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Aim: This study aimed to explore the factors influencing preclinical
atherosclerosis (PCA) and provide evidence-based recommendations for its
prevention. Non-targeted metabolomics technology was utilized to identify
potential metabolic biomarkers associated with PCA.

Materials and Methods: Data on general conditions, risk factors, and metabolic
biochemical test results were collected from both the PCA group patients
and the control group people. Blood plasma metabolites were analyzed
using LC-MS/MS, which is a powerful technique that couples the separation
power of liquid chromatography (LC) with the highly sensitive and specific
detection of tandem mass spectrometry (MS/MS), making it indispensable for
the comprehensive and accurate metabolic profiling required in preclinical
atherosclerosis studies. Metabolites were annotated using the HMDB and
LIPIDMaps databases, and differential metabolite pathways were enriched using
the KEGG database.

Results: Significant differences were observed between the two groups in
terms of BMI, diet habits, smoking, physical activity, hypertension, and diabetes.
Multivariate analysis identified smoking, high-salt diet, hypertension, and
diabetes as significant risk factors for PCA. Biochemical blood tests revealed
significantly elevated levels of triglycerides, LDL-C, GLU, and UA in the PCA group
compared to the control group. Metabolomic analysis identified 105 differential
metabolites in positive ion mode (29 upregulated and 76 downregulated) and
105 differential metabolites in negative ion mode (39 upregulated and 66
downregulated). The primary metabolic differences between the groups were
related to lipid metabolism, inflammation-mediated processes, and amino acid
metabolism.

Conclusion: The incidence of PCA is influenced by smoking, unhealthy diet
habits, hypertension, and diabetes. PCA patients frequently exhibit abnormalities
in lipid metabolism, glucose metabolism, and purine metabolism. Metabolomic
studies indicate that the metabolic differences in PCA primarily involve lipid
metabolism, energy metabolism, and amino acid metabolism.
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1 Introduction

Preclinical atherosclerosis (PCA) is characterized by the
presence of atherosclerosis (AS) plaques without evident
clinical symptoms. The progression of AS plaques, which
can lead to cardiovascular events, typically occurs over an
extended period and is influenced by wvarious risk factors
(Kawai et al., 2024). Currently, the assessment of cardiovascular
risk relies on evaluating a patient’s risk factors to guide primary
prevention strategies. However, approximately 20% of patients
experience their first or recurrent acute myocardial infarction
without prior warning signs (SCORE2 working group and
ESC Cardiovascular risk collaboration, 2021; Global et al., 2023;
Gulinuer and Nuerguli, 2023). Autopsy studies have further revealed
that 55% of myocardial infarction cases involve AS plaques causing
less than 50% arterial stenosis, suggesting that many of these
patients may have had PCA prior to the onset of clinical disease
(Li et al., 2016). Consequently, early screening for PCA and the
implementation of effective interventions are critical to prevent
progression to advanced or terminal stages of cardiovascular
disease. Metabolomics focuses on the systematic analysis of
endogenous metabolites within an organism, organ, or system,
as well as those influenced by external environmental factors,
offers a promising approach for studying early-stage AS. Despite its
potential, research in this area remains limited. This study utilized
liquid chromatography-tandem mass spectrometry (LC-MS/MS)
to analyze and compare plasma metabolite profiles between PCA
group and control group, aiming to identify differential biomarkers
associated with PCA and elucidate potential metabolic pathways
involved in its pathogenesis. This study complies with national
clinical trial regulations and has been reported in line with the
STROCSS criteria (Agha et al., 2025).

2 Materials and methods

2.1 Patient recruitment and clinical data
collection

In this study, a total of 210 patients meeting the diagnostic
criteria for PCA were recruited from Affiliated Zhongshan Hospital
of Dalian University between July 2023 and February 2024.
Additionally, 50 healthy volunteers who underwent routine physical
examinations at the hospital’s Health Examination Center during
the same period were included as the control group. The study
protocol was reviewed and approved by the Ethics Committee of
Affiliated Zhongshan Hospital of Dalian University (Approval No.
KY2023-096-1).

2.2 Diagnostic criteria of PCA

The carotid intima-media thickness (IMT) of patients was
assessed using the Hitachi LOGIQ color Doppler ultrasound
diagnostic instrument by an experienced ultrasound physician.
The diagnostic criteria for PCA were defined as IMT >0.9 mm
or the presence of AS plaques, either single or multiple, with a
thickness >1.2 mm protruding from the intima surface. Plaques
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observed at each site were repeatedly scanned, and the location
of the largest plaque was recorded, with its maximum length and
thickness measured (Gianaros et al., 2022; Caughey et al.,, 2018;
Touboul et al., 2012; Mfeukeu-Kuate et al., 2022).

The inclusion criteria for the PCA group: (1) Meeting the
diagnostic criteria for PCA. (2) Aged 40-75 years, with no gender
restrictions. (3) Informed and willing to participate in the scale
assessments. Inclusion criteria for the control group: (1) Healthy
individuals who do not meet any of the diagnostic criteria for
PCA. (2) Aged 40-75years, with no gender restrictions; (3)
Willing to participate in the study and having provided written
informed consent.

The exclusion criteria: (1) Unwillingness to cooperate with
the study, or presence of impaired consciousness, psychiatric
disorders, or other conditions that may hinder proper participation.
(2) History of cerebrovascular diseases (e.g., stroke, transient
ischemic attack). (3) Presence of peripheral vascular disease due
to any other etiology. (4) Comorbid coronary artery disease or
cardiac dysfunction. (5) Comorbid familial hypercholesterolemia,
connective tissue disorders, or vasculitis. (6) Severe systemic
diseases affecting major organs (e.g., heart, lung, liver, or kidney),
malignancy, poorly controlled diabetes mellitus, or refractory
hypertension. (7) Acute infectious diseases or systemic stress due to
other underlying conditions.

2.3 Investigation of influencing factors and
detection of biochemical indicators

In this study, the General Situation Questionnaire for PCA was
developed based on a comprehensive review of preclinical literature,
clinical investigations, and expert consultations. Participants were
surveyed to collect general information, potential risk factors,
and biochemical test results, including triglycerides (TG), total
cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C), non-HDL cholesterol,
apolipoprotein Al (APOA1), apolipoprotein B (APOB), the
APOA1/APOB ratio, glucose (GLU), and uric acid (UA).

2.4 Non-targeted metabolomics studies

2.4.1 Extraction of metabolite from blood plasma
samples

Blood plasma samples collection: On the morning of day 1 after
enrollment, fasting venous blood was drawn from the antecubital
vein of all subjects into vacuum anticoagulant blood collection tubes
(K3EDTA). The samples were centrifuged at 4 C and 3000 rpm/min
for 10 min. The supernatant was then collected, aliquoted at 0.2 mL
per tube into 2 mL cryovials, and properly labeled. The aliquots were
rapidly frozen in liquid nitrogen for 15 min and stored in a —80 C
freezer for future use.

The plasma samples (100 pL) were placed in EP tubes
and resuspended with pre-chilled 80% methanol (400 pL)using
thorough vortexing. The samples were then incubated on ice for
5 min and centrifuged at 15,000 x g and 4 C for 20 min. A portion
of the supernatant was diluted to a final concentration of 53%
methanol using LC-MS grade water. The samples were subsequently
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transferred to a fresh Eppendorf tube and centrifuged again at 15,000
x g and 4 C for 20 min. Finally, the supernatant was injected into the
LC-MS/MS system for analysis (Xue et al., 2022; Xiao et al., 2021).

2.4.2 UHPLC-MS/MS analysis

Ultra-High-Performance Liquid Chromatography-Tandem
Mass  Spectrometry  (UHPLC-MS/MS)
chromatographic resolution, speed, and sensitivity compared to

offers  superior
conventional LC-MS/MS, enabling more precise separation and
identification of complex metabolite mixtures. UHPLC-MS/MS
analysis were conducted using a Vanquish UHPLC system (Thermo
Fisher, Germany) coupled with either an Orbitrap Q Exactive™
HF mass spectrometer or an Orbitrap Q Exactive™ HF-X mass
spectrometer (Thermo Fisher, Germany). Samples were injected
onto a Hypersil Gold column (100 x 2.1 mm, 1.9 pm) with a
12-min linear gradient at a flow rate of 0.2 mL/min. The eluents
for positive and negative polarity modes were eluent A (0.1%
formic acid in water) and eluent B (methanol). The solvent
gradient was programmed as follows: 2% B, 1.5 min; 2%-85% B,
3 min; 85%-100% B, 10 min; 100%-2% B, 10.1 min; and 2% B,
12 min. The Q Exactive™ HF mass spectrometer was operated in
positive/negative polarity mode with the following parameters:
spray voltage of 3.5 kV, capillary temperature of 320 °C, sheath gas
flow rate of 35 psi, auxiliary gas flow rate of 10 L/min, S-lens RF level
of 60, and auxiliary gas heater temperature of 350 C.

The mass range for both MSI and MS2 was set to

m/z 100-1000; MS1 scan resolution: 70,000, MS2 scan
resolution:  17,500;  Higher-energy collisional  dissociation
(HCD) with collision energies of 20%, 40%, and 60%
(Stepped NCE).

2.4.3 Data processing and metabolite
identification

The raw data files obtained from UHPLC-MS/MS were
processed using Compound Discoverer 3.3 (CD3.3, ThermoFisher)
to perform peak alignment, peak picking, and metabolite
quantitation. Key parameters were configured as follows: peak
areas were corrected using the first quality control (QC) sample,
with a mass tolerance of 5 ppm, a signal intensity tolerance of 30%,
and a minimum intensity threshold. Subsequently, peak intensities
were normalized to the total spectral intensity. The normalized
data were utilized to predict molecular formulas based on additive
ions, molecular ion peaks, and fragment ions. These peaks were
then matched against the mzCloud (https://www.mzcloud.org/),
mzVault, and MassList databases to obtain accurate qualitative
Statistical
conducted using R (version 3.4.3), Python (version 2.7.6),

and relative quantitative results. analyses were
and CentOS (release 6.6). For non-normally distributed data,
standardization was performed using the formula: sample raw
quantitation value/(sum of sample metabolite quantitation
values/sum of QC1 metabolite quantitation values) to derive
relative peak areas. Compounds with coefficient of variation (CV)
values exceeding 30% in QC samples were excluded, yielding
the final metabolite identification and relative quantification

results.
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2.5 Statistical analysis of data

In this study, statistical analysis was conducted using SPSS 27.0
software. Categorical data were described using frequencies and
percentages, and group comparisons were performed using the
Pearson y test. Continuous data were expressed as mean + standard
deviation (mean + SD), and comparisons between two groups were
conducted using independent samples ¢-tests. Variables with P <
0.05 in univariate analysis were selected for further multivariate
analysis using binary logistic regression to identify influencing
factors of PCA. P < 0.05 was considered statistically significant, while
P < 0.01 was deemed highly statistically significant.

The metabolites were annotated using the KEGG database
(https://www.genome. jp/kegg/pathway.html), HMDB database
(https://hmdb.ca/metabolites), and LIPIDMAPS database (http://
www.lipidmaps.org/). Principal component analysis and partial
least squares discriminant analysis (PLS-DA) were conducted
using metaX, a flexible and comprehensive software for processing
metabolomics data (Sun et al., 2025). Univariate analysis (-test) was
applied to calculate the statistical significance (P-value). Metabolites
with a variable importance in projection (VIP) > 1, P < 0.05, and fold
change (FC) > 2 or <0.5 were identified as differential metabolites.
Volcano plots, generated using the ggplot2 package in R, were
employed to visualize metabolites of interest based on log2(Fold
Change) and -log10(P-value). For clustering heatmaps, the intensity
areas of differential metabolites were normalized using z-scores
and visualized using the Pheatmap package in R. The correlation
between differential metabolites was analyzed using the cor ()
function in R (method = Pearson), and the statistical significance of
these correlations was calculated using the cor.mtest () function in
R. P < 0.05 was considered statistically significant, and correlation
plots were generated using the corrplot package in R. The functional
roles of these metabolites and their associated metabolic pathways
were investigated using the KEGG database. Metabolic pathway
enrichment analysis was performed, with pathways considered
enriched if the ratio satisfied x/n > y/N and statistically significant if
the P < 0.05.

3 Results
3.1 General data analysis

3.1.1 Age and sex

In this study, the PCA group consisted of 210 patients, including
116 males (55.23%) and 94 females (44.76%). The control group
consisted of 50 individuals, including 23 males (46.0%) and 27
females (54.0%). The age range of both groups was 40-75 years, with
a mean age of 63.60 + 7.30 years of the PCA group and 62.66 +
7.73 years of the control group. No statistically significant differences
were observed between the two groups in terms of gender (P > 0.05)
or age (P > 0.05), as detailed in Table 1.

3.1.2 Univariate analysis of influencing factors

A comparison of influencing factors between PCA group
and control group revealed that the prevalence of smoking,
hypertension, and diabetes were significantly higher in PCA group
than control group (P < 0.05). Furthermore, a significantly lower
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TABLE 1 Age and sex of research objects.

10.3389/fphys.2025.1677194

Gender/Age PCA group (n = 210) Control group (n = 50) 2 value/t value
Gender 1.385 0.239
Male 116 23
Female 94 27
Age 63.60 £ 7.30 62.66 £7.73 0.809 0.419

proportion of individuals in PCA group reported regular exercise
habits compared to control group (P < 0.05), while PCA group
exhibited a significantly higher BMI level than the control group
(P < 0.05). Statistically significant differences were also observed
in dietary habits between the two groups (P < 0.05). However, no
significant differences were found between the groups regarding
education level, occupation, drinking habits, or family history
of cardiovascular and cerebrovascular diseases (P > 0.05), as
detailed in Table 2.

3.1.3 Multivariate analysis of influencing factors

Based on the results of the univariate analysis, factors exhibiting
statistically significant differences between the two groups were
included in the multivariate analysis. The results indicated that
smoking, a high-salt diet, hypertension, and diabetes were identified
as significant risk factors for PCA (P < 0.05), while no significant
associations were observed for other factors (P > 0.05). Specifically,
smoking, a high-salt diet, hypertension, and diabetes were all
associated with increased odds ratios (OR > 1). Smokers had a 4.296-
fold higher risk of developing PCA compared to non-smokers (OR =
4.296). Individuals with a high-salt diet exhibited a 2.839-fold higher
risk compared to those without this dietary habit (OR = 2.839).
Hypertension was associated with a 7.337-fold higher risk compared
to individuals without hypertension (OR = 7.337). Similarly, patients
with diabetes had a 4.320-fold higher risk compared to those without
diabetes (OR = 4.320), as detailed in Table 3.

3.1.4 Biochemical tests related to metabolism in
plasma

Biochemical markers related to metabolism in plasma,
including TG, TC, HDL-C, LDL-C, non-HDL, APOA1, APOB,
APOA1/APOB ratio, GLU, and UA levels, were compared between
PCA group and control group. Compared to control group, PCA
group exhibited significantly higher levels of TG, LDL-C, GLU, and
UA (P < 0.05). In contrast, HDL-C levels, APOA1 levels, and the
APOA1/APOB ratio were significantly lower in PCA group (P <
0.05). No significant differences were observed between the two
groups in terms of TC levels, non-HDL, or APOB (P > 0.05), as
detailed in Table 4.

3.2 Non-targeted metabolome
3.2.1 PLS-DA analysis between groups

The PLS-DA score plot and permutation test plot were
generated to compare PCA group (T) and control group (C), as
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illustrated in Figure 1. Significant differences in metabolite profiles
between PCA group and control group were identified in both
positive and negative ion modes (Figures 1A,C). The permutation
test results (Figures 1B,D) confirm the robustness and reliability of
the PLS-DA model.

3.2.2 Differential metabolites between groups

Compared to the control group, 177 differential metabolites
were identified in PCA group under positive ion mode, with VIP
>1.0, FC > 1.2 or FC < 0.833, and P-value <0.05. Among these, 57
metabolites were upregulated, and 120 were downregulated. Under
negative ion mode, 144 differential metabolites were identified,
with 76 upregulated and 68 downregulated. Table 5 lists the top
30 differential metabolites for both ion modes. The volcano plots
in Figures 2A,C illustrate the distribution of these metabolites
in positive and negative ion modes, respectively, while the
corresponding clustering heatmaps are presented in Figures 2B,D.

Receiver operating characteristic (ROC) curve analysis was
conducted on the top 30 screened differential metabolites. The
diagnostic value of each metabolite for PCA was assessed by
calculating the area under the curve (AUC). The results showed
that the AUC values for all metabolites ranged from 0.80 to 1.0,
and 9 differential metabolites had an AUC greater than 0.95, as
presented in Figure 3.

3.2.3 Enrichment analysis of KEGG pathways of
differential metabolites

The differential metabolites between PCA group and control
group were significantly enriched in various signaling pathways,
as shown in the top 20 pathways listed in Table 6 and Figure 4.
Key enriched pathways included ferroptosis, glycine, serine, and
threonine metabolism, carbon metabolism, aminoacyl-tRNA
biosynthesis, mineral absorption, the pentose phosphate pathway,
protein digestion and absorption, nitrogen metabolism, pyrimidine
metabolism, alanine, aspartate, and glutamate metabolism, D-
glutamine and D-glutamate metabolism, biosynthesis of amino
acids, phenylalanine metabolism, biosynthesis of phenylalanine,
tyrosine, and tryptophan, glyoxylate and dicarboxylate metabolism,
and glycolysis/gluconeogenesis. Figure 5 illustrates the KEGG
classification of differential metabolites between PCA group and
control group, with the top three categories being global and
overview maps (22.97%), amino acid metabolism (13.06%), and
lipid metabolism (11.26%).
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TABLE 2 Univariate analysis of influencing factors of research objects.

Influencing factors

PCA group (n = 210)

Control group (n = 50)

10.3389/fphys.2025.1677194

x° value/t value

Education level 4.634 0.099
Primary School 31 (14.76) 3 (6.00)
Secondary School 164 (78.10) 40 (80.00)
University 15 (7.14) 7 (14.00)
Occupation 2.421 0.490
Farmer 19 (9.05) 3 (6.00)
‘Workers 51 (24.29) 8 (16.00)
Intellectuals 126 (60.00) 35 (70.00)
Others 14 (6.67) 4 (8.00)
Eating habits 9.931 0.019
Light 33(15.71) 12 (24.00)
General 71 (33.81) 25 (50.00)
Greasy 49 (23.33) 5(10.00)
High salt 57 (27.14) 8 (16.00)
Drinking habits 0.621 0.431
Yes 25 (11.90) 4(8.00)
No 185 (88.10) 46 (92.00)
Smoking habit 6.247 0.012
Yes 154 (73.33) 45 (90.00)
No 56 (26.67) 5(10.00)
Exercise (>3 times/week, duration >30 min) 6.572 0.010
Yes 130 (61.90) 21 (42.00)
No 80 (38.10) 29 (58.00)
Suffered from hypertension 30.274 <0.001
Yes 140 (66.67) 12 (24.00)
No 70 (33.33) 38 (76.00)
Suffered from diabetes 4.712 0.030
Yes 171 (81.43) 47 (94.00)
No 39 (18.57) 3 (6.00)
Family history of cardio-cerebrovascular disease 0.651 0.420
Yes 117 (55.71) 31 (62.00)
No 93 (44.29) 19 (38.00)
BMI 24.42 £2.31 23.62+£1.97 2277 0.024

Frontiers in Physiology

05

frontiersin.org


https://doi.org/10.3389/fphys.2025.1677194
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Liu et al.

TABLE 3 Logistic correlation analysis of influencing factors.

10.3389/fphys.2025.1677194

Influencing factors

P Exp(B) 95% Cl

BMI 0.053 0.085 0.380 0.537 1.054 0.892~1.245
Ordinary diet 7.108 0.069

Greasy diet 0.692 0.562 1.518 0.218 1.997 0.664~6.003

High salt diet 1.043 0.507 4.238 0.040 2.839 1.051~7.667

Light diet -0.218 0.656 0.111 0.739 0.804 0.222~2.908
Smoking habit 1.458 0.561 6.750 0.009 4.296 1.430~12.904
Exercise (>3 times/week -0.509 0.366 1.935 0.164 0.601 0.293~1.232

Time for 30 min or more)

Suffered from hypertension 1.993 0.391 26.011 <0.001 7.337 3.411~15.780
Suffered from diabetes 1.463 0.680 4.628 0.031 4.320 1.139~16.384

TABLE 4 Univariate analysis of metabolism-related biochemical markers in plasma.

Metabolism-related biochemical markers PCA group (n = 210)

Control roup (n = 50) t value P

TG (mmol/L) 1.74 +0.79 148 +0.47 3.067 0.003
TC (mmol/L) 484+1.10 4.66 + 0.64 1510 0.134
HDL-C (mmol/L) 114 +0.24 2.83+0.54 -21478 <0.001
LDL-C (mmol/L) 3.03 +0.86 1214028 25.487 <0.001
non-HDL (mmol/L) 3.71+1.09 3.53+0.76 1317 0.191
APOA1 (g/L) 0.99+0.18 1.06 +0.20 —2.441 0.015
APOB(g/L) 0.94+0.25 0.88+0.17 1.901 0.060
APOA1/APOB 1.13+0.38 1254032 -2.019 0.045
GLU (mmol/L) 5.88+ 1.52 5.30 % 0.84 3.653 <0.001
UA (pmol/L) 346.77 £ 90.51 314.10 £ 72.66 2.375 0.018

4 Discussion activity, and oxidizing lipoproteins, stimulating leukocytes

4.1 The influencing factors of PCA

The findings of this study indicates that smoking is a significant
risk factor for PCA, aligning with previous research. Tobacco plays
a role in all stages of AS development and is a key modifiable
factor contributing to cardiovascular and cerebrovascular diseases
(Centner et al., 2020). Numerous studies have confirmed that
tobacco induces AS through multiple mechanisms, primarily
targeting nitric oxide. The interference reduces the protective effects
of nitric oxide on blood vessels while promoting oxidative stress
(Murray et al., 2022). Oxidative stress is the central mechanism
for AS pathogenesis, impairing vascular endothelium, activating
platelets, increasing inflammatory factors, inhibiting fibrinolytic
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(Addissouky et al., 2024). Recent studies have also identified a
strong association between smoking, increased monocyte tissue
factor activity, and accelerated progression of carotid intima-media
thickness. Monocyte tissue factor activity is critical in both AS
development and thrombosis formation (Kang et al., 2021).
Certain tobacco components impair vascular endothelial
function by elevating inflammatory cytokines or triggering
oxidative stress responses. The oxidative stress mechanism involves
increased reactive oxygen species (ROS) production, which reduces
endothelial nitric oxide synthase (eNOS) activity and nitric oxide
levels. Concurrently, eNOS uncoupling perpetuates ROS generation,
promoting vascular smooth muscle cell proliferation and matrix
metalloproteinase secretion, further exacerbating endothelial
dysfunction (Centner et al., 2020). Nicotine and lipopolysaccharides
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in tobacco might upregulate receptors of endothelin-1, angiotensin
I1, thrombin, and angiotensin I, leading to arterial vasoconstriction
and endothelial cell dysfunction (Kim et al., 2023). Harmful tobacco
components upregulate HSP60 mRNA levels in endothelial cells,
which are transported to the cell surface after mitochondrial
release and bind to macrophages to mediate immune responses.
Furthermore, studies have demonstrated that the expression of
HSP60 in endothelial cells represents a key mechanism underlying
the pathogenesis of AS (Wang et al., 2024).

This study also suggests a correlation between unhealthy dietary
habits and PCA onset. Hyperlipidemia and hyperuricemia, linked
to high-salt and high-fat diets, are confirmed risk factors of AS,
consistent with this study’s findings. Elevated uric acid levels are
closely associated with the occurrence and severity of coronary
atherosclerosis in young individuals, and hypertension combined
with hyperuricemia significantly increases carotid AS incidence
(WEei et al., 2023; Ubhadi et al., 2023).

Hypertension is an independent risk factor for AS. Studies
have shown that age and systolic blood pressure are the primary
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risk factors for carotid AS and plaque formation (Chrysant,
2023). Hypertensive patients exhibit significantly greater common
carotid artery intima-media thickness (IMT) compared to non-
hypertensive individuals. Long-term uncontrolled hypertension
can cause vascular endothelial damage through mechanical
stimulation and other mechanisms, leading to lipid infiltration
and deposition within arterial walls. This process further promotes
the aggregation, adhesion, migration, and transformation of
mononuclear macrophages into foam cells in the intima layer,
significantly exacerbating AS progression and increasing the risk
of cardiovascular and cerebrovascular events.

Some studies suggest that type 2 diabetes, a chronic
inflammatory metabolic disease, is associated with pancreatic and
adipose tissue inflammation, which may cause insulin resistance and
impaired beta-cell function, ultimately leading to type 2 diabetes
(Takeda et al., 2020). Defects in insulin secretion or action can
result in abnormal glucose and lipid metabolism (Poznyak et al.,
2020), a major complication of type 2 diabetes. The primary
pathophysiological process involves AS formation, driven by chronic
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FIGURE 2

Volcano map and cluster heat map of two groups in positive and negative ion mode (A) pos (B) pos (C) neg (D) neg.

local inflammatory reactions mediated by cytokines produced by
vascular endothelial cells, smooth muscle cells, macrophages, and
lymphocytes on the vessel wall, along with lipid and cholesterol
accumulation (Jebari-Benslaiman et al., 2022). Chronic immune
inflammation in diabetic patients disrupts endocrine function and
vasoactive factor release, elevating systemic levels of inflammatory
markers. This leads to platelet and lipid deposition on vessel walls,
macrophage aggregation, lumen narrowing, and changes in vascular
permeability (Yu and Cheng, 2020).

4.2 The relationship between metabolic
abnormalities and PCA

The findings of this study revealed significant abnormalities in
lipid, glucose, and purine metabolism among patients with PCA.
Specifically, TG and LDL-C levels were markedly elevated in PCA
patients compared to the control group, while HDL-C, APOA, and
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the APOA1/APOB ratio were significantly reduced. These results
suggest a strong association between PCA and lipid metabolism
disorders. Previous research has established that lipid metabolism
disorders are an independent risk factor for AS, playing a critical
role in the initiation and progression of AS plaque formation
and contributing to chronic inflammatory responses. Vascular
endothelial cell dysfunction, a key driver of AS, is exacerbated by
lipid metabolism disturbances, which disrupt the balance between
endothelial cell proliferation and apoptosis. Clinical studies have
demonstrated that elevated levels of TC and TG significantly impact
AS plaque stability, as measured through biochemical assays and
pulse wave analysis (Poznyak et al., 2023). Furthermore, high TG
levels increase arterial stiffness, and concurrent the elevations of TC
and TG levels synergistically promote plaque formation.
Lipoproteins in plasma are associated with specific
apolipoproteins that serve distinct functions. For instance, ApoB is a
primary component of LDL-C, while ApoAl is the main constituent

of HDL-C (Sniderman et al., 2019). ApoB levels directly correlate
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FIGURE 3
ROC curves of the 9 differential metabolites between PCA group and control group (x-axis: False positive rate; y-axis: True positive rate).

with LDL-C concentrations and are closely linked to AS progression
and the onset of coronary atherosclerotic heart disease. Conversely,
ApoAl exhibits cholesterol-reversing, antithrombotic, antioxidant,
and anti-atherogenic properties (Busnelli et al., 2021). Consequently,
the ApoB/ApoAL ratio serves as a dynamic indicator of the balance
between AS promotion and inhibition. Current diagnostic and
monitoring tools for AS include several lipid metabolism markers,
among which LDL-C, HDL-C, ApoB, and ApoA1 have been strongly
associated with AS diseases (Yaseen et al., 2021). The evidence
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suggests that the ApoB/ApoAl ratio may provide a more accurate
assessment of cardiovascular disease risks (Zhang et al., 2025).
Additionally, this study observed significantly higher serum
UA levels in PCA patients compared to controls. UA, the
end product of purine metabolism, activates oxidative stress
pathways, leading to endothelial dysfunction. Elevated UA levels
independently predict AS development and are associated with
increased cardiovascular disease incidence and mortality across
diverse populations (Dehlin et al., 2020; KimurabY and Kono, 2021).
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TABLE 6 Differential metabolite enrichment pathways between PCA and
control groups (top 20).

Map ID Map title ‘ P value ‘ X
map04216 Ferroptosis 0.007 5
map00260 Glycine, serine and threonine metabolism 0.030 6
map01200 Carbon metabolism 0.030 6
map00970 Aminoacyl-tRNA biosynthesis 0.035 8
map04978 Mineral absorption 0.040 5
map02010 ABC transporters 0.049 8
map00860 Porphyrin and chlorophyll metabolism 0.052 4
map00030 Pentose phosphate pathway 0.066 3
map04974 Protein digestion and absorption 0.069 7
map00910 Nitrogen metabolism 0.076 2
map00240 Pyrimidine metabolism 0.096 4
map00250 Alanine, aspartate and glutamate 0.121 5
metabolism
map00471 D-Glutamine and D-glutamate metabolism 0.132 3
map05230 Central carbon metabolism in cancer 0.132 3
map01230 Biosynthesis of amino acids 0.175 10
map00360 Phenylalanine metabolism 0.223 6
map00400 Phenylalanine, tyrosine and tryptophan 0.224 4
biosynthesis
map00630 Glyoxylate and dicarboxylate metabolism 0.224 4
map00010 Glycolysis/Gluconeogenesis 0.277 1
map00524 Neomycin, kanamycin and gentamicin 0.277 1
biosynthesis

UA is also linked to metabolic abnormalities such as dyslipidemia,
obesity, and diabetes (Yazdi et al., 2022). Experimental studies
have demonstrated that UA reduces nitric oxide bioavailability in
endothelial cells and induces insulin resistance, both in vitro and
in vivo, thereby promoting AS (Bahadoran et al., 2022). However,
the precise biological mechanisms that elevated UA increases
cardiovascular risk remain unclear. Current evidence suggests that
hyperuricemia is associated with lipid metabolism abnormalities,
oxidative stress, hyperglycemia, and endoplasmic reticulum stress,
all of which contribute to arterial damage (Lee et al, 2021;
Gherghina et al., 2022; Piani et al., 2021; Li et al., 2022).

4.3 Metabolomics characteristics of PCA
Metabolomics serves as a powerful tool for disease diagnosis,

pathogenesis research, and prevention, primarily through the
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analysis of metabolites closely associated with pathological
conditions. Metabolomics technology enables the identification
of specific biomarkers that can aid in disease diagnosis and support
clinical decision-making. In this study, a non-targeted metabolomics
approach utilizing LC-MS/MS was employed to identify potential
plasma biomarkers in patients with PCA. A total of 1,171 metabolites
were identified, with 693 detected in positive ion mode and 478 in
negative ion mode. The observed metabolic alterations and pathways
were predominantly associated with lipid metabolism, amino acids
and their derivatives, and energy metabolism.

Among the top 30 metabolites identified in the PCA
group, 14 were upregulated, while 16 were downregulated.
Lipid metabolites constituted a significant proportion of these,
with six phosphatidylcholines (PC 14:0_16:0, PC 16:0_18:1,
PC 16:1_16:1, PC 20:1_18:2, PC 0-17:0_14:0, and PC 0-18:0_
22:6) exhibiting altered metabolic levels. Additionally, three
lysophosphatidylcholines (LPC 0-16:0, LPC 0-18:2, and LPC
0-16:1) were downregulated, and two phosphatidylethanolamines
(PE 0-16:0_20:4 and PE-Cer 12:1; 20/22:0) were upregulated.
Furthermore, LPE 0-22:2 was downregulated, while LPI 20:4 was
upregulated, and Cer 29:0; 20/12:0; 0 (FA 18:0) was downregulated.
These findings suggest that abnormal lipid metabolites may serve as
metabolism markers for PCA.

This study focuses on the clinical precursor stage of
atherosclerosis. During this early phase, reduced levels of LPC may
indicate either the initial failure of the body’s defense mechanisms
or early signs of metabolic dysregulation. In contrast, elevated
LPC levels reported in the literature are primarily observed during
advanced or acute stages of the disease, likely reflecting explosive
LPC release following plaque rupture and extensive cellular necrosis
(Liu et al., 2020). These phenomena represent distinct temporal
windows in the continuum of disease progression. Furthermore,
studies have demonstrated that circulating HDL-associated PC
and LPC can be processed by vascular wall-associated enzymes,
leading to localized lipid redistribution (Gauster et al., 2005). This
suggests that the circulating LPC pool and the vascular wall LPC
pool, while dynamically interconnected, are subject to independent
regulation. The systemic decrease in circulating LPC levels thus does
not contradict the localized accumulation of inflammation-driven
LPC at lesion sites; together, these processes constitute the complex
metabolic landscape of atherosclerosis.

Lipids perform essential biological functions in living
organisms, serving as energy reservoirs, structural components
of cellular membranes, and signaling molecules (Smirnov, 2010).
Consequently, lipid metabolism serves as a sensitive indicator
of physiological and pathological states in organisms. Extensive
researches have established significant associations between
dysregulated lipid metabolism and various pathological conditions,
including obesity, AS, diabetes mellitus, and coronary heart disease
(Soehnlein and Libby, 2021). As fundamental constituents of
lipoproteins, phospholipids play a pivotal role in lipid metabolism.
Insufficient phospholipids metabolism can lead to cholesterol
deposition on arterial walls, contributing to AS (Jiang, 2020).
Lysophosphatidylcholine, a key marker positively correlated
with cardiovascular diseases, regulates low-density lipoprotein
metabolism and plays a significant role in vascular endothelial
dysfunction and AS plaque formation (Koenen, 2019; Seong et al.,
2015). Ceramide, an intermediate metabolite of sphingolipids, is
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vital in biosynthesis and may protect vascular endothelium during
early AS formation. Plasma ceramide levels have been shown
to predict cardiovascular events and mortality risks in patients
with arteriosclerotic cardiovascular disease more effectively than
traditional biomarkers (Mantovani and Dugo, 2020; Rni et al., 2020;
Peterson et al., 2018).

This study further PCA disrupts cellular energy metabolism,
as indicated by elevated concentrations of phosphopyruvate,
acetylcarnitine, and butyric acid. Acetylcarnitine plays a critical
role in fatty acid metabolism and energy production by facilitating
the transfer of fatty acids from the cytoplasm into the mitochondria,
thereby promoting fat degradation and subsequent metabolic energy
generation. During the final step of glycolysis, phosphoenolpyruvate
is catalyzed by pyruvate kinase, transferring its phosphate
group to ADP to produce ATP and pyruvate, releasing a
significant amount of energy. Glycolysis serves as the primary
energy metabolism pathway for endothelial cells under normal
physiological conditions, supplying approximately 85% of their
total ATP (De Bock et al., 2013). However, risk factors such as
abnormal shear stress in the arterial walls of AS-prone regions can
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induce endothelial cell apoptosis, compromising the integrity of
the endothelial barrier. Under pathological conditions, endothelial
cells become activated, and glycolytic metabolism is significantly
upregulated (Tricot et al., 2000), aligning with the findings of this
study.

Additionally, the study identified abnormal amino acid
metabolism, particularly involving N-acetylneuraminic acid,
N-lactosyl-phenylalanine, tyrosine, and tryptophan, as a key
feature of PCA. Notably, the metabolism of N-acetylneuraminic
acid, a core structure of sialic acid, was found to be
upregulated. Research indicates that sialic acid deposited in
AS plaques can enhance collagen-induced platelet aggregation,
adenosine triphosphate secretion, and platelet adhesion to
fixed collagen. This effect is primarily mediated through
sialic acid’s influence on the collagen-binding integrin a2pl
(Wen et al., 1999).

In summary, this study utilized non-targeted metabolomics
approach to identify differential metabolites and enriched metabolic
pathways in PCA. Despite its contributions, this study has several
limitations. For instance, the sample size was limited, and the
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KEGG classification of different metabolites between PCA group and control group.

research methodology was relatively simplistic. Increasing the
sample size and employing a multi-omics integrated analysis
approach could enhance the accuracy and reliability of the findings.
Future studies should prioritize expanding the sample size and
incorporating multi-omics methods to validate and refine these
results. Furthermore, large-scale, multi-center studies are necessary
to confirm the findings of this research. A more comprehensive
understanding of PCA-related differential metabolic markers
and pathways can be achieved through targeted metabolomics
validation combined with multi-omics analysis. Such an approach
would provide valuable insights for the prevention and treatment
of AS.
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