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Detection of spheno-occipital 
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Introduction: Accurate evaluation of the spheno-occipital synchondrosis (SOS) 
is important for growth assessment, early detection of craniofacial anomalies, 
and reliable forensic age estimation.
Methods: This study applied three deep learning models—YOLOv5, YOLOv8, 
and YOLOv11—to cone-beam computed tomography (CBCT) sagittal images 
from 1,661 individuals aged 6–25 years, aiming to automate SOS fusion stage 
classification. Model performance was compared in terms of detection accuracy 
and processing speed.
Results: All models achieved high accuracy, with a mean average precision 
(mAP) of 0.995 in complete fusion (Stage 3). YOLOv8 demonstrated the most 
consistent balance of precision and recall, while YOLOv11 achieved the fastest 
inference time (27 ms). YOLOv5 excelled in specific stages with perfect F1-
scores.
Discussion: These findings demonstrate that YOLO-based AI models can 
provide precise, rapid, and reproducible SOS assessments, offering valuable 
support for both clinical decision-making and forensic investigations.
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 1 Introduction

Craniofacial growth is a complex biological process influenced by genetic, 
environmental, and functional factors. The three synchondroses of the cranial 
base—spheno-ethmoidal, inter-sphenoid, and spheno-occipital synchondroses (SOS)are 
significant growth centers, with the SOS being the last to close (Krishan and Kanchan, 
2013; Singh et al., 2025). The spheno-occipital synchondrosis (SOS), a cartilaginous 
joint between the sphenoid and occipital bones, plays a crucial role in this process. 
As a key growth center, SOS facilitates the extension of the cranial base axis, enabling 
the development of teeth and alveoli and thus contributing to craniofacial formation 
(Dalili Kajan et al., 2021; Funato et al., 2020).

The cranial base represents the first stable structure in craniofacial growth, rather 
than the occipital bone. The maxilla usually grows downward and forward as described 
by classic implant studies (Björk, 1955; Melsen, 1974; Solow, 1980), and its positional 
changes are largely influenced by remodeling and displacement relative to the cranial 
base rather than direct growth at the spheno-occipital synchondrosis (SOS). Growth at 
the SOS primarily contributes to the elongation of the posterior cranial base and the 
flexure angle between the anterior and posterior cranial base, which in turn may affect the
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spatial relationship of the mandible and temporal bone relative to 
the cranial base (Halpern, 2014; Demirturk Kocasarac et al., 2016; 
Sinanoglu et al., 2016; Cendekiawan et al., 2010; Nie, 2005).

In skeletal Class III malocclusion, early fusion or reduced growth 
potential at the SOS has been linked to a shorter posterior cranial 
base and a more acute cranial base angle, leading to a retruded 
maxilla and a forward-positioned mandible (Singh et al., 2025; 
Halpern, 2014; Cendekiawan et al., 2010). Clinical and imaging 
studies have consistently demonstrated distinctive cranial base 
features in Class III patients, such as shorter posterior cranial 
base length during the prepubertal period and altered mandibular 
positioning (Yang et al., 2016; Singh et al., 2025). However, Yang 
et al. reported that the timing and fusion patterns of the SOS were 
not significantly different between Class I and Class III groups, 
suggesting that while SOS maturation contributes to cranial base 
morphology, it is unlikely to act as the sole determinant of sagittal 
jaw discrepancies.

Thus, the importance of SOS fusion and growth direction in 
Class III malocclusion lies in their potential to influence cranial 
base angulation and mandibular displacement, rather than directly 
altering maxillary growth direction. This perspective highlights the 
cranial base as a key mediator of skeletal pattern, whereas the maxilla 
continues its downward and forward growth trajectory relative to 
this stable base.

Fusion of the SOS occurs later than other midline 
synchondroses. While the spheno-ethmoidal synchondrosis (SES) 
typically fuses by age six and the intersphenoid synchondrosis (ISS) 
at birth, SOS generally fuses between ages 12 and 15 (Evli et al., 
2025). However, its exact timing is debated, with reports ranging 
from 8 to 21 years (Nie, 2005; Hoshino et al., 2022). Because 
SOS is the last cranial base synchondrosis to close, it provides 
a unique window for growth assessment. Its maturation stages 
have been linked to skeletal maturity and can offer valuable 
insight for treatment timing, particularly in orthodontic and 
orthopedic interventions such as headgear therapy and rapid 
maxillary expansion (Halpern, 2014). If performed before SOS 
fusion, these techniques can temporarily open or influence the 
synchondrosis, facilitating maxillary displacement and alveolar 
adaptation (Halpern, 2014).

In craniofacial syndromes, midface hypoplasia is believed to 
stem from early or atypical SOS ossification and disrupted cranial 
base growth (Sinanoglu et al., 2016). Aberrant fusion may indicate 
underlying defects; in syndromes like Apert, Crouzon, and Muenke, 
premature SOS closure correlates with midfacial underdevelopment 
(Goldstein et al., 2014; McGrath et al., 2012; Tahiri et al., 2014).

Advances in artificial intelligence (AI) have enabled the 
use of machine learning in craniofacial research to predict 
growth patterns. AI aids in diagnosing craniofacial anomalies 
and evaluating interventions like rapid maxillary expansion 
(Bazargani et al., 2013; Geisler et al., 2021). Leveraging large datasets 
and imaging, AI improves diagnostic accuracy and treatment 
planning in orthodontics and craniofacial surgery.

Given the clinical importance of SOS fusion, accurately 
identifying its stages is key for tracking development and detecting 
anomalies early. Cone-beam computed tomography (CBCT) offers 
high-resolution imaging to assess SOS fusion precisely. This study 
aims to apply AI algorithms to classify SOS fusion on CBCT images 
(CBCTIs) and examine its correlation with growth periods. We 

hypothesize that AI-based evaluation will support early anomaly 
detection, leading to better diagnosis and treatment planning. 

2 Materials and methods

2.1 Ethics approval and sample size 
determination

This thesis study received ethical approval from the Local Non-
Drug and Non-Medical Device Research Ethics Committee on 
25 January 2024, with decision number 2024/363. All procedures 
adhered to the principles of the Declaration of Helsinki.

Based on a one-sided independent sample t-test with a 95% 
confidence level, 95% test power, and an effect size of d = 0.518, 
it was determined that a minimum of 85 participants per group 
was needed (Geng et al., 2024). 

2.2 Image collection and inclusion criteria

This retrospective study evaluated CBCT images (CBCTIs) 
acquired between 2020 and 2024 from the Departments of 
Dentomaxillofacial Radiology at Necmettin Erbakan University 
Faculty of Dentistry and Ankara University Faculty of Dentistry. 
Included were sagittal section CBCTIs from individual aged 6–25 
that clearly showed the spheno-occipital synchondrosis (SOS) with 
high diagnostic quality. Images were excluded if they: 

• Were from individuals over age 25,
• Showed congenital/acquired maxillofacial deformities,
• Had large pathological lesions or trauma history,
• Showed evidence of head and neck surgery, radiotherapy, or 

chemotherapy,
• Came from syndromic cases impacting the craniofacial region,
• Or had insufficient resolution, artifacts, or incomplete SOS 

depiction.

To ensure image quality and consistency, all CBCTIs were 
standardized. Technical settings and imaging protocols were 
selected to minimize variables that could affect SOS visibility. 

2.3 Radiographic processing, data labeling 
and preparation

Images were acquired using three CBCT devices: J. Morita 3D 
Accuitomo 170, Newtom Go, and Newtom Giano HR, all operating 
at 90 kVp, 5 mA, 17.5 s, with a 0.25 mm voxel size. DICOM files 
(.dcm) were viewed on a 27-inch UltraSharp LED TFT screen (2560 
× 1440, 3.7 MP). Sagittal slices showing SOS were saved as 2D JPEG 
images (600 dpi, 1024 × 640 pixels) after contrast and brightness 
adjustments for optimal AI input standardization.

From 262 CBCT datasets, 1,661 sagittal 2D cross-sectional 
images were extracted. These were classified into four SOS fusion 
stages based on the Fernández-Pérez et al. (2016) system: 

• Stage 0: No fusion,
• Stage 1: Endocranial fusion visible,
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FIGURE 1
SOS fusion stages and polygonal segmentations of stages.

• Stage 2: Ectocranial fusion observed,
• Stage 3: Complete fusion with no gap.

The distribution was as follows: 379 images (Stage 0), 725 (Stage 
1), 144 (Stage 2), and 413 (Stage 3).

In our study, all dataset labeling and model development 
were performed through the CranioCatch artificial intelligence 
platform (accessible at https://dentalai.ogu.edu.tr/), which is a 
web-based system designed for medical and dental imaging 
analysis. This platform provides tools for image annotation, 
dataset management, and AI model training, eliminating the 
need for direct coding by the researchers. All data were 
anonymized before being uploaded to the CranioCatch platform
(Eskişehir, Türkiye).

Images were labeled using polygonal segmentation in 
CranioCatch. Structures like the sphenoid body, SOS, and occipital 
bone were outlined, including cortical boundaries. Labeling was 
done in four classes (Stage 0–3) (Figure 1). All segmentations were 
reviewed by two observers—one with 7 years and another with 
15 years of experience. Intra- and inter-observer agreement values 
were excellent (0.995 and 0.983, respectively) (Table 1).

Preprocessing included sharpening unclear images and resizing 
for model training. Finalized data were split into training (1,329), 
validation (166), and testing (166) subsets. Specific allocations were: 

• Stage 0: 300 train, 46 validation, 33 test
• Stage 1: 585 train, 67 validation, 73 test
• Stage 2: 119 train, 11 validation, 14 test
• Stage 3: 325 train, 42 validation, 46 test

2.4 Segmentation model training

Images were resized to 1024 × 640 pixels for training with 
convolutional neural network (CNN) models on the PyTorch 
platform. YOLOv5, YOLOv8, and YOLOv11—modern, single-
stage object detection algorithms—were used due to their speed 
and accuracy.

Each model underwent 600 training steps, using Stochastic 
Gradient Descent (SGD) with a batch size of 4. The most successful 
training step was saved as “best.pt” (124.9 MB). During the test 
phase, IoU and stability threshold values were set to 0.5. 

2.5 Model performance evaluation

Model success was assessed with a confusion matrix, 
comparing AI predictions to expert-labeled data. Key evaluation 
metrics included: 

• True Positive (TP): Correct identification of fusion stages.
• False Positive (FP): Incorrect classification of non-fusion 

regions.
• False Negative (FN): Missed detections of actual fusion areas.

From these, the following performance metrics were calculated: 

• Sensitivity (Recall) = TP/(TP + FN): Indicates the model’s 
ability to correctly detect SOS fusion.

• Precision = TP/(TP + FP): Reflects how many identified 
regions were truly SOS fusion stages.

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1682917
https://dentalai.ogu.edu.tr/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Uzun et al. 10.3389/fphys.2025.1682917

TABLE 1  Performance metrics calculated using 50% IoU threshold of YOLOv5, YOLOv8, and YOLOv11 models, with comparable values from experts 
and AI models.

AI models Experts

YOLOv5 TP FP FN Sensitivity Accuracy F1 Score

Intra-
observer

TP FP FN Sensitivity Accuracy F1 Score
General 154 12 0 1 0.92771084 0.9625

Stage 0 27 6 6 0.81818182 0.81818182 0.81818182

Stage 1 68 5 5 0.93150685 0.93150685 0.93150685

Stage 2 13 1 1 0.92857143 0.92857143 0.92857143 General 1,652 4 5 0.994 0.995 0.995

Stage 3 46 0 0 1 1 1 Stage 0 300 0 0 1.000 1.000 1.000

YOLOv8 TP FP FN Sensitivity Accuracy F1 Score Stage 1 580 2 3 0.991 0.991 0.991

General 153 13 13 0.92168675 0.92168675 0.9216867 Stage 2 118 1 0 0.992 0.992 0.992

Stage 0 29 4 4 0.87878788 0.87878788 0.8787878 Stage 3 325 0 0 1.000 1.000 1.000

Stage 1 68 5 5 0.93150685 0.93150685 0.9315068

Inter-
observer

TP FP FN Sensitivity Accuracy F1 Score
Stage 2 13 1 1 0.92857143 0.92857143 0.9285714

Stage 3 43 3 3 0.93478261 0.93478261 0.9347826

YOLOv11 TP FP FN Sensitivity Accuracy F1 Score

General 157 9 9 0.94578313 0.94578313 0.9457831 General 1,633 13 15 0.983 0.983 0.983

Stage 0 31 2 2 0.93939394 0.93939394 0.9393939 Stage 0 300 0 0 1.000 1.000 1.000

Stage 1 69 4 4 0.94520548 0.94520548 0.9452055 Stage 1 567 9 9 0.969 0.969 0.969

Stage 2 12 2 2 0.85714286 0.85714286 0.8571429 Stage 2 115 3 1 0.966 0.966 0.966

Stage 3 45 1 1 0.97826087 0.97826087 0.9782609 Stage 3 325 0 0 1.000 1.000 1.000

IoU, intersection over union; TP, true positive; FP, false positive; FN, false negative.

• F1 Score = 2 × (Precision × Recall)/(Precision + Recall): 
Balances precision and recall for overall accuracy.

• Mean Average Precision (mAP): A benchmark metric that 
summarizes model performance across multiple thresholds 
and is widely used in object detection tasks.

These metrics collectively ensured a thorough validation of 
model reliability and diagnostic utility. 

3 Results

3.1 YOLOv5 labeling model training and 
test results

In the YOLOv5 model, training was conducted using 1,329 
images, and performance was tested on 166 images. Key training 
metrics showed that the train/box_loss and val/box_loss values were 
0.01084 and 0.00726, respectively, indicating high segmentation 
accuracy. Similarly, train/cls_loss and val/cls_loss were 0.00735 
and 0.00436, suggesting effective object classification. The gradual 

decrease in loss values across epochs reflected a successful 
learning process.

Figure 2 presents the precision-sensitivity curve at the 0.5 IoU 
threshold. The largest area under the curve was observed in Stage 3, 
followed by Stage 1, Stage 0, and Stage 2. The average mAP value was 
0.969, showing strong model performance. High precision reflects a 
low FP rate, and high sensitivity indicates a low FN rate.

Model outputs were evaluated as True Positive (TP), False Positive 
(FP), or False Negative (FN) depending on their correspondence with 
expert annotations (Table 1). Confusion matrix analysis revealed an 
overall F1-score of 0.9625. The highest performance was observed in 
Stage 3, with 100% recognition. Stage 1 and Stage 2 followed, while 
Stage 0 had the lowest performance (F1 = 0.81). 

3.2 YOLOv8 labeling model training and 
test results

YOLOv8 was also trained with 1329 images and tested on 166. 
Training metrics showed train/box_loss = 0.31148 and val/box_
loss = 0.46831, with train/cls_loss = 0.31394 and val/cls_loss = 
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FIGURE 2
(a) Precision-sensitivity curve of the YOLOv5. (b) Precision-sensitivity curve of the YOLOv8. (c) Precision-sensitivity curve of the YOLOv11.

0.29065. These values, though higher than YOLOv5’s, remained 
low and indicated stable training. A unique metric in YOLOv8, 
dfl_loss, was 0.86602 (train) and 1.0124 (val), suggesting the 
model effectively adapted to detecting features at varying shapes
and sizes.

Figure 2 shows that YOLOv8 reached its highest mAP (0.995) 
in Stages 2 and 3, followed by Stage 1 (0.981) and Stage 0 (0.974). 
The average mAP across all stages was 0.986, indicating excellent 
detection ability.

Evaluation metrics classified model predictions as TP, FP, 
or FN, compared to radiologist labels (Table 1). The overall 
F1-score was 0.92. Stage 3 achieved the highest F1 (0.9347), 
followed closely by Stage 1 (0.9315), Stage 2 (0.92), and Stage 
0 (0.87), indicating consistently high performance across all
fusion stages. 

3.3 YOLOv11 labeling model training and 
test results

The YOLOv11 model was trained and validated using the 
same data distribution. During training, the train/box_loss and 
val/box_loss values were 0.36598 and 0.47306, respectively, and 

train/cls_loss and val/cls_loss were 0.33717 and 0.35153. The dfl_
loss values were 0.88558 (train) and 0.99697 (val), reflecting 
high adaptability with minimal error in handling complex image
structures.

As shown in Figure 2, YOLOv11 achieved the highest 
mAP in Stage 3 (0.995), followed by Stage 0 (0.946), Stage 
1 (0.935), and Stage 2 (0.933). The overall average mAP
was 0.952.

According to model evaluation (Table 1), YOLOv11 achieved 
an overall F1-score of 0.94. The stage-wise breakdown revealed 
Stage 3 had the highest F1 (0.97), followed by Stage 1 (0.94), 
Stage 0 (0.93), and Stage 2 (0.85). Although its accuracy was 
slightly lower than YOLOv8, it maintained strong consistency across
most categories. 

3.4 Comparison of performance times of 
YOLO models

Table 2 summarizes the processing times of the three models. 
YOLOv5 recorded the longest average time at 40 ms per image, 
followed by YOLOv8 at 30 ms, and YOLOv11 with the shortest 
time of 27 ms. Although YOLOv11 offered faster inference, 
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TABLE 2  Comparison of the results of YOLO models according to SOS 
fusion stages.

Stages YOLOv5 YOLOv8 YOLOv11

Stage 0
mAP: 0.969 mAP: 0.974 mAP: 0.946

F1: 0.81 F1: 0.878 F1: 0.939

Stage 1
mAP: 0.971 mAP: 0.981 mAP: 0.935

F1: 0.93 F1: 0.931 F1: 0.945

Stage 2
mAP: 0.942 mAP: 0.995 mAP: 0.933

F1: 0.92 F1: 0.928 F1: 0.85

Stage 3
mAP: 0.995 mAP: 0.995 mAP: 0.995

F1: 1 F1: 0.934 F1: 0.9782

YOLOv8 showed better overall balance between speed and
accuracy.

3.5 Comparison of YOLO models by SOS 
fusion stage

As detailed in Table 2, YOLOv8 consistently outperformed the 
others in accuracy and stability across SOS fusion stages. For Stage 
0, YOLOv8 had the highest mAP (0.974), followed by YOLOv5 
(0.969) and YOLOv11 (0.946). In Stage 1, YOLOv8 again led with 
a mAP of 0.981. For Stage 2, YOLOv8 achieved a peak mAP of 
0.995, outperforming both YOLOv5 and YOLOv11. In Stage 3, all 
models reached a shared maximum mAP of 0.995, though YOLOv5 
achieved a perfect F1 score of 1, showing its strength in this stage. 

4 Discussion

Since the beginning of civilization, technological progress 
has significantly eased workloads. Innovations like electronics, 
automobiles, computers, and the Internet have transformed 
numerous sectors, including healthcare, education, and media. 
Dentistry, which increasingly utilizes digital workflows, has 
also embraced artificial intelligence (AI) to improve diagnosis, 
treatment planning, image interpretation, patient management, 
and automation, thus enhancing oral healthcare quality (Kaya and 
Koc, 2024; Rahim et al., 2024).

Accurate diagnosis and planning are crucial in clinical decision-
making. Studies show that AI-assisted cephalometric analysis (CA) 
offers more consistent results than manual methods (Lin et al., 
2021; Nishimoto et al., 2020; Rahim et al., 2024). In patients 
undergoing skeletal maturation, AI also helps estimate growth 
rate and development by analyzing skeletal age, cervical vertebrae, 
skeletal class, and surgical outcomes (Amasya et al., 2020; Lin et al., 
2021; Yu et al., 2020). These capabilities are also valuable in forensic 
dentistry, especially for age estimation (De Tobel et al., 2017).

Dental age and vertebral development are key in orthodontic 
planning, particularly since the spheno-occipital synchondrosis 

(SOS) is the last cranial synchondrosis to fuse. Conventional skeletal 
maturation indicators such as the hand-wrist (HW) and cervical 
vertebrae maturation (CVM) methods have been widely applied, 
but both present significant limitations. The HW method requires 
expert knowledge, is time-consuming, has moderate accuracy, and 
exposes patients to additional radiation. The CVM method, while 
more convenient, suffers from poor reproducibility, heavy reliance 
on clinician experience, and limited ability to predict craniofacial 
growth, especially in female patients with Class II malocclusion. 
Consequently, neither method guarantees a fully reliable tool for 
skeletal age assessment, and the orthodontic community recognizes 
the need for more accurate alternatives (Al-Gumaei et al., 2023).

Clinically, the accurate evaluation of craniofacial growth 
and treatment response requires stable reference structures for 
superimposition. Traditional cephalometric superimposition 
techniques rely on landmarks such as sella, nasion, or basion, 
but these are subject to growth-related positional changes, which 
reduces precision and introduces systematic error. Recent advances 
such as Digital Image Correlation (DIC) applied to cephalometric 
imaging enable superimposition on growth-stable cranial base 
structures without reliance on landmarks. DIC with Walker’s 
Point Line Combination (WPLC) has shown the highest precision, 
surpassing manual and conventional methods. This suggests that 
AI-driven approaches based on cranial base maturation can reduce 
observer bias, improve reproducibility, and allow more accurate 
longitudinal monitoring of growth and treatment outcomes. 
Looking ahead, combining AI-based SOS classification with 
advanced digital superimposition methods like DIC may create 
a comprehensive growth analysis framework that integrates the 
strengths of CBCT-based SOS staging with stable cranial base 
references, ultimately providing a reproducible tool for orthodontic 
and surgical applications (Danz et al., 2024).

In this context, SOS evaluation with CBCT represents 
a promising approach, as it provides high-resolution three-
dimensional imaging of cranial base maturation and offers a valid 
and reliable indicator of skeletal maturity compared with HW, 
CVM, and chronological age (Al-Gumaei et al., 2023). Beyond 
its diagnostic accuracy, integrating AI models to classify SOS fusion 
stages on CBCT images may enhance orthodontic assessment, 
improve the prediction of craniofacial syndromes, and support 
more precise evaluation of developmental completion. Moreover, 
this approach holds potential value in forensic applications, where 
accurate skeletal maturity assessment is essential.

The SOS is a cartilaginous joint between the sphenoid and 
occipital bones and serves as a critical cranial base growth center 
(Alhazmi et al., 2017). Its timely fusion shapes cranial base 
morphology and impacts midfacial development. Premature fusion 
has been linked to midface hypoplasia (Tahiri et al., 2014), and its 
timing is crucial for adolescent age estimation in forensic science 
(Sinanoglu et al., 2016). However, studies vary in SOS fusion 
timelines due to differing methodologies like autopsy, histology, and 
imaging, including CT and CBCT (Kahana et al., 2003). Among 
these, 3D imaging modalities, especially CBCT—offer greater 
accuracy due to high-resolution capabilities (Alhazmi et al., 2017).

Despite the importance of SOS fusion assessment, no standard 
staging system is universally accepted. Different studies use varied 
classifications (Bassed et al., 2010; Franklin and Flavel, 2014; Shirley 
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and Jantz, 2011). Our study adopts Franklin and Flavel (2014) four-
stage classification system. Fusion generally occurs between ages 
11–14 in females and 13–16 in males (Alhazmi et al., 2017), yet 
collecting sufficient data remains difficult due to CBCT’s limited use 
in children because of radiation exposure risks.

Comparable findings were reported by Al-Gumaei et al. (2023), 
who also applied the Franklin and Flavel classification system but 
labeled the stages from 1 to 4 instead of 0–3. When aligning 
their Stage 1 with our Stage 0, their results demonstrated that 
SOS maturation stages represent valid and reliable indicators of 
maxillary skeletal growth in both genders. Notably, they observed 
greater increases in maxillary length and height between stages 
2 and 3 than between earlier or later stages, whereas changes in 
maxillary width were more pronounced between stages 1 (our Stage 
0) and 2. Growth activity appeared to peak while the SOS was 
still fusing (particularly stages 2 and 3), with reduced increments 
after complete fusion (stage 4). Moreover, female patients exhibited 
earlier acceleration of growth compared with males when assessed 
by chronological age, although this sex difference was not observed 
when staging was based directly on SOS maturation. These findings 
reinforce the clinical relevance of SOS staging as a practical 
indicator of skeletal maturity, highlighting its potential to optimize 
treatment timing in orthodontic and orthopedic interventions. In 
addition, Geng et al. (2024), using the Lottering SOS classification, 
provided further insight into maxillomandibular growth dynamics 
across fusion stages. They found that in girls, sagittal maxillary 
growth remained active until SOS stage 3, slowed at stages 4–5, 
and continued to decline at stages 5–6. In boys, sagittal maxillary 
growth was stable until stage 4, with deceleration beginning from 
stages 5–6. Mandibular growth in both genders followed a pattern 
of increasing, accelerating, and then decelerating relative growth 
rates (RGRs) across SOS stages 2–6, with peak mandibular length 
observed between stages 3–4 and 4–5. These results highlight that 
SOS maturation reflects not only maxillary but also mandibular 
growth potential, further underscoring its clinical significance in 
timing interventions.

As object detection technologies have evolved, convolutional 
neural networks (CNNs) have replaced earlier algorithms. CNNs 
offer higher accuracy, particularly with large datasets and adequate 
computing power (Zhang and Hong, 2019). Object detection 
models are grouped into single-stage (e.g., YOLO, SSD) and two-
stage (e.g., RCNN, Faster RCNN) approaches. Single-stage models 
prioritize speed with acceptable accuracy, while two-stage models 
are more precise but slower (Jegham et al., 2024; Vijayakumar and 
Vairavasundaram, 2024).

This study utilized three Ultralytics-supported single-stage 
models—YOLOv5, YOLOv8, and YOLOv11. The original 
YOLO (You Only Look Once) introduced by Redmon (2016) 
revolutionized object detection by predicting bounding boxes and 
class probabilities simultaneously (Hussain, 2023). To maintain 
comparability, unsupported versions (e.g., YOLOv1, v2, v4, v6, v7) 
were excluded due to architectural differences (Jegham et al., 2024).

YOLOv5, launched in 2020 by Glen Jocher, introduced 
CSPDarknet as a backbone, improving computational efficiency 
(Ultralytics, 2021; Jocher et al., 2020). YOLOv8 (2023) added the C2f 
module and advanced context fusion for enhanced object detection 
(Jegham et al., 2024). YOLOv11 (2024) further incorporated the 
C2PSA module—combining partial structures and self-attention 

for better detection of small or obscured features (Jocher and 
Qiu, 2024).

Mean average precision (mAP) is the preferred evaluation 
metric in object detection due to class imbalance challenges 
(Vijayakumar and Vairavasundaram, 2024). In our results, YOLOv5 
yielded mAP 0.969 and F1-score 0.9625; YOLOv8 achieved 
mAP 0.986 and F1-score 0.9216; YOLOv11 reached mAP 0.952 
with F1-score 0.945. YOLOv8 performed most consistently and 
accurately, aligning with previous findings (Fitria et al., 2024; 
Deepho et al., 2024; Bonfanti-Gris et al., 2024).

Though YOLOv11 had the fastest inference time (27 ms), 
it showed greater accuracy and variability, raising stability 
concerns. Özcan et al. (2024) similarly observed YOLOv8 
outperforming YOLOv11 in dental landmark detection. Despite 
YOLOv11’s efficient C3k2 architecture, YOLOv8 maintained 
superior reliability.

All models showed peak performance in Stage 3 detection 
(mAP: 0.995), likely due to the distinct radiographic signs of 
complete fusion. While results varied in other stages, YOLOv8 
outperformed others, and YOLOv11 had the lowest sensitivity.

In this study, experts achieved slightly higher sensitivity and 
accuracy than the AI models, particularly in Stage 0 and Stage 3, 
where their performance was perfect. These differences are expected, 
as the AI models were trained on expert-labeled data, thereby 
validating the reliability of the ground truth used for training. Most 
FN and FP results produced by the AI corresponded to borderline 
cases or image artifacts, which are typically recognizable by 
experienced observers. This suggests that AI errors are not arbitrary 
but remain visually interpretable, supporting the complementary 
role of expert review. For this reason, the most effective diagnostic 
workflow would involve AI providing a preliminary classification 
subsequently reviewed and confirmed by experts, combining the 
reproducibility and efficiency of AI with the diagnostic assurance 
of human expertise. It should also be noted that AI performance 
was calculated on the test dataset, whereas expert sensitivity and 
specificity were derived from the entire dataset, limiting direct 
comparability. Slightly higher values in expert evaluation should 
therefore be seen not as a shortcoming of AI but as confirmation 
of the reliability of expert annotations. The high concordance 
between experts and AI highlights the reproducibility of the system 
and its potential to replicate expert-level staging in a rapid and 
automated manner.

The main study limitation was the difficulty of assembling 
a large, balanced dataset due to age restrictions and radiation 
concerns. Pediatric images also showed motion artifacts and 
anatomical variation, affecting generalizability. Still, the models 
performed robustly. Future work should involve larger, multi-center 
datasets to validate these findings. 

5 Conclusion

Ultralytics’ YOLO models (YOLOv5, YOLOv8, and YOLOv11) 
accurately detect SOS fusion stages in CBCT images, with mAP 
scores above 95% and F1-scores over 90%. These AI-based 
approaches enhance growth monitoring and early diagnosis of 
craniofacial anomalies. YOLOv8’s superior performance highlights 
the importance of model selection in improving treatment
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outcomes. The study demonstrates the potential of deep learning 
in medical imaging and suggests that future research with larger 
datasets and broader clinical applications could lead to widespread 
clinical adoption of these models.
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