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behavioral and hematological 
changes in mice

Vitalii A. Balatskyi1, Tetiana R. Dmytriv1,2, Andrii Divnych1 and 
Volodymyr I. Lushchak1,2*
1Department of Biochemistry and Biotechnology, Vasyl Stefanyk Carpathian National University, 
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 Post-traumatic stress disorder (PTSD) is a complex psychiatric condition 
characterized by behavioral, cognitive, immunological, and neurochemical 
disturbances following traumatic experiences. Despite various therapeutic 
approaches, effective long-term treatments remain limited, highlighting the need 
for preventive strategies that enhance stress resilience. In this study, we evaluated 
the impact of long-term kefir consumption on behavioral, hematological, and 
biochemical parameters in a mouse model displaying some PTSD-like features, 
particularly fear- and anxiety-related behaviors induced by acute inescapable 
stress. Male C57BL/6J mice received kefir daily for 2 months before stress 
induction via electric foot shocks and continued supplementation for five 
additional months during recovery. Behavioral testing demonstrated that kefir-fed 
mice exhibited reduced anxiety-like behaviors, including increased exploration 
in the open field, elevated plus maze, and light/dark box tests. These mice 
also showed fewer freezing episodes in the aversive context test, indicating 
attenuated fear memory. Hematological analysis revealed a modest reduction 
in erythrocyte count and monocytes, alongside elevated paraoxonase (PON) 
activity, suggesting enhanced antioxidant defense and a shift toward anti-
inflammatory immune responses. RT-qPCR analysis of the cerebral cortex showed 
increased steady-state transcript levels of genes involved in oxidative stress 
response and neuroprotection (TXNRD1, UGDH, HSPB8, GADD45B, PPARGC1A) 
and decreased levels of the pro-inflammatory cytokine gene IL6 transcript. These 
results indicate that long-term kefir intake mitigates stress-induced behavioral 
and physiological alterations, likely through modulation of immune and oxidative 
stress pathways. Taken together, our findings support the potential of kefir as 
a functional dietary intervention for promoting stress resilience and alleviating 
PTSD-like symptoms, possibly via mechanisms involving the gut-brain axis. 
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 1 Introduction

Post-traumatic stress disorder (PTSD) is a multifaceted psychiatric condition 
that arises following exposure to traumatic events. It is characterized by intrusive 
memories, mood disturbances, cognitive impairments, hyperarousal, avoidance
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behavior, and a persistent sense of threat (Miao et al., 2018; 
Dmytriv et al., 2023; Pinna et al., 2023; Balatskyi et al., 2025). 
Individuals with PTSD are at increased risk of developing 
depression neurodegenerative diseases, substance use disorders, 
and various comorbidities. A similar pattern has recently been 
observed in the Ukrainian population affected by the ongoing 
Russian-Ukrainian war (Lushchak et al., 2023). Although 
preventive strategies are regarded as the most effective means 
of addressing PTSD, existing approaches lack sufficient evidence 
to support widespread clinical implementation (Bisson et al., 
2021). Consequently, the development of novel, accessible 
interventions to promote stress resilience remains a research
priority.

Dietary interventions targeting mental health, particularly 
PTSD, are still underexplored, despite growing recognition of 
the gut-brain axis as a central regulator of stress responses and 
emotional wellbeing (Yin et al., 2014; Kearney et al., 2022; Rook, 
2024). Functional foods, particularly those rich in probiotics and 
bioactive compounds, have demonstrated the potential to modulate 
brain function through microbial metabolites and neuroactive 
compounds (Gomez-Pinilla and Gomez, 2011; Gradus et al., 
2017). Fermented dairy products (FDPs) are of particular interest 
due to their ability to influence the composition and function 
of the gut microbiota. It is also known that kefir consumption 
by mice had a positive effect on inflammation modulation by 
reducing the level of pro-inflammatory cytokines and increasing 
the level of anti-inflammatory cytokines, as well as modulating 
oxidative stress (Gogineni, 2013; Albuquerque Pereira et al., 
2024; Mariana et al., 2024). Experimental studies have shown 
that peptides derived from fermented milk can reduce anxiety-
like behavior and mitigate brain damage in stress-exposed 
mice (Joung et al., 2021; 2023). Moreover, human studies 
report associations between FDP consumption and lower 
anxiety levels (Sousa et al., 2022). These benefits are largely 
attributed to modulation of the gut-brain axis–a – bidirectional 
communication system linking the gastrointestinal tract and central 
nervous system via immune, neural, and endocrine pathways 
(Dmytriv et al., 2024a; Dmytriv et al., 2024b; Loh et al., 2024). 
However, the long-term effects of FDPs on stress-related behavior 
and their underlying molecular mechanisms remain poorly 
characterized.

While many studies have focused on the microbial or 
metabolic mechanisms of fermented products, the initial step 
in our research was to determine whether specific kefir as a 
whole could induce measurable behavioral and physiological 
benefits in a murine PTSD-like model. This approach allowed 
us to assess the integrated biological impact of kefir before 
dissecting the contributions of its individual microbial or 
biochemical components. Subsequent studies will focus on 
identifying the specific active factors and pathways underlying these
effects.

In this study, we investigated whether prolonged kefir 
consumption could attenuate stress-induced behavioral, 
hematological, and molecular alterations in a mouse model 
of PTSD. Our findings provide compelling evidence that 
kefir may serve as a functional dietary intervention to 
enhance stress resilience and mitigate the symptoms of
PTSD.

2 Materials and methods

2.1 Experimental design

Male C57BL/6J mice aged 8–11 months were housed under 
controlled laboratory conditions with a 12-h light/dark cycle 
(6 a.m.–6 p.m.), ambient temperature of 22 °C ± 2 °C, and 
relative humidity of 50%–60%. Mice were randomly assigned 
to control and experimental groups (five to seven animals 
per group). Control animals received standard rodent chow 
(21.8% protein, 4.8% fat, 69.1% carbohydrates, 3.9% fiber), while 
the experimental group received unlimited access to chow and 
kefir in separate dishes. Food, water, and kefir were provided
ad libitum.

Kefir (Molokiya, Ukraine) was prepared from normalized 
cow’s milk with kefir starter culture. Nutritional values per 100 g: 
carbohydrates – 3.9 g (including 3.9 g sugars), proteins – 2.9 g, 
fats – 2.5 g (1.58 g saturated), salt – 0.05 g; energy value – 209 kJ
(50 kcal).

After 2 months of kefir consumption, mice underwent baseline 
behavioral testing (open field test) before stress induction. Mice 
then received two sessions of electric foot shocks over 2 days to 
induce PTSD-like symptoms and continued kefir intake for five 
additional months. Behavioral tests were conducted at several time 
points (see Figure 1): the aversive context test (days 2 and 7), 
open field test (day 9), and elevated plus maze (day 11). Long-
term behavioral effects were assessed 5 months later using the 
open field, elevated plus maze, light/dark box, and marble burying
tests.

All procedures were approved by the Animal Experiments 
Committee of Vasyl Stefanyk Precarpathian National University and 
conducted under Directive 2010/63/EU on the protection of animals 
used for scientific purposes. 

2.2 Stress induction procedure and 
aversive context test

Stress was induced using a metal-grid floor shock chamber 
connected to a stimulus generator. This acute footshock paradigm 
is widely used to model trauma-induced fear and anxiety in 
rodents and is often referred to as a PTSD-like or contextual 
fear model (Martinho et al., 2021). It does not reproduce all 
parameters of human PTSD, but allows the assessment of persistent 
fear memory and stress reactivity. Each mouse was placed in 
the chamber for 7 min: 2 min of acclimatization followed by 15 
electric shocks (0.8 mA, 10 s duration, 10 s intervals) over 5 min, 
repeated on two consecutive days (Martinho et al., 2022). On 
days 2 and 7, mice were re-exposed to the same chamber without 
shocks for the aversive context test. Freezing behavior, defined as 
immobility except for breathing for ≥3 s, was scored from video 
recordings (Martinho et al., 2021). 

2.3 Open field test

The open field test is commonly used to measure locomotor 
and anxiety-like behavior in mice (Seibenhener and Wooten, 
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FIGURE 1
Experimental scheme.

2015). In this work behavioral activity was assessed in a 40 × 
40 cm polyvinyl chloride chamber divided into 16 squares (10 × 
10 cm). Locomotion and anxiety-related behaviors were recorded 
and analyzed using ToxTrac software (v2.98) from 10-min video 
recordings (Rodriguez et al., 2018; https://sourceforge.net/projects/
toxtrac/). Outcomes included average movement speed, time spent 
in the central squares (inner zone), and number of fecal boli. 

2.4 Elevated plus maze test

Anxiety-related behavior was evaluated using a standard 
elevated plus maze (EPM) with two open and two closed arms 
intersecting at a central platform. Mice were allowed to explore 
the maze for 10 min. The time spent in open and closed arms 
was recorded (Walf and Frye, 2007). 

2.5 Light/dark box test

Mice were placed in a divided glass box (30 × 30 × 40 cm 
per compartment) with one dark and one illuminated zone. After 
being placed in the dark zone and closing the lid, mice were 
observed for 10 min. The number of entries into the light zone, time 
spent there, and latency to first entry were recorded (Bourin and 
Hascoët, 2003; Crawley and Goodwin, 1980). 

2.6 Marble burying test

Each cage was filled with 5 cm of wood shavings, and 20 marbles 
were arranged in four rows. Mice were placed in the cage for 30 min, 
and the number of marbles buried ≥75% was counted (Angoa-
Pérez et al., 2013; Sampson, 2024). 

2.7 Hematological parameters

Blood was collected after a 12-h fast via retro-orbital 
puncture under CO2 anesthesia. Half the sample was centrifuged 
(1500 g, 15 min, 4 °C) for plasma; the remainder was used for 
hematological analyses.

Hemoglobin was measured using Drabkin’s reagent 
(Genesis LLC, Ukraine) at 540 nm. Hematocrit was assessed 
using microcapillary tubes centrifuged at 2000 g for 
20 min. Erythrocyte and leukocyte counts were performed 
using Goryaev’s chamber after dilution with 3% NaCl or 
5% acetic acid + methylene blue, respectively. Leukocyte 
differentials were determined from blood smears stained by 
Romanowski or May-Grunewald-Giemsa methods, counting 
200 cells per animal at 1000× magnification. The cells were 
classified according to standard protocols (O’Connell et al., 
2015), and the percentages of various leukocyte types were
determined.

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1682807
https://sourceforge.net/projects/toxtrac/
https://sourceforge.net/projects/toxtrac/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Balatskyi et al. 10.3389/fphys.2025.1682807

TABLE 1  Oligonucleotide sequences used in the study to analyze the levels of mRNA by quantitative real-time polymerase chain reaction.

Gene Forward primer (5′→ 3′) Reverse primer (5′→ 3′)

TXNRD1 GACTGGCAGCAGCTAAGGA GAGCTTGTCCGAGCAAAGC

GSTM3 TATGGACACCCGCATACAGC GCTTCATTTTCTCAGGGATGGC

UGDH TGCATGGAATTCTCCAACCT AGATCGGCTTCTCTGATGGC

HSPB8 CGTGGAAGTTTCAGGCAAACA CACTTCTGCAGGGAGCTGTAT

GADD45B TGAATGTGGACCCCGACAG AGCAGAACGACTGGATCAGG

SQSTM1 CTACCGCGATGAGGATGGG CACAGATCACATTGGGGTGC

BECN1 CCAGGAACTCACAGCTCCAT ACCATCCTGGCGAGTTTCAA

CCL2 CAGCCAGATGCAGTTAACGC TTCCTTCTTGGGGTCAGCAC

IL1B TGAAGAAGAGCCCATCCTCTG TCATATGGGTCCGACAGCAC

IL-6 CCGGAGAGGAGACTTCACAG CCACGATTTCCCAGAGAACATG

SGK1 GAACCACGGGCTCGATTCTA CAGATACTCAGGCGTGCCA

S100A10 GGCGACAAAGACCACTTGAC GAAGCCCACTTTGCCATCTC

SHANK1 GCAGACCATCAGTGCAAGTG AGCCCCGATAGATTTCTGCC

STK11 CCTACTCCGAGGGATGTTGG AGCTGTGCTGCCTAATCTGT

NR3C1 (GR) ACTGCTTCTCTCCTCAGTTCC TCTGACTGGAGTTTCCTTCCC

FKBP5 AGTCAATCCTCAGAACAGGGC CTTTGCTGGCTTCCTCCTTTG

RICTOR CGCTCGTGGGCAGGTATTAT GGATCTACACTGAGCAGGGC

4EBP CTCCTGGAGGCACCAAACT CTTGATCAGTTCCGTGGGGA

PPARGC1A CTCTGGAACTGCAGGCCTAA GCCTTGGGTACCAGAACACT

BNIP3 ACAGCACTCTGTCTGAGGAAG TGCTGAGAGTAGCTGTGCG

CD36 GGCTAAATGAGACTGGGACCA TCTCTACCATGCCAAGGAGC

RPL27 TCAGGGACCCAGCTTTGAAG TTCCCTGTCTTGTATCGCTCC

2.8 Assays of activities of paraoxonase, 
myeloperoxidase, and levels of total 
protein and glucose in blood plasma

Plasma paraoxonase (PON) activity was measured 
spectrophotometrically at 405 nm using 4-nitrophenyl 
acetate as a substrate. The reaction mixture consisted 
of 50 mM potassium phosphate buffer (pH 7.0), 1 mM 
CaCl2, and 3.2 mM 4-nitrophenylacetate. The extinction 
coefficient of p-nitrophenol 14,000 M−1 cm−1, was used 
to calculate the PON activity (Vatashchuk et al., 2023). 
Myeloperoxidase (MPO) activity was measured as H2O2-
dependent oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), 
and the absorbance was measured at 450 nm using a 
Multiskan MCC/340 microplate reader (Yadav et al., 
2014). Plasma glucose and total protein levels were 

assessed using standard kits and the Bradford assay
(Bradford, 1976). 

2.9 Polymerase chain reaction (RT-qPCR)

Total RNA isolation, RNA quantification, and real-time 
quantitative polymerase chain reaction (RT-qPCR) were performed 
as previously described (Demianchuk et al., 2024). The AriaMx 
system (Agilent Technologies, Inc.) was used for RT-qPCR. Relative 
fold change in messenger RNA (mRNA) levels was calculated using 
the 2–ΔΔCq method (Livak and Schmittgen, 2001), using Cq values 
for the expression of the RPL27 gene (encoding ribosomal protein 
L27) as a reference.

Total RNA was extracted from cerebral cortex samples as 
previously described (Demianchuk et al., 2024). RT-qPCR was 
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FIGURE 2
Body mass of mice (A) before the foot shock procedure, (B), at the end 
of the experiment, and (C) fur conditions of animals from the control 
and kefir-consuming group under anesthesia. Data are presented as 
mean ± SEM, n = 4-6.∗Significantly different from the control group (P 
< 0.05) according to unpaired Student’s t-test.

performed using the AriaMx system (Agilent Technologies). 
Relative transcript levels of genes of interest gene expression were 
calculated using the 2–ΔΔCq method (Livak and Schmittgen, 
2001), normalized to RPL27 as a reference gene. Oligonucleotide 
sequences (see Table 1) were received from Metabion International 
AG (Steinkirchen, Germany).

The prefrontal cortex was selected for molecular analysis due to 
its key involvement in emotional regulation, cognitive control, and 
extinction of fear responses, which are central to PTSD pathology. 
This region also provides sufficient tissue quantity for reproducible 
RNA isolation and reliable RT-qPCR measurements. 

2.10 Statistical analysis

Data are presented as mean ± SEM. Statistical analyses were 
conducted using GraphPad Prism v10.0.0 (GraphPad Software, 
Boston, MA, USA). Differences between groups were assessed using 
unpaired Student’s t-test, Holm-Sidak test. Linear mixed effects 
model approach implemented in GraphPad Prism was applied 

to evaluate time-dependent influence of the treatment. Multiple 
comparisons were conducted using t-test followed by p-value 
adjustment by Benjamini-Krieger-Yekutieli procedure.

Sample size was evaluated using Robin Ristl’s sample 
size calculator (Medical University of Vienna, https://
homepage.univie.ac.at/robin.ristl/samplesize.php?test=anova), for 
two groups with unequal sample sizes, with mean difference 1.5, 
standard deviation of 0.6, significance level 0.05, and power 0.8. 
This calculation gave us a sample size of four and six individuals. 

3 Results

3.1 Body mass and Fur condition of mice

Before the first open field test induction (conducted prior to the 
foot shock procedure), kefir-fed mice had significantly higher body 
mass–approximately 8% (p = 0.01) greater–compared to control 
animals (Figure 2A). However, by the end of the experiment, body 
mass differences were no longer statistically significant (Figure 2B). 
Kefir-treated mice also exhibited a noticeably improved fur 
conditions, including increased physical activity, livelier behavior, 
and shinier fur compared to controls (Figure 2C). 

3.2 Behavioral tests

The open field test was conducted three times: before stress 
exposure, 1 week post-stress, and 5 months after stress induction 
(Figure 1). Control mice displayed lower locomotor activity after 
stress, with average speed decreased by 56% (p < 0.001) in the 
second trial and 44% (p < 0.001) in the third compared to the first. 
Kefir-treated mice also exhibited a 33% (p = 0.005) lower speed 
in the second test compared to pre-stress levels, but their behavior 
remained more consistent over time (Figure 3A).

In terms of anxiety-like behavior, control mice spent twice as 
much time in the inner zone during the second test compared to 
the first (p = 0.03). However, their time in the center markedly 
decreased in the third trial - to 82% (p = 0.044) and 91.3% (p = 
0.04) of the values observed in the first and second tests, respectively. 
In contrast, kefir-fed mice maintained stable exploration of the 
central area across all trials and spent nearly five times more time 
(p = 0.03) in the inner zone than controls during the third test 
(Figure 3B), suggesting reduced anxiety. The number of fecal boli 
did not differ significantly, except during the second trial, when the 
kefir group produced nearly twice as many (p = 0.04) (Figure 3C). 
Freezing behavior peaked in control animals during the second trial, 
while kefir-fed mice exhibited consistently lower freezing, including 
significantly fewer episodes than controls during the second test (p 
< 0.001) (Figure 3D).

In the aversive context test, kefir-fed mice showed markedly 
lower fear responses, with 76% fewer freezing episodes (p = 0.03) 
on day 2% and 91% fewer on day 7 (p = 0.02) compared to 
control mice (Figures 4A,B), indicating sustained attenuation of 
fear-related responses.

In the first round of elevated plus maze (EPM) and marble 
burying tests (1 week after foot shock), no significant differences 
were observed between groups (Figures 5A–C). However, in the 
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FIGURE 3
Comparison of results of the first (before foot shock), second (1 week after foot shock), and third (5 months after foot shock) open field test trails. (A)
An average speed of mice, (B) time spent in the central squares of the open field, (C) number of fecal boli, (D) number of freezings of mice, (E)
representative trails of mouse movement. Data are presented as mean ± SEM, n = 3-7.∗Significant difference (P < 0.05) between groups according to 
the mixed effect model approach, followed by pairwise comparisons with Benjamini-Krieger-Yekutieli adjustment of p-values for multiple testing.

second round (5 months post-stress), kefir-fed mice spent 12 times 
more time (p = 0.004) in the open arms of the EPM compared 
to controls (Figure 5D), indicating reduced anxiety. The number of 
entries into closed arms did not differ (Figure 5E), nor did marble 
burying behavior (Figure 5F).

In the light/dark box test (5 months post-stress), kefir-fed mice 
made significantly more entries (p = 0.003) into the light zone and 
exhibited shorter latency to enter it (p = 0.002), compared to controls 
(Figures 6A,B). These mice also defecated 43% less often during 

the test (p = 0.04) (Figure 6C), further supporting an anxiolytic 
effect of kefir. 

3.3 Hematological parameters

Among hematological parameters, only red blood cell count was 
significantly lower (by 17%) in kefir-consuming mice compared to 
controls (p = 0.001) (Table 2). No significant differences were found 
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FIGURE 4
Aversive context test. (A) number of freezing events of mice in the aversive context on day 2, (B) number of freezing events of mice in the aversive 
context on day 7. Data are presented as mean ± SEM, n = 4-6.∗Significantly different from the control group (P < 0.05) according to unpaired 
Student’s t-test.

in hemoglobin concentration, hematocrit, or total leukocyte count 
between the groups.

Differential leukocyte analysis showed a 50% lower monocyte 
percentage (p = 0.03) and a 27% higher juvenile leukocyte form (p = 
0.01) in the kefir-fed group (Table 3). Percentages of other leukocyte 
subtypes (lymphocytes, segmented and banded neutrophils) did not 
differ between groups. 

3.4 Biochemical and metabolic parameters 
of blood plasma

No significant intergroup differences were detected in blood 
glucose, total plasma protein, or myeloperoxidase (MPO) activity 
(Figures 7A–C). However, paraoxonase (PON) activity was 22% 
higher in the kefir group (p = 0.03), indicating enhanced 
antioxidant capacity (Figure 7D). 

3.5 mRNA levels in the mouse cerebral 
cortex

RT-qPCR analysis of cerebral cortex tissue revealed significant 
transcriptional differences between control and kefir-fed groups 
in transcript levels of genes involved in oxidative stress 
response, inflammation, neuroplasticity, autophagy, and energy 
metabolism (Table 4). Among antioxidant defense genes, TXNRD1
and UGDH were upregulated by 34% (p = 0.049) and 40% (p < 
0.001), respectively. Expression of GSTM3 remained unchanged.

Pro-inflammatory IL6 expression was lower by 53% (p 
= 0.046), while IL1B showed a non-significant 37% decrease 
(p = 0.2) (Table 4). CCL2 levels were 45% higher (p = 0.18), 
possibly reflecting a compensatory immune mechanism. No 
significant differences were observed in SGK1, NR3C1, or FKBP5
(glucocorticoid signaling pathway).

Neuroplasticity-related genes showed notable differences: 
SHANK1 and GADD45B were upregulated by 43% (p = 0.006) and 
50% (p = 0.004), respectively, while S100A10 was downregulated (p 
= 0.04) by 47%. Among autophagy-related genes, BECN1 was higher 
by 32% (p < 0.001), while SQSTM1 and BNIP3 levels remained 
unchanged (Table 4).

For protein homeostasis, HSPB8 was 44% higher (p = 0.03). 
Genes related to mTOR signaling and metabolic regulation also 
responded to kefir intake: RICTOR was 84% higher (p = 0.002), 
EIF4EBP1 nearly doubled, and PPARGC1A was elevated by 52% 
(p = 0.04). No significant differences were observed in STK11 or 
CD36 (Table 4). 

4 Discussion

Fermented dairy products, particularly kefir, are increasingly 
recognized for their multifunctional health benefits, including 
immune modulation, antioxidant enhancement, and potential 
neuroprotective effects (Moineau and Goulet, 1991; Mitsuoka, 
2014; Silva et al., 2023). These effects are largely attributed to 
kefir’s ability to modulate the gut microbiota and influence gut-
brain axis communication (Perdigón et al., 2002; Kim et al., 2016; 
Kumar et al., 2021; Chakrabarti et al., 2022). The present study 
demonstrates that long-term kefir consumption exerts beneficial 
effects on behavior, physiology, and brain gene expression in a mouse 
model of post-traumatic stress disorder (PTSD).

In our work, kefir-fed mice exhibited improved fur conditions, 
and their body weight was also 8% higher compared to the control 
group. Therefore, we believe that this may be due to both the 
addition of kefir to their diet and the fact that the experimental group 
received more calories, which could have led to an improvement in 
their appearance. The mice also showed enhanced stress resilience, 
as indicated by stable exploratory activity and attenuated anxiety-
like behavior across multiple behavioral tests, including the open 
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FIGURE 5
Elevated plus maze and marble burying tests. This figure shows data from two trials of the elevated plus maze test. The first trial was conducted 
1 month after the foot shock (A–C), and the second 5 months after the foot shock (D,E and F). First trial. (A) Time spent in the open arms of the 
elevated plus maze, (B) number of closed arm entries of the elevated plus maze, (C) number of buried marbles in the marbles burying test. Second trial.
(D) time spent in the open arms of the elevated plus maze, (E) number of entries into the closed arms of the elevated plus maze, (F) number of balls 
buried in the ball burial test. Data are presented as mean ± SEM, n = 3-7.∗Significantly different from the control group (P < 0.05) according to unpaired 
Student’s t-test.

FIGURE 6
Light/dark box test (5 months after foot shock). (A) number of entries in the light zone of the light/dark box, (B) latency time (time spent by mice to 
enter the light zone for the first time), (C) number of mice defecating in the light/dark box. Data are presented as mean ± SEM, n = 4-6.∗Significantly 
different from the control group (P < 0.05) according to unpaired Student’s t-test.
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TABLE 2  Hematological parameters in peripheral blood from mice of the 
control and kefir-fed groups.

Parameter Control Kefir

Hemoglobin, g/L 146 ± 3 154 ± 3

Hematocrit, % 47.4 ± 0.51 48.4 ± 1.49

Erythrocyte count, 106/mL 7.38 ± 0.18 6.12 ± 0.17∗

Total leukocyte count, 103/mL 5.20 ± 0.74 4.73 ± 0.44

Data are presented as mean ± SEM, n= 4-6. ∗Significantly different from the control group 
(P < 0.05) according to unpaired Student’s t-test.

TABLE 3  Leukocyte formula of peripheral blood from mice of the 
control and kefir-fed groups.

Leukocyte type, % Control Kefir

Juvenile forms 4.88 ± 0.24 6.20 ± 0.25∗

Banded neutrophils 3.50 ± 1.0 2.90 ± 0.2

Segmented neutrophils 9.25 ± 2.39 11.7 ± 1.17

Basophils NF NF

Eosinophils NF NF

Lymphocytes 81.8 ± 3.1 79.5 ± 1.1

Monocytes 1.0 ± 0 0.50 ± 0.16∗

Data are presented as mean ± SEM, n= 4-6. ∗Significantly different from the control group 
(P < 0.05) according to unpaired Student’s t-test. NF–not found.

field, elevated plus maze, light/dark box, and aversive context tests. 
In contrast, control mice displayed significantly lower locomotion 
and higher signs of anxiety, such as reduced central exploration 
and elevated freezing responses. These behavioral improvements 
align with previous reports showing that kefir modulates central 
neurotransmission through gut microbiota-derived metabolites, 
particularly those affecting GABAergic and serotonergic systems 
(Van De Wouw et al., 2020; Icer et al., 2024). Kefir peptides have 
also been shown to activate BDNF/TrkB signaling and reduce stress-
induced hyperthermia, further supporting its role in stress resilience 
(Chen et al., 2021; Balasubramanian et al., 2024). An interesting 
effect of kefir on the number of defecations by mice in an open field 
test was also observed, since only in the second test (after stress) 
did the number of defecations increase in mice that consumed kefir. 
Although it was previously noted that kefir did not affect intestinal 
motility (Van De Wouw et al., 2020). This can be explained by the 
combination of kefir consumption and stress. For example, kefir 
lowers the pH in the large intestine due to the presence of short-
chain fatty acids (butyric, propionic, and acetic acids), which, in 
turn, increases the secretion of corticosteroids in mice due to stress, 
and which can affect intestinal motility (Unsal and Balkay, 2012). 
Together, this can increase peristalsis, which is why mice had a 
higher level of defecation compared to the control group. However, 

after a certain period of time, the number of defecations normalized 
due to adaptation.

However, we did not observe any differences in the marble ball 
digging test, which is used to determine the presence of compulsive 
behavior. These results may be related to the involvement of different 
neural circuits (Shin and Liberzon, 2010): anxiety and fear are 
mainly associated with hyperactivation of the amygdala, while 
obsessive-compulsive disorder has a different localization in brain 
circuits, particularly the cortico-striato-thalamo-cortical loops (Li 
and Mody, 2016), and kefir may not have an effect on these 
regulatory areas of the brain. It may also be due to insufficient 
sensitivity of the test or an insufficient sample size for this test.

At the systemic level, kefir supplementation resulted in 
a modest reduction in erythrocyte counts without affecting 
hemoglobin or hematocrit, indicating preserved oxygen transport. 
Lower levels in monocytes and higher in juvenile leukocytes 
suggest a shift toward a less inflammatory immune profile, 
consistent with kefir’s known immunomodulatory effects 
(Karaffová et al., 2021; Ben Taheur et al., 2022).

Biochemical analyses showed that kefir did not affect 
either plasma glucose and protein levels, nor MPO activity, 
suggesting no acute systemic inflammatory responses. 
However, higher paraoxonase (PON1) activity in kefir-treated 
mice points to enhanced antioxidant defense and lipid 
metabolism, which may contribute to both cardiovascular and 
neuroprotective effects (Jakubowski, 2024).

In the mouse cerebral cortex, kefir consumption affected the 
expression of several genes related to oxidative stress response, 
inflammation, synaptic plasticity, and cellular metabolism. 
We observed an increase in mRNA levels of TXNRD1 and 
UGDH, both associated with the Nrf2 pathway, which regulates 
cellular antioxidant defense and metabolic adaptation (Tonelli 
et al., 2018; Wu et al., 2012). These transcriptional changes may 
indicate activation of protective molecular responses rather than 
direct antioxidant effects.

A moderate reduction in IL6 expression could reflect 
attenuation of neuroinflammatory signaling, possibly mediated 
by Nrf2–NF-κB crosstalk (Saha et al., 2020). In parallel, changes 
in BECN1, HSPB8, and GADD45B transcripts suggest a potential 
modulation of autophagy and stress adaptation pathways, although 
the functional implications remain to be clarified.

Genes involved in neuronal plasticity and energy metabolism, 
such as SHANK1, RICTOR, EIF4EBP1, and PPARGC1A, also showed 
altered transcripts. Since these genes participate in mTORC2 and 
mitochondrial biogenesis pathways, modulation of their expression 
might reflect compensatory cellular responses to the stress (Costa-
Mattioli and Monteggia, 2013; Huang and Fingar, 2014).

Overall, the observed transcriptional changes suggest that kefir 
may influence molecular networks linked to antioxidant defense, 
inflammation, and synaptic regulation. However, as mRNA levels 
do not necessarily reflect protein abundance or enzymatic activity, 
these findings should be interpreted cautiously and verified in future 
studies at the protein or functional level.

The molecular analyses were limited to the prefrontal cortex 
because of its central role in cognitive control and emotional 
regulation in PTSD. Other regions, such as the hippocampus 
and amygdala, were not examined in the present series due to 
limited tissue availability. Nonetheless, future studies will include 
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FIGURE 7
Metabolic and biochemical blood parameters. (A) total protein, (B) glucose level, (C) myeloperoxidase activity, (D) paraoxonase activity. Data are 
presented as mean ± SEM, n = 4-6.∗Significantly different from the control group (P < 0.05) according to unpaired Student’s t-test.

these regions to provide a more comprehensive neuroanatomical 
understanding of kefir’s effects.

Taken together, our findings indicate that long-term kefir 
consumption exerts broad protective effects in a PTSD-like mouse 
model by improving behavioral responses, modulating immune and 
oxidative stress markers, and enhancing the expression of genes 
involved in neuroplasticity and metabolic regulation. These results 
support the potential of kefir consumption as a functional dietary 
strategy for enhancing stress resilience and mitigating trauma-
related disorders, likely through mechanisms involving the gut-
brain axis. However, these findings also demonstrate the need 
for further research into optimized dosing, strain selection, and 
combinatorial therapies.

Further research on this topic should determine whether 
there is a direct correlation between kefir modulation of the 
microbiome and the results we obtained. 16S rRNA sequencing 
should be performed to identify the diversity of the microbiota, 
verify the expression of tight junction proteins occludin and 
ZO-1 in colon tissue, and study intestinal metabolites such 
as short-chain fatty acids and the tryptophan metabolite 5-
hydroxytryptamine. In addition, our study determined the 

overall effect of kefir as a dietary supplement. Therefore, future 
research will aim to identify specific strains and metabolites 
responsible for the observed effects, which is critical for translational
applications. 

5 Conclusion and perspectives

This study demonstrates that long-term kefir consumption 
significantly attenuates stress-induced behavioral alterations and 
favorably modulates physiological and molecular parameters in 
mice exposed to traumatic stress. Kefir-treated mice exhibited 
reduced anxiety-like behavior across multiple validated tests, 
including the open field, elevated plus maze, light/dark box, 
and aversive context paradigms. In addition to behavioral 
improvements, kefir intake led to beneficial changes in 
hematological and biochemical markers, including increased 
paraoxonase activity and reduced monocyte levels, indicating 
enhanced antioxidant defense and lower systemic inflammation. 
At the molecular level, in the cerebral cortex, kefir modulated the 
expression of key genes associated with oxidative stress resistance, 
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TABLE 4  mRNA transcripts in the cerebral cortex of mice. Data are presented as mean ± SEM, n = 3-5.

Role Gene Product Control Kefir

PTSD markers

SGK1 Serum/glucocorticoid regulated kinase 1 1.09 ± 0.26 0.96 ± 0.15

NR3C1 (GR) Nuclear receptor subfamily 3 group C member 1 1.02 ± 0.11 1.05 ± 0.10

FKBP5 FK506 binding protein 5 0.84 ± 0.18 1.31 ± 0.10

S100A10 S100 calcium binding protein A10 1.03 ± 0.14 0.55 ± 0.04∗

SHANK1 SH3 and multiple ankyrin repeat domains 1 1.18 ± 0.08 1.68 ± 0.09∗

Protein synthesis and folding

HSPB8 Heat shock protein beta-8 0.88 ± 0.09 1.27 ± 0.05∗

4EBP Eukaryotic translation initiation factor 4E-binding protein 
1

0.86 ± 0.04 1.85 ± 0.20

Autophagy and TFEB targets

BECN1 Beclin-1 1.00 ± 0.02 1.32 ± 0.03∗

SQSTM1 Sequestosome-1 1.04 ± 0.15 1.21 ± 0.10

BNIP3 BCL2 interacting protein 3 1.00 ± 0.02 1.32 ± 0.03

FOXO targets

RICTOR Rapamycin-insensitive companion of mammalian target of 
rapamycin

1.03 ± 0.13 1.89 ± 0.07

STK11 Serine/threonine kinase 11 1.03 ± 0.13 1.02 ± 0.05

PPARGC1A Peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha

0.93 ± 0.13 1.41 ± 0.13∗

GADD45B Growth arrest and DNA-damage-inducible beta 1.01 ± 0.06 1.50 ± 0.10∗

Antioxidant response and xenobiotic detoxication

TXNRD1 Thioredoxin reductase 1 1.01 ± 0.08 1.35 ± 0.11∗

GSTM3 Glutathione S-transferase M3 1.01 ± 0.07 1.00 ± 0.03

UGDH UDP-glucose 6 -dehydrogenase 1.00 ± 0.03 1.40 ± 0.04∗

Markers of inflammation and NF-κB targets

CCL2 C-C motif chemokine ligand 2 0.71 ± 0.01 1.03 ± 0.19

IL1B Interleukin 1 beta 1.09 ± 0.25 0.69 ± 0.01

IL-6 Interleukin 6 0.87 ± 0.13 0.41 ± 0.06∗

CD36 Fatty acid translocase 1.29 ± 0.45 1.08 ± 0.29

∗Significantly different from the control group (P < 0.05) according to unpaired Student’s t-test.

neuroprotection, synaptic plasticity, autophagy, and metabolic 
regulation. These findings suggest that kefir promotes stress 
resilience through the activation of adaptive pathways in both the 
immune and nervous systems, potentially mediated by the gut-
brain axis. Collectively, our data support the potential of kefir as a 
functional dietary intervention to prevent or mitigate PTSD-related 
symptoms. While the present results are preliminary and limited 
to an animal model, they raise the possibility that kefir generally, 
and particular kefir Molokia, could contribute to nutrition-
based strategies aimed at supporting human mental health and
resilience.

This study highlights kefir’s potential as a functional dietary 
intervention for enhancing stress resilience. Future research 
should focus on identifying the specific microbial strains and 

metabolites responsible for its effects, as well as determining 
optimal dosage and duration. Kefir may contribute to improved 
stress resilience in mice, which warrants further exploration 
in the context of mental health. Additionally, combining kefir 
with other nutritional or therapeutic strategies may further 
enhance its benefits. Overall, kefir represents a promising, 
accessible tool for supporting mental health through gut-brain axis
modulation.
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