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Introduction: Cold-water immersion induces autonomic stress responses 
including sympathetic cold shock and parasympathetic diving and 
trigeminovagal reflexes, potentially leading to arrhythmias or bronchospasm. 
Another important complication of cold-water immersion is hypothermia. This 
study evaluates physiological responses during ice-self-rescue training to assess 
safety and temperature monitoring accuracy.
Methods: We conducted a prospective observational cohort study of 80 healthy 
Mountain Infantry soldiers during a standardized ice-self-rescue training in 
Norway (air temperature −10 °C). Participants underwent partial immersion 
(0.5 °C water) resulting in transitory submersion (<5 s). They were equipped with 
continuous 3-lead ECG (n = 34) spirometry (n = 26); and core temperature 
monitoring (ingestible telemetric capsule (n = 23) versus bilateral tympanic 
thermometry with and without ear channel occlusion (n = 34). Primary 
outcomes included cardiac rhythm changes, lung function parameters and 
temperature measurement agreement.
Results: ECG analysis revealed significant post-immersion tachycardia (median 
increase of 17 bpm, p = 0.03) and increased RR-interval variability (+90 ms, 
p < 0.01), without malignant arrhythmias. Spirometry showed no clinically 
significant changes in FVC or FEV1 and peak expiratory flow. Tympanic readings 
underestimated core temperature post-immersion (median difference −2.8 °C 
versus capsules, p < 0.01), with ear canal occlusion did not improve accuracy 
(p = 0.15).
Conclusion: Supervised cold-water immersion during military training 
exercise elicited expected autonomic stress responses without 
life-threatening complications in healthy soldiers. These findings 
suggest structured cold-water training can be safely conducted for 
fit individuals. Tympanic thermometry proved unreliable following 
immersion, even after ear channel occlusion. Ingestible capsule
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thermometry may be a viable approach if invasive measurement is not possible.
Clinical Trial Registration: This trial was registered under “Cold induced stress 
reactions during cold water immersion” in the German Clinical Trial Register 
(DRKS) under the registration number DRKS00032345 (https://www.drks.de/
search/de/trial/DRKS00032345/details).

KEYWORDS

cold stress, cold-water immersion, cold shock response, autonomic conflict, diving 
reflex, trigeminocardiac reflex, hypothermia, tympanic temperature 

Introduction

Physiologically, cold-water immersion (CWI) elicits a range 
of autonomic reactions (Berk et al., 1987; Datta and Tipton, 2006; 
Edmonds et al., 2015; Lott et al., 2021). The initial response to sudden 
immersion is an involuntary respiratory reaction characterized 
by rapid, deep inhalation or “gasping”. This initial cold shock 
response can induce psychologically driven hyperventilation, 
potentially resulting in numbness, muscle weakness, or loss of 
consciousness. Hyperventilation-induced hypocapnia leads to 
respiratory alkalosis, which, in severe cases, may cause cerebral 
vasoconstriction and unconsciousness. Furthermore, via the 
Bohr effect, this alkalosis reduces oxygen release to peripheral 
tissues (Bohr et al., 1904). These acid-base disturbances may 
also predispose individuals to cardiac arrhythmias. In some 
cases, bronchospasms may occur (Regnard, 1992). Additionally, 
declining skin temperature triggers peripheral vasoconstriction, 
increasing cardiac afterload and myocardial workload, thereby 
elevating oxygen demand (Giesbrecht, 2016; Kampouri and 
Vaucher, 2018).

Parasympathetically mediated reflexes such as the diving 
reflex and the trigeminovagal reflex are activated by cold-water 
contact with the facial skin, for example, during submersion, 
leading to a cascade of respiratory, cardiovascular, and vasomotor 
responses (Kawakami et al., 1967; Gagnon et al., 2013; Lundell et al., 
2020). Prolonged immersion further induces hypothermia, 
which may alter consciousness and provoke electrocardiographic 
abnormalities, including J waves and ST-segment deviations, 
ultimately progressing to life-threatening arrhythmias (Kampouri 
and Vaucher, 2018; Dietrichs et al., 2020).

CWI also precipitates autonomic conflict, characterized by 
concurrent sympathetic activation (e.g., cold shock, tachycardia) 
and parasympathetic dominance (e.g., diving reflex-induced 
bradycardia). This discordance increases the risk of cardiac 
arrhythmias, such as atrial or ventricular fibrillation, particularly 
in individuals with preexisting cardiac pathologies. Sudden 
cold-water exposure represents a high-risk scenario for 
such events (Lott et al., 2021). 

Objectives

The study’s primary objective was to quantify the physiological 
and pathophysiological responses of military personnel to falling 
into ice water and consecutive self-rescue, with particular 
attention to the potential for adverse effects, including the 
onset of cardiac arrhythmias. The secondary objective involved 

evaluating the accuracy and clinical relevance of various 
temperature measurement methodologies following cold-water
exposure.

Methods

This study was conducted as a prospective observational single 
cohort study without intervention (Röhrig et al., 2009). It was 
conducted during the German Armed Forces Mountain Infantry 
Brigade’s “Self-Rescue in an Ice Breakthrough Emergency” training 
program in Norway with a total of 80 training participants. Since 
this was a training exercise and the measurements in our feasibility 
study were only supplementary, it was not possible to perform all 
measurements on all test subjects. Consequently, ECG data were 
available in 36 participants (34 included) spirometry in 26 (26 
included), ear thermometry in 37 (34 included), and of those, 25 also 
had continuous core temperature monitoring using an ingestible 
capsule (23 included).

The training was conducted independently of this study and 
involved immersion in ice water (0.5 °C) followed by self-rescue 
and rewarming techniques. A 5 m × 5 m opening was cut into 
a frozen lake to simulate ice collapse. For the initial ice-self-
rescue session analyzed in this study, personnel wore standard field 
uniforms without insulation and waterproof layer and used ski poles, 
while skis and backpacks were removed to facilitate safe training. 
Ambient air temperature was −10 °C. The training protocol followed 
standardized military guidelines.

Participants were recruited voluntarily from trainees. All 
volunteers were deemed eligible, as authorization for training 
included general fitness and cardiac health checkup. All provided 
informed consent via a standardized document, reviewed and 
approved by the ethics committee (Reference No. 447/22, University 
of Ulm) and data protection officer (Bundeswehr Hospital 
Ulm). Twelve participants had prior cold water immersion 
training and were analyzes as a subgroup. The research team 
comprised board-certified military physicians and emergency 
medicine specialists as well as specialists for anesthesia and for 
intensive care medicine. All study procedures were conducted 
in a heated tent adjacent to the training site, maintained at 
17 °C. Participants were exposed to ambient temperatures for 
the majority of the protocol, using the heated tent only for 
brief data collection. Data collection via ECG and temperature 
capsules was maintained during the subsequent outdoor period. 
Ambient conditions included clear skies, no precipitation, 
and an outside temperature of −10 °C. Participants were 
assigned to measurement stations consecutively, according to 
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the military training protocol, eliminating researcher bias in the 
assignment order.

Continuous 3-lead electrocardiogram (ECG) (Spacelabs 
Healthcare Lifecard CF CE0123, Hawthorne, United States) 
was performed. ECG analysis focused on 30-s segments pre-
, during and post-immersion to assess heart rate (HR) and 
RR intervals, including the standard deviation of Normal-to-
Normal RR intervals (SDNN). Subsequent recordings during 
the self-rescue phase (initiated at 30 s post-immersion) were 
excluded due to motion artifact interference. Standard spirometry 
was performed using a calibrated Vitalograph Pneumotrac-
USB spirometer (CE2797, Vitalograph Ltd., Buckingham, United 
Kingdom). Three consecutive measurements were performed 
pre- and post-immersion, with the best trial selected to avoid 
comprehension - or ability-related underperformance. Tympanic 
temperature was measured bilaterally using an infrared ear 
thermometer (Braun ThermoScan® PRO 6000, CE 0297, Braun 
GmbH, Germany, accuracy 0.2 °C) pre- and post immersion. 
To evaluate cold-water effects on tympanic readings, the left 
external auditory canal was occluded with a standard military 
issued earplug (Honeywell Maximum® Lite Earplugs, Honeywell 
Automation, Charlotte, United States) while the right remained 
unsealed. Core temperature was recorded continuously pre-, 
during and post-immersion via an ingestible telemetric capsule 
(e-Celsius Performance Capsule, BodyCap, France, accuracy 
0.1 °C), using a compatible monitor capable of triplicate parallel 
measurements. Participants ingested a pre-warmed temperature 
capsule (equilibrated in a 37 °C water bath) with a sip of tepid 
water. To ensure stable baseline measurements, oral intake 
was prohibited thereafter until completion of the following 
immersion protocol. Blood pressure was not measured during our 
feasibility study.

Participants performed a simulated ice breakthrough by 
jumping (fully clothed) in a 5 m × 5 m opening in the lake ice. 
Immersion time was precisely documented. Transient submersion 
(<seconds) occurred in most of the participants. Following 30 s of 
immersion (devoted to breath control, submersion avoidance, and 
rescue planning), self-rescue was executed using ski poles to climb 
onto the ice. Post-rescue, participants rolled in snow to remove 
water from clothing.

The ECG leads were removed immediately after returning to 
the study tent. Again, tympanic temperatures and three consecutive 
measurements of spirometry were obtained. Participants then 
proceeded to the ‘heat preservation’ training module (fire-building 
and emergency shelter construction). 

Statistical analysis

Statistical analyses were performed using Microsoft Excel 
(Microsoft Corp, Redmond, WA) and SPSS (Version 30; IBM 
Corp, Armonk, NY), with normality assessed via Shapiro-Wilk 
test (α = 0.05). Normally distributed data were compared using 
Welch’s t-test and presented as Mean and Standard Deviation; non-
normal data via Mann-Whitney U tests with exact p-values as 
Median and Interquartile Range (IQR). Given the sample size, 
we applied Bessel’s correction (n-1) for variance estimation and 

reported robust median values with corresponding Interquartile 
Range (IQR) (Du Prel et al., 2010). 

Data management and storage protocol

All study data were collected and processed according 
to stringent data protection protocols. The raw datasets, 
comprising original 3-lead ECG recordings (“Digital Imaging 
and Communications in Medicine” format), bilateral tympanic 
temperature measurements and core body temperature telemetry, 
as well as spirometry data were pseudonymized immediately 
after acquisition. The pseudonymized datasets were stored on 
the Bundeswehr’s secure Nextcloud platform. For long-term 
preservation and analysis, data were archived in their native formats.

We used the STROBE cohort checklist when writing 
our report (Von Elm et al., 2008).

Results

Demographics

Out of 80 participants, ECG data were available in 36, spirometry 
in 26, and ear thermometry in 37. Within the latter group, 
25 also had continuous core temperature monitoring using an 
ingestible capsule. Two ECG datasets were excluded due to recording 
artifacts, as well as three ear thermometry and two ingestible 
capsule datasets because of technical failure. In total, 122 valid 
measurements were obtained across the different modalities. The 
mean age of participants was 25.7 years, and 78 (97.5%) of the study 
subjects were male. 

ECG findings

ECG recordings were successfully obtained from 36 participants, 
with 34 meeting inclusion criteria following the exclusion of 
two recordings due to significant motion artifacts. (example 
ECG shown in Figure 1). All baseline ECGs demonstrated normal 
sinus rhythm prior to CWI. During the immersion phase, our 
analysis revealed isolated ventricular extrasystoles (n = 5) occurring 
in two participants, with no subsequent alterations in QRS 
morphology or rhythm stability. Notably, we observed no instances 
of malignant cardiac arrhythmias, including ventricular tachycardia, 
ventricular fibrillation, or torsade de pointes tachycardias.

Quantitative analysis demonstrated a statistically significant 
increase in heart rate following immersion (median pre-immersion 
HR: 114 bpm [IQR 102–129] versus post-immersion HR: 131 bpm 
[IQR 118–139]; p = 0.0304, paired t-test). Comparative analysis 
between subgroups revealed no significant difference in heart rate 
response between participants with prior cold-water immersion 
experience (n = 12; median HR increase: +14 bpm, [IQR -1 to +17] 
and first-time participants (n = 22; median HR increase: +17 bpm, 
[IQR -9 to +27] ]; p = 0.225, Welch’s t-test).

Comparative analysis of the standard deviation of Normal-to-
Normal RR intervals (SDNN), a well-established metric of heart 
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FIGURE 1
Example ECG with marked evaluation periods (underlined in black).

rate variability, revealed a significant increase in SDNN post-
immersion (pre-immersion median: 46.5 ms [IQR 27–71 ms] vs. 
post-immersion median: 136.5 ms [IQR 83–168 ms]; p < 0.0001 
by paired two-tailed t-test), indicating substantial augmentation of 
parasympathetic nervous system activity following cold exposure 
(as shown in Figure 2).

There was no evidence of malignant cardiac arrhythmias. 
Throughout the study, all participants remained hemodynamically 
stable and free of clinical symptoms. 

Spirometry findings

Lung function parameters were assessed in 26 subjects before 
and after CWI. Each measurement was analyzed both qualitatively 
and quantitatively.

As seen in Table 1, no significant differences were observed 
in forced vital capacity (FVC), forced expiratory volume in one 
second (FEV1), Tiffeneau Index (FEV1 Ratio) or mid-expiratory 
flow (FEF25–75). A reduction in flow rate was noted in the 

peripheral airway resistance range (FEF75–85) and an increase of 
peak expiratory flow (PEF). None of the participants reported 
adverse physical symptoms during the observation period.

Temperature findings

Of 25 administered temperature capsules, 23 produced analyzable 
data, with two exclusions due to telemetry failure. Core temperature 
baseline was defined as the first stable reading maintained for ≥1 min. 
The median latency between capsule ingestion and immersion onset 
was 5:30 min (min: 01:30; max: 13:56). 

We obtained complete bilateral tympanic measurements (n 
= 34 pairs) from 37 attempted recordings, excluding three 
incomplete datasets. Readings below the Braun ThermoScan® PRO 
6000s calibrated range (34 °C–42.2 °C), registering as “LO”; were 
conservatively recorded as 33.9 °C for analytical purposes. Baseline 
and post immersion temperatures are summarized in Table 2.

Our comparative analysis revealed a statistically significant 
disparity between core temperature measurements obtained via 
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FIGURE 2
Standard deviation of RR intervals before and after cold water 
immersion.

ingestible capsule versus tympanic thermometry prior to CWI 
(median Δ +1.5 °C capsule vs. tympanic; p < 0.01, paired two-tailed 
t-test). Post-immersion, this differential increased substantially 
(median Δ +2.8 °C), with the capsule-tympanic divergence showing 
significant augmentation compared to pre-immersion values
(p < 0.01, Mann-Whitney U test).

Tympanic measurements demonstrated a significant disparity 
between pre- and post-immersion measurements (median Δ −1.5 °C 
p = <0.01) but no significant lateralization between the occluded 
(earplug) versus non-occluded ear (median interaural difference Δ 
+0.2 °C; p = 0.15).

Notably, post-immersion tympanic readings exhibited greater 
median variability compared to capsule-derived core temperatures 
as shown in Figure 3.

Discussion

This pilot study, conducted within the German Armed Forces, 
aimed to quantify the physiological and pathophysiological 
responses of military personnel to falling into ice-cold water and 
performing subsequent self-rescue. The primary objective was to 
assess the reliability and accuracy of core temperature measurements 
compared to standard tympanic temperature readings after 
accidental hypothermia. Additionally, the study focused on 
evaluating the potential for adverse effects, particularly the onset of 
cardiac arrhythmias, and other physiological responses under these 
extreme conditions. Similar studies have been conducted in military 

personnel (e.g., (Jones et al., 2020; Kelly et al., 2022), However, to 
the best of our knowledge, this is the first study in a military cohort 
to directly compare the accuracy of core temperature measurements 
with standard tympanic temperature readings following accidental 
hypothermia induced by CWI, as well as to assess the potential risk 
of arrhythmias during military CWI training. 

ECG changes

Immersion in cold water elicits a robust sympathetic stress 
response characterized by increased heart rate and elevated 
blood pressure (Berk et al., 1987; Datta and Tipton, 2006; 
Edmonds et al., 2015; Giesbrecht, 2016; Lott et al., 2021). 
Concurrently, parasympathetically mediated cold responses are 
triggered through the diving reflex and trigeminovagal reflex upon 
facial skin contact with cold water (Caspers et al., 2011; Giesbrecht, 
2016; Buchholz et al., 2017; Dow et al., 2019; Lundell et al., 2020). 
Our findings demonstrate this sympathetic activation through 
significant heart rate elevation (median pre-immersion HR: 114 
bpm [IQR 102–129] versus post-immersion HR: 131 bpm [IQR 
118–139]; p = 0.0304, paired t-test) during immersion, accompanied 
by increased standard deviation of RR intervals (pre-immersion 
median: 46.5 ms [IQR 27–71 ms] vs. post-immersion median: 
136.5 ms [IQR 83–168 ms]; p < 0.0001 by paired two-tailed t-test), 
indicating substantial heart rate variability due to parasympathetic 
activation. This pattern suggests competing autonomic influences: 
tachypnea from the sympathetic cold shock response may enhance 
respiratory sinus arrhythmia (Yasuma and Hayano, 2004), while 
the diving reflex potentially augments vagal tone. Notably, while 
Finnish naval diver studies report increased parasympathetic 
activity during prolonged cold exposure (Lundell et al., 2020), 
we observed no significant bradycardia - likely due to brief 
submersion durations and the counteracting sympathetic response 
(Bierens et al., 2016). Known attenuators of the diving reflex, 
including apnea duration, cognitive distraction, and physical activity 
(Caspers et al., 2011; Buchholz et al., 2017) may have further 
contributed to this finding.

The absence of bradycardia underscores the complex autonomic 
interplay during cold exposure, where simultaneous sympathetic 
and parasympathetic activation can create autonomic conflict 
(Shattock and Tipton, 2012; Tipton and Ducharme, 2013; 
Bierens et al., 2016). Such extreme autonomic responses pose 
particular risks for individuals with cardiovascular disease (Tso et al., 
2022) and may, in rare cases, precipitate life-threatening arrhythmias 
even in healthy persons (Shattock and Tipton, 2012; Tipton and 
Ducharme, 2013; Bierens et al., 2016; Lott et al., 2021). Our subgroup 
analysis of previously CWI trained participants (n = 12) showed 
no differences in heart rate responses (Δ +14 bpm) compared to 
novices (n = 22, Δ +17 bpm), though larger controlled studies are 
needed to establish potential adaptive effects. Current evidence 
suggests regular cold exposure may enhance parasympathetic 
responsiveness, though individual variation remains poorly 
characterized (Jdidi et al., 2024).

Notably, this healthy military cohort without pre-existing 
cardiac conditions exhibited no malignant arrhythmias, profound 
bradycardia, or electrocardiographic markers of hypothermia (e.g., 
Osborn waves) (Tso et al., 2022), demonstrating that supervised 
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TABLE 1  Results of lung function before and after cold water immersion, mean parameter values with (standard deviation) are shown (number of 
subjects (n) = 23). FVC: Forced Vital Cpacitiy. FEV1: Expiratory Volume in one second. PEF: peak Expiratory Flow. FEF: Forced Expiratory Flow. IQR: 
Interquartile range. The data is presented as “median (IQR = interquartile range)” after demonstrating a non-normal distribution with Shapiro-Wilk. 
P-values were calculated using Mann-Whitney-U-Test.

Measurement Statistical means Pre-immersion (n = 
23)

Post-immersion (n = 
23)

P-values

FVC (L) Median (IQR) 5.8 (5.4–6.3) 5.8 (5.1–6.3) 0.48

FEV1 (L) Median (IQR) 4.8 (3.9–5.10) 4.6 (4.1–5.0) 0.31

FEV1 Ratio Median (IQR) 0.8 (0.7–0.8) 0.8 (0.7–0.8) 0.47

PEF (L/min) Median (IQR) 486 (408–531) 417 (363–541) 0.46

FEF25-75 (L/s) Median (IQR) 4.5 (3.9–5.4) 4.4 (4.0–4.7) 0.18

FEF75-85 (L/s) Median (IQR) 1.8 (1.5–2.3) 2.21 (1.7–2.5) 0.16

TABLE 2  Temperature measurement using temperature capsule (number of subjects (n) = 23) and tympanic measurement (n = 34), in degrees Celcius 
(°C). The data is presented as “median (IQR = interquartile range)” after demonstrating a non-normal distribution with Shapiro-Wilk. P-values were 
calculated using Mann-Whitney-U-Test.

Measurement Statistical means Pre-immersion Post-immersion Temperature 
difference (Δ)

P-values

Temperature Capsule 
(°C) (n = 23)

Median (IQR) 37.6 (37.3–37.8) 37.4 (37.2–37.6) −0.2 0.39

Tympanic Free (°C) (n = 
34)

Median (IQR) 36.1 (35.5–36.5) 34.5 (33.9–35.9) −1.6 0.80

Tympanic Occluded (°C) 
(n = 34)

Median (IQR) 36.1 (35.5–36.5) 34.7 (33.9–35.1) −1.4 0.18

CWI can be safely tolerated by fit individuals despite possible 
autonomic stress. 

Pulmonary function

Exposure to a strong cold stimulus via immersion in cold 
water initially triggers gasping and an increased respiratory 
drive. However, if cold exposure persists and core body 
temperature drops, respiratory drive progressively diminishes 
(Tipton, 1989; Tipton et al., 1991; Datta and Tipton, 2006; 
Gagnon et al., 2013; Giesbrecht, 2016).

Cold exposure can induce airway reactions such as 
bronchoconstriction, bronchial hyperresponsiveness, and even 
asthma attacks (Carlsen et al., 2008; Näyhä et al., 2011; Muller 
and Rochoy, 2018). In our cohort, no significant changes 
were observed in VC, FEV1, PEF or mean airway fraction 
FEF25–75%. The attenuated reduction as seen in Table 1, contrary 
to physiological expectations, may be attributable to the physical 
exertion of participants and subsequent sympathetic activation, 
who climbed out of the ice hole, rolled in the snow, and 
returned to the tent. Supporting this, a 2021 Swedish study 
of healthy subjects demonstrated that short, moderate physical 
exertion in subzero temperatures does not significantly impair 
lung function (Eklund et al., 2021). Subgroup analysis of participants 

who had previously completed Self-Rescue in an Ice Breakthrough 
Emergency training also revealed no significant differences. 

Core body temperature changes

The severity of accidental hypothermia following CWI 
critically influences treatment algorithms and transport decisions, 
e.g., ECMO-capabilities Danzl et al., 2016; Paal et al., 2022; 
Pasquier et al., 2023). The International Commission on Alpine 
Emergency Medicine (ICAR) recommends esophageal temperature 
measurement as the reference standard, with the Revised Swiss 
System serving as an alternative clinical assessment tool when 
invasive monitoring is unavailable or not suitable in alert patients 
(Musi et al., 2021; Pasquier et al., 2023).

Although infrared tympanic thermometry represents a rapid, 
non-invasive technique for temperature assessment, its reliability 
is significantly compromised in extreme environmental conditions 
(Danzl et al., 2016; Paal et al., 2022). Accurate measurements 
require a patent ear canal that is both dry and isolated from 
ambient conditions (Muth et al., 2010; Musi et al., 2021; Paal et al., 
2022). Importantly, most prehospital devices are not validated 
for use in extreme temperature ranges, further limiting their 
applicability in CWI scenarios (Henriksson et al., 2017). Despite 
those findings inadequate thermometers continue to be widely 
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FIGURE 3
Visualization of variability of temperature measurements post-immersion body temperature Boxplots. Each box represents the interquartile range (IQR) 
with the median indicated by a horizontal line.

used in extreme environmental conditions, leading to unreliable 
temperature measurements (Podsiadło et al., 2019; Paal et al., 2022). 
Temperature capsule measurement in our study design deviated 
from the typical protocol of ingesting telemetric temperature 
capsules 2–6 h prior to measurement (Bongers et al., 2015) due 
to operational constraints. To ensure data reliability temperature 
capsules were prewarmed in tepid water and we confirmed that 
the capsules were transmitting stable and physiologically plausible 
readings before initiating formal data collection. While the two–6-
h premeasurement period is standard in research, it may not be 
practical in hypothermia emergency situations.

Our results demonstrate significant discrepancies between 
core temperature measurements obtained via ingestible capsule 
and tympanic thermometry following immersion. The median 
temperature change was minimal for capsule measurements (Δ 
−0.2 °C) compared to substantial decreases in both unoccluded (Δ 
−1.6 °C) and occluded (Δ −1.4 °C) tympanic measurements (p < 
0.01). Notably, occlusion of the ear canal with protective plugs failed 
to improve measurement accuracy, suggesting that even brief head 
submersion adversely affects tympanic readings. This shows that even 
in field studies, tympanic temperature measurement is not a suitable 
means of measuring temperature despite the ear canal being closed 
with ear plugs the way we did. However, other closure options could 
in principle sufficiently shield the ear canal from the influence of cold 

water. This observation aligns with material properties documented 
in the manufacturer’s safety data: the polyurethane foam used in 
these earplugs demonstrates hydrophobic characteristics but lacks 
waterproofing capabilities. While controlled immersion protocols 
may prevent head submersion, this is rarely achievable in real-world 
cold-water emergencies. 

Several factors likely contribute to the inaccuracy of 
tympanic measurements under these conditions, including direct 
water contact during submersion, exposure to cold ambient 
air and inherent device limitations in extreme environments 
(Strapazzon et al., 2015; Paal et al., 2022; Pasquier et al., 2023). 
These measurement errors have important clinical implications: 
while tympanic readings (median 34.6 °C) would have classified 
most participants as hypothermic (<35 °C), capsule measurements 
confirmed normothermic core temperatures (median 37.4 °C). The 
measured tympanic values may slightly underestimate the true effect 
of incorrectly low tympanic temperature measurement, as some 
readings were recorded at the detection threshold (e.g., 33.9 °C). 
Such discrepancies could lead to inappropriate clinical interventions 
if treatment decisions were based solely on tympanic assessment.

Based on these findings, we conclude that infrared tympanic 
thermometry—even with ear canal occlusion—provides unreliable 
data in CWI scenarios and may lead to erroneous clinical 
decisions. Besides that, we could show that a short immersion 
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in very cold water (<1 min) with immediate self-rescue has 
no significant short-term effect on core body temperature. 
Throughout the observation period no participant met diagnostic 
criteria for clinical hypothermia as defined by either The Revised 
Swiss System (Dow et al., 2019) or Wilderness Medical Society 
guidelines (Musi et al., 2021).

Conclusion

While cold-water immersion elicits potentially hazardous 
physiological responses - including the sympathetic cold shock 
response, parasympathetic diving reflex, and trigeminovagal reflex 
that may create autonomic conflict - our findings demonstrate 
that structured training can be safely conducted in healthy 
volunteers. Notably, we observed no malignant arrhythmias, 
negative pulmonary changes or life-threatening complications 
despite the pronounced cardiovascular stress induced by 
immersion. Furthermore, our results demonstrate that tympanic 
temperature measurements require careful interpretation in cold 
environments due to significant measurement variability and 
potential confounding factors such as ambient temperature and ear 
canal moisture. Core temperature measurement remains the gold 
standard in cold environments but can be difficult to obtain in alert 
patients. The demonstrated limitations highlight the need for further 
development of robust, non-invasive temperature monitoring 
solutions suitable for extreme environmental conditions.

Limitations

This study has inherent limitations: (1) only a small cohort was 
involved in our feasibility study due to operational constraints in 
the field, which limits the statistical power of the findings. The 
prioritization of the training also caused incomplete datasets. While 
this may affect the generalizability of the results, the data remain 
valuable for preliminary insights or contextual understanding, 
provide valuable insight into physiological responses during ice 
water immersion and demonstrate the feasibility of obtaining such 
measurements in a realistic training environment; (2) selection bias 
from using only healthy military personnel limits generalizability; 
(3) field conditions caused environmental variability; (4) motion 
artifacts affected ECG data during rescue; and (5) There was no 
control group in this pilot observational study, as the primary 
objective of this investigation was to test the measuring devices 
under training conditions. These limitations were mitigated through 
standardized protocols and pre/post-immersion analysis.

Interpretation

Proper planned immersion training of healthy volunteers 
can safely be performed. A critical clinical implication of our 
work is the unreliability of tympanic temperature measurements 
in cold environments. Despite attempts to control for external 
influences (e.g. ear canal occlusion), tympanic readings 
significantly underestimated core temperature, potentially leading 
to misclassification of hypothermia. This reinforces the need 

for gold-standard core temperature assessment or clinical 
staging in CWI scenarios, though practical challenges remain in 
prehospital settings.

Generalizability

While our findings may not be fully generalizable to all 
populations or uncontrolled environments, they provide evidence 
supporting the safety of supervised CWI training in healthy 
individuals. Future studies should expand upon these results with 
larger, more diverse cohorts and controlled laboratory conditions 
to further elucidate the risks and adaptive benefits of cold-
water exposure.
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