistent with the findings of Di Prampero et al. (1979).

There is a wide range of factors that can influence individual 
time trial performance. While some factors play a role in all racing 
conditions, others are only effective in certain circumstances. In 
courses with a lower proportion of technical sections, the simulation 
results suggest that road conditions do not significantly affect the 
final performance time (Zignoli, 2021). The power delivery ability 
is limited by the cornering angle, indicating that power output 

cannot be achieved during cornering. This condition has significant 
implications on the way of cylist’s cornering trajectories. For one 
thing, the roll angles are promptly restored after a corner to enable 
power output production. For another, corners may provide a 
key opportunity to recover physical fitness. The simulation results 
presented in Figure 5 indicate that flat and downhill technical 
sections demand significantly distinct average power output values 
because of the role of gravity in reaccelerating the system following 
a downhill corner.

The article still leaves some external factors unaccounted for. A 
cyclist cannot always adhere strictly to a strategy that approaches 
the physical capacity limit. Moreover, physiological measurements 
can be conducted during the actual trial, which can promptly reflect 
the changes in the optimal strategy, as the actual physiological 
state during the trial always varies from the state estimated by 
the model based on previous calibration tests (Beaumont et al., 
2023). Additionally, for the speed changes of cyclists during the 
competition, such as the transition from low speed to high speed, 
additional physical energy is required to accelerate the entire 
system, thereby increasing the overall physical energy consumption. 
This process cannot be implemented through programming in
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this article, and the model still needs to be further optimized in 
the future. 

5 Conclusion

When the cyclist is on the downhill section, generating a 
higher power is not beneficial for his subsequent physical recovery 
and can readily cause excessive physical exertion and potential 
dangers. Maintaining a high power output on the flat or uphill 
sections represents an effective physical distribution strategy to 
enhance his performance in the competition. For individual road 
bicycle races, genetic algorithms can be employed for optimization 
analysis to successfully develop the optimal physical distribution 
plan. Since genetic algorithms possess strong search capabilities 
through the utilization of mutation mechanisms, they can prevent 
getting trapped in local optima and ignoring the global situation.
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