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!Shenyang Sport University, Shenyang, China, ?Hangzhou Dianzi University, Hangzhou, China

Introduction: Effective energy management for optimizing energy and speed
allocation for athletes in road cycling individual time trials is crucial due to the
race’s long distances. Existing strategies often consume excessive body energy
due to inadequately addressing the impact of slopes and curves.

Methods: We propose an advanced energy allocation strategy using a genetic
algorithm. Our research focuses on optimizing speed and energy allocation
specifically in curves and on slopes given factors such as air resistance, friction,
gravity and weather to maximize athletes’ energy efficiency during time trials.
For curve optimization, we optimize the athletes’ cornering strategies based on
the parameters including road width, inner curve radius and curve angles.
Results: The simulation results demonstrate that time is reduced by 9.7% on a
standard 400-m track and time is reduced by 6.35% on bridge testing comparing
with pre optimization strategies.

Discussion: We validate the optimizing strategy based on the 2024 Paris
Olympic Games road cycling individual time trial course, which demonstrates
the effectiveness of the strategy. This research provides athletes with valuable
guidance for optimal energy distribution.

road cycling individual time trials, energy and speed optimization strategy, genetic
algorithm, corners, slopes

1 Introduction

Cycling has emerged as a global phenomenon, revolutionizing transportation and
evolving into a highly popular sport. Road cycling includes team and individual time trials.
Notably, the road cycling individual time trial differs from short-distance time trials. In real
road cycling individual time trials, the racecourses are typically selected to feature significant
terrain variations, including curves and gradients (Wang et al., 2022), with races often
spanning a considerable duration (ranging from 20 to 60 km). In such trials, the distribution
of physical energy assumes a crucial role. However, existing energy allocation strategies
frequently fall short in effectively accounting for corners and slopes, and inadequately
consider the fluctuations in routes and environmental factors. These limitations result
in suboptimal energy utilization and impede cyclists from attaining peak performance
during races.

Numerous studies have adopted standardized competition plans, thereby overlooking
the individual disparities (such as fitness levels, riding positions, and climatic adaptations)
among different cyclists. Different cyclists may demand distinct plans in terms of fitness
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and tactical strategies, yet this aspect remains unaddressed in
many investigations. There are numerous precedents for using
mathematical models to simulate and analyze the process of road
cycling. For instance, Di Prampero and Swain (Swain, 1997)
studied and published a model of road cycling performance
under different slope and wind conditions. The model predicts
substantial time savings can be realized on hilly and windy
courses by moderately increasing power on uphill or headwind
segments while compensating with reduced power on downhill
or tailwind segments. P. E. Di Prampero establishes a mechanical
output power function for road bicycles by simulating wind and
frictional resistance. Atkinson et al. (2007) verified, analyzed, and
optimized the model proposed by Di Prampero and Swain. The
largest time savings were observed for the hypothetical cyclist
with the lowest mean power output who could vary power to the
greatest extent. G. Atkinsons findings confirm that time savings
are feasible in cycling time trials if the cyclist varies power in
parallel with the hill gradient and wind direction. Jeukendrup and
Martin (2001) and James Martin used a model by Martin et al. to
express all performance changes as variations in the 40 km time trial
performance. Martin et al. (1998) derived a mathematical model
of cycling power, and the values for each model parameter were
determined. A bicycle-mounted power measurement system was
validated by comparing it with a laboratory ergometer. Gordon
(2005) introduced a model for exertion and used it to identify
the distribution of power that minimizes time while constraining
the cyclist’s exertion. It is demonstrated that, for a course with a
climb followed by a descent, the limitations on exertion prevent
the cyclist from improving performance by shifting effort towards
the climb and away from the descent. Burke (2003) conducted
further research on road cycling, including longitudinal acceleration
to simulate and analyze road cycling. The above results in this article
are attributed to the fact that the acceleration of gravity on the uphill
section has a significant impact on cyclists, causing their physical
exertion to increase sharply. Cyclists have to reduce their speed to
reduce physical exertion. If they consume too much physical energy
while climbing, it may be excessive for them to pass through the
section (Wells et al., 2013). On the downhill section, due to the
assistance of gravity acceleration, additional pedaling will increase
their physical exertion. Therefore, maintaining a high speed on the
flat section is beneficial for improving performance. At the level of
event operation, a hybrid genetic algorithm was successfully used to
deconstruct the player injury problem caused by the high density
of NBA schedules. By reconstructing back-to-back game sequences,
genetic algorithms can significantly reduce the distribution of high-
intensity events, providing algorithmic support for the scientific
management of professional leagues (Dawei, 2025). He et al. (2025)
proposed a vision-based pose estimation method for assessing
stationary cycling movements and demonstrated its high agreement
with inertial sensor data and reliability across repeated tests, offering
a practical tool for accessible movement assessment in settings like
homes. In this study, we employ a genetic algorithm (GA), a class
of bio-inspired optimization algorithms that mimic the process
of natural selection and evolution. GAs are particularly suitable
for complex, non-linear optimization problems such as energy
allocation in cycling, as they efficiently explore large search spaces
and avoid local optima through mechanisms such as selection,
crossover, and mutation.
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Additionally, individual time trials are susceptible to external
environmental factors, including weather, terrain, and wind speed.
However, the current research has not delved deeply into the impact
of these environmental factors on cyclists' performance. Some
studies have relied on traditional empirical methods or simplistic
mathematical models for optimizing time trial plans, lacking the
support of intelligent optimization algorithms (such as genetic
algorithms and machine learning algorithms). Consequently, the
accuracy and applicability of these plans are restricted, precluding
more detailed and intelligent optimization of competition strategies.
Finally, some researches fail to integrate with actual competitions,
remaining confined to partial optimization and lacking a global
perspective. This renders it challenging to effectively apply the
research findings in real competitions, as the unpredictability and
complexity of the competition sites make it difficult for just partial
optimization plans to meet global requirements.

To address these challenges, we propose a novel energy allocation
strategy specifically designed for individual time trials in road
cycling. This approach aims to optimize cyclists' energy distribution
throughout the race, enhancing their overall performance. A genetic
algorithm is employed to determine optimal energy and speed
allocation, taking into account environmental factors such as weather,
terrain, and individual cyclist attributes. By calculating external forces
acting on the cyclistsand planning their energy use, the strategy ensures
feasibility under realistic conditions. The genetic algorithm iteratively
minimizes race completion time, with a particular focus on optimizing
performance in corners and on slopes.

2 Model
2.1 Material

The power profiles of different types of male and female
cyclists were summarized respectively based on the training
data of 44 female and 144 male professional cyclists (Mateo-
March et al., 2022; Valenzuela et al., 2022a). Power profiles include
the maximum power a cyclist can output within various time
intervals, namely, 5s, 10s, 30s, 1 min, 5min, 10 min, 20 min,
30 min, and 60 min. These power profiles served as a comprehensive
indicator of a cyclist’s capabilities across multiple aspects including
sprinting ability, the ability to generate a large amount of power
in a short period, aerobic and anaerobic capacities, as well as their
Functional Threshold Power (FTP) value.

The experimental test section selected a real-life bridge
to simulate the uphill and downhill segments that might be
encountered in an individual time trial for road cycling. The bridge
has an elevation of 14.8 m, a length of 1.5 km, and a gradient of
0.987%. The curved segment was modeled after a standard 400-m
track, with a total length of 400 m, a curve radius of 36.5 m, and a
total curve length of 231.22 m.

2.2 Methods

2.2.1 Equation of motion in the road bicycle race
The power generated by the cyclist is not solely utilized to
propel the bicycle forward but also to counteract air resistance, the
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FIGURE 1

(A) Force analysis diagram of a road bicycle; (B) Influence of wind speed and wind direction on a road cyclist.

frictional force between the tires and the road surface, as well as
the influence of the gravitational component forces during uphill
and downbhill rides. When the forces are in equilibrium, the speed
stabilizes, and the power output by the cyclist equals the power
required to overcome the total resistive forces. In other words,
the power output by the cyclist is equivalent to the power of the
resistance.

Multiple forces act simultaneously in road cycling.
(Valenzuela et al, 2022b). As shown in Figure 1. F_ is the
comprehensive external force exerted by the cyclist, while F ;. is the
air resistance during the cycling process, with the direction opposite
to the direction of the ride. F, is the radial force component of the

air

rider’s gravity, which is opposite to the direction of the ride, while
F, is the frictional resistance, which is opposite to the direction of
the ride. F,. is a force that provides acceleration in the opposite
direction of the riding direction. As shown in Formula 1.

acc

Fo=F +F+F +Fy (1)

Furthermore, the influence of weather conditions has been taken
into account in this research. Wind direction and speed are added
up to the power-velocity model. In the model, the impact of air
resistance on bicycle riding speed and power has been considered.
Alir resistance represents the reverse force exerted by the air on the
moving object during riding. When investigating the influence of
wind on riding, the effect of headwind is included within the air
resistance. The wind resistance is defined as F,;,. The symbols used
in the force analysis are listed in Table 1.

When analyzing the influence of wind direction on riding, it
is essential to comprehensively consider the direction of the wind.
Not all winds are strictly downwind or headwind. The speed of
the wind relative to the ground is set as Vwind. If the speed of
the cyclist relative to the ground is set as Vpeople, then a vector
formula can be found to calculate the relative wind speed Vrel.
As shown in Formula 2.

v

rel =

v

people — 14

Wi

)

In competitions, the change of slope has a great impact on the
distribution of cyclists' physical power. When analyzing cyclists'

ind COS O
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TABLE 1 Symbol Significance comparison table.

Symbol Significance
m

Mass of people and equipment

g Gravity constant

C air drag coefficient (Based on weather conditions)

S frontal windward area (The average value determined based on
the dynamic evaluation of elite athletes' riding posture)

Vicople rider’s travel speed

Voind wind speed

\ relative speed of people and wind

P gas density (Determine the atmospheric pressure based on the
local latitude of Paris and the weather conditions during the
competition)

o angle of people and wind

u resistance coefficient of rolling friction between rubber and
asphalt

Uy resistance coefficient of sliding friction between rubber and
asphalt

uphill and downbhill riding, our model considers that the altitude and
slope change continuously and smoothly. y is the slope angle, m is the
total mass of the cyclist and equipment, and g is the gravity constant.
The rolling friction coefficients under dry and wet conditions are
provided in Table 2.

The force required for cyclists to achieve different accelerations
also varies. F . is the force that generates acceleration. Therefore, Fc
is shown in Formula 3:

Fc %Cps( V.)? + umgcosy + mgsiny + ma (3)

frontiersin.org


https://doi.org/10.3389/fphys.2025.1683815
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Li et al.

TABLE 2 Rolling friction coefficient of rubber and asphalt (Yu et al., 2020).

Ground conditions

Rolling friction resistance

10.3389/fphys.2025.1683815

Average rolling friction

coefficient resistance coefficient
dry 0.010-0.018 0.014
wet 0.0022-0.005 0.0036

FIGURE 2
The optimal path for cornering.

Lane line

Auxiliary line

TABLE 3 Speed of elite road bicycle individual time trial cyclists.

Gender Average velocity Maximum speed
(m/s) (m/s)
male 15.00 20.83
female 13.61 18.06
2.2.2 Cornering strategy
Geometrically, we consider a velodrome comprising

straights, circular arcs, and connecting transition curves. As
Fitzgerald (Fitzgerald et al, 2021) indicated, the inclusion of
these elements, which has been commonly overlooked in previous
studies, presents a mathematical challenge. However, it enhances
the empirical adequacy of the model.

Cyclists do not blindly accelerate to minimize race time. Instead,
they need to decelerate on sharp turns and pass at a safe speed
V to ensure their safety. For the calculation of the safe speed

Frontiers in Physiology

during turning, we assume that the cyclists approximately execute
the circular motion. For safety reasons, setting a maximum speed
limit is of utmost importance. According to the model, the turning
speed and the static friction coefficient between the tire and the
ground are related to the turning radius. The specific formula
is shown in Formula 4.
F= ml2 (4)
r
It can be seen that the turning speed of players is closely related
to the quality of tires and the choice of turning radius. Then, to
make the rider complete the race in a shorter time, we optimized
the turning process and obtained the optimal route for the rider to
turn. To let the contestants turn at the fastest speed, they should
choose a correct turning radius, which should be the radius of the
largest circle where the two roads cross. This also minimally limits
the maximum speed of the contestant in turning.
The turning speed of the cyclist is closely associated with the
tire quality and the choice of turning radius. Subsequently, to enable
the cyclists to complete the race in a shorter time, we optimized
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FIGURE 3
Flow Figure of genetic algorithm.

the turning process and determined the optimal turning route. To
allow the cyclists to turn at the fastest speed, they should select
the correct turning radius, which is the radius of the largest circle
where the two roads intersect. This choice also minimally restricts
the maximum turning speed of the cyclists. The optimal turning path
is illustrated in Figure 2, where the cyclist follows a trajectory that
maximizes the turning radius.

According to the figure, the maximum turning radius R of the
cyclist is shown in Formula 5.

d

R=re l—sing
2

(5)

In the model, when a cyclist makes a turn, we define the moment
of entering and leaving the corner as the starting and ending points
of the arc, respectively. At this time, the path of the cyclist is tangent
to the outer boundary of the road. During the intermediate stage
of the turn, the vertex of the inner boundary of the road is tangent
to the arc, thereby achieving the optimal turning route. In the
calculation process, to obtain the optimal radius, it is necessary to
know the width d of the road, the intersection angle 8 of the two
roads, and the radius r of the inner bend of the road. As shown in
Formula 6.

2
mb

R

(6)

HgMmg = m

thy; is the coefficient of sliding friction between rubber and
asphalt. It is 0.9 on dry roads and 0.4 on slippery roads. Therefore,
the expression of V', is shown in Formula 7.
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7)

2.2.3 Cyclists’ physical fitness

In the task of cyclist’s physical fitness allocation, it is essential
to consider the constraints on each variable. P is the power
level applied by the cyclist at time f. Cyclists are incapable of
generating unlimited power for movement; thus, there must exist
a maximum value to constrain their speed (Wu, 2013). However,
in reality, the limited physical capacity of cyclists is insufficient to
sustain the entire competition at maximum power (Shoman and
Imine, 2020). While limiting the total technique of the cyclists,
the speed of an elite cyclist in the same event should be used for
limitation.

Recovery power is the power at which an athlete can perform
work indefinitely based on aerobic metabolism without considering
muscle fatigue, provided that P is a certain power value higher
than P When P is less than P P
a cyclist can maintain for an extended period; that is, pedaling at

is a power that

recover* recover> recover

or below this limit can, theoretically, be continued indefinitely. The
average and maximum speeds of elite male and female cyclists are
summarized in Table 3.

2.2.4 Genetic algorithm (GA)

Our mode is specifically applicable to cyclists who employ
high-power cycling early in time trials, because maintaining the
cyclist’s output power can effectively alleviate fatigue caused by the
variability of the terrain during actual competitions (Atkinson et al.,
2007). There are distinct riding plans for different terrains. How to
design a reasonable power management strategy? On the premise
of ensuring that the total energy consumption of the cyclist does
not exceed the limit, the final performance evaluation index is
the total time taken from the starting point to the key point.
Considering the influences of various factors such as different
terrains, wind forces, and the constant total energy of the cyclists
on the riding strategy, the genetic algorithm (GA) is employed to
minimize the total riding time in real road timing competitions.
During the optimization process, all relevant constraints are taken
into account.

The sections can be divided according to a certain distance
for the actual competitions. For example, an almost flat road with
some low slopes can be regarded as a flat road with a slope angle
of 0. The race section with a small curve can be considered as a
straight line. For the hillside terrain, the connection between the
top and bottom of the slope is treated as a slope. After the above
processing of the competition section, the route in a competition
can be divided into sections. Then, the solution of changing the
power (speed) according to the competition distance is adopted,
and the cyclists use constant power in the same section. From the
analysis of the motion equation, it can be concluded that there is
a constant relationship between cyclists' output power and speed,
which is relevant to internal and external factors such as slope,
length of divided distances, and bending angles. The determined
speed can be obtained by changing the power. Therefore, we can do
discretization processing for each segment of speed and power. We
can discretize the speed and power of each segment to obtain the P;
and v; corresponding to each segment.
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Several initial populations encoded by a certain length are
generated randomly. Each individual was evaluated by the fitness
function.In the implementation of the genetic algorithm, a real-
valued encoding scheme was employed. The term “Encoding” refers
to the representation of a potential solution to the optimization
problem—namely, a vector containing the velocity values for all road
segments, V = [v,, V,, ..., V,]—as an individual (or chromosome)
within the population. Since velocity is a continuous variable, real-
valued encoding is more direct and efficient than binary encoding
for this problem. The term “Decoding” refers to the process of
translating this individual (the velocity vector) into the objective
and constraint values. This is done by substituting the velocity
values into the fitness function (Equation 8) and the system of
constraint equations (e.g., Equations 9, 10) to calculate the total race
time and energy consumption, thereby evaluating the individual’s
fitness. Each individual thus directly represents a complete velocity
allocation strategy for the entire course. Individuals with high
fitness values were selected to participate in the genetic operation,
while those with low fitness were eliminated. A new generation of
population is formed by the collection of genetically manipulated
individuals. The real-valued linear recombination method was
used in the genetic process. At the same time, the real-valued
mutation was used in the mutation process, in which the population
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size is set to 500, the maximum number of iterations is set to
200, the mutation probability is set to 0.2, and the crossover
probability is set to 0.8. Until the stop criteria are met, the
process is shown in Figure 3. The fitness function is shown in
Formula 8.

_
nVar .
PINED

The time required for each segment can be determined, and

fx) = (8)

then time can be summed up to obtain the total time required for
the cyclists’ movement process. The total riding time is optimized
by using the established model. The constraint conditions of the
optimization model are shown in (Equation 9), and the objective
function is shown in (Equation 10).

V, = x(count)

V,

T

el = Vl - Vwind X COS(|Dwind _Dseg(i)|)
Fair =0.5x% CXP x Swind X Vrel2

F

.= miu_roll x m x cos(y(i))
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F, =mx gxsin(y(i))

F.=F air+F g+F r

P

recover

F

c

V,

rec

c(count)=V,,. -V,

(o

s(i)

X
recover
Vi

cep=Wy-) W

W(i) = F, x s(i) - P
)

The flow of the genetic algorithm used in this study is
depicted in Figure 3.

The influence of gravity and friction forces on cyclists within
a specific road section is fixed, yet different speeds will have an
effect on the wind resistance endured by the cyclists. Consequently,
the higher the speed is, the greater the power required to
sustain it. Simultaneously, more energy will be consumed. In
contrast, the performance in the descending section is not
dependent on the power output. Otherwise, it will increase
energy consumption. If the cyclist does not rotate the crank
to complete the descent at the same speed, the recovery speed
prior to the subsequent climb can be improved, which may be
beneficial for the race results (Atkinson et al., 2007). Therefore,
it is assumed that at the end of the competition, the total
amount of the cyclist’s allocable physical capacity is a fixed value,
and W is just 0. At this time, the W expression is shown in
Formula 10.
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n
W= Z (Fcisi - precoverti) (10)
i=1

1

When Z;’thi reaches the minimum value, that is, when the
shortest time of the entire competition is achieved, it represents
the best performance of the cyclists. At this point, the power P of
each part is the ideal power for the cyclists when passing through
each stage. However, this speed needs to be constrained in the
calculation. Therefore, the upper limit of the speed on the uphill
and horizontal sections is the maximum speed of elite cyclists when
passing through this stage, and the lower limit is determined by the
speed corresponding to their current recovery power.

The genetic algorithm selects all individuals in the population
as the object, randomizes the values of all individuals under
specific conditions, and efficiently searches for the required results.
During the genetic process, the genetic operations of selection,
crossover, and variation are employed. In the application of the
genetic algorithm to cycling competitions, the velocity of cyclists in
different road sections is regarded as the individual population. For
instance, we use n types of randomization techniques to guide the
generation of the initial velocity allocation strategy for competition
venues with different road sections, and then perform binary
coding to imitate chromosomes in nature. Subsequently, the initial
population with a population number of N is generated. Fitness
reflects the competitiveness of individuals. Individuals with higher
fitness have a greater probability of survival in the selection process.
The goal of the genetic algorithm is to find the power allocation
strategy corresponding to the minimum t. Therefore, the smaller the
individual tis, the smaller the corresponding fitness will be as well. In
the inheritance process of the genetic algorithm, the real-value linear
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recombination method is adopted. At the same time, the variation
process uses real-value variation.

3 Results and discussion
3.1 Validation of the model curve

Based on the tests implemented by the experimenters on a
standard 400-m track, the results are shown in Figure 4. It took a
total of 82.04 s in the pre-optimization test. After the model was
optimized, with the same energy consumption, the test result was
74.08 s, indicating a performance improvement of 9.7%.

3.2 Validation of the model slope

According to the tests conducted by the experimenters over a
distance of 1500 m, the results are depicted in Figure 5. It took a
total of 284.92 s in the pre-optimization test. After the model was
optimized, with the same energy consumption, the test result was
266.82 s, indicating an improvement in performance of 6.35%.

3.3 The individual time trial for road cycling
at the Paris 2024 Olympic game

The competition map is shown in Figure 6. After optimization,
the research findings indicate that the performance of male
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road cycling athletes is 33 min and 12.72 s, representing a 6.62%
improvement over the winning time of 36 min and 12.16 s achieved
by the men’s champion at the 2024 Paris Olympics. The result
is shown in Figure 7. The improvement not only demonstrates
the potential of the optimization strategy in improving athlete
performance but also emphasizes the significance of effective power
distribution and speed management. However, it is important to
note that the actual performance of cyclists in competitive settings
may be influenced by various factors, such as weather conditions,
road surface, and psychological state, which may differ significantly
from the simulated conditions on which the model is based.
Therefore, to ensure the model’s accuracy and applicability, further
research will require validation of the simulation results through
empirical measurements and field testing. This approach will aid
in refining the model to better align with real-world competitive
environments, ultimately providing more scientific guidance for
cyclists’ training and racing strategies in future competitions.

4 Discussion

This article synthesizes a comprehensive dataset on the
competition and training performances of elite male and female
cyclists, systematically analyzing the optimal power output
and speed across diverse slopes, wind directions, and wind
intensities. Based on this in-depth analysis, an optimal physical
fitness allocation strategy for elite road cyclists is proposed to
enhance their performance during competitions. The constructed
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(A) Speed distribution after optimization; (B) Power distribution after optimization; (C) Comparison of race time after optimization with the winning
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model was rigorously simulated to evaluate its effectiveness, and
multiple tests have confirmed that using a genetic algorithm
for physical energy allocation can improve their performance
under identical track conditions. However, limitations in venue
availability and equipment have precluded the full replication
of real competition environments, and further validation is
urgently needed to assess the impact on cyclist performance in
official events.

The above results indicate that the output power and speed of
cyclists reach their maximum values on flat slopes. The finding
that significant time savings can be achieved on hilly and windy
courses by increasing power on uphill or headwind segments while
compensating with reduced power on downhill or tailwind segments
is consistent with the findings of Di Prampero et al. (1979).

There is a wide range of factors that can influence individual
time trial performance. While some factors play a role in all racing
conditions, others are only effective in certain circumstances. In
courses with a lower proportion of technical sections, the simulation
results suggest that road conditions do not significantly affect the
final performance time (Zignoli, 2021). The power delivery ability
is limited by the cornering angle, indicating that power output
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cannot be achieved during cornering. This condition has significant
implications on the way of cylist's cornering trajectories. For one
thing, the roll angles are promptly restored after a corner to enable
power output production. For another, corners may provide a
key opportunity to recover physical fitness. The simulation results
presented in Figure 5 indicate that flat and downhill technical
sections demand significantly distinct average power output values
because of the role of gravity in reaccelerating the system following
a downhill corner.

The article still leaves some external factors unaccounted for. A
cyclist cannot always adhere strictly to a strategy that approaches
the physical capacity limit. Moreover, physiological measurements
can be conducted during the actual trial, which can promptly reflect
the changes in the optimal strategy, as the actual physiological
state during the trial always varies from the state estimated by
the model based on previous calibration tests (Beaumont et al.,
2023). Additionally, for the speed changes of cyclists during the
competition, such as the transition from low speed to high speed,
additional physical energy is required to accelerate the entire
system, thereby increasing the overall physical energy consumption.
This process cannot be implemented through programming in
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this article, and the model still needs to be further optimized in
the future.

5 Conclusion

When the cyclist is on the downhill section, generating a
higher power is not beneficial for his subsequent physical recovery
and can readily cause excessive physical exertion and potential
dangers. Maintaining a high power output on the flat or uphill
sections represents an effective physical distribution strategy to
enhance his performance in the competition. For individual road
bicycle races, genetic algorithms can be employed for optimization
analysis to successfully develop the optimal physical distribution
plan. Since genetic algorithms possess strong search capabilities
through the utilization of mutation mechanisms, they can prevent
getting trapped in local optima and ignoring the global situation.
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