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An adaptive fusion of composite 
attention convolutional neural 
network for polyp image 
segmentation

Bojiao Jin, Yi Zhang*, Qianqing Nie, Lin Qi and Wei Qian

Northeastern University, Shenyang, China

Background: Accurate localization and segmentation of polyp lesions in 
colonoscopic images are crucial for the early diagnosis of colorectal cancer 
and treatment planning. However, endoscopic imaging is often affected by 
noise interference. This includes issues like uneven illumination, mucosal 
reflections, and motion artifacts. To mitigate the impact of such interference 
on segmentation performance, it is essential to integrate multi-scale feature 
analysis effectively. Features at different scales capture distinct aspects of 
image information. Yet, existing methods typically rely on simple feature 
summation or concatenation. These methods lack the capability for adaptive 
fusion across scales.
Methods: To address these limitations, this paper proposes AFCNet—an Adaptive 
Fusion Composite Attention Convolutional Neural Network. AFCNet is designed 
to improve robustness against noise interference and enhance multi-scale 
feature fusion for polyp segmentation. The key innovations of AFCNet include: 
(1) integrating depthwise separable convolution with attention mechanisms in 
a multi-branch architecture. This allows for the simultaneous extraction of 
fine details and salient features. (2) Constructing a dynamic multi-scale feature 
pyramid with learnable weight allocation for adaptive cross-scale fusion.
Results: Extensive experiments on five public datasets (ClinicDB, Kvasir-SEG, 
etc.) demonstrate that AFCNet achieves state-of-the-art performance, with 
improvements of up to 3.73% in Dice coefficient and 4.62% in IoU, validating 
its effectiveness and generalization capability in polyp segmentation tasks.
Conclusion: AFCNet is a novel polyp segmentation network that leverages 
convolutional attention and adaptive multi-scale feature fusion, delivering 
exceptional generalization and adaptability.

KEYWORDS

adaptive feature fusion, convolutional attention, depth-wise separable convolution, 
gating units, polyp segmentation 

 1 Introduction

Colorectal cancer is a common malignant tumor with an increasing incidence 
rate, posing a serious threat to human health. Therefore, the prevention of colorectal 
cancer has become an important focus of medical research. Studies have shown 
that polyps are often precancerous lesions in colorectal cancer. Early detection and 
removal of colorectal polyps is one of the most effective methods for reducing the 
incidence of colorectal cancer and improving cure rates (Jia et al., 2019). Physicians
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rely on screening tools such as colonoscopy for the diagnosis of colon 
cancer. However, in clinical practice, small polyps may be missed by 
the naked eye, potentially delaying timely treatment (Zimmermann-
Fraedrich et al., 2019). Automatic and precise polyp segmentation 
can assist doctors in precisely locating polyp regions within 
the colon (Guo et al., 2020), enhancing diagnostic accuracy and 
reducing the likelihood of oversight. Therefore, polyp segmentation 
plays a crucial role in the early diagnosis of colorectal cancer.

Due to the complex shapes and varying sizes of polyps, 
effectively fusing multi-scale features is crucial for significantly 
enhancing the model’s segmentation performance. Deep 
learning-based techniques have driven advancements in colon 
polyp segmentation. Convolutional neural network (CNN)-
based approaches, such as U-Net (Ronneberger et al., 2015) 
and its variants, including UNet++ (Zhou et al., 2019) 
and Unet3+ (Huang et al., 2020), improve performance through 
nested skip connections. However, these methods are inadequately 
modeling long-range dependencies and rely on relatively simple 
integration strategies for fusing features from different scales. As 
a result, they may introduce noise from low-level information, 
and high-level features can blur the boundary details preserved 
in low-level features.

Transformer-based approaches (e.g., Polyp-pvt (Dong 
et al., 2021), MSRAformer (Wu et al., 2022), and SSFormer 
(Wang et al., 2022)) demonstrate superior feature extraction 
capabilities, but still face two challenges: (a) insufficient 
attention to the importance of features during the decoding 
process, and (b) suboptimal integration of information across 
different scales. Recently, researchers have proposed hybrid 
methods that combine CNNs and Transformers to leverage the 
strengths of both (Peng et al., 2024). However, existing approaches 
have not fully considered the potential multi-scale features within 
the same layer and the issue of semantic mismatch between features 
that are far apart in the hierarchy.

This paper proposes a U-shaped polyp segmentation network 
architecture based on convolutional attention and multi-scale 
feature adaptive fusion. Extensive experiments demonstrate that 
our method outperforms existing polyp segmentation approaches 
in both segmentation accuracy and generalizability across five 
colorectal polyp datasets. The paper makes two key contributions: 
(1) A new Multi-scale Depth-wise Convolutional Attention Module 
(MDCA): the MDCA module consists of a depth-separable 
convolutional and multi-branching network, which extracts multi-
scale features within the layer and enhances the focus and 
utilization of important features. (2) A new Multi-scale Adaptive 
Feature Fusion Module (MAFF), which consists of a multi-
scale cross-fusion network and an Adaptive Multi-Scale Feature 
Harmonization (AMFH) module. The multi-scale cross-fusion 
network enables smooth transmission of feature information across 
semantic hierarchies through a progressive feature fusion approach. 
Additionally, the adaptive multi-scale feature coordination module 
provides a flexible way to integrate and strengthen feature 
information at different levels.

The rest of the paper is organized as follows. Section 2 
systematically reviews the related research work in the field of 
polyp segmentation and analyses the advantages and shortcomings 
of the existing methods. Section 3 comprehensively describes the 
network architecture design of AFCNet, and thoroughly analyses 

the implementation principles and technological breakthroughs 
of the three core modules, namely, MDCA, MAFF and UFR. 
Section 4 describes the experimental setup in detail, including 
dataset configuration, evaluation indexes and comparative 
experimental design, and analyses the results quantitatively and 
qualitatively. Finally, Section 5 gives the conclusions of this paper. 

2 Related work

2.1 Polyp segmentation network

Traditional segmentation algorithms such as Otsu’s method 
(Vala and Baxi, 2013), Region Growing (Pohle and Toennies, 2001), 
Snake (Bresson et al., 2007) and other methods are sensitive 
to noise and image quality. Additionally, setting and adjusting 
their parameters is difficult, and they often provide insufficient 
segmentation accuracy and fail to capture fine details. Consequently, 
these methods yield low segmentation accuracy for polyps. In 
contrast, deep learning methods can automatically learn complex 
image features, handle noise more robustly, and eliminate the need 
for manual parameter tuning (Ahamed et al., 2024b).

Thus, deep learning methods provide more accurate and 
robust segmentation results in many application scenarios 
Ahamed et al. (2023a). With the development of Convolutional 
Neural Networks (CNN), especially with the introduction of U-
Net (Ronneberger et al., 2015), many models inspired by this 
architecture have shown promising results in the field of medical 
image segmentation. UNet reduces the resolution of an image 
through a series of convolutional and pooling layers to capture 
the contextual information of the image. It then gradually restores 
the resolution using upsampling and convolution operations, 
effectively combining low- and high-resolution features to enable 
precise pixel-level segmentation. EU-Net Patel et al. (2021) 
enhances semantic information by introducing a global context 
module for extracting key features. ACSNet (Zhang et al., 2020) 
modifies the skip connections in U-Net into a local context 
extraction module and adds a global information extraction 
module. CENet (Gu et al., 2019) uses a ResNet pre-trained model 
as an encoder for feature extraction, fused with a context extraction 
module. It relies on Dense Cavity Convolutional Block (DAC 
module) and Residual Multi-Kernel Pooling (RMP module) to 
capture more abstract features and preserve spatial information, 
leading to improved medical image segmentation performance.

Although CNN has been successful in the field of polyp 
segmentation, it has limitations in acquiring contextual remote 
information. Transformer, as a powerful image-understanding 
method, makes up for this deficiency well and is rapidly developing 
in the field of polyp segmentation. Polyp-pvt (Dong et al., 2021) 
the first to introduce the Transformer as a feature encoder 
for polyp segmentation. It integrates high-level semantic and 
positional information through cascading fusion modules and 
similarity aggregation modules, effectively suppressing noise in 
the feature representations. DuAT (Tang et al., 2023), a dual-
fusion Transformer network, employs a global-to-local spatial 
aggregation module to combine global and local spatial features, 
thereby enabling precise localization of polyps of varying sizes. In 
addition, it employs a selective boundary aggregation module to 
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fuse the edge information at the bottom layer with the semantic 
information at the top layer. SSFormer (Wang et al., 2022) combines 
Segformer (Xie et al., 2021) and Pyramid Vision Transformer as 
an encoder and introduces a new progressive local decoder to 
emphasize the local features and alleviate the problem of distraction. 
TransNetR (Jha et al., 2024) combines the residual network with 
the Transformer. The combination shows good real-time processing 
speed and multi-center generalization capability. 

2.2 Attention mechanism

By precisely focusing on key regions of an image, the attention 
mechanism enables deep learning models to identify polyps 
more efficiently and accurately, particularly in colonoscopy 
images. Att-UNet (Lian et al., 2018) integrates Attention into 
UNet and applies it to medical images, and for the first time, 
incorporates Soft Attention into a CNN network for medical 
imaging. DCRNet (Yin et al., 2022) proposes a positional 
attention module to capture pixel-level contextual information. 
PraNet (Fan et al., 2020) aggregates high-level features using a 
parallel partial decoder, exploits boundary cues using a reverse 
attention module, and establishes relationships between regions 
and boundary. MultiResUNet (Ahamed et al., 2024a) extracts 
features at different scales through multi-resolution convolutional 
blocks, and uses attention guidance to enhance focus on polyp 
regions, significantly improving the segmentation performance of 
colorectal polyps. CaraNet (Lou et al., 2022) combines axial reverse 
attention and channel feature pyramid (CFP) modules to improve 
the segmentation performance of small medical targets. MSRF-
NET (Srivastava et al., 2021) uses a dual-scale dense fusion block 
to exchange multi-scale features with different receptive fields. It 
maintains the resolution and propagates high-level and low-level 
features for more accurate segmentation outcomes.

ResNest (Zhang et al., 2022) is an innovative architecture 
that combines the Residual Network (ResNet) with a split-
attention mechanism, and has demonstrated excellent performance 
in semantic segmentation. By introducing the split-attention 
module—which effectively integrates grouped convolution with 
attention mechanisms—ResNeSt enables the network to more 
effectively capture and utilize both spatial and channel-wise features, 
while maintaining computational efficiency. However, its application 
in the field of polyp segmentation has not been explored in depth. In 
this paper, ResNeSt is employed as an advanced CNN backbone to 
assess its potential in polyp segmentation tasks and to evaluate the 
effectiveness and generalizability of the proposed modules. 

2.3 Feature fusion

Due to the complex shapes and varying sizes of polyps, 
effectively fusing multi-scale features can significantly enhance 
the model’s segmentation performance. DCRNet (Yin et al., 2022) 
achieves feature enhancement by embedding a contextual 
relationship matrix and then achieves relationship fusion by 
region cross-batch memory. MSNet (Zhao et al., 2021) introduces 
a phase reduction unit to extract differential features between 
adjacent layers and employs a pyramid structure with varying 

receptive fields to capture multi-scale information. CFA-Net 
(Zhou et al., 2023) uses a hierarchical strategy to incorporate edge 
features into a two-stream segmentation network while using a 
cross-layer feature fusion module to fuse neighboring features across 
different levels. Work such as PPNet (Hu et al., 2023) and PolypSeg 
(Zhong et al., 2020) apply attention mechanisms to enhance feature 
fusion between the top and bottom layers. Gating mechanisms 
have also proven effective for feature fusion, as demonstrated by 
Gated Fully Fusion (Li et al., 2020) and BANet (Lu et al., 2022), 
which selectively integrate multi-level features through gated 
fusion. Collectively, these works demonstrate that efficiently 
fusing and utilizing extracted features is a promising method in
polyp segmentation. 

3 Methods

In this section, we provide a detailed overview of the architecture 
of the AFCNet network and its constituent modules. Firstly, the 
overall structure of the network is presented in Figure 1.

We then describe each component in detail, including 
the Multi-Scale Depth-wise Convolution Attention Module 
(MDCA module), the Multi-Scale Adaptive Feature Fusion 
module (MAFF), and the Upsampling Feature Retrospective
Module (UFR). 

3.1 Network architecture

The AFCNet we designed follows the classical encoder-decoder 
architecture. For the encoding part of the model, we employ the 
traditional CNN network Res2Net50 as the backbone. We use 
the first three layers of high-level features extracted from the 
backbone network. Suppose our input polyp segmentation image 
is F ∈ RH×W. We utilize the feature information of each level fk ∈
R

H
2k+1 ×

W
2k+1 (k ∈ [1,3]). The Multi-scale Depth-wise Convolutional 

Attention Module (MDCA) applies convolutional attention 
mechanisms to feature information at different hierarchical levels, 
gathering key information within the image while suppressing less 
significant elements. The MDCA module enhances the model’s 
feature representation for each pixel point in the input image by 
capturing multi-scale information through convolutional kernels 
of different sizes. Moreover, the enhanced attentional features and 
the original features are effectively fused in this module by a dense 
concatenation operation.

After subsequent enhancement of features by MDCA, the 
features fm

k  are input into the Multi-scale Adaptive Feature Fusion 
(MAFF) module. Within the MAFF module, a cross-network aligns 
features of different scales. Subsequently, the Adaptive Multi-Scale 
Feature Harmonization (AMFH) module performs weighted fusion 
on the adjusted feature maps, emphasizing differences and key 
information within the features to heighten the model’s sensitivity 
to image details. Through a 3 × 3 convolution, features across 
various scales are efficiently integrated. Finally, the multi-scale 
fused feature information is processed through a specially designed 
UFR, effectively integrating features from different network layers 
while considering their dynamic interrelations, leading to the final 
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FIGURE 1
The AFCNet network framework consists of four key parts. The processing pipeline flows from the Encoder Network, to the MDCA, then to the MAFF, 
and finally to the UFR.

segmentation prediction map. Our overall network structure is 
defined in Equations 1–4:

fk = Res2Net (F) ,k ∈ [1,3] (1)

fkAtt
=MDCA( fk) ,k ∈ [1,3] (2)

fkagg
=MAFF( fm

kAtt
,Wi) ,k ∈ [1,3] , i ∈ [1,6] (3)

Fout = UFR( fkagg
) (4)

 

3.2 Multi-scale depth-wise convolution 
attention module

In order to extract more important feature information 
from different layers, the MDCA module is designed in this 
paper. This module consists of a multi-branch parallel network 

and a multi-scale deep convolutional attention mechanism. This 
module first integrates feature information from multiple receptive 
fields within each layer, ensuring that the output of each layer 
simultaneously captures detailed, local contextual, and global 
semantic information. By introducing an internal multi-scale 
feature extraction and fusion module prior to inter-level feature 
fusion, the representation quality and richness of single-layer 
features are greatly enhanced. This design establishes a progressive 
fusion paradigm—first optimizing the internal structure and 
then coordinating external relationships—allowing the network to 
achieve smoother and more controllable feature evolution from 
local details to global semantics. Ultimately, this improves both 
the accuracy of complex boundary segmentation and the model’s 
generalization ability.

As shown in Figure 2, the features fk are obtained from the 
encoder. First, fk is convolved by a depth-separable convolution with 
a convolution kernel size of 5× 5 to obtain the spatial feature f′k. 
The obtained features f′k are then fed into a multi-branch concurrent 
network structure consisting of three different branches. And there 
are two depth directions of banded depth-separable convolution in 
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FIGURE 2
Structure of the MDCA module. It consists mainly of depth-wise separable convolution and a multi-branch depth-wise dilated convolution structure.

each branch. The size of the depth-separable convolution kernel 
in each branch is set to 7, 11, and 21, respectively. Capturing 
multi-scale contextual information in each branch through these 
different orientations and sizes of convolutions enables the network 
to capture a wider range of contextual information in the image 
and to better understand the image features at different spatial 
scales. Thus, this design enhances the network’s sensitivity to objects 
with diverse shapes and structures. We define depth-separable 
convolution in Equation 5:

DWSConvm×n ( f) = ϕ(Convm×n ( f)) (5)

Where ϕ(⋅) stands for point-by-point convolution, and Convm×n
stands for convolutional layers with convolutional kernel size m×
n. After the multi-branch network fully extracts image information, 
attention maps f′k,7, f

′
k,11, f
′
k,21 are obtained from different branches. 

The attention feature maps are then summed from different branches 
and multiplied with the input feature maps for feature optimization 
to obtain f′KAtt

. Finally, the module uses splicing to fuse the optimized 
features with the original features in the channel through an 
information aggregation stage, followed by a final 3

∗
3 convolution. 

The module integrates rich multi-scale information to enhance the 
model’s representation of contextual features. Mathematically, the 
MDCA module can be described by the Equations 6–11:

f′k = DWSConv5×5 ( fk) (6)

f′k,7 = DWSConv7×1 (DWSConv1×7 ( f
′
k)) (7)

f′k,11 = DWSConv11×1 (DWSConv1×11 ( f
′
k)) (8)

f′k,21 = DWSConv21×1 (DWSConv1×21 ( f
′
k)) (9)

f′kAtt
= fk ⊗ ( f

′
k + f′k,7 + f′k,11 + f′k,21) (10)

fkAtt
= ψ(BN(L3×3 (( f

′
kAtt
, fk)))) (11)

where fk(k ∈ [1,3]) is a different hierarchical characterization of the 
input, DWSConvm×n is depth-wise convolution, Concat represents 
the feature concatenation operation. ψ(⋅) means ReLU function, 
BN denotes batch normalization, L3×3(⋅) means DWSConv3×3
and Concat. 

3.3 Multi-scale Adaptive Feature Fusion 
Module

Due to the low contrast between polyps and surrounding 
tissues in some polyp endoscopic images, features extracted by 
traditional methods may have difficulty in distinguishing subtle 
differences between polyps and normal tissues. To fully leverage 
features at different scales and enhance the richness of feature 
representation, we propose a Multi-scale Adaptive Feature Fusion 
(MAFF) module. This method introduces a progressive, hierarchical 
feature fusion approach. As illustrated in Figure 1, this model 
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FIGURE 3
Upsampling Feature Retrospective Module structure. It consisits Update gate unit, reset gate unit and dense connections,the module uses a bilinear 
interpolation method to upsample features.

TABLE 1  The detailed information regarding the data divisions and dataset types.

Dataset Year Total Train Test Type

Kvasir− SEG (Jha et al., 2020) 2020 1,000 900 100 Within dataset

CVC−ClinicDB (Bernal et al., 2015) 2015 612 550 62 Within dataset

CVC−ColonDB (Tajbakhsh et al., 2015) 2012 380 − 380 Cross dataset

CVC− 300 (Vázquez et al., 2017) 2017 60 − 60 Cross dataset

ETIS (Silva et al., 2014) 2014 196 − 196 Cross dataset

TABLE 2  Hyperparameters in experiments.

Epochs Batchsize Optimizer LRschedule Data 
augmentation

Loss function Fixed random 
seeds

200 8 Adam ReduceLROnPlateau Random rotations, 
horizontal flips, 

vertical flips, coarse 
masking

Combine 
cross-entropy loss 

and dice loss

42, 8, 36, and 120

establishes a series of intermediate representations between feature 
layers with significant semantic gaps, using them to guide the 
information flow with finer granularity between layers. This ensures 
a smooth transition from spatial details to semantic concepts, 
helping to alleviate the feature mismatch problem between different 
semantic levels.

MAFF consists of two main components: a multi-scale fusion 
cross-network and an Adaptive Multi-scale Feature Harmonization 

module. The multi-scale fusion cross-network realizes dynamic 
interaction and complementarity between different scale features 
through its unique structure, providing a basis for the model to 
capture rich, multi-level information. At the core of MAFF is 
the Adaptive Multi-Scale Feature Harmonization module, which 
comprises two distinct operations: a feature addition unit and a 
feature subtraction unit. Feature addition is a commonly used 
feature enhancement algorithm in the image domain, and in our 
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TABLE 3  Comparison of our designed model AFCNet with currently popular methods on the CVC-ClinicDB dataset.([In %] and “±” for variance).

Models backbone recall TNR Dice ACC IoUp

UNet++(Zhou et al., 2019) - 89.37± 0.69 99.33± 0.11 88.52± 0.10 98.73± 0.08 82.87± 0.13

Unet3+(Huang et al., 2020) - 87.59± 0.68 99.19± 0.11 86.84± 0.85 98.51± 0.08 80.67± 1.01

AttUNet(Lian et al., 2018) - 89.49± 1.15 99.22± 0.13 88.38± 1.37 98.58± 0.01 82.53± 1.27

CENet(Gu et al., 2019) ResNet-34 93.46± 0.60 99.35± 0.08 91.76± 0.70 99.07± 0.08 86.67± 1.05

LGINet(Liu et al., 2023) - 88.65± 1.50 99.03± 0.21 87.65± 1.08 98.58± 0.11 81.52± 1.62

DCRNet(Yin et al., 2022) ResNet-34 94.13± 1.66 99.52± 0.13 92.83± 0.75 99.24± 0.08 88.37± 0.60

MSNet(Zhao et al., 2021) Res2Net-50 92.52± 0.05 99.45± 0.06 91.94± 0.52 99.14± 0.05 86.60± 0.46

TransNetR(Jha et al., 2024) ResNet-50 93.18± 1.48 99.44± 0.07 92.13± 0.79 99.17± 0.04 87.56± 0.73

CaraNet(Lou et al., 2022) Res2Net-50 95.21± 0.84 99.47± 0.06 93.08± 0.65 99.22± 0.04 88.37± 0.64

Polyp− pvt(Yin et al., 2022) PVT 95.48± 0.73 99.29± 0.14 92.15± 0.99 99.13± 0.10 87.03± 1.24

DuAT(Tang et al., 2023) PVT 94.93± 0.81 99.49± 0.11 93.06± 0.48 99.26± 0.05 88.29± 0.71

AFCNet(ours) Res2Net-50 94.54± 0.96 99.61± 0.07 94.48± 0.22 99.33± 0.07 89.88± 0.33

AFCNet(ours) ResNest-50 95.33± 0.67 99.60± 0.06 94.64± 0.71 99.36± 0.07 90.46± 0.89

AFCNet(ours) PVT 95.79± 0.24 99.59± 0.03 94.78± 0.19 99.37± 0.03 90.59± 0.16

TABLE 4  Comparison of our designed model AFCNet with currently popular methods on the Kvasir-SEG dataset.([In %] and “±” for variance).

Models backbone recall TNR Dice ACC IoUp

UNet++(Zhou et al., 2019) - 86.12± 0.79 98.32± 0.13 85.57± 1.09 96.00± 0.27 78.60± 1.40

Unet3+(Huang et al., 2020) - 82.94± 0.55 97.72± 0.42 81.02± 1.35 94.81± 0.34 72.77± 1.60

AttUNet(Lian et al., 2018) - 87.47± 0.94 98.17± 0.26 86.49± 0.62 96.11± 0.21 79.62± 0.60

CENet(Gu et al., 2019) ResNet-34 89.80± 0.56 98.19± 0.31 89.66± 0.37 96.89± 0.25 83.41± 0.54

LGINet(Liu et al., 2023) - 88.42± 0.76 97.89± 0.44 87.19± 1.32 96.16± 0.34 80.72± 1.52

DCRNet(Yin et al., 2022) ResNet-34 90.18± 1.50 97.77± 0.51 88.78± 0.96 96.50± 0.32 82.87± 1.00

MSNet(Zhao et al., 2021) Res2Net-50 89.91± 0.95 98.58± 0.39 89.41± 0.72 96.79± 0.22 84.01± 0.75

TransNetR(Jha et al., 2024) ResNet-50 89.25± 0.83 98.30± 0.33 88.57± 0.38 96.52± 0.15 82.35± 0.44

CaraNet(Lou et al., 2022) Res2Net-50 90.78± 1.01 98.45± 0.33 89.57± 0.62 96.85± 0.22 83.58± 0.69

Polyp− pvt(Yin et al., 2022) PVT 92.51± 0.92 99.01± 0.43 91.68± 0.30 97.38± 0.26 86.51± 0.42

DuAT(Tang et al., 2023) PVT 91.67± 1.19 98.61± 0.28 91.29± 0.34 97.32± 0.15 86.11± 0.41

AFCNet(ours) Res2Net-50 90.81± 0.72 98.79± 0.21 90.48± 0.15 97.17± 0.07 85.12± 0.28

AFCNet(ours) ResNest-50 92.10± 0.84 98.76± 0.22 91.44± 0.30 97.49± 0.07 86.13± 0.38

AFCNet(ours) PVT 92.51± 0.59 98.74± 0.18 92.35± 0.49 97.55± 0.10 87.53± 0.30
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TABLE 5  Computational efficiency comparison of AFCNet with different 
backbone networks. The table shows the computational complexity 
(GFLOPs), number of parameters, and inference speed (frames per 
second) for each configuration.

backbone GFLOPs Param In ference(FPS)

AFCNet(Res2Net50) 8.043 29,939,345 50.81

AFCNet(ResNest50) 8.802 31,704,233 45.16

AFCNet(PVT) 9.243 28,393,217 33.82

module, the common information present in different levels of 
features is highlighted by performing addition operations on the 
features at different levels. The opposite feature subtraction unit is 
able to highlight the differences in information between features 
at different levels. In order to fully fuse these two complementary 
feature information, we introduce a trainable weighting ratio 
parameter, Wi. With the trainable parameter Wi, the module is 
able to achieve fine control of the feature fusion process, thus 
enhancing the model’s generalization ability and robustness to 
different endoscopic images.

The MAFF module receives inputs fkAtt
(k ∈ [1,3]), which are 

multi-scale enriched features output from the MDCA module. 
These features are first processed by the Multi-Scale Fusion Cross-
Network, where bilinear interpolation is used to align the spatial 
scales through upsampling and downsampling. Convolutional layers 
are then applied to further refine the feature representations.

This process can be mathematically expressed in 
Equations 12–14:

UPk ( f) = ψ(BN(Conv3×3 (Bk ( f))) (12)

Downk ( f) = ψ(BN(Conv3×3 (B 1
k
( f))) (13)

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

fdown2
1Att
= Down2 ( f1Att

)

fdown4
1Att
= Down4 ( f1Att

)

fup2
2Att
=UP2 ( f2Att

)

fdown2
2Att
= Down2 ( f2Att

)

fup2
3Att
=UP2 ( f3Att

)

fup4
3Att
=UP4 ( f3Att

)

(14)

where Conv3×3 means the operation that consists of a sequence of 3×
 3 convolution, BN means batch normalization, and ψ is the ReLU 
function. B denotes the sampling method of bilinear interpolation.

We then put the aligned features into the AMFH (Adaptive 
Multi-scale Feature Harmonization) module. AMFH fuses two 
different features by feature addition and subtraction in order 
to efficiently capture the complementary information between 
different layers of features, highlight the subtle differences between 
them, and strengthen the module’s sensitivity to edges, textures, and 
other key visual details. We then enable the module to dynamically 
balance the effects of addition and subtraction operations on the 
final feature representation by introducing an adaptive weighting 
mechanism. This adaptivity is based on the unique properties 
of the input features and their contextual information, and the 

optimization of the weights is performed automatically. With the 
adaptive adjustment of the weights of addition and subtraction 
operations, the AMFH module takes full advantage of the 
complementary strengths of these two operations to produce feature 
representations that are rich and fine-grained. We use X and 
Y as input features to the AMFH module, defining the AMFH 
function in Equation 15:

AMFH (X,Y) = ψ(BN(Conv3×3 (|Wi ⊗ (X⊕Y) + (1−Wi) ⊗ (X⊖Y) |)))
(15)

where ⊕ is the element-by-element addition operation, ⊖ is 
the element-by-element subtraction operation, ⊗ is the Hadamard 
product, Wiis the trainable parameter we set i ∈ [1,6], | ⋅ | computes 
the absolute value, where Conv3×3 means the operation that consists 
of a sequence of 3×  3 convolution, BN means batch normalization 
and ψ is ReLU function. After the AMFH module we can get three 
final outputs in Equation 16:

{{{{
{{{{
{

f1agg
= AMFH(AMFH( f1Att

, fup2
2Att
) , fup4

3Att
)

f2agg
= AMFH(AMFH( fdown2

1Att
, f2Att
) , fup2

3Att
)

f3agg
= AMFH(AMFH( fdown4

1Att
, fdown2

2Att
) , f3Att
)

(16)

 

3.4 Upsampling Feature Retrospective 
Module

After obtaining the fused features, in order to dynamically adjust 
the amount of information fused in each scale so as to realize 
more effective information integration, reduce spatial distortion, 
and enhance the semantic expression of the features in multi-
scale feature fusion. We have designed the Up-sampling Feature 
Retrospective Module (UFR) based on the idea of the Gate Recurrent 
Unit (GRU). As shown in Figure 3.

In the gated loop unit, the gating mechanism is used to control 
the flow of information through the sequence model. We input 
different levels of features into the UFR module, respectively. The 
UFR module consists of an update gate module and a reset gate 
module, as well as a dense connection, which performs correlation 
enhancement of the different levels of features through update 
gates and reset gates. We set the two inputs of the module to be 
two neighboring features of different levels: X and Y. Then the 
update gates and the reset gates are computed by the following 
Equations 17–20:

Z = σ(ψ(BN(Conv3×3 (X)))) (17)

R = σ(ψ(BN(Conv3×3 (Up2 (Y))))) (18)

H = T (R+ψ(BN(Conv3×3 (R⊗X)))) (19)

H = Z⊗X+ (1−Z) ⊗H (20)

where σ(⋅) denotes Sigmoid function, ψ(⋅) denotes ReLU function, 
T (⋅) denotes Tanh function. The obtained hidden vector H is used 
as one of the outputs of this layer and the inputs of the next layer.
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FIGURE 4
Change curves for the two KPIs when modeled using different backbones as encoders, as well as for the baseline model and two advanced models 
using the corresponding backbones on CVC-ClinicDB dataset.

In our module, we up-sample the bottom layer features by 
using linear interpolation so as to align with the dimensions of 
the top layer features. We define the above computational process 
as the G(⋅) function. Our upsampling part can be expressed by 
Equations 21–24:

fup
3agg
= UP2 ( f3agg

) (21)

fup
2agg
= C3×3 (G ( f2agg

, fup
3agg
)) (22)

fup
1agg
= C3×3 (G ( f1agg

, fup
2agg
)) (23)

output = ψ(BN(Conv3×3 ( f
up
1agg
))) (24)

where C3×3 denotes Convolution with 3× 3 convolution kernel 
and Concat. 

4 Experiment, result and discussion

In this section, we provide detailed descriptions of our 
experiments, including the datasets used and the experimental 
results. This includes comparisons with 11 widely used methods 
as benchmarks, along with ablation studies and generalization 
experiments to validate the effectiveness of our approach. 

4.1 Experiment

4.1.1 Dataset
According to the (Mei et al., 2023), we selected five publicly 

available datasets commonly used in the field of polyp segmentation: 
Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, CVC-300, and ETIS.

Kvasir-SEG (Jha et al., 2020): It is an open-access dataset of 
gastrointestinal polyp images and the corresponding segmentation 
masks, manually annotated and verified by an experienced 
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FIGURE 5
Qualitative results are used to compare the ground truth, our three methods, and eleven state-of-the-art methods on CVC-ClinicDB datasets.

FIGURE 6
Qualitative results are used to compare the ground truth, our three methods, and eleven state-of-the-art methods on Kvasir-SEG datasets.

TABLE 6  Computational cost analysis of AFCNet with incremental 
module integration.

Models GFLOPs Param In ference(FPS)

baseline 6.016 26,898,257 57.16

baseline+MAFF 7.049 28,364,177 51.37

baseline+MAFF+
MDCA

7.43 28,808,849 51.63

baseline+MAFF+
MDCA+UFR

8.043 29,939,345 50.81

gastroenterologist. It contains 1,000 polyp images and their 
corresponding ground truth from the Kvasir-SEG Dataset v2. The 
resolution of the images contained in Kvasir-SEG varies from 332 × 
487 to 1920 × 1,072 pixels.

CVC-ClinicDB (Bernal et al., 2015): CVC-ClinicDB is a 
database of frames extracted from colonoscopy videos. These frames 
contain several examples of polyps. The CVC-ClinicDB dataset 
contains 612 images cut from 25 colonoscopy videos with an 
image size of 384 ×  288 and polyps ranging from 0.34% to
45.88% in size.

CVC-ColonDB (Tajbakhsh et al., 2015): The CVC-ColonDB 
dataset consists of 380 images cut from 15 colonoscopy videos with 
an image size of 574 ×  500 and the polyp size of 0.30%–63.15%.

ETIS (Silva et al., 2014): ETIS contains 196 images cut from 34 
colonoscopy videos with the image size of 1,225 ×  996. The highest 
resolution compared to other datasets. But the size of polyps in its 
images is only 0.11%–29.05%, the smallest, making this dataset also 
more challenging.

CVC-300 (Vázquez et al., 2017): includes 60 colonoscopy images 
with a resolution of 500 ×  574.

To evaluate the segmentation performance of the method, we 
conducted experiments on two polyp segmentation datasets, Kvasir-
SEG and CVC-ClinicDB. For each dataset, we randomly divided it 
into two subsets: 90% for the training set and the remaining 10%
for the test set. To verify the generalizability of our model to data, 
we followed the experimental method of PraNet (Fan et al., 2020), 
extracting 900 and 550 images from the CVC-ClinicDB and Kvasir-
SEG datasets, respectively, to form a training set of 1,450 images. 
Meanwhile, we used the CVC-ColonDB, CVC-300, and ETIS 
datasets as test sets to validate the model’s generalizability on 
different datasets. Table 1 summarizes the detailed information. 

4.1.2 Training setup and experimental metrics
All of our experimental models are implemented under pytorch 

2.0.0 and trained for 200 epochs on an RTX4090 graphics card 
with 24G of memory. Throughout the training regimen, we 
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TABLE 7  Comparison of our designed model AFCNet with currently popular methods on the CVC-ColonDB dataset.([In %] and “±” for variance).

Models recall TNR Dice ACC IoUp

UNet++(Zhou et al., 2019) 64.65± 1.24 98.29± 0.25 59.89± 1.77 94.96± 0.28 51.81± 1.58

Unet3+(Huang et al., 2020) 61.75± 1.87 97.89± 0.59 55.58± 2.65 94.53± 0.50 47.16± 3.14

AttUNet(Lian et al., 2018) 64.86± 1.04 98.69± 0.25 61.36± 0.96 95.35± 0.13 53.51± 1.14

CENet(Gu et al., 2019) 72.85± 2.11 99.22± 0.18 71.03± 1.67 95.95± 0.24 63.45± 1.51

LGINet(Liu et al., 2023) 70.69± 1.82 98.09± 0.35 64.92± 1.67 95.46± 0.31 56.98± 1.54

DCRNet(Yin et al., 2022) 77.48± 4.07 98.60± 0.66 73.67± 1.99 96.13± 0.17 65.68± 1.62

MSNet(Zhao et al., 2021) 70.45± 2.06 99.52± 0.07 71.20± 1.65 96.19± 0.27 64.19± 1.70

TransNetR(Jha et al., 2024) 64.79± 1.76 99.59± 0.07 66.23± 1.53 95.69± 0.04 59.29± 1.41

CaraNet(Lou et al., 2022) 76.35± 2.74 99.09± 0.11 73.57± 3.01 96.22± 0.21 65.91± 2.73

Polyp− pvt(Yin et al., 2022) 80.31± 0.96 98.95± 0.37 77.88± 1.00 96.94± 0.33 69.96± 0.94

DuAT(Tang et al., 2023) 80.46± 0.82 98.59± 0.29 77.37± 0.76 96.63± 0.19 69.03± 0.77

AFCNet 81.26± 1.16 98.86± 0.10 78.79± 0.35 96.99± 0.13 70.67± 0.17

TABLE 8  Comparison of our designed model AFCNet with currently popular methods on the ETIS dataset.([In %] and “±” for variance).

Models recall TNR Dice ACC IoUp

UNet++(Zhou et al., 2019) 43.42± 3.88 98.72± 0.16 39.31± 4.23 96.88± 0.19 33.70± 3.58

Unet3+(Huang et al., 2020) 59.05± 3.14 98.24± 1.13 56.44± 1.93 97.18± 1.02 48.99± 1.87

AttUNet(Lian et al., 2018) 44.28± 2.25 98.99± 0.15 40.62± 1.11 97.09± 0.10 35.48± 1.09

CENet(Gu et al., 2019) 66.98± 4.20 98.62± 0.59 62.32± 2.61 97.85± 0.46 55.29± 1.91

LGINet(Liu et al., 2023) 47.90± 2.32 98.18± 0.64 42.76± 3.91 96.70± 0.72 37.27± 3.65

DCRNet(Yin et al., 2022) 67.79± 4.25 97.96± 1.32 59.37± 2.14 97.19± 1.15 52.59± 2.50

MSNet(Zhao et al., 2021) 73.35± 3.56 99.10± 3.86 69.08± 2.06 98.50± 0.32 61.92± 1.54

TransNetR(Jha et al., 2024) 58.85± 4.01 99.43± 0.10 57.12± 3.67 98.32± 0.20 51.15± 3.29

CaraNet(Lou et al., 2022) 83.01± 3.86 97.19± 1.28 68.86± 2.04 96.84± 1.16 60.52± 1.93

Polyp− pvt(Yin et al., 2022) 82.10± 1.62 98.47± 0.44 73.00± 1.97 98.21± 0.41 64.64± 2.22

DuAT(Tang et al., 2023) 78.97± 1.19 98.69± 0.19 72.43± 2.04 98.40± 0.19 62.95± 2.75

AFCNet 83.09± 2.56 98.81± 0.26 76.73± 0.91 98.51± 0.17 69.26± 0.56

use four basic data augmentation techniques, random rotations, 
horizontal flips, vertical flips, and coarse masking, to enhance the 
model’s robustness to variations in the input data. And we use 
an Adam optimiser with the learning rate of 1e-4 and use the 
ReduceLROnPlateau learning rate scheduler. In our experiments, 
four separate experiments are conducted for each model, using 
four fixed random seeds: 42, 8, 36, and 120. The hyperparameters 
used in experiments are illustrated in Table 2. In the paper, 
all experimental data in the tables, unless otherwise specified, 

are the averages of these four experiments, with the variance
calculated.

We combine cross-entropy loss and Dice loss as our assessment 
metrics for the loss function. To validate the effectiveness of 
our model, we have selected five metrics to evaluate the model’s 
performance from multiple perspectives: Dice Similarity Coefficient 
(Dice), Intersection over Union of polyp (IoUp), recall, Accuracy 
(ACC), and True Negative Ratio (TNR). Let FN, FP, TN, and 
TP denote false negatives, false positives, true negatives, and true 
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TABLE 9  Comparison of our designed model AFCNet with currently popular methods on the CVC-300 dataset. ([In %] and “±” for variance).

Models recall TNR Dice ACC IoUp

UNet++(Zhou et al., 2019) 80.64± 3.17 98.95± 0.32 73.01± 1.53 98.27± 0.28 64.20± 1.52

Unet3+(Huang et al., 2020) 79.44± 3.63 98.11± 1.04 68.24± 3.32 97.51± 0.87 58.95± 3.60

AttUNet(Lian et al., 2018) 79.18± 3.00 98.97± 0.36 72.30± 1.89 98.25± 0.30 64.40± 2.06

CENet(Gu et al., 2019) 90.14± 4.11 99.15± 0.36 84.60± 0.80 98.89± 0.31 77.07± 0.99

LGINet(Liu et al., 2023) 88.32± 2.78 98.74± 0.34 78.86± 1.64 98.48± 0.24 70.09± 1.37

DCRNet(Yin et al., 2022) 94.69± 1.72 99.13± 0.37 86.63± 1.86 98.96± 0.32 79.36± 1.82

MSNet(Zhao et al., 2021) 93.08± 0.81 99.49± 0.12 88.78± 0.73 99.28± 0.10 81.57± 1.01

TransNetR(Jha et al., 2024) 89.58± 1.84 99.54± 0.10 87.24± 1.06 99.23± 0.06 79.86± 0.97

CaraNet(Lou et al., 2022) 96.16± 0.54 99.09± 0.19 86.74± 0.41 99.00± 0.16 79.14± 0.47

Polyp− pvt(Yin et al., 2022) 94.37± 0.36 99.36± 0.11 87.63± 0.58 99.19± 0.10 80.27± 0.81

DuAT(Tang et al., 2023) 94.21± 1.16 99.01± 0.32 86.44± 0.61 98.85± 0.28 79.19± 0.43

AFCNet 94.54± 0.46 99.55± 0.08 89.24± 0.53 99.38± 0.04 82.51± 0.55

TABLE 10  Ablation study of MAFF module variants on the ClinicDB dataset. ([In %] and “±” for variance).

Models recall TNR Dice ACC IoUp

baseline 90.40± 0.52 99.21± 0.15 89.44± 0.88 98.86± 0.11 83.57± 1.28

MAFF(NoSubtraction) 91.66± 3.63 99.45± 1.04 90.99± 0.77 98.95± 0.10 85.88± 0.95

MAFF(NoAddition) 79.44± 3.63 98.11± 1.04 68.24± 3.32 97.51± 0.87 88.25± 0.61

MAFF 94.30± 0.52 99.57± 0.05 94.01± 0.52 99.32± 0.04 89.55± 0.40

TABLE 11  Ablation study of MAFF module variants on the Kvasir-SEG dataset. ([In %] and “±” for variance).

Models recall TNR Dice ACC IoUp

baseline 88.20± 0.67 98.44± 0.09 87.94± 0.65 96.51± 0.25 81.37± 1.08

MAFF(NoSubtraction) 90.18± 1.50 97.77± 0.51 88.78± 0.96 96.50± 0.32 82.87± 1.00

MAFF(NoAddition) 89.85± 0.86 98.60± 0.29 89.44± 0.29 97.06± 0.29 83.91± 0.53

MAFF 89.63± 0.77 98.78± 0.32 89.78± 0.24 97.01± 0.17 84.20± 0.15

TABLE 12  Performance comparison of segmentation using MDCA, CPCA, and CoordAttention on CVC-CLinicDB dataset. ([In %] and “±” for variance).

Models recall TNR Dice ACC IoUp

ChannelPriorConvolutionalAttention 92.17± 2.02 99.44± 0.004 91.65± 2.28 99.10± 0.005 86.63± 1.76

CoordAttention 91.41± 7.03 99.51± 0.006 90.40± 2.64 99.06± 0.02 85.34± 2.60

MDCA 94.54± 0.96 99.61± 0.07 94.48± 0.22 99.34± 0.06 89.88± 0.33
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TABLE 13  Performance comparison of segmentation using MDCA, CPCA, and CoordAttention on the CVC-CLinicDB dataset. ([In %] and “±” for variance).

Models recall TNR Dice ACC IoUp

ChannelPriorConvolutionalAttention 89.97± 1.85 98.71± 0.007 89.87± 0.73 97.09± 0.06 84.35± 1.05

CoordAttention 89.98± 0.19 98.65± 0.07 90.28± 0.19 97.22± 0.02 84.68± 0.23

MDCA 90.81± 0.72 98.74± 0.18 90.48± 0.15 97.17± 0.07 85.12± 0.28

TABLE 14  Ablation study for the various modules with different backbone on the Kvasir-SEG dataset. ([In %] and “±” for variance).

Backbone Models recall TNR Dice ACC IoUp

baseline 90.40± 0.52 99.21± 0.15 89.44± 0.88 98.86± 0.11 83.57± 1.28

Res2Net-50 +MAFF 94.30± 0.52 99.57± 0.05 94.01± 0.52 99.32± 0.04 89.55± 0.40

+MAFF+MDCA 94.33± 0.68 99.63± 0.06 94.33± 0.10 99.33± 0.07 89.70± 0.29

+MAFF+MDCA+UFR 94.54± 0.96 99.61± 0.07 94.48± 0.22 99.34± 0.06 89.88± 0.33

baseline 92.15± 0.64 99.40± 0.04 91.18± 0.50 99.04± 0.04 85.8± 0.56

ResNest-50 +MAFF 95.13± 0.71 99.58± 0.07 94.34± 0.72 99.34± 0.05 90.07± 0.83

+MAFF+MDCA 95.16± 0.75 99.60± 0.06 94.64± 0.37 99.36± 0.07 90.36± 0.63

+MAFF+MDCA+UFR 95.33± 0.67 99.61± 0.05 94.74± 0.71 99.37± 0.06 90.47± 0.89

baseline 91.10± 0.64 99.40± 0.04 91.48± 0.82 99.04± 0.04 85.94± 0.82

PVT +MAFF 95.85± 0.42 99.55± 0.05 94.11± 0.35 99.33± 0.02 89.95± 0.34

+MAFF+MDCA 95.60± 0.61 99.59± 0.05 94.53± 0.35 99.36± 0.02 90.31± 0.33

+MAFF+MDCA+UFR 95.79± 0.24 99.59± 0.03 94.78± 0.19 99.37± 0.03 90.59± 0.16

positives, respectively. By definition, Dice, IoUp, recall, ACC, and 
TNR can be calculated by following Equations 25–29:

Dice = 2TP
FP+ FN+ 2TP

(25)

IoUp = TP
FP+ FN+TP

(26)

recall = TP
TP+ FN

(27)

ACC = TP+TN
FP+TP+TN+ FN

(28)

TNR = TN
FP+TN

(29)

Generally, a superior segmentation method has larger values of 
Dice and IoUp. 

4.2 Result

4.2.1 Comparisons with state-of-the-art methods
To ensure an objective comparison, all the tested methods 

are selected from open-source works. Specifically, we select the 

following networks including Unet++ (Zhou et al., 2019), Unet3+ 
(Huang et al., 2020), Attention-UNet (Lian et al., 2018) (AttUNet), 
Context Encoder Network (Gu et al., 2019) (CENet), Local 
Global Interaction Network (Liu et al., 2023) (LGINet), Multi-
scale Subtraction Network (Zhao et al., 2021) (MSNet), Duplex 
Contextual Relation Network (Yin et al., 2022) (DCRNet), Dual-
Aggregation Transformer Network (Tang et al., 2023) (DuAT), 
Polyp-pvt (Dong et al., 2021), Transformer-based Residual Network 
(Jha et al., 2024) (TransNetR), Context axial reverse attention 
network (CaraNet) (Lou et al., 2022), as 11 state-of-the-art 
segmentation methods for comparison. To verify the validity of 
the correction, we performed a t-test between the state-of-the-
art AFCNet and the three models that worked best in the other 
comparison experiments and calculated the p-value.

Specifically, the results in Table 3 show that our model achieved 
performance improvements of at least 1.72% in Dice coefficient 
and 2.3% in IoU on the ClinicDB dataset. To further validate the 
statistical significance of AFCNet, we conducted t-tests against the 
Top-3 baseline models (DCRNet, CaraNet, and DuAT). The results 
show that the p-values between AFCNet and the baselines were 
0.0036, 0.0089, and 0.0059 for IoU, and 0.0179, 0.0182, and 0.005 
for Dice, all of which are below the significance threshold (p < 0.05). 
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TABLE 15  Ablation study for the various modules with different backbone on Kvasir-SEG dataset. ([In %] and “±” for variance).

Backbone Models recall TNR Dice ACC IoUp

baseline 88.20± 0.67 98.44± 0.09 87.94± 0.65 96.51± 0.25 81.37± 1.08

Res2Net-50 +MAFF 89.63± 0.77 98.78± 0.32 89.78± 0.24 97.01± 0.17 84.20± 0.15

+MAFF+MDCA 90.25± 0.42 98.71± 0.22 90.15± 0.47 97.13± 0.20 84.88± 0.54

+MAFF+MDCA+UFR 90.81± 0.72 98.74± 0.18 90.48± 0.15 97.17± 0.07 85.12± 0.28

baseline 89.02± 0.82 98.51± 0.11 88.72± 0.58 96.76± 0.17 82.26± 0.46

ResNest-50 +MAFF 91.30± 1.01 98.74± 0.11 90.82± 0.46 97.31± 0.10 85.34± 0.44

+MAFF+MDCA 92.10± 0.84 98.69± 0.12 91.35± 0.42 97.49± 0.07 85.97± 0.57

+MAFF+MDCA+UFR 92.34± 0.61 98.76± 0.22 91.44± 0.30 97.49± 0.07 86.13± 0.38

baseline 91.10± 0.07 98.57± 0.40 90.24± 0.66 97.10± 0.29 84.25± 0.93

PVT +MAFF 91.79± 0.15 98.79± 0.19 91.93± 0.50 97.41± 0.20 86.92± 0.57

+MAFF+MDCA 91.87± 0.15 98.89± 0.32 92.15± 0.30 97.55± 0.19 87.25± 0.24

+MAFF+MDCA+UFR 92.51± 0.59 98.74± 0.18 92.35± 0.49 97.55± 0.10 87.53± 0.30

The results demonstrate that the performance gains of AFCNet on 
the ClinicDB dataset are statistically significant.

As shown in Table 4, AFCNet also demonstrated better 
performance on the Kvasir-SEG dataset, achieving improvements 
of 0.57% in Dice and 0.94% in IoU. We further performed t-
tests against the Top-3 baselines (DuAT, Polyp-PVT, and MSNet), 
yielding p-values of 0.0027, 0.0143, and 0.0014 for IoU, and 0.017, 
0.0382, and 0.001 for Dice, all significantly below 0.05. These 
statistical results confirm that AFCNet’s performance improvements 
on the Kvasir-SEG dataset are also statistically significant. In Table 5, 
we evaluate the inference time and model parameters of AFCNet.

To demonstrate the state-of-the-art performance of our model, 
Figure 4 presents the variation curves of two key metrics (IoU and 
Dice) when using different backbone networks as the encoder. The 
results are categorized into two main groups: CNN-based backbones 
and Transformer-based backbones. For each category, we include 
performance curves of our model along with two state-of-the-art 
models using the same backbone technology and the baseline model 
for comparison. The curves clearly show that our model achieves 
optimal performance regardless of the backbone architecture. Based 
on previous experimental findings, our model demonstrates the best 
results when employing PVT as the backbone network. Therefore, 
for the data generalization experiments, we directly use the PVT-
based configuration to compare with other models, as shown in 
Figures 5, 6. The polyps in the selected images exhibit characteristics 
such as irregular shapes, the presence of bubbles, and complex 
backgrounds.

To further evaluate the computational efficiency, we conducted 
comprehensive analyses on three backbone variants of AFCNet 
(Res2Net50, ResNest50, and PVT). As shown in Table 5, we 
systematically measured and compared several key metrics 
including parameter counts, computational complexity (GFLOPs), 

and inference speed (FPS) on GPU platforms. Additionally, we 
specifically analyzed the computational overhead of key components 
(MDCA, MAFF, and UFR modules) in Table 6. The experimental 
results demonstrate that while these modules introduce certain 
computational costs, they maintain an excellent balance between 
performance improvement and computational expense. These 
supplementary experiments not only validate AFCNet’s superiority 
in segmentation accuracy but also confirm its clinical applicability 
in terms of computational efficiency. 

4.2.2 Generalisability experiments
The generalization ability of Computer-Aided Diagnosis 

(CAD) systems is crucial in clinical applications. To validate the 
generalization ability of AFCNet, we followed the experimental 
methodology of PraNet (Fan et al., 2020). We selected 550 images 
from CVC ClinicDB and 900 images from Kvasir, forming a 
training set of 1,450 images. To verify the network’s generalization 
performance, we used the entire ETIS, CVC ColonDB, and CVC-300 
datasets as unseen data for testing. As shown in Table 7, Tables 8, 9, 
relative to the current popular networks, AFCNet improves Dice 
by 3.73%, IoUp by 4.62% on the ETIS dataset, and on the CVC-
ColonDB dataset set, Dice improves by 0.91%, IoUp improves 
by 0.71%, and on the CVC-300 dataset, Dice improves by 0.46%, 
IoUp improves by 0.94%. It can be clearly seen that our method 
achieves the best results on all three datasets, which shows that our 
method has good learning ability with more robust generalization 
performance. 

4.2.3 Ablation experiments
To systematically validate the effectiveness of each module, we 

designed a dual ablation study scheme:
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We systematically integrated all proposed modules into 
three backbone networks (Res2Net50, ResNest50, and PvT2) to 
validate the architecture’s overall compatibility. All experiments 
were performed on the CVC-ClinicDB and Kvasir-SEG datasets. 
While preserving the complete hierarchical structure of the 
feature extraction backbone, we initially removed all modules to 
maintain only the basic U-shaped encoder-decoder framework, 
then sequentially incorporated the MAFF module, MDCA module, 
and UFR module. To specifically verify the effectiveness of the 
MAFF module’s structure, we conducted simplified ablation studies 
on the Res2Net50 backbone network followed by comprehensive 
experimental analysis. The results illustrated in Tables 10–13 are all 
obtained when Res2Net50 is backbone network. 

4.2.3.1 Effectiveness of MAFF module
In order to verify the effectiveness of the MAFF module in the 

model, we input the multilayer features extracted from the backbone 
network directly into the MAFF module and then up-sampled them 
directly. As can be seen from Table 14, all the metrics of the model 
with the addition of the MAFF module are significantly better than 
the baseline model, both on different datasets and different backbone 
network architectures. This is because the MAFF module is able to 
dynamically balance the impact of the two feature fusion methods 
on the final feature representation through the trainable parameters, 
thus making the two methods complementary to each other.

The MAFF module is validated as an effective multi-scale feature 
fusion method. In addition to this basic ablation experiment, in 
order to explore the structural validity of the MAFF module, 
we conducted systematic ablation experiments comparing three 
configurations: (1) the baseline model without MAFF, (2) MAFF 
with only additive units, and (3) MAFF with only subtractive units. 
The experimental results from Tables 10, 11 show that the full MAFF 
module significantly outperforms the variant model in all evaluation 
metrics (ClinicDB dataset: 4.57%improvement in Dice and 5.98%
improvement in IoU; Kvasir-SEG dataset: 1.84% improvement in 
Dice and 2.83% improvement in IoU) and performs consistently 
across different datasets and backbone networks. According to 
work (Song et al., 2022), MSNet uses Subtractive Units (SU) in 
the Decoder part to generate difference features between adjacent 
levels of the network, which can easily lead to the loss of edge 
information for smaller polyps and affect segmentation accuracy. 
According to the work (Zhou et al., 2018), addition preserves 
semantic consistency without losing information. 

4.2.3.2 Effectiveness of the MDCA module
After the model is added to the MDCA module, as shown 

in Tables 14, 15, the segmentation ability of the model has a 
more obvious improvement, which indicates that the important 
information in the image can be well extracted by our MDCA 
module, this is because the convolution with different orientations 
and sizes can capture a wider range of feature information, and is 
more sensitive to the targets with complex shapes, and can also be 
used with the MAFF module’s fusion mechanism, thus enhancing 
the model’s ability to represent image details and context.

To validate the effectiveness of the MDCA module in multi-scale 
feature extraction, we designed a comparative experiment. In this 
experiment, while keeping the network structure unchanged, the 
MDCA module was replaced with the CPCA and CoordAttention 

modules for performance comparison. As shown in Tables 12, 13, 
the experimental results demonstrate that MDCA outperforms the 
competing methods in polyp boundary segmentation accuracy. This 
highlights the superiority of our design for complex medical image 
segmentation tasks. 

4.2.3.3 Effectiveness of the UFR module
The UFR module filters the information in the up-sampling stage 

through the gating mechanism, and in terms of the model effect, 
Tables 14, 15 demonstrates that the UFR can filter and fuse the fused 
features very well, so as to optimize the segmentation capability of 
the model in a stable manner. 

4.3 Discussion

The proposed architecture in this paper is an end-to-end 
processing framework, meaning that image analysis is completed 
within a single framework (Biju et al., 2024). An alternative approach 
employs a step-by-step construction of deep learning models, 
such as preprocessing the image before performing the analysis 
(Qian et al., 2020; Vijayalakshmi and Sasithradevi, 2024). Both 
methods have their advantages. End-to-end deep learning models 
reduce the complexity of intermediate steps and make more efficient 
use of computational and memory resources. Step-by-step deep 
learning models, on the other hand, offer better interpretability, task 
flexibility, and advantages in modular expansion. Future research 
could focus on further integrating the strengths of both paradigms 
to develop hybrid systems that are flexible and robust.

This work was trained and tested on an RTX 4090 GPU, a type 
of hardware that is still not feasible to deploy on many resource-
constrained embedded platforms. Therefore, another important 
issue for future research is how to effectively improve the execution 
efficiency of polyp segmentation methods, in order to further 
reduce their operational costs and enhance real-time performance. 
Compression techniques, such as quantization and pruning 
(Frantar et al., 2022), along with the use of lightweight architectures 
(Ahamed et al., 2023b; Ahamed et al., 2025), can help reduce 
model size by exploiting the sparsity of effective model parameters. 
However, relying on a single model attribute for performance 
optimization has its limitations. A more comprehensive approach 
that integrates multiple optimization strategies is likely to yield 
better results. For example, in PowerInfer (Song et al., 2024), 
the authors successfully combined the model’s sparsity with the 
challenge of efficiently deploying the model across heterogeneous 
resources, achieving significant performance improvements. Our 
future work will also focus on exploring hybrid techniques for model 
optimization. 

5 Conclusion

This paper proposes a novel polyp segmentation network, 
AFCNet. It is based on convolutional attention and adaptive multi-
scale feature fusion. In the feature extraction and enhancement 
stage, the MDCA module captures broader contextual information 
from images. At the same time, it increases the weights of important 
features. By simplifying the deepest layer features in the backbone
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network, a more efficient architecture is achieved. During the 
feature fusion stage, the MAFF module integrates features from 
different layers. It dynamically balances multiple fusion strategies. 
This process continuously improves the model’s ability to capture 
both global and detailed information. Therefore, superior multi-
scale feature fusion performance is achieved. In the upsampling 
stage, the UFR module filters and guides the final fused features. 
In the experimental section, we compare our method with 11 state-
of-the-art polyp segmentation approaches. We also evaluate the 
module’s generalizability by integrating it with different backbone 
networks. The results demonstrate that our method achieves the 
best performance. It also maintains excellent generalization and 
adaptability.
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