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Detection of spheno-occipital
synchondrosis fusion stages
using artificial intelligence
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Introduction: Accurate evaluation of the spheno-occipital synchondrosis (SOS)
is important for growth assessment, early detection of craniofacial anomalies,
and reliable forensic age estimation.

Methods: This study applied three deep learning models—YOLOvV5, YOLOVS,
and YOLOvl1l—to cone-beam computed tomography (CBCT) sagittal images
from 1,661 individuals aged 6-25 years, aiming to automate SOS fusion stage
classification. Model performance was compared in terms of detection accuracy
and processing speed.

Results: All models achieved high accuracy, with a mean average precision
(MAP) of 0.995 in complete fusion (Stage 3). YOLOv8 demonstrated the most
consistent balance of precision and recall, while YOLOv11 achieved the fastest
inference time (27 ms). YOLOV5 excelled in specific stages with perfect F1-
scores.

Discussion: These findings demonstrate that YOLO-based Al models can
provide precise, rapid, and reproducible SOS assessments, offering valuable
support for both clinical decision-making and forensic investigations.

KEYWORDS

growth and development, craniofacial anomaly, spheno-occipital synchondrosis, YOLO,
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1 Introduction

Craniofacial growth is a complex biological process influenced by genetic,
environmental, and functional factors. The three synchondroses of the cranial
base—spheno-ethmoidal, inter-sphenoid, and spheno-occipital synchondroses (SOS)are
significant growth centers, with the SOS being the last to close (Krishan and Kanchan,
2013; Singh et al,, 2025). The spheno-occipital synchondrosis (SOS), a cartilaginous
joint between the sphenoid and occipital bones, plays a crucial role in this process.
As a key growth center, SOS facilitates the extension of the cranial base axis, enabling
the development of teeth and alveoli and thus contributing to craniofacial formation
(Dalili Kajan et al., 2021; Funato et al., 2020).

The cranial base represents the first stable structure in craniofacial growth, rather
than the occipital bone. The maxilla usually grows downward and forward as described
by classic implant studies (Bjork, 1955; Melsen, 1974; Solow, 1980), and its positional
changes are largely influenced by remodeling and displacement relative to the cranial
base rather than direct growth at the spheno-occipital synchondrosis (SOS). Growth at
the SOS primarily contributes to the elongation of the posterior cranial base and the
flexure angle between the anterior and posterior cranial base, which in turn may affect the
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spatial relationship of the mandible and temporal bone relative to
the cranial base (Halpern, 2014; Demirturk Kocasarac et al., 2016;
Sinanoglu et al., 2016; Cendekiawan et al., 2010; Nie, 2005).

In skeletal Class III malocclusion, early fusion or reduced growth
potential at the SOS has been linked to a shorter posterior cranial
base and a more acute cranial base angle, leading to a retruded
maxilla and a forward-positioned mandible (Singh et al., 2025;
Halpern, 2014; Cendekiawan et al.,, 2010). Clinical and imaging
studies have consistently demonstrated distinctive cranial base
features in Class III patients, such as shorter posterior cranial
base length during the prepubertal period and altered mandibular
positioning (Yang et al., 2016; Singh et al., 2025). However, Yang
et al. reported that the timing and fusion patterns of the SOS were
not significantly different between Class I and Class III groups,
suggesting that while SOS maturation contributes to cranial base
morphology, it is unlikely to act as the sole determinant of sagittal
jaw discrepancies.

Thus, the importance of SOS fusion and growth direction in
Class IIT malocclusion lies in their potential to influence cranial
base angulation and mandibular displacement, rather than directly
altering maxillary growth direction. This perspective highlights the
cranial base as a key mediator of skeletal pattern, whereas the maxilla
continues its downward and forward growth trajectory relative to
this stable base.

Fusion of the SOS occurs

than other midline

synchondroses. While the spheno-ethmoidal synchondrosis (SES)

later

typically fuses by age six and the intersphenoid synchondrosis (ISS)
at birth, SOS generally fuses between ages 12 and 15 (Evli et al.,
2025). However, its exact timing is debated, with reports ranging
from 8 to 21years (Nie, 2005; Hoshino et al, 2022). Because
SOS is the last cranial base synchondrosis to close, it provides
a unique window for growth assessment. Its maturation stages
have been linked to skeletal maturity and can offer valuable
insight for treatment timing, particularly in orthodontic and
orthopedic interventions such as headgear therapy and rapid
maxillary expansion (Halpern, 2014). If performed before SOS
fusion, these techniques can temporarily open or influence the
synchondrosis, facilitating maxillary displacement and alveolar
adaptation (Halpern, 2014).

In craniofacial syndromes, midface hypoplasia is believed to
stem from early or atypical SOS ossification and disrupted cranial
base growth (Sinanoglu et al., 2016). Aberrant fusion may indicate
underlying defects; in syndromes like Apert, Crouzon, and Muenke,
premature SOS closure correlates with midfacial underdevelopment
(Goldstein et al., 2014; McGrath et al., 2012; Tahiri et al., 2014).

Advances in artificial intelligence (AI) have enabled the
use of machine learning in craniofacial research to predict
growth patterns. Al aids in diagnosing craniofacial anomalies
and evaluating interventions like rapid maxillary expansion
(Bazargani etal., 2013; Geisler et al., 2021). Leveraging large datasets
and imaging, Al improves diagnostic accuracy and treatment
planning in orthodontics and craniofacial surgery.

Given the clinical importance of SOS fusion, accurately
identifying its stages is key for tracking development and detecting
anomalies early. Cone-beam computed tomography (CBCT) offers
high-resolution imaging to assess SOS fusion precisely. This study
aims to apply Al algorithms to classify SOS fusion on CBCT images
(CBCTIs) and examine its correlation with growth periods. We
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hypothesize that Al-based evaluation will support early anomaly
detection, leading to better diagnosis and treatment planning.

2 Materials and methods

2.1 Ethics approval and sample size
determination

This thesis study received ethical approval from the Local Non-
Drug and Non-Medical Device Research Ethics Committee on
25 January 2024, with decision number 2024/363. All procedures
adhered to the principles of the Declaration of Helsinki.

Based on a one-sided independent sample t-test with a 95%
confidence level, 95% test power, and an effect size of d = 0.518,
it was determined that a minimum of 85 participants per group
was needed (Geng et al., 2024).

2.2 Image collection and inclusion criteria

This retrospective study evaluated CBCT images (CBCTIs)
acquired between 2020 and 2024 from the Departments of
Dentomaxillofacial Radiology at Necmettin Erbakan University
Faculty of Dentistry and Ankara University Faculty of Dentistry.
Included were sagittal section CBCTIs from individual aged 6-25
that clearly showed the spheno-occipital synchondrosis (SOS) with
high diagnostic quality. Images were excluded if they:

« Were from individuals over age 25,

 Showed congenital/acquired maxillofacial deformities,

« Had large pathological lesions or trauma history,

o Showed evidence of head and neck surgery, radiotherapy, or
chemotherapy,

« Came from syndromic cases impacting the craniofacial region,

« Or had insufficient resolution, artifacts, or incomplete SOS
depiction.

To ensure image quality and consistency, all CBCTIs were
standardized. Technical settings and imaging protocols were
selected to minimize variables that could affect SOS visibility.

2.3 Radiographic processing, data labeling
and preparation

Images were acquired using three CBCT devices: J. Morita 3D
Accuitomo 170, Newtom Go, and Newtom Giano HR, all operating
at 90 kVp, 5 mA, 17.5s, with a 0.25 mm voxel size. DICOM files
(.dem) were viewed on a 27-inch UltraSharp LED TFT screen (2560
x 1440, 3.7 MP). Sagittal slices showing SOS were saved as 2D JPEG
images (600 dpi, 1024 x 640 pixels) after contrast and brightness
adjustments for optimal AI input standardization.

From 262 CBCT datasets, 1,661 sagittal 2D cross-sectional
images were extracted. These were classified into four SOS fusion
stages based on the Fernandez-Pérez et al. (2016) system:

« Stage 0: No fusion,
o Stage 1: Endocranial fusion visible,
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FIGURE 1
SOS fusion stages and polygonal segmentations of stages.

Stage 3

Stage 2

o Stage 2: Ectocranial fusion observed,
o Stage 3: Complete fusion with no gap.

The distribution was as follows: 379 images (Stage 0), 725 (Stage
1), 144 (Stage 2), and 413 (Stage 3).

In our study, all dataset labeling and model development
were performed through the CranioCatch artificial intelligence
platform (accessible at https://dentalai.ogu.edu.tr/), which is a
web-based system designed for medical and dental imaging
analysis. This platform provides tools for image annotation,
dataset management, and AI model training, eliminating the
need for direct coding by the researchers. All data were
anonymized before being uploaded to the CranioCatch platform
(Eskisehir, Turkiye).

Images were labeled using polygonal segmentation in
CranioCatch. Structures like the sphenoid body, SOS, and occipital
bone were outlined, including cortical boundaries. Labeling was
done in four classes (Stage 0-3) (Figure 1). All segmentations were
reviewed by two observers—one with 7 years and another with
15 years of experience. Intra- and inter-observer agreement values
were excellent (0.995 and 0.983, respectively) (Table 1).

Preprocessing included sharpening unclear images and resizing
for model training. Finalized data were split into training (1,329),
validation (166), and testing (166) subsets. Specific allocations were:

o Stage 0: 300 train, 46 validation, 33 test
o Stage 1: 585 train, 67 validation, 73 test
o Stage 2: 119 train, 11 validation, 14 test
o Stage 3: 325 train, 42 validation, 46 test

Frontiers in Physiology

2.4 Segmentation model training

Images were resized to 1024 x 640 pixels for training with
convolutional neural network (CNN) models on the PyTorch
platform. YOLOv5, YOLOv8, and YOLOvll—modern, single-
stage object detection algorithms—were used due to their speed
and accuracy.

Each model underwent 600 training steps, using Stochastic
Gradient Descent (SGD) with a batch size of 4. The most successful
training step was saved as “best.pt” (124.9 MB). During the test
phase, IoU and stability threshold values were set to 0.5.

2.5 Model performance evaluation

Model success was assessed with a confusion matrix,
comparing Al predictions to expert-labeled data. Key evaluation
metrics included:

o True Positive (TP): Correct identification of fusion stages.

o False Positive (FP): Incorrect classification of non-fusion
regions.

« False Negative (FN): Missed detections of actual fusion areas.

From these, the following performance metrics were calculated:

o Sensitivity (Recall) = TP/(TP + FN): Indicates the models
ability to correctly detect SOS fusion.

o Precision = TP/(TP + FP): Reflects how many identified
regions were truly SOS fusion stages.
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TABLE 1 Performance metrics calculated using 50% loU threshold of YOLOV5, YOLOVS8, and YOLOv11 models, with comparable values from experts

and Al models.

Al models ‘ Experts
YOLOv5 TP FP FN Sensitivity Accuracy F1 Score
General 154 12 0 1 0.92771084 0.9625 Int
atras TP FP FN Sensitivity Accuracy F1 Score
observer
Stage 0 27 6 6 0.81818182 0.81818182 0.81818182
Stage 1 68 5 5 0.93150685 0.93150685 0.93150685
Stage 2 13 1 1 0.92857143 0.92857143 0.92857143 General 1,652 4 5 0.994 0.995 0.995
Stage 3 46 0 0 1 1 1 Stage 0 300 0 0 1.000 1.000 1.000
YOLOv8 TP FP FN Sensitivity Accuracy F1 Score Stage 1 580 2 3 0.991 0.991 0.991
General 153 13 13 0.92168675 0.92168675 0.9216867 Stage 2 118 1 0 0.992 0.992 0.992
Stage 0 29 4 4 0.87878788 0.87878788 0.8787878 Stage 3 325 0 0 1.000 1.000 1.000
Stage 1 68 5 5 0.93150685 0.93150685 0.9315068
Stage 2 13 1 1 0.92857143 0.92857143 0.9285714 Int
ater- TP FP FN Sensitivity Accuracy F1 Score
observer
Stage 3 43 3 3 0.93478261 0.93478261 0.9347826
YOLOv11 TP FP FN Sensitivity Accuracy F1 Score
General 157 9 9 0.94578313 0.94578313 0.9457831 General 1,633 13 15 0.983 0.983 0.983
Stage 0 31 2 2 0.93939394 0.93939394 0.9393939 Stage 0 300 0 0 1.000 1.000 1.000
Stage 1 69 4 4 0.94520548 0.94520548 0.9452055 Stage 1 567 9 9 0.969 0.969 0.969
Stage 2 12 2 2 0.85714286 0.85714286 0.8571429 Stage 2 115 3 1 0.966 0.966 0.966
Stage 3 45 1 1 0.97826087 0.97826087 0.9782609 Stage 3 325 0 0 1.000 1.000 1.000

ToU, intersection over union; TP, true positive; FP, false positive; FN, false negative.

e F1 Score = 2 x (Precision x Recall)/(Precision + Recall):
Balances precision and recall for overall accuracy.

o Mean Average Precision (mAP): A benchmark metric that
summarizes model performance across multiple thresholds
and is widely used in object detection tasks.

These metrics collectively ensured a thorough validation of
model reliability and diagnostic utility.

3 Results

3.1 YOLOVS labeling model training and
test results

In the YOLOV5 model, training was conducted using 1,329
images, and performance was tested on 166 images. Key training
metrics showed that the train/box_loss and val/box_loss values were
0.01084 and 0.00726, respectively, indicating high segmentation
accuracy. Similarly, train/cls_loss and val/cls_loss were 0.00735
and 0.00436, suggesting effective object classification. The gradual
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decrease in loss values across epochs reflected a successful
learning process.

Figure 2 presents the precision-sensitivity curve at the 0.5 IoU
threshold. The largest area under the curve was observed in Stage 3,
followed by Stage 1, Stage 0, and Stage 2. The average mAP value was
0.969, showing strong model performance. High precision reflects a
low FP rate, and high sensitivity indicates a low FN rate.

Model outputs were evaluated as True Positive (TP), False Positive
(FP), or False Negative (FN) depending on their correspondence with
expert annotations (Table 1). Confusion matrix analysis revealed an
overall F1-score of 0.9625. The highest performance was observed in
Stage 3, with 100% recognition. Stage 1 and Stage 2 followed, while
Stage 0 had the lowest performance (F1 = 0.81).

3.2 YOLOVS labeling model training and
test results

YOLOVS8 was also trained with 1329 images and tested on 166.
0.31148 and val/box_
0.31394 and val/cls_loss =

Training metrics showed train/box_loss =
loss = 0.46831, with train/cls_loss =
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(a) Precision-sensitivity curve of the YOLOVS. (b) Precision-sensitivity curve of the YOLOVS. (c) Precision-sensitivity curve of the YOLOv11.

0.29065. These values, though higher than YOLOvV5’s, remained
low and indicated stable training. A unique metric in YOLOVS,
dfl_loss, was 0.86602 (train) and 1.0124 (val), suggesting the
model effectively adapted to detecting features at varying shapes
and sizes.

Figure 2 shows that YOLOV8 reached its highest mAP (0.995)
in Stages 2 and 3, followed by Stage 1 (0.981) and Stage 0 (0.974).
The average mAP across all stages was 0.986, indicating excellent
detection ability.

Evaluation metrics classified model predictions as TP, FP,
or FN, compared to radiologist labels (Table1). The overall
Fl-score was 0.92. Stage 3 achieved the highest F1 (0.9347),
followed closely by Stage 1 (0.9315), Stage 2 (0.92), and Stage
0 (0.87), indicating consistently high performance across all
fusion stages.

3.3 YOLOV11 labeling model training and
test results

The YOLOv11l model was trained and validated using the

same data distribution. During training, the train/box_loss and
val/box_loss values were 0.36598 and 0.47306, respectively, and
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train/cls_loss and val/cls_loss were 0.33717 and 0.35153. The dfl_
loss values were 0.88558 (train) and 0.99697 (val), reflecting
high adaptability with minimal error in handling complex image
structures.

As shown in Figure2, YOLOvIl achieved the highest
mAP in Stage 3 (0.995), followed by Stage 0 (0.946), Stage
1 (0.935), and Stage 2 (0.933). The overall average mAP
was 0.952.

According to model evaluation (Table 1), YOLOvII achieved
an overall Fl-score of 0.94. The stage-wise breakdown revealed
Stage 3 had the highest F1 (0.97), followed by Stage 1 (0.94),
Stage 0 (0.93), and Stage 2 (0.85). Although its accuracy was
slightly lower than YOLOVS, it maintained strong consistency across
most categories.

3.4 Comparison of performance times of
YOLO models

Table 2 summarizes the processing times of the three models.
YOLOV5 recorded the longest average time at 40 ms per image,
followed by YOLOV8 at 30 ms, and YOLOv11 with the shortest
time of 27 ms. Although YOLOvVI1 offered faster inference,
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TABLE 2 Comparison of the results of YOLO models according to SOS
fusion stages.

Stages ‘ YOLOvV5 ‘ YOLOVS8 YOLOv11l
mAP: 0.969 mAP: 0.974 mAP: 0.946
Stage 0
F1:0.81 F1:0.878 F1:0.939
mAP: 0.971 mAP: 0.981 mAP: 0.935
Stage 1
F1:0.93 F1:0.931 F1:0.945
mAP: 0.942 mAP: 0.995 mAP: 0.933
Stage 2
F1:0.92 F1:0.928 F1:0.85
mAP: 0.995 mAP: 0.995 mAP: 0.995
Stage 3
Fl:1 F1:0.934 F1:0.9782

YOLOv8 showed better overall balance between speed and
accuracy.

3.5 Comparison of YOLO models by SOS
fusion stage

As detailed in Table 2, YOLOVS consistently outperformed the
others in accuracy and stability across SOS fusion stages. For Stage
0, YOLOv8 had the highest mAP (0.974), followed by YOLOV5
(0.969) and YOLOV11 (0.946). In Stage 1, YOLOV8 again led with
a mAP of 0.981. For Stage 2, YOLOVS achieved a peak mAP of
0.995, outperforming both YOLOv5 and YOLOv11. In Stage 3, all
models reached a shared maximum mAP of 0.995, though YOLOv5
achieved a perfect F1 score of 1, showing its strength in this stage.

4 Discussion

Since the beginning of civilization, technological progress
has significantly eased workloads. Innovations like electronics,
automobiles, computers, and the Internet have transformed
numerous sectors, including healthcare, education, and media.
Dentistry, which increasingly utilizes digital workflows, has
also embraced artificial intelligence (AI) to improve diagnosis,
treatment planning, image interpretation, patient management,
and automation, thus enhancing oral healthcare quality (Kaya and
Koc, 2024; Rahim et al., 2024).

Accurate diagnosis and planning are crucial in clinical decision-
making. Studies show that Al-assisted cephalometric analysis (CA)
offers more consistent results than manual methods (Lin et al,,
2021; Nishimoto et al, 2020; Rahim et al., 2024). In patients
undergoing skeletal maturation, Al also helps estimate growth
rate and development by analyzing skeletal age, cervical vertebrae,
skeletal class, and surgical outcomes (Amasya et al., 2020; Lin et al.,
2021; Yu et al., 2020). These capabilities are also valuable in forensic
dentistry, especially for age estimation (De Tobel et al., 2017).

Dental age and vertebral development are key in orthodontic
planning, particularly since the spheno-occipital synchondrosis
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(SOS) is the last cranial synchondrosis to fuse. Conventional skeletal
maturation indicators such as the hand-wrist (HW) and cervical
vertebrae maturation (CVM) methods have been widely applied,
but both present significant limitations. The HW method requires
expert knowledge, is time-consuming, has moderate accuracy, and
exposes patients to additional radiation. The CVM method, while
more convenient, suffers from poor reproducibility, heavy reliance
on clinician experience, and limited ability to predict craniofacial
growth, especially in female patients with Class II malocclusion.
Consequently, neither method guarantees a fully reliable tool for
skeletal age assessment, and the orthodontic community recognizes
the need for more accurate alternatives (Al-Gumaei et al., 2023).

Clinically, the accurate evaluation of craniofacial growth
and treatment response requires stable reference structures for
superimposition. Traditional cephalometric superimposition
techniques rely on landmarks such as sella, nasion, or basion,
but these are subject to growth-related positional changes, which
reduces precision and introduces systematic error. Recent advances
such as Digital Image Correlation (DIC) applied to cephalometric
imaging enable superimposition on growth-stable cranial base
structures without reliance on landmarks. DIC with Walker’s
Point Line Combination (WPLC) has shown the highest precision,
surpassing manual and conventional methods. This suggests that
Al-driven approaches based on cranial base maturation can reduce
observer bias, improve reproducibility, and allow more accurate
longitudinal monitoring of growth and treatment outcomes.
Looking ahead, combining Al-based SOS classification with
advanced digital superimposition methods like DIC may create
a comprehensive growth analysis framework that integrates the
strengths of CBCT-based SOS staging with stable cranial base
references, ultimately providing a reproducible tool for orthodontic
and surgical applications (Danz et al., 2024).

In this context, SOS evaluation with CBCT represents
a promising approach, as it provides high-resolution three-
dimensional imaging of cranial base maturation and offers a valid
and reliable indicator of skeletal maturity compared with HW,
CVM, and chronological age (Al-Gumaei et al., 2023). Beyond
its diagnostic accuracy, integrating AT models to classify SOS fusion
stages on CBCT images may enhance orthodontic assessment,
improve the prediction of craniofacial syndromes, and support
more precise evaluation of developmental completion. Moreover,
this approach holds potential value in forensic applications, where
accurate skeletal maturity assessment is essential.

The SOS is a cartilaginous joint between the sphenoid and
occipital bones and serves as a critical cranial base growth center
(Alhazmi et al, 2017). Its timely fusion shapes cranial base
morphology and impacts midfacial development. Premature fusion
has been linked to midface hypoplasia (Tahiri et al., 2014), and its
timing is crucial for adolescent age estimation in forensic science
(Sinanoglu et al, 2016). However, studies vary in SOS fusion
timelines due to differing methodologies like autopsy, histology, and
imaging, including CT and CBCT (Kahana et al., 2003). Among
these, 3D imaging modalities, especially CBCT—offer greater
accuracy due to high-resolution capabilities (Alhazmi et al., 2017).

Despite the importance of SOS fusion assessment, no standard
staging system is universally accepted. Different studies use varied
classifications (Bassed et al., 2010; Franklin and Flavel, 2014; Shirley
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and Jantz, 2011). Our study adopts Franklin and Flavel (2014) four-
stage classification system. Fusion generally occurs between ages
11-14 in females and 13-16 in males (Alhazmi et al.,, 2017), yet
collecting sufficient data remains difficult due to CBCT’s limited use
in children because of radiation exposure risks.

Comparable findings were reported by Al-Gumaei et al. (2023),
who also applied the Franklin and Flavel classification system but
labeled the stages from 1 to 4 instead of 0-3. When aligning
their Stage 1 with our Stage 0, their results demonstrated that
SOS maturation stages represent valid and reliable indicators of
maxillary skeletal growth in both genders. Notably, they observed
greater increases in maxillary length and height between stages
2 and 3 than between earlier or later stages, whereas changes in
maxillary width were more pronounced between stages 1 (our Stage
0) and 2. Growth activity appeared to peak while the SOS was
still fusing (particularly stages 2 and 3), with reduced increments
after complete fusion (stage 4). Moreover, female patients exhibited
earlier acceleration of growth compared with males when assessed
by chronological age, although this sex difference was not observed
when staging was based directly on SOS maturation. These findings
reinforce the clinical relevance of SOS staging as a practical
indicator of skeletal maturity, highlighting its potential to optimize
treatment timing in orthodontic and orthopedic interventions. In
addition, Geng et al. (2024), using the Lottering SOS classification,
provided further insight into maxillomandibular growth dynamics
across fusion stages. They found that in girls, sagittal maxillary
growth remained active until SOS stage 3, slowed at stages 4-5,
and continued to decline at stages 5-6. In boys, sagittal maxillary
growth was stable until stage 4, with deceleration beginning from
stages 5-6. Mandibular growth in both genders followed a pattern
of increasing, accelerating, and then decelerating relative growth
rates (RGRs) across SOS stages 2-6, with peak mandibular length
observed between stages 3-4 and 4-5. These results highlight that
SOS maturation reflects not only maxillary but also mandibular
growth potential, further underscoring its clinical significance in
timing interventions.

As object detection technologies have evolved, convolutional
neural networks (CNNs) have replaced earlier algorithms. CNNs
offer higher accuracy, particularly with large datasets and adequate
computing power (Zhang and Hong, 2019). Object detection
models are grouped into single-stage (e.g., YOLO, SSD) and two-
stage (e.g., RCNN, Faster RCNN) approaches. Single-stage models
prioritize speed with acceptable accuracy, while two-stage models
are more precise but slower (Jegham et al., 2024; Vijayakumar and
Vairavasundaram, 2024).

This study utilized three Ultralytics-supported single-stage
models—YOLOvV5, YOLOvVS8, and YOLOvll. The original
YOLO (You Only Look Once) introduced by Redmon (2016)
revolutionized object detection by predicting bounding boxes and
class probabilities simultaneously (Hussain, 2023). To maintain
comparability, unsupported versions (e.g., YOLOVI, v2, v4, v6, v7)
were excluded due to architectural differences (Jegham et al., 2024).

YOLOVS5, launched in 2020 by Glen Jocher, introduced
CSPDarknet as a backbone, improving computational efficiency
(Ultralytics, 2021; Jocher et al., 2020). YOLOvS (2023) added the C2f
module and advanced context fusion for enhanced object detection
(Jegham et al., 2024). YOLOvI11 (2024) further incorporated the
C2PSA module—combining partial structures and self-attention
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for better detection of small or obscured features (Jocher and
Qiu, 2024).

Mean average precision (mAP) is the preferred evaluation
metric in object detection due to class imbalance challenges
(Vijayakumar and Vairavasundaram, 2024). In our results, YOLOvV5
yielded mAP 0.969 and Fl-score 0.9625; YOLOv8 achieved
mAP 0.986 and Fl-score 0.9216; YOLOv11 reached mAP 0.952
with Fl-score 0.945. YOLOv8 performed most consistently and
accurately, aligning with previous findings (Fitria etal., 2024;
Deepho et al., 2024; Bonfanti-Gris et al., 2024).

Though YOLOvI1 had the fastest inference time (27 ms),
it showed greater accuracy and variability, raising stability
concerns. Ozcan et al. (2024) similarly observed YOLOvVS
outperforming YOLOVI1 in dental landmark detection. Despite
YOLOv11’s efficient C3k2 architecture, YOLOv8 maintained
superior reliability.

All models showed peak performance in Stage 3 detection
(mAP: 0.995), likely due to the distinct radiographic signs of
complete fusion. While results varied in other stages, YOLOVS
outperformed others, and YOLOvI11 had the lowest sensitivity.

In this study, experts achieved slightly higher sensitivity and
accuracy than the AI models, particularly in Stage 0 and Stage 3,
where their performance was perfect. These differences are expected,
as the AI models were trained on expert-labeled data, thereby
validating the reliability of the ground truth used for training. Most
FN and FP results produced by the AI corresponded to borderline
cases or image artifacts, which are typically recognizable by
experienced observers. This suggests that Al errors are not arbitrary
but remain visually interpretable, supporting the complementary
role of expert review. For this reason, the most effective diagnostic
workflow would involve AI providing a preliminary classification
subsequently reviewed and confirmed by experts, combining the
reproducibility and efficiency of AI with the diagnostic assurance
of human expertise. It should also be noted that AI performance
was calculated on the test dataset, whereas expert sensitivity and
specificity were derived from the entire dataset, limiting direct
comparability. Slightly higher values in expert evaluation should
therefore be seen not as a shortcoming of AI but as confirmation
of the reliability of expert annotations. The high concordance
between experts and Al highlights the reproducibility of the system
and its potential to replicate expert-level staging in a rapid and
automated manner.

The main study limitation was the difficulty of assembling
a large, balanced dataset due to age restrictions and radiation
concerns. Pediatric images also showed motion artifacts and
anatomical variation, affecting generalizability. Still, the models
performed robustly. Future work should involve larger, multi-center
datasets to validate these findings.

5 Conclusion

Ultralytics' YOLO models (YOLOv5, YOLOVS, and YOLOvI11)
accurately detect SOS fusion stages in CBCT images, with mAP
These Al-based
approaches enhance growth monitoring and early diagnosis of

scores above 95% and Fl-scores over 90%.

craniofacial anomalies. YOLOVS8’s superior performance highlights
the importance of model selection in improving treatment
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outcomes. The study demonstrates the potential of deep learning
in medical imaging and suggests that future research with larger
datasets and broader clinical applications could lead to widespread
clinical adoption of these models.

Data availability statement

The datasets generated and analyzed during the current study
are not publicly available due to privacy and ethical restrictions
but are available from the corresponding author on reasonable
request.

Ethics statement

The studies involving humans were approved by Necmettin
Erbakan University Non-Drug and Non-Medical Device Research
Ethics Committee. The studies were conducted in accordance
with the local legislation and institutional requirements. Written
informed consent for participation was not required from the
participants or the participants’ legal guardians/next of kin
in accordance with the national legislation and institutional
requirements.

Author contributions

SU: Validation, Project administration, Visualization, Writing
- original draft, Conceptualization, Data curation, Writing -
review and editing, Investigation, Methodology. GM: Project
administration, Methodology, Conceptualization, Supervision,
Formal Analysis, Writing - review and editing. CE: Writing — review
and editing, Investigation, Visualization, Data curation.

References

Al-Gumaei, W. S., Long, H., Al-Attab, R., Elayah, S. A., Alhammadi, M. S.,
Almagrami, I, et al. (2023). Comparison of three-dimensional maxillary growth across
spheno-occipital synchondrosis maturation stages. BMC Oral Health 23 (1), 100.
doi:10.1186/512903-023-02774-w

Alhazmi, A., Vargas, E., Palomo, J. M., Hans, M., Latimer, B., and Simpson, S. J.
(2017). Timing and rate of spheno-occipital synchondrosis closure and its relationship
to puberty. PLoS ONE 12, e0183305. doi:10.1371/journal.pone.0183305

Amasya, H., Cesur, E, Yildinm, D, and Orhan, K. (2020). Validation of
cervical vertebral maturation stages: artificial intelligence vs human observer visual
analysis. Am. J. Orthod. Dentofac. Orthop. 158, e173-e179. doi:10.1016/j.ajodo.
2020.08.014

Bassed, R. B., Briggs, C., and Drummer, O. H. (2010). Analysis of time of closure of
the spheno-occipital synchondrosis using computed tomography. Forensic Sci. Int. 200,
161-164. doi:10.1016/j.forsciint.2010.04.009

Bazargani, F,, Feldmann, I., and Bondemark, L. (2013). Three-dimensional analysis
of effects of rapid maxillary expansion on facial sutures and bones: a systematic review.
Angle Orthod. 83,1074-1082. doi:10.2319/020413-103.1

Bjork, A. (1955). Facial growth in man studied with the aid of metallic implants. Acta
Odontol. Scand. 13, 9-34. d0i:10.3109/00016355509028170

Bonfanti-Gris, M., Herrera, A., Paraiso-Medina, S., Alonso-Calvo, R., Martinez-Rus,
F, and Pradies, G. (2024). Performance evaluation of three versions of a convolutional
neural network for object detection and segmentation using a multiclass and reduced
panoramic radiograph dataset. J. Dent. 144, 104891. doi:10.1016/j.jdent.2024.104891

Frontiers in Physiology

08

10.3389/fphys.2025.1682917

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This research
was supported by Necmettin Erbakan University Scientific
Research Projects Coordination Unit (BAP) under project number
24DU24002.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Cendekiawan, T., Wong, R. W,, and Rabie, A. B. M. (2010). Relationships between
cranial base synchondroses and craniofacial development: a review. Open Anat. J. 2,
67-75. doi:10.2174/1877609401002010067

Dalili Kajan, Z., Hadinezhad, A., Khosravifard, N., Gholinia, E, Rafiei, E., and
Ghandari, E (2021). Fusion patterns of the spheno-occipital synchondrosis in the age
range of 9-22: a computed tomography analysis. Orthod. Craniofacial Res. 24, 405-413.
doi:10.1111/0cr.12455

Danz, J. C., Stockli, S., and Rank, C. P. (2024). Precision and accuracy of craniofacial
growth and orthodontic treatment evaluation by digital image correlation: a prospective
cohort study. Front. Oral Health 5, 1419481. doi:10.3389/froh.2024.1419481

Deepho, C., Khlaisuwan, V., Pengchai, C., Intarachana, W., Rakchuai, P, Kajhan, K.,
et al.(2024). “Toward the development of an oral-diagnosis framework: a case study of
teeth segmentation and numbering in bitewing radiographs via YOLO models,” in IEEE
International Conference on Cybernetics and Innovations (ICCI). IEEE, 1-6.

De Tobel, J., Radesh, P,, Vandermeulen, D., and Thevissen, P. W. (2017). An automated
technique to stage lower third molar development on panoramic radiographs for age
estimation: a pilot study. J. Forensic Odonto-Stomatol. 35, 42-54.

Demirturk Kocasarac, H., Sinanoglu, A., Noujeim, M., Helvacioglu Yigit, D., and
Baydemir, C. (2016). Radiologic assessment of third molar tooth and spheno-occipital
synchondrosis for age estimation: a multiple regression analysis study. Int. J. Leg. Med.
130, 799-808. doi:10.1007/s00414-015-1298-8

Evli, C., Uzun, S., and Magat, G. (2025). Evaluation of growth and development
period according to spheno-occipital synchondrosis fusion stages in cone-beam

frontiersin.org


https://doi.org/10.3389/fphys.2025.1682917
https://doi.org/10.1186/s12903-023-02774-w
https://doi.org/10.1371/journal.pone.0183305
https://doi.org/10.1016/j.ajodo.2020.08.014
https://doi.org/10.1016/j.ajodo.2020.08.014
https://doi.org/10.1016/j.forsciint.2010.04.009
https://doi.org/10.2319/020413-103.1
https://doi.org/10.3109/00016355509028170
https://doi.org/10.1016/j.jdent.2024.104891
https://doi.org/10.2174/1877609401002010067
https://doi.org/10.1111/ocr.12455
https://doi.org/10.3389/froh.2024.1419481
https://doi.org/10.1007/s00414-015-1298-8
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Uzun et al.

computed tomography with Image] program. Sci. Rep. 15, 13821. doi:10.1038/s41598-
025-92098-2

Fernandez-Pérez, M. J., Alarcén, J. A., McNamara, J. A., Velasco-Torres, M.,
Benavides, E., Galindo-Moreno, P, et al. (2016). Spheno-occipital synchondrosis
fusion correlates with cervical vertebrae maturation. PLoS ONE 11, e0161104.
doi:10.1371/journal.pone.0161104

Fitria, M., Elma, Y., Oktiana, M., Saddami, K., Novita, R., Putri, R., et al. (2024).
Technology 1. The Deep Learning Model for Decayed-Missing-Filled Teeth Detection:
A Comparison Between YOLOV5 and YOLOVS. Jord. J. Comput. Inf. Technol. 10 (3),
335-350.

Franklin, D., and Flavel, A. (2014). Brief communication: timing of spheno-occipital
closure in modern Western Australians. Am. J. Phys. Anthropol. 153, 132-138.
doi:10.1002/ajpa. 22399

Funato, N., Srivastava, D., Shibata, S., and Yanagisawa, H. (2020). TBX1 regulates
chondrocyte maturation in the spheno-occipital synchondrosis. J. Dent. Res. 99,
1182-1191. doi:10.1177/0022034520925080

Geisler, E. L., Agarwal, S., Hallac, R. R., Daescu, O., and Kane, A. A. (2021). A role
for artificial intelligence in the classification of craniofacial anomalies. J. Craniofac. Surg.
32, 967-969. doi:10.1097/SCS.0000000000007369

Geng, J., Zhao, G., and Gu, Y. (2024). Feasibility of spheno-occipital synchondrosis
fusion stages as an indicator for the assessment of maxillomandibular growth:
a mixed longitudinal study. Orthod. and Craniofacial Res. 27 (4), 589-597.
doi:10.1111/0cr.12774

Goldstein, J. A., Paliga, J. T., Wink, J. D, Bartlett, S. P, Nah, H. D., and Taylor, J.
A. (2014). Earlier evidence of spheno-occipital synchondrosis fusion correlates with
severity of midface hypoplasia in patients with syndromic craniosynostosis. Plast.
Reconstr. Surg. 134, 504-510. doi:10.1097/PRS.0000000000000419

Halpern, R. M. (2014). Spheno-occipital synchondrosis maturation as related to
the development of cervical vertebrae, mandibular canine and chronologic age: a
cone-beam computed tomography analysis.

Hoshino, Y., Takechi, M., Moazen, M., Steacy, M., Koyabu, D., Furutera, T,
et al. (2022). Synchondrosis fusion contributes to the progression of postnatal
craniofacial dysmorphology in syndromic craniosynostosis. J. Anat. 242, 387-401.
doi:10.1111/joa.13790

Hussain, M. (2023). YOLO-v1 to YOLO-v8: the rise of YOLO and its complementary
nature toward digital manufacturing and industrial defect detection. Machines 11, 677.
doi:10.3390/machines11070677

Jegham, N., Koh, C. Y., Abdelatti, M., and Hendawi, A. (2024). Evaluating the
evolution of YOLO (you only look once) models: a comprehensive benchmark study
of YOLOVI11 and its predecessors. Preprint arXiv:2402.12345.

Jocher, G., and Qiu, J. (2024). Ultralytics YOLOv11. Available online at: https://
docs.ultralytics.com/tr/models/yolo11/ (Accessed June 10, 2025).

Jocher, G., Stoken, A., Borovec, J., Changyu, L., Hogan, A., Diaconu, L., et al. (2020).
ultralytics/yolov5: v3.1 - bug fixes and performance improvements. Zenodo. Available
online at: https://zenodo.org/records/4154370 (Accessed October 22, 2025).

Kahana, T., Birkby, W., and Hiss, J. (2003). Estimation of age in adolescents—The
basilar synchondrosis. J. Forensic Sci. 48, 1-5. doi:10.1520/jfs2001400

Kaya, S., and Koc, A. (2024). Radiologic evaluation of associated symptoms
and fractal analysis of unilateral dens invaginatus cases. Oral Radiol. 40, 484-491.
doi:10.1007/s11282-024-00756-4

Krishan, K., and Kanchan, T. (2013). Evaluation of spheno-occipital synchondrosis:
a review of literature and considerations from forensic anthropologic point of view. J.
Forensic Dent. Sci. 5, 72-76. d0i:10.4103/0975-1475.119764

Lin, H. H, Chiang, W. C,, Yang, C. T.,, Cheng, C. T.,, Zhang, T, and Lo, L. J.
(2021). On construction of transfer learning for facial symmetry assessment before

Frontiers in Physiology

09

10.3389/fphys.2025.1682917

and after orthognathic surgery. Comput. Methods Programs Biomed. 200, 105928.
doi:10.1016/j.cmpb.2021.105928

McGrath, J., Gerety, P. A., Derderian, C. A., Steinbacher, D. M., Vossough,
A., Bartlett, S. P, et al. (2012). Differential closure of the spheno-occipital
synchondrosis in syndromic craniosynostosis. Plast. Reconstr. Surg. 130, 681e-68%.
doi:10.1097/PRS.0b013e318267d4c0

Melsen, B. (1974). The cranial base: the postnatal development of the cranial base
studied histologically on human autopsy material. Acta Odontologica Scandinavica.
Supplementum 62. Copenhagen: Munksgaard.

Nie, X. (2005). Cranial base in craniofacial development: developmental features,
influence on facial growth, anomaly, and molecular basis. Ann. Anat. 187, 127-135.
doi:10.1080/00016350510019847

Nishimoto, S., Kawai, K., Fujiwara, T., Ishise, H., and Kakibuchi, M. (2020). Locating
cephalometric landmarks with multi-phase deep learning.

Ozcan, T, Karayilan, R., and Yilmaz, S. (2024). Artificial intelligence-assisted
automatic detection of anatomical landmarks in panoramic radiographs (Panoramik
radyograflarda anatomik yer isaretlerinin yapay zeka destekli otomatik tespiti). Erciyes
University Journal of the Institute of Science and Technology, 40, 535-558.

Rahim, A., Khatoon, R., Khan, T. A, Syed, K., Khan, I, Khalid, T, et al.
(2024). Artificial intelligence-powered dentistry: probing the potential, challenges, and
ethicality of artificial intelligence in dentistry. Digit. Health 10, 20552076241291345.
doi:10.1177/20552076241291345

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once:
unified, real-time object detection. Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
779-788. doi:10.1109/cvpr.2016.91

Shirley, N. R., and Jantz, R. L. (2011). Spheno-occipital synchondrosis fusion
in modern Americans. J. Forensic Sci. 56, 580-585. doi:10.1111/j.1556-4029.
2011.01705.x

Sinanoglu, A., Kocasarac, H. D., and Noujeim, M. (2016). Age estimation by an
analysis of spheno-occipital synchondrosis using cone-beam computed tomography.
Leg. Med. 18, 13-19. doi:10.1016/j.legalmed.2015.11.004

Singh, S., Jain, R. K., Naveed, N., and Balasubramaniam, A. (2025). Spheno-
occipital synchondrosis as a reliable indicator of skeletal maturity: a systematic
review and meta-analysis. J. Dent. Res. Dent. Clin. Dent. Prospects 19 (1), 1-8.
doi:10.34172/joddd.025.41168

Solow, B. (1980). The dentoalveolar compensatory mechanism: background and
clinical implications. Br. J. Orthod. 7 (3), 145-161. doi:10.1179/bjo.7.3.145

Tahiri, Y., Paliga, J. T., Vossough, A., Bartlett, S. P, and Taylor, J. A. (2014). The
spheno-occipital synchondrosis fuses prematurely in patients with Crouzon syndrome
and midface hypoplasia compared with age- and gender-matched controls. J. Oral
Maxillofac. Surg. 72, 1173-1179. doi:10.1016/j.joms.2013.11.015

Ultralytics (2021). YOLOVS5: a state-of-the-art real-time object detection system.
Available online at: https://github.com/ultralytics/yolov5 (Accessed June 10, 2025).

Vijayakumar, A., and Vairavasundaram, S. (2024). YOLO-based object detection
models: a review and its applications. Multimed. Tools Appl. 83 (35), 83535-83574.
doi:10.1007/s11042-024-18872-y

Yang, L. (2016). Fusion pattern of the spheno-occipital synchondrosis in Class I and
Class III malocclusion: a CT study. Angle Orthod. 86 (4), 569-577. doi:10.2319/052218-
386.1

Yu, H., Cho, S., Kim, M., Kim, W,, Kim, J., and Choi, J. (2020). Automated skeletal
classification with lateral cephalometry based on artificial intelligence. J. Dent. Res. 99,
249-256. doi:10.1177/0022034520901715

Zhang, H., and Hong, X. (2019). Recent progresses on object detection: a brief review.
Multimed. Tools Appl. 78, 27809-27847. doi:10.1007/s11042-019-07898-2

frontiersin.org


https://doi.org/10.3389/fphys.2025.1682917
https://doi.org/10.1038/s41598-025-92098-2
https://doi.org/10.1038/s41598-025-92098-2
https://doi.org/10.1371/journal.pone.0161104
https://doi.org/10.1002/ajpa.22399
https://doi.org/10.1177/0022034520925080
https://doi.org/10.1097/SCS.0000000000007369
https://doi.org/10.1111/ocr.12774
https://doi.org/10.1097/PRS.0000000000000419
https://doi.org/10.1111/joa.13790
https://doi.org/10.3390/machines11070677
https://docs.ultralytics.com/tr/models/yolo11/
https://docs.ultralytics.com/tr/models/yolo11/
https://zenodo.org/records/4154370
https://doi.org/10.1520/jfs2001400
https://doi.org/10.1007/s11282-024-00756-4
https://doi.org/10.4103/0975-1475.119764
https://doi.org/10.1016/j.cmpb.2021.105928
https://doi.org/10.1097/PRS.0b013e318267d4c0
https://doi.org/10.1080/00016350510019847
https://doi.org/10.1177/20552076241291345
https://doi.org/10.1109/cvpr.2016.91
https://doi.org/10.1111/j.1556-4029.-✐2011.01705.x
https://doi.org/10.1111/j.1556-4029.-✐2011.01705.x
https://doi.org/10.1016/j.legalmed.2015.11.004
https://doi.org/10.34172/joddd.025.41168
https://doi.org/10.1179/bjo.7.3.145
https://doi.org/10.1016/j.joms.2013.11.015
https://github.com/ultralytics/yolov5
https://doi.org/10.1007/s11042-024-18872-y
https://doi.org/10.2319/052218-386.1
https://doi.org/10.2319/052218-386.1
https://doi.org/10.1177/0022034520901715
https://doi.org/10.1007/s11042-019-07898-2
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Ethics approval and sample size determination
	2.2 Image collection and inclusion criteria
	2.3 Radiographic processing, data labeling and preparation
	2.4 Segmentation model training
	2.5 Model performance evaluation

	3 Results
	3.1 YOLOv5 labeling model training and test results
	3.2 YOLOv8 labeling model training and test results
	3.3 YOLOv11 labeling model training and test results
	3.4 Comparison of performance times of YOLO models
	3.5 Comparison of YOLO models by SOS fusion stage

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

