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Background: Accurate localization and segmentation of polyp lesions in
colonoscopic images are crucial for the early diagnosis of colorectal cancer
and treatment planning. However, endoscopic imaging is often affected by
noise interference. This includes issues like uneven illumination, mucosal
reflections, and motion artifacts. To mitigate the impact of such interference
on segmentation performance, it is essential to integrate multi-scale feature
analysis effectively. Features at different scales capture distinct aspects of
image information. Yet, existing methods typically rely on simple feature
summation or concatenation. These methods lack the capability for adaptive
fusion across scales.

Methods: To address these limitations, this paper proposes AFCNet—an Adaptive
Fusion Composite Attention Convolutional Neural Network. AFCNet is designed
to improve robustness against noise interference and enhance multi-scale
feature fusion for polyp segmentation. The key innovations of AFCNet include:
(1) integrating depthwise separable convolution with attention mechanisms in
a multi-branch architecture. This allows for the simultaneous extraction of
fine details and salient features. (2) Constructing a dynamic multi-scale feature
pyramid with learnable weight allocation for adaptive cross-scale fusion.
Results: Extensive experiments on five public datasets (ClinicDB, Kvasir-SEG,
etc.) demonstrate that AFCNet achieves state-of-the-art performance, with
improvements of up to 3.73% in Dice coefficient and 4.62% in loU, validating
its effectiveness and generalization capability in polyp segmentation tasks.
Conclusion: AFCNet is a novel polyp segmentation network that leverages
convolutional attention and adaptive multi-scale feature fusion, delivering
exceptional generalization and adaptability.

adaptive feature fusion, convolutional attention, depth-wise separable convolution,
gating units, polyp segmentation

1 Introduction

Colorectal cancer is a common malignant tumor with an increasing incidence
rate, posing a serious threat to human health. Therefore, the prevention of colorectal
cancer has become an important focus of medical research. Studies have shown
that polyps are often precancerous lesions in colorectal cancer. Early detection and
removal of colorectal polyps is one of the most effective methods for reducing the
incidence of colorectal cancer and improving cure rates (Jia etal., 2019). Physicians
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rely on screening tools such as colonoscopy for the diagnosis of colon
cancer. However, in clinical practice, small polyps may be missed by
the naked eye, potentially delaying timely treatment (Zimmermann-
Fraedrich et al., 2019). Automatic and precise polyp segmentation
can assist doctors in precisely locating polyp regions within
the colon (Guo et al., 2020), enhancing diagnostic accuracy and
reducing the likelihood of oversight. Therefore, polyp segmentation
plays a crucial role in the early diagnosis of colorectal cancer.

Due to the complex shapes and varying sizes of polyps,
effectively fusing multi-scale features is crucial for significantly
the
learning-based techniques have driven advancements in colon

enhancing model's segmentation performance. Deep
polyp segmentation. Convolutional neural network (CNN)-
based approaches, such as U-Net (Ronneberger et al, 2015)
including UNet++ (Zhou et al, 2019)

and Unet3+ (Huang et al., 2020), improve performance through

and its variants,
nested skip connections. However, these methods are inadequately
modeling long-range dependencies and rely on relatively simple
integration strategies for fusing features from different scales. As
a result, they may introduce noise from low-level information,
and high-level features can blur the boundary details preserved
in low-level features.

Transformer-based approaches (e.g., Polyp-pvt (Dong
etal, 2021), MSRAformer (Wu et al, 2022), and SSFormer
(Wang et al, 2022)) demonstrate superior feature extraction
(a)

attention to the importance of features during the decoding

capabilities, but still face two challenges: insufficient
process, and (b) suboptimal integration of information across
different scales. Recently, researchers have proposed hybrid
methods that combine CNNs and Transformers to leverage the
strengths of both (Peng et al., 2024). However, existing approaches
have not fully considered the potential multi-scale features within
the same layer and the issue of semantic mismatch between features
that are far apart in the hierarchy.

This paper proposes a U-shaped polyp segmentation network
architecture based on convolutional attention and multi-scale
feature adaptive fusion. Extensive experiments demonstrate that
our method outperforms existing polyp segmentation approaches
in both segmentation accuracy and generalizability across five
colorectal polyp datasets. The paper makes two key contributions:
(1) A new Multi-scale Depth-wise Convolutional Attention Module
(MDCA): the MDCA module consists of a depth-separable
convolutional and multi-branching network, which extracts multi-
scale features within the layer and enhances the focus and
utilization of important features. (2) A new Multi-scale Adaptive
Feature Fusion Module (MAFF), which consists of a multi-
scale cross-fusion network and an Adaptive Multi-Scale Feature
Harmonization (AMFH) module. The multi-scale cross-fusion
network enables smooth transmission of feature information across
semantic hierarchies through a progressive feature fusion approach.
Additionally, the adaptive multi-scale feature coordination module
provides a flexible way to integrate and strengthen feature
information at different levels.

The rest of the paper is organized as follows. Section 2
systematically reviews the related research work in the field of
polyp segmentation and analyses the advantages and shortcomings
of the existing methods. Section 3 comprehensively describes the
network architecture design of AFCNet, and thoroughly analyses
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the implementation principles and technological breakthroughs
of the three core modules, namely, MDCA, MAFF and UFR.
Section 4 describes the experimental setup in detail, including
dataset configuration, evaluation indexes and comparative
experimental design, and analyses the results quantitatively and

qualitatively. Finally, Section 5 gives the conclusions of this paper.

2 Related work
2.1 Polyp segmentation network

Traditional segmentation algorithms such as Otsu’s method
(Vala and Baxi, 2013), Region Growing (Pohle and Toennies, 2001),
Snake (Bresson et al., 2007) and other methods are sensitive
to noise and image quality. Additionally, setting and adjusting
their parameters is difficult, and they often provide insufficient
segmentation accuracy and fail to capture fine details. Consequently,
these methods yield low segmentation accuracy for polyps. In
contrast, deep learning methods can automatically learn complex
image features, handle noise more robustly, and eliminate the need
for manual parameter tuning (Ahamed et al., 2024b).

Thus, deep learning methods provide more accurate and
robust segmentation results in many application scenarios
Ahamed et al. (2023a). With the development of Convolutional
Neural Networks (CNN), especially with the introduction of U-
Net (Ronneberger et al., 2015), many models inspired by this
architecture have shown promising results in the field of medical
image segmentation. UNet reduces the resolution of an image
through a series of convolutional and pooling layers to capture
the contextual information of the image. It then gradually restores
the resolution using upsampling and convolution operations,
effectively combining low- and high-resolution features to enable
precise pixel-level segmentation. EU-Net Patel et al. (2021)
enhances semantic information by introducing a global context
module for extracting key features. ACSNet (Zhang et al., 2020)
modifies the skip connections in U-Net into a local context
extraction module and adds a global information extraction
module. CENet (Gu et al,, 2019) uses a ResNet pre-trained model
as an encoder for feature extraction, fused with a context extraction
module. It relies on Dense Cavity Convolutional Block (DAC
module) and Residual Multi-Kernel Pooling (RMP module) to
capture more abstract features and preserve spatial information,
leading to improved medical image segmentation performance.

Although CNN has been successful in the field of polyp
segmentation, it has limitations in acquiring contextual remote
information. Transformer, as a powerful image-understanding
method, makes up for this deficiency well and is rapidly developing
in the field of polyp segmentation. Polyp-pvt (Dong et al., 2021)
the first to introduce the Transformer as a feature encoder
for polyp segmentation. It integrates high-level semantic and
positional information through cascading fusion modules and
similarity aggregation modules, effectively suppressing noise in
the feature representations. DuAT (Tang et al, 2023), a dual-
fusion Transformer network, employs a global-to-local spatial
aggregation module to combine global and local spatial features,
thereby enabling precise localization of polyps of varying sizes. In
addition, it employs a selective boundary aggregation module to
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fuse the edge information at the bottom layer with the semantic
information at the top layer. SSFormer (Wang et al., 2022) combines
Segformer (Xie et al,, 2021) and Pyramid Vision Transformer as
an encoder and introduces a new progressive local decoder to
emphasize the local features and alleviate the problem of distraction.
TransNetR (Jha et al., 2024) combines the residual network with
the Transformer. The combination shows good real-time processing
speed and multi-center generalization capability.

2.2 Attention mechanism

By precisely focusing on key regions of an image, the attention
mechanism enables deep learning models to identify polyps
more efficiently and accurately, particularly in colonoscopy
images. Att-UNet (Lian et al, 2018) integrates Attention into
UNet and applies it to medical images, and for the first time,
incorporates Soft Attention into a CNN network for medical
imaging. DCRNet (Yin et al, 2022) proposes a positional
attention module to capture pixel-level contextual information.
PraNet (Fan et al,, 2020) aggregates high-level features using a
parallel partial decoder, exploits boundary cues using a reverse
attention module, and establishes relationships between regions
and boundary. MultiResUNet (Ahamed et al., 2024a) extracts
features at different scales through multi-resolution convolutional
blocks, and uses attention guidance to enhance focus on polyp
regions, significantly improving the segmentation performance of
colorectal polyps. CaraNet (Lou et al., 2022) combines axial reverse
attention and channel feature pyramid (CFP) modules to improve
the segmentation performance of small medical targets. MSRE-
NET (Srivastava et al., 2021) uses a dual-scale dense fusion block
to exchange multi-scale features with different receptive fields. It
maintains the resolution and propagates high-level and low-level
features for more accurate segmentation outcomes.

ResNest (Zhang et al., 2022) is an innovative architecture
that combines the Residual Network (ResNet) with a split-
attention mechanism, and has demonstrated excellent performance
in semantic segmentation. By introducing the split-attention
module—which effectively integrates grouped convolution with
attention mechanisms—ResNeSt enables the network to more
effectively capture and utilize both spatial and channel-wise features,
while maintaining computational efficiency. However, its application
in the field of polyp segmentation has not been explored in depth. In
this paper, ResNeSt is employed as an advanced CNN backbone to
assess its potential in polyp segmentation tasks and to evaluate the
effectiveness and generalizability of the proposed modules.

2.3 Feature fusion

Due to the complex shapes and varying sizes of polyps,
effectively fusing multi-scale features can significantly enhance
the model’s segmentation performance. DCRNet (Yin et al., 2022)
achieves feature enhancement by embedding a contextual
relationship matrix and then achieves relationship fusion by
region cross-batch memory. MSNet (Zhao et al., 2021) introduces
a phase reduction unit to extract differential features between
adjacent layers and employs a pyramid structure with varying
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receptive fields to capture multi-scale information. CFA-Net
(Zhou et al., 2023) uses a hierarchical strategy to incorporate edge
features into a two-stream segmentation network while using a
cross-layer feature fusion module to fuse neighboring features across
different levels. Work such as PPNet (Hu et al., 2023) and PolypSeg
(Zhong et al., 2020) apply attention mechanisms to enhance feature
fusion between the top and bottom layers. Gating mechanisms
have also proven effective for feature fusion, as demonstrated by
Gated Fully Fusion (Li et al,, 2020) and BANet (Lu et al,, 2022),
which selectively integrate multi-level features through gated
fusion. Collectively, these works demonstrate that efficiently
fusing and utilizing extracted features is a promising method in
polyp segmentation.

3 Methods

In this section, we provide a detailed overview of the architecture
of the AFCNet network and its constituent modules. Firstly, the
overall structure of the network is presented in Figure 1.

We then describe each component in detail, including
the Multi-Scale Depth-wise Convolution Attention Module
(MDCA module), the Multi-Scale Adaptive Feature Fusion
module (MAFF), and the Upsampling Feature Retrospective
Module (UFR).

3.1 Network architecture

The AFCNet we designed follows the classical encoder-decoder
architecture. For the encoding part of the model, we employ the
traditional CNN network Res2Net50 as the backbone. We use
the first three layers of high-level features extracted from the
backbone network. Suppose our input polyp segmentation image
is Fe RYHXW. We utilize the feature information of each level f, €
R#TF7 (k € [1,3]). The Multi-scale Depth-wise Convolutional
Attention Module (MDCA) applies convolutional attention
mechanisms to feature information at different hierarchical levels,
gathering key information within the image while suppressing less
significant elements. The MDCA module enhances the model’s
feature representation for each pixel point in the input image by
capturing multi-scale information through convolutional kernels
of different sizes. Moreover, the enhanced attentional features and
the original features are effectively fused in this module by a dense
concatenation operation.

After subsequent enhancement of features by MDCA, the
features f}" are input into the Multi-scale Adaptive Feature Fusion
(MAFF) module. Within the MAFF module, a cross-network aligns
features of different scales. Subsequently, the Adaptive Multi-Scale
Feature Harmonization (AMFH) module performs weighted fusion
on the adjusted feature maps, emphasizing differences and key
information within the features to heighten the model’s sensitivity
to image details. Through a 3 x 3 convolution, features across
various scales are efficiently integrated. Finally, the multi-scale
fused feature information is processed through a specially designed
UEFR, effectively integrating features from different network layers
while considering their dynamic interrelations, leading to the final
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The AFCNet network framework consists of four key parts. The processing pipeline flows from the Encoder Network, to the MDCA, then to the MAFF,

—— Data Flow s Prediction

segmentation prediction map. Our overall network structure is
defined in Equations 1-4:

f, = Res2Net (), k € [1,3] (1)

fi, = MDCA(f,),k € [1,3] @)

fe, :MAFF(f*’;”, W,.),k €[1,3],i € [1,6] 3)
F,u = UFR( fkagg) (4)

3.2 Multi-scale depth-wise convolution
attention module

In order to extract more important feature information
from different layers, the MDCA module is designed in this
paper. This module consists of a multi-branch parallel network
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and a multi-scale deep convolutional attention mechanism. This
module first integrates feature information from multiple receptive
fields within each layer, ensuring that the output of each layer
simultaneously captures detailed, local contextual, and global
semantic information. By introducing an internal multi-scale
feature extraction and fusion module prior to inter-level feature
fusion, the representation quality and richness of single-layer
features are greatly enhanced. This design establishes a progressive
fusion paradigm—first optimizing the internal structure and
then coordinating external relationships—allowing the network to
achieve smoother and more controllable feature evolution from
local details to global semantics. Ultimately, this improves both
the accuracy of complex boundary segmentation and the model’s
generalization ability.

As shown in Figure 2, the features fk are obtained from the
encoder. First, f, is convolved by a depth-separable convolution with
a convolution kernel size of 5x 5 to obtain the spatial feature f}.
The obtained features f; are then fed into a multi-branch concurrent
network structure consisting of three different branches. And there
are two depth directions of banded depth-separable convolution in
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FIGURE 2

Structure of the MDCA module. It consists mainly of depth-wise separable convolution and a multi-branch depth-wise dilated convolution

each branch. The size of the depth-separable convolution kernel
in each branch is set to 7, 11, and 21, respectively. Capturing
multi-scale contextual information in each branch through these
different orientations and sizes of convolutions enables the network
to capture a wider range of contextual information in the image
and to better understand the image features at different spatial
scales. Thus, this design enhances the network’ sensitivity to objects
with diverse shapes and structures. We define depth-separable
convolution in Equation 5:

DWSConv,,., (f) = ¢ (Conv,,.,, ()

Where ¢(-) stands for point-by-point convolution, and Conv
stands for convolutional layers with convolutional kernel size m x

(5)

n. After the multi-branch network fully extracts image information,
attention maps fIL,7’ ﬂ()ll, f]'c,21 are obtained from different branches.
The attention feature maps are then summed from different branches
and multiplied with the input feature maps for feature optimization
to obtain fkm. Finally, the module uses splicing to fuse the optimized
features with the original features in the channel through an
information aggregation stage, followed by a final 3”3 convolution.
The module integrates rich multi-scale information to enhance the
model’s representation of contextual features. Mathematically, the
MDCA module can be described by the Equations 6-11:

fi. = DWSConvs,s(f,) (6)

£, = DWSConv,,,, (DWSConv,,; (.)) )
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structure.
fi1y = DWSConv,,,, (DWSConvy,y, (£,)) (8)
f;{)m = DWSConv,,, (DWSConV1X21 (ﬂc)) 9)
ﬂc,,,,:fk®(ﬂ<+fllc,7+ﬂc,11+ﬂ<,z1) (10)
S = (BN (L5 (£, 1)) an

where f,(k € [1,3]) is a different hierarchical characterization of the
input, DWSConv,,,, is depth-wise convolution, Concat represents
the feature concatenation operation. y(-) means ReLU function,
BN denotes batch normalization, Ls;,;(-) means DWSConvs, s
and Concat.

3.3 Multi-scale Adaptive Feature Fusion
Module

Due to the low contrast between polyps and surrounding
tissues in some polyp endoscopic images, features extracted by
traditional methods may have difficulty in distinguishing subtle
differences between polyps and normal tissues. To fully leverage
features at different scales and enhance the richness of feature
representation, we propose a Multi-scale Adaptive Feature Fusion
(MAFF) module. This method introduces a progressive, hierarchical
feature fusion approach. As illustrated in Figure 1, this model
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interpolation method to upsample features.

Upsampling Feature Retrospective Module structure. It consisits Update gate unit, reset gate unit and dense connections,the module uses a bilinear

TABLE 1 The detailed information regarding the data divisions and dataset types.

Dataset Year Total ’ Train Test Type
Kvasir — SEG (Jha et al., 2020) 2020 1,000 900 100 Within dataset
CVC - ClinicDB (Bernal et al., 2015) 2015 612 550 62 Within dataset
CVC - ColonDB (Tajbakhsh et al., 2015) 2012 380 - 380 Cross dataset
CVC-300 (Vazquez et al., 2017) 2017 60 - 60 Cross dataset
ETIS (Silva et al., 2014) 2014 196 - 196 Cross dataset

TABLE 2 Hyperparameters in experiments.

Epochs Batchsize Optimizer LRschedule

Fixed random
seeds

Data Loss function

augmentation

200 Adam

ReduceLROnPlateau

Random rotations, Combine 42,8, 36, and 120

horizontal flips, cross-entropy loss
vertical flips, coarse and dice loss

masking

establishes a series of intermediate representations between feature
layers with significant semantic gaps, using them to guide the
information flow with finer granularity between layers. This ensures
a smooth transition from spatial details to semantic concepts,
helping to alleviate the feature mismatch problem between different
semantic levels.

MAFF consists of two main components: a multi-scale fusion
cross-network and an Adaptive Multi-scale Feature Harmonization

Frontiers in Physiology

module. The multi-scale fusion cross-network realizes dynamic
interaction and complementarity between different scale features
through its unique structure, providing a basis for the model to
capture rich, multi-level information. At the core of MAFF is
the Adaptive Multi-Scale Feature Harmonization module, which
comprises two distinct operations: a feature addition unit and a
feature subtraction unit. Feature addition is a commonly used
feature enhancement algorithm in the image domain, and in our
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TABLE 3 Comparison of our designed model AFCNet with currently popular methods on the CVC-ClinicDB dataset.([In %] and “+" for variance).

Models backbone recall TNR Dice ACC ‘ loUp

UNet + +(Zhou et al., 2019) - 89.37 +0.69 99.33+0.11 88.52+0.10 98.73 +0.08 82.87+0.13
Unet3+(Huang et al., 2020) - 87.59+0.68 99.19+0.11 86.84+0.85 98.51+0.08 80.67 +1.01
AttUNet(Lian et al., 2018) - 89.49+1.15 99.22+0.13 88.38+1.37 98.58 +0.01 82.53+1.27
CENet(Gu et al., 2019) ResNet-34 93.46 +0.60 99.35+0.08 91.76 +0.70 99.07 +0.08 86.67 +1.05
LGINet(Liu et al., 2023) - 88.65+1.50 99.03 +0.21 87.65+1.08 98.58+0.11 81.52+1.62
DCRNet(Yin et al., 2022) ResNet-34 94.13+1.66 99.52+0.13 92.83+0.75 99.24+0.08 88.37+0.60
MSNet(Zhao et al., 2021) Res2Net-50 92.52+0.05 99.45 +0.06 91.94+0.52 99.14+0.05 86.60 +0.46
TransNetR(Jha et al., 2024) ResNet-50 93.18 +1.48 99.44+0.07 92.13+0.79 99.17 +0.04 87.56 +0.73
CaraNet(Lou et al., 2022) Res2Net-50 95.21+0.84 99.47 +0.06 93.08 +0.65 99.22+0.04 88.37+0.64
Polyp — pvi(Yin et al., 2022) PVT 95.48+0.73 99.29+0.14 92.15+0.99 99.13+0.10 87.03+1.24
DuAT(Tang et al., 2023) PVT 94.93 +0.81 99.49+0.11 93.06 +0.48 99.26 +0.05 88.29+0.71
AFCNet(ours) Res2Net-50 94.54+0.96 99.61+0.07 94.48 +0.22 99.33 +0.07 89.88+0.33
AFCNet(ours) ResNest-50 95.33+0.67 99.60 +0.06 94.64+0.71 99.36 +0.07 90.46 +0.89
AFCNet(ours) PVT 95.79+0.24 99.59 +0.03 94.78 +0.19 99.37+0.03 90.59+0.16

TABLE 4 Comparison of our designed model AFCNet with currently popular methods on the Kvasir-SEG dataset.([In %] and “+" for variance).

Models backbone recall TNR Dice ACC loUp

UNet + +(Zhou et al., 2019) - 86.12+0.79 98.32+0.13 85.57 +1.09 96.00 +0.27 78.60 + 1.40
Unet3+(Huang et al., 2020) - 82.94+0.55 97.72+0.42 81.02+1.35 94.81+0.34 72.77 +1.60
AttUNet(Lian et al., 2018) - 87.47 +0.94 98.17+0.26 86.49+0.62 96.11+0.21 79.62 +0.60
CENet(Gu etal,, 2019) ResNet-34 89.80 +0.56 98.19+0.31 89.66 +0.37 96.89 +0.25 83.41+0.54
LGINet(Liu et al., 2023) - 88.42+0.76 97.89 +0.44 87.19+1.32 96.16+0.34 80.72+ 1.52
DCRNet(Yin et al., 2022) ResNet-34 90.18 +1.50 97.77 +0.51 88.78 +0.96 96.50 +0.32 82.87 + 1.00
MSNet(Zhao et al., 2021) Res2Net-50 89.91+0.95 98.58+0.39 89.41+0.72 96.79+0.22 84.01+0.75
TransNetR(Jha et al., 2024) ResNet-50 89.25+0.83 98.30+0.33 88.57+0.38 96.52+0.15 82.35+0.44
CaraNet(Lou et al., 2022) Res2Net-50 90.78 +1.01 98.45+0.33 89.57 +0.62 96.85 +0.22 83.58 +0.69
Polyp - pvi(Yin et al., 2022) PVT 92.51+0.92 99.01+0.43 91.68 +0.30 97.38+0.26 86.51 +0.42
DuAT(Tang et al., 2023) PVT 91.67+1.19 98.61+0.28 91.29+0.34 97.32+0.15 86.11+0.41
AFCNet(ours) Res2Net-50 90.81+0.72 98.79+0.21 90.48+0.15 97.17+0.07 85.12+0.28
AFCNet(ours) ResNest-50 92.10+0.84 98.76 +0.22 91.44+0.30 97.49 +0.07 86.13+0.38
AFCNet(ours) PVT 92.51+0.59 98.74+0.18 92.35+0.49 97.55+0.10 87.53+0.30
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TABLE 5 Computational efficiency comparison of AFCNet with different
backbone networks. The table shows the computational complexity
(GFLOPs), number of parameters, and inference speed (frames per
second) for each configuration.

backbone GFLOPs  Param In ference(FPS)

AFCNet(Res2Net50) 8.043 29,939,345 50.81
AFCNet(ResNest50) 8.802 31,704,233 45.16
AFCNet(PVT) 9.243 28,393,217 33.82

module, the common information present in different levels of
features is highlighted by performing addition operations on the
features at different levels. The opposite feature subtraction unit is
able to highlight the differences in information between features
at different levels. In order to fully fuse these two complementary
feature information, we introduce a trainable weighting ratio
parameter, W,. With the trainable parameter W;, the module is
able to achieve fine control of the feature fusion process, thus
enhancing the model’s generalization ability and robustness to
different endoscopic images.

The MAFF module receives inputs fkArr (k € [1,3]), which are
multi-scale enriched features output from the MDCA module.
These features are first processed by the Multi-Scale Fusion Cross-
Network, where bilinear interpolation is used to align the spatial
scales through upsampling and downsampling. Convolutional layers
are then applied to further refine the feature representations.

This process can be mathematically expressed in
Equations 12-14:

UP (f) = y(BN(Convs,; (B,()) (12)

Downy (f) = y(BN(Convig (B% ) (13)

ﬂowﬂz — DoW”lz (fl,m)

Att

A2 = Down, flM)

Att

p2 _
24 _UP2 (f 2

own2 D
= Down
ngtt 2

P2 _
3, =UP(f3,

o <UPA(55,)

where Conv,, ; means the operation that consists of a sequence of 3 x

(14)

3 convolution, BN means batch normalization, and v is the ReLU
function. 3 denotes the sampling method of bilinear interpolation.

We then put the aligned features into the AMFH (Adaptive
Multi-scale Feature Harmonization) module. AMFH fuses two
different features by feature addition and subtraction in order
to efficiently capture the complementary information between
different layers of features, highlight the subtle differences between
them, and strengthen the modul€’s sensitivity to edges, textures, and
other key visual details. We then enable the module to dynamically
balance the effects of addition and subtraction operations on the
final feature representation by introducing an adaptive weighting
mechanism. This adaptivity is based on the unique properties
of the input features and their contextual information, and the
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optimization of the weights is performed automatically. With the
adaptive adjustment of the weights of addition and subtraction
operations, the AMFH module takes full advantage of the
complementary strengths of these two operations to produce feature
representations that are rich and fine-grained. We use X and
Y as input features to the AMFH module, defining the AMFH
function in Equation 15:

AMFH (X,Y) = y(BN(Convy,s (|W;® (X®Y) + (1 - W;)® (X0 Y)])))
(15)

where @ is the element-by-element addition operation, © is
the element-by-element subtraction operation, ® is the Hadamard
product, W;is the trainable parameter we set i € [1,6], |- | computes
the absolute value, where Conv;, ; means the operation that consists
of a sequence of 3 x 3 convolution, BN means batch normalization
and y is ReLU function. After the AMFH module we can get three
final outputs in Equation 16:

fi - AMFH(AMFH( fi, P2) "4)

’ 2Arr > 3AII
b, = AMFH(AMFH( w2, 1, ), 3‘:2) (16)
fi = AMFH (AMFH ( ﬁjr"4, f;lf\'rnf) , f%)

3.4 Upsampling Feature Retrospective
Module

After obtaining the fused features, in order to dynamically adjust
the amount of information fused in each scale so as to realize
more effective information integration, reduce spatial distortion,
and enhance the semantic expression of the features in multi-
scale feature fusion. We have designed the Up-sampling Feature
Retrospective Module (UFR) based on the idea of the Gate Recurrent
Unit (GRU). As shown in Figure 3.

In the gated loop unit, the gating mechanism is used to control
the flow of information through the sequence model. We input
different levels of features into the UFR module, respectively. The
UFR module consists of an update gate module and a reset gate
module, as well as a dense connection, which performs correlation
enhancement of the different levels of features through update
gates and reset gates. We set the two inputs of the module to be
two neighboring features of different levels: X and Y. Then the
update gates and the reset gates are computed by the following
Equations 17-20:

Z = o(y(BN(Convs,; (X)))) (17)
R=0(y(BN(Convs,3(Up,(1))))) (18)
H=T (R+y(BN(Convs,; (R®X)))) (19)
H=Z®X+(1-Z)®H (20)

where o(-) denotes Sigmoid function, y(-) denotes ReLU function,
T (-) denotes Tanh function. The obtained hidden vector H is used
as one of the outputs of this layer and the inputs of the next layer.
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In our module, we up-sample the bottom layer features by
using linear interpolation so as to align with the dimensions of
the top layer features. We define the above computational process
as the G(-) function. Our upsampling part can be expressed by
Equations 21-24:

fr = uma(f,) ey

2, -6 2) o
17, (65 12) @
output = y (BN (Conva ( ff”gg))) (24)

where C;,; denotes Convolution with 3x 3 convolution kernel
and Concat.
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4 Experiment, result and discussion

In this section, we provide detailed descriptions of our
experiments, including the datasets used and the experimental
results. This includes comparisons with 11 widely used methods
as benchmarks, along with ablation studies and generalization
experiments to validate the effectiveness of our approach.

4.1 Experiment

4.1.1 Dataset
According to the (Mei et al., 2023), we selected five publicly
available datasets commonly used in the field of polyp segmentation:
Kvasir-SEG, CVC-ClinicDB, CVC-ColonDB, CVC-300, and ETIS.
Kvasir-SEG (Jha et al., 2020): It is an open-access dataset of
gastrointestinal polyp images and the corresponding segmentation
masks, manually annotated and verified by an experienced
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Qualitative results are used to compare the ground truth, our three methods, and eleven state-of-the-art methods on Kvasir-SEG datasets

TABLE 6 Computational cost analysis of AFCNet with incremental
module integration.

baseline 6.016 26,898,257 57.16
baseline + MAFF 7.049 28,364,177 51.37
baseline + MAFF + 7.43 28,808,849 51.63
MDCA

baseline + MAFF + 8.043 29,939,345 50.81

MDCA + UFR

gastroenterologist. It contains 1,000 polyp images and their
corresponding ground truth from the Kvasir-SEG Dataset v2. The
resolution of the images contained in Kvasir-SEG varies from 332 x
487 to 1920 x 1,072 pixels.

CVC-ClinicDB (Bernal et al., 2015): CVC-ClinicDB is a
database of frames extracted from colonoscopy videos. These frames
contain several examples of polyps. The CVC-ClinicDB dataset
contains 612 images cut from 25 colonoscopy videos with an
image size of 384 x 288 and polyps ranging from 0.34% to
45.88% in size.
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CVC-ColonDB (Tajbakhsh et al., 2015): The CVC-ColonDB
dataset consists of 380 images cut from 15 colonoscopy videos with
an image size of 574 x 500 and the polyp size of 0.30%-63.15%.

ETIS (Silva et al., 2014): ETIS contains 196 images cut from 34
colonoscopy videos with the image size of 1,225 x 996. The highest
resolution compared to other datasets. But the size of polyps in its
images is only 0.11%-29.05%, the smallest, making this dataset also
more challenging.

CVC-300 (Vazquezetal., 2017): includes 60 colonoscopy images
with a resolution of 500 x 574.

To evaluate the segmentation performance of the method, we
conducted experiments on two polyp segmentation datasets, Kvasir-
SEG and CVC-ClinicDB. For each dataset, we randomly divided it
into two subsets: 90% for the training set and the remaining 10%
for the test set. To verify the generalizability of our model to data,
we followed the experimental method of PraNet (Fan et al., 2020),
extracting 900 and 550 images from the CVC-ClinicDB and Kvasir-
SEG datasets, respectively, to form a training set of 1,450 images.
Meanwhile, we used the CVC-ColonDB, CVC-300, and ETIS
datasets as test sets to validate the model’s generalizability on
different datasets. Table 1 summarizes the detailed information.

4.1.2 Training setup and experimental metrics

All of our experimental models are implemented under pytorch
2.0.0 and trained for 200 epochs on an RTX4090 graphics card
with 24G of memory. Throughout the training regimen, we
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TABLE 7 Comparison of our designed model AFCNet with currently popular methods on the CVC-ColonDB dataset.([In %] and “+" for variance).

Models recall TNR Dice ACC ‘ loUp

UNet ++(Zhou et al., 2019) 64.65+1.24 98.29+0.25 59.89+ 1.77 94.96+0.28 51.81+1.58
Unet3+(Huang et al., 2020) 61.75+1.87 97.89+0.59 55.58 +2.65 94.53 +0.50 47.16 £3.14
AttUNet(Lian et al., 2018) 64.86+ 1.04 98.69+0.25 61.36+0.96 95.35+0.13 53.51+1.14
CENet(Gu et al., 2019) 72.85+2.11 99.22+0.18 71.03 +1.67 95.95+0.24 63.45+1.51
LGINet(Liu et al., 2023) 70.69 + 1.82 98.09+0.35 64.92+1.67 95.46+0.31 56.98+ 1.54
DCRNet(Yin et al., 2022) 77.48 +4.07 98.60 + 0.66 73.67+1.99 96.13+0.17 65.68+ 1.62
MSNet(Zhao et al., 2021) 70.45 +2.06 99.52+0.07 7120+ 1.65 96.19+0.27 64.19+ 1.70
TransNetR(Jha et al., 2024) 64.79+1.76 99.59+0.07 66.23+ 1.53 95.69+0.04 59.29 + 1.41
CaraNet(Lou et al., 2022) 76.35+2.74 99.09+0.11 73.57 +3.01 96.22+0.21 65.91+2.73
Polyp — pvi(Yin et al., 2022) 80.31+0.96 98.95+0.37 77.88+ 1.00 96.94+0.33 69.96 + 0.94
DuAT(Tang et al., 2023) 80.46 +0.82 98.59 +0.29 77.37+0.76 96.63 +0.19 69.03+0.77
AFCNet 8126+ 1.16 98.86+0.10 78.79+0.35 96.99+0.13 70.67+0.17

TABLE 8 Comparison of our designed model AFCNet with currently popular methods on the ETIS dataset.([In %] and “+" for variance).

Models recall TNR Dice ACC loUp

UNet + +(Zhou et al., 2019) 43424388 98.72+0.16 39.31+4.23 96.88 +0.19 33.70 +3.58
Unet3+(Huang et al., 2020) 59.05+3.14 98.24+1.13 56.44+1.93 97.18 +1.02 48.99+1.87
AttUNet(Lian et al., 2018) 44284225 98.99+0.15 40,62+ 1.11 97.09+0.10 35.48+1.09
CENet(Gu etal,, 2019) 66.98 +4.20 98.62 +0.59 62.32+2.61 97.85+0.46 5529+ 1.91
LGINet(Liu et al., 2023) 47.90+2.32 98.18 +0.64 4276 +3.91 96.70 +0.72 37.27+3.65
DCRNet(Yin et al., 2022) 67.79 +4.25 97.96 +1.32 59.37+2.14 97.19+1.15 52.59 +2.50
MSNet(Zhao et al., 2021) 73.35+3.56 99.10 +3.86 69.08 +2.06 98.50 +0.32 61.92+1.54
TransNetR(Jha et al., 2024) 58.85+4.01 99.43 +0.10 57.12+3.67 98.32+0.20 51.15+3.29
CaraNet(Lou et al., 2022) 83.01+3.86 97.19+1.28 68.86 +2.04 96.84+1.16 60.52+1.93
Polyp — pvt(Yin et al., 2022) 8210+ 1.62 98.47 +0.44 73.00+1.97 98.21+0.41 64.64+2.22
DuAT(Tang et al., 2023) 78.97 +1.19 98.69 +0.19 72.43 +2.04 98.40 +0.19 62.95+2.75
AFCNet 83.09+2.56 98.81+0.26 76.73+0.91 98.51+0.17 69.26+0.56

use four basic data augmentation techniques, random rotations,
horizontal flips, vertical flips, and coarse masking, to enhance the
model’s robustness to variations in the input data. And we use
an Adam optimiser with the learning rate of le-4 and use the
ReduceLROnPlateau learning rate scheduler. In our experiments,
four separate experiments are conducted for each model, using
four fixed random seeds: 42, 8, 36, and 120. The hyperparameters
used in experiments are illustrated in Table 2. In the paper,
all experimental data in the tables, unless otherwise specified,
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are the averages of these four experiments, with the variance
calculated.

We combine cross-entropy loss and Dice loss as our assessment
metrics for the loss function. To validate the effectiveness of
our model, we have selected five metrics to evaluate the model’s
performance from multiple perspectives: Dice Similarity Coeflicient
(Dice), Intersection over Union of polyp (IoUp), recall, Accuracy
(ACC), and True Negative Ratio (TNR). Let FN, FP, TN, and
TP denote false negatives, false positives, true negatives, and true
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TABLE 9 Comparison of our designed model AFCNet with currently popular methods on the CVC-300 dataset. ([In %] and “+" for variance).

Models recall TNR Dice ACC loUp
UNet + +(Zhou et al., 2019) 80.64+3.17 98.95+0.32 73.01+1.53 98.27+0.28 64.20 +1.52
Unet3+(Huang et al., 2020) 79.44 +3.63 98.11 +1.04 68.24+3.32 97.51+0.87 58.95+3.60
AttUNet(Lian et al., 2018) 79.18 £3.00 98.97 £0.36 72.30+1.89 98.25+0.30 64.40 +£2.06
CENet(Gu et al., 2019) 90.14+4.11 99.15+0.36 84.60+0.80 98.89+0.31 77.07 £0.99
LGINet(Liu et al., 2023) 88.32+£2.78 98.74 +£0.34 78.86 +1.64 98.48 +0.24 70.09 £1.37
DCRNet(Yin et al., 2022) 94.69+1.72 99.13+0.37 86.63 +1.86 98.96 +0.32 79.36 +1.82
MSNet(Zhao et al., 2021) 93.08 +0.81 99.49+0.12 88.78 £0.73 99.28 +0.10 81.57+1.01
TransNetR(Jha et al., 2024) 89.58 +1.84 99.54+0.10 87.24+1.06 99.23+0.06 79.86 +0.97
CaraNet(Lou et al., 2022) 96.16 +0.54 99.09+0.19 86.74+0.41 99.00+0.16 79.14+0.47
Polyp — pvt(Yin et al., 2022) 94.37+0.36 99.36 +0.11 87.63+0.58 99.19+0.10 80.27 £0.81
DuAT(Tang et al., 2023) 94.21+1.16 99.01+£0.32 86.44+0.61 98.85+0.28 79.19+0.43
AFCNet 94.54 +0.46 99.55+0.08 89.24+0.53 99.38 £0.04 82.51+0.55
TABLE 10 Ablation study of MAFF module variants on the ClinicDB dataset. ([In %] and “+" for variance).
Models recall ‘ TNR Dice ‘ ACC loUp
baseline 90.40 +0.52 99.21+0.15 89.44 +0.88 98.86+0.11 83.57+1.28
MAFF(NoSubtraction) 91.66 +3.63 99.45 +1.04 90.99+0.77 98.95+0.10 85.88+£0.95
MAFF(NoAddition) 79.44+3.63 98.11+1.04 68.24 +3.32 97.51+0.87 88.25+0.61
MAFF 94.30+0.52 99.57 £0.05 94.01 £0.52 99.32+0.04 89.55+0.40

TABLE 11 Ablation study of MAFF module variants on the Kvasir-SEG dataset. ([In %] and “+" for variance).

Models recall TNR Dice ACC loUp

baseline 88.20+0.67 98.44 +0.09 87.94+0.65 96.51 £0.25 81.37+1.08
MAFF(NoSubtraction) 90.18 + 1.50 97.77 £0.51 88.78+0.96 96.50 +0.32 82.87 +1.00
MAFF(NoAddition) 89.85+0.86 98.60 +0.29 89.44+0.29 97.06 +0.29 83.91+0.53
MAFF 89.63+0.77 98.78 +0.32 89.78 +0.24 97.01+0.17 84.20+0.15

TABLE 12 Performance comparison of segmentation using MDCA, CPCA, and CoordAttention on CVC-CLinicDB dataset. ([In %] and “+" for variance).

Models recall TNR Dice ’ ACC loUp

ChannelPriorConvolutional Attention 92.17+2.02 99.44 +0.004 91.65+2.28 99.10+0.005 86.63+1.76
CoordAttention 91.41+7.03 99.51 +0.006 90.40 + 2.64 99.06 +0.02 85.34+2.60
MDCA 94.54+0.96 99.61+0.07 94.48 +0.22 99.34+0.06 89.88+0.33
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TABLE 13 Performance comparison of segmentation using MDCA, CPCA, and CoordAttention on the CVC-CLinicDB dataset. ([In %] and “+" for variance).

Models ‘ recall ‘ TNR Dice ACC ‘ loUp
ChannelPriorConvolutionalAttention 89.97 +1.85 98.71 £0.007 89.87 £0.73 97.09 £ 0.06 84.35+1.05
CoordAttention 89.98+0.19 98.65+0.07 90.28 £0.19 97.22+0.02 84.68 £0.23
MDCA 90.81+0.72 98.74+0.18 90.48 £0.15 97.17+£0.07 85.12+0.28
TABLE 14 Ablation study for the various modules with different backbone on the Kvasir-SEG dataset. ([In %] and “+" for variance).
Backbone ‘ Models recall TNR Dice ACC ‘ loUp
baseline 90.40 +0.52 99.21+0.15 89.44+0.88 98.86+0.11 83.57+1.28
Res2Net-50 +MAFF 94.30+0.52 99.57 +£0.05 94.01 £0.52 99.32+0.04 89.55+0.40
+MAFF + MDCA 94.33 +0.68 99.63 +0.06 94.33+£0.10 99.33+0.07 89.70+0.29
+MAFF + MDCA + UFR 94.54+0.96 99.61+0.07 94.48 £0.22 99.34+0.06 89.88+0.33
baseline 92.15+0.64 99.40 +£0.04 91.18 £0.50 99.04 +0.04 85.8+0.56
ResNest-50 +MAFF 95.13+0.71 99.58 +0.07 94.34+0.72 99.34+0.05 90.07 £0.83
+MAFF + MDCA 95.16£0.75 99.60 +0.06 94.64+0.37 99.36+0.07 90.36 +£0.63
+MAFF + MDCA + UFR 95.33+0.67 99.61 +£0.05 94.74+0.71 99.37+0.06 90.47 +0.89
baseline 91.10 +0.64 99.40 +0.04 91.48 +£0.82 99.04 +0.04 85.94+0.82
PVT +MAFF 95.85+0.42 99.55+0.05 94.11+0.35 99.33+0.02 89.95+0.34
+MAFF + MDCA 95.60 +0.61 99.59 +£0.05 94.53 +£0.35 99.36 +0.02 90.31+0.33
+MAFF + MDCA + UFR 95.79+0.24 99.59+£0.03 94.78 £0.19 99.37+0.03 90.59+0.16

positives, respectively. By definition, Dice, IoUp, recall, ACC, and
TNR can be calculated by following Equations 25-29:

Dice= — 2P (25)
FP+FN+2TP
TP
IoUp= — 26
O%P = FPyEN+TP (26)
recall = _TIr (27)
TP+ FN
TP+ TN
ACC= ————— 28
FP+ TP+ TN+ FEN (28)
TN
TNR = ——— 29
FP+TN (29)

Generally, a superior segmentation method has larger values of
Dice and IoUp.

4.2 Result

4.2.1 Comparisons with state-of-the-art methods
To ensure an objective comparison, all the tested methods
are selected from open-source works. Specifically, we select the

Frontiers in Physiology

following networks including Unet++ (Zhou et al., 2019), Unet3+
(Huang et al., 2020), Attention-UNet (Lian et al., 2018) (AttUNet),
Context Encoder Network (Gu et al., 2019) (CENet), Local
Global Interaction Network (Liu et al., 2023) (LGINet), Multi-
scale Subtraction Network (Zhao et al, 2021) (MSNet), Duplex
Contextual Relation Network (Yin et al., 2022) (DCRNet), Dual-
Aggregation Transformer Network (Tang et al, 2023) (DuAT),
Polyp-pvt (Dong et al., 2021), Transformer-based Residual Network
(Jha et al., 2024) (TransNetR), Context axial reverse attention
network (CaraNet) (Lou et al., 2022), as 11 state-of-the-art
segmentation methods for comparison. To verify the validity of
the correction, we performed a t-test between the state-of-the-
art AFCNet and the three models that worked best in the other
comparison experiments and calculated the p-value.

Specifically, the results in Table 3 show that our model achieved
performance improvements of at least 1.72% in Dice coeflicient
and 2.3% in IoU on the ClinicDB dataset. To further validate the
statistical significance of AFCNet, we conducted t-tests against the
Top-3 baseline models (DCRNet, CaraNet, and DuAT). The results
show that the p-values between AFCNet and the baselines were
0.0036, 0.0089, and 0.0059 for IoU, and 0.0179, 0.0182, and 0.005
for Dice, all of which are below the significance threshold (p < 0.05).
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TABLE 15 Ablation study for the various modules with different backbone on Kvasir-SEG dataset. ([In %] and “+" for variance).

Backbone ‘ Models recall TNR Dice ACC ‘ loUp
baseline 88.20+0.67 98.44 +0.09 87.94+0.65 96.51+0.25 8137+ 1.08
Res2Net-50 +MAFF 89.63+0.77 98.78 +0.32 89.78 +0.24 97.01+0.17 84.20+0.15
+MAFF + MDCA 90.25+0.42 98.71+0.22 90.15+0.47 97.13+0.20 84.88+0.54
+MAFF + MDCA + UFR 90.81+0.72 98.74+0.18 90.48 +0.15 97.17 +0.07 85.12+0.28
baseline 89.02+0.82 98.51+0.11 88.72+0.58 96.76+0.17 82.26+0.46
ResNest-50 +MAFF 91.30 + 1.01 98.74+0.11 90.82+0.46 97.31+0.10 85.34 +0.44
+MAFF+ MDCA 92.10+0.84 98.69+0.12 91.35+0.42 97.49+0.07 85.97+0.57
+MAFF + MDCA + UFR 92.34+0.61 98.76 +0.22 91.44+0.30 97.49+0.07 86.13+0.38
baseline 91.10+0.07 98.57 +0.40 90.24 +0.66 97.10+0.29 84.25+0.93
PVT +MAFF 91.79+0.15 98.79+0.19 91.93+0.50 97.41+0.20 86.92+0.57
+MAFF + MDCA 91.87+0.15 98.89 +0.32 92.15+0.30 97.55+0.19 87.25+0.24
+MAFF+ MDCA + UFR 92.51+0.59 98.74+0.18 92.35+0.49 97.55+0.10 87.53+0.30

The results demonstrate that the performance gains of AFCNet on
the ClinicDB dataset are statistically significant.

As shown in Table 4, AFCNetalso demonstrated better
performance on the Kvasir-SEG dataset, achieving improvements
of 0.57% in Dice and 0.94% in IoU. We further performed t-
tests against the Top-3 baselines (DuAT, Polyp-PVT, and MSNet),
yielding p-values of 0.0027, 0.0143, and 0.0014 for IoU, and 0.017,
0.0382, and 0.001 for Dice, all significantly below 0.05. These
statistical results confirm that AFCNet’s performance improvements
on the Kvasir-SEG dataset are also statistically significant. In Table 5,
we evaluate the inference time and model parameters of AFCNet.

To demonstrate the state-of-the-art performance of our model,
Figure 4 presents the variation curves of two key metrics (IoU and
Dice) when using different backbone networks as the encoder. The
results are categorized into two main groups: CNN-based backbones
and Transformer-based backbones. For each category, we include
performance curves of our model along with two state-of-the-art
models using the same backbone technology and the baseline model
for comparison. The curves clearly show that our model achieves
optimal performance regardless of the backbone architecture. Based
on previous experimental findings, our model demonstrates the best
results when employing PVT as the backbone network. Therefore,
for the data generalization experiments, we directly use the PVT-
based configuration to compare with other models, as shown in
Figures 5, 6. The polyps in the selected images exhibit characteristics
such as irregular shapes, the presence of bubbles, and complex
backgrounds.

To further evaluate the computational efficiency, we conducted
comprehensive analyses on three backbone variants of AFCNet
(Res2Net50, ResNest50, and PVT). As shown in Table 5, we
systematically measured and compared several key metrics
including parameter counts, computational complexity (GFLOPs),
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and inference speed (FPS) on GPU platforms. Additionally, we
specifically analyzed the computational overhead of key components
(MDCA, MAFE and UFR modules) in Table 6. The experimental
results demonstrate that while these modules introduce certain
computational costs, they maintain an excellent balance between
performance improvement and computational expense. These
supplementary experiments not only validate AFCNet’s superiority
in segmentation accuracy but also confirm its clinical applicability
in terms of computational efficiency.

4.2.2 Generalisability experiments

The generalization ability of Computer-Aided Diagnosis
(CAD) systems is crucial in clinical applications. To validate the
generalization ability of AFCNet, we followed the experimental
methodology of PraNet (Fan et al., 2020). We selected 550 images
from CVC ClinicDB and 900 images from Kvasir, forming a
training set of 1,450 images. To verify the network’s generalization
performance, we used the entire ETIS, CVC ColonDB, and CVC-300
datasets as unseen data for testing. As shown in Table 7, Tables 8, 9,
relative to the current popular networks, AFCNet improves Dice
by 3.73%, IoUp by 4.62% on the ETIS dataset, and on the CVC-
ColonDB dataset set, Dice improves by 0.91%, IoUp improves
by 0.71%, and on the CVC-300 dataset, Dice improves by 0.46%,
IoUp improves by 0.94%. It can be clearly seen that our method
achieves the best results on all three datasets, which shows that our
method has good learning ability with more robust generalization
performance.

4.2.3 Ablation experiments
To systematically validate the effectiveness of each module, we
designed a dual ablation study scheme:
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We systematically integrated all proposed modules into
three backbone networks (Res2Net50, ResNest50, and PvI2) to
validate the architecture’s overall compatibility. All experiments
were performed on the CVC-ClinicDB and Kvasir-SEG datasets.
While preserving the complete hierarchical structure of the
feature extraction backbone, we initially removed all modules to
maintain only the basic U-shaped encoder-decoder framework,
then sequentially incorporated the MAFF module, MDCA module,
and UFR module. To specifically verify the effectiveness of the
MAFF module’s structure, we conducted simplified ablation studies
on the Res2Net50 backbone network followed by comprehensive
experimental analysis. The results illustrated in Tables 10-13 are all
obtained when Res2Net50 is backbone network.

4.2.3.1 Effectiveness of MAFF module

In order to verify the effectiveness of the MAFF module in the
model, we input the multilayer features extracted from the backbone
network directly into the MAFF module and then up-sampled them
directly. As can be seen from Table 14, all the metrics of the model
with the addition of the MAFF module are significantly better than
the baseline model, both on different datasets and different backbone
network architectures. This is because the MAFF module is able to
dynamically balance the impact of the two feature fusion methods
on the final feature representation through the trainable parameters,
thus making the two methods complementary to each other.

The MAFF module is validated as an effective multi-scale feature
fusion method. In addition to this basic ablation experiment, in
order to explore the structural validity of the MAFF module,
we conducted systematic ablation experiments comparing three
configurations: (1) the baseline model without MAFF, (2) MAFF
with only additive units, and (3) MAFF with only subtractive units.
The experimental results from Tables 10, 11 show that the full MAFF
module significantly outperforms the variant model in all evaluation
metrics (ClinicDB dataset: 4.57%improvement in Dice and 5.98%
improvement in IoU; Kvasir-SEG dataset: 1.84% improvement in
Dice and 2.83% improvement in IoU) and performs consistently
across different datasets and backbone networks. According to
work (Song et al., 2022), MSNet uses Subtractive Units (SU) in
the Decoder part to generate difference features between adjacent
levels of the network, which can easily lead to the loss of edge
information for smaller polyps and affect segmentation accuracy.
According to the work (Zhou et al., 2018), addition preserves
semantic consistency without losing information.

4.2.3.2 Effectiveness of the MDCA module

After the model is added to the MDCA module, as shown
in Tables 14, 15, the segmentation ability of the model has a
more obvious improvement, which indicates that the important
information in the image can be well extracted by our MDCA
module, this is because the convolution with different orientations
and sizes can capture a wider range of feature information, and is
more sensitive to the targets with complex shapes, and can also be
used with the MAFF module’s fusion mechanism, thus enhancing
the model’s ability to represent image details and context.

To validate the effectiveness of the MDCA module in multi-scale
feature extraction, we designed a comparative experiment. In this
experiment, while keeping the network structure unchanged, the
MDCA module was replaced with the CPCA and CoordAttention

Frontiers in Physiology

15

10.3389/fphys.2025.1678403

modules for performance comparison. As shown in Tables 12, 13,
the experimental results demonstrate that MDCA outperforms the
competing methods in polyp boundary segmentation accuracy. This
highlights the superiority of our design for complex medical image
segmentation tasks.

4.2.3.3 Effectiveness of the UFR module

The UFR module filters the information in the up-sampling stage
through the gating mechanism, and in terms of the model effect,
Tables 14, 15 demonstrates that the UFR can filter and fuse the fused
features very well, so as to optimize the segmentation capability of
the model in a stable manner.

4.3 Discussion

The proposed architecture in this paper is an end-to-end
processing framework, meaning that image analysis is completed
within a single framework (Biju et al., 2024). An alternative approach
employs a step-by-step construction of deep learning models,
such as preprocessing the image before performing the analysis
(Qian et al., 2020; Vijayalakshmi and Sasithradevi, 2024). Both
methods have their advantages. End-to-end deep learning models
reduce the complexity of intermediate steps and make more efficient
use of computational and memory resources. Step-by-step deep
learning models, on the other hand, offer better interpretability, task
flexibility, and advantages in modular expansion. Future research
could focus on further integrating the strengths of both paradigms
to develop hybrid systems that are flexible and robust.

This work was trained and tested on an RTX 4090 GPU, a type
of hardware that is still not feasible to deploy on many resource-
constrained embedded platforms. Therefore, another important
issue for future research is how to effectively improve the execution
efficiency of polyp segmentation methods, in order to further
reduce their operational costs and enhance real-time performance.
Compression techniques, such as quantization and pruning
(Frantar et al., 2022), along with the use of lightweight architectures
(Ahamed et al., 2023b; Ahamed et al., 2025), can help reduce
model size by exploiting the sparsity of effective model parameters.
However, relying on a single model attribute for performance
optimization has its limitations. A more comprehensive approach
that integrates multiple optimization strategies is likely to yield
better results. For example, in PowerInfer (Song et al., 2024),
the authors successfully combined the models sparsity with the
challenge of efficiently deploying the model across heterogeneous
resources, achieving significant performance improvements. Our
future work will also focus on exploring hybrid techniques for model
optimization.

5 Conclusion

This paper proposes a novel polyp segmentation network,
AFCNet. It is based on convolutional attention and adaptive multi-
scale feature fusion. In the feature extraction and enhancement
stage, the MDCA module captures broader contextual information
from images. At the same time, it increases the weights of important
features. By simplifying the deepest layer features in the backbone
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network, a more efficient architecture is achieved. During the
feature fusion stage, the MAFF module integrates features from
different layers. It dynamically balances multiple fusion strategies.
This process continuously improves the model’s ability to capture
both global and detailed information. Therefore, superior multi-
scale feature fusion performance is achieved. In the upsampling
stage, the UFR module filters and guides the final fused features.
In the experimental section, we compare our method with 11 state-
of-the-art polyp segmentation approaches. We also evaluate the
modules generalizability by integrating it with different backbone
networks. The results demonstrate that our method achieves the
best performance. It also maintains excellent generalization and
adaptability.
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