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Gastrointestinal (Gl) cancers remain a leading global cause of cancer-
related mortality, significantly impacting public health and healthcare
systems worldwide. Emerging evidence underscores the critical role of gut
microbiome dysbiosis—characterized by disrupted microbial diversity and
function—in Gl carcinogenesis. Utilizing recent advancements in multi-
omics technologies and sophisticated computational biology, researchers
have elucidated distinct microbial signatures associated with colorectal,
gastric, hepatobiliary, pancreatic, and esophageal cancers. This review
comprehensively analyzes the primary mechanisms through which gut
microbes contribute to cancer development and progression, encompassing
genotoxicity, chronic inflammation, metabolic dysregulation, epigenetic
modifications, and immunomodulation. Moreover, we explore innovative
microbiome-derived biomarkers for potential clinical applications, including
early diagnosis, prognosis assessment, and therapeutic response prediction.
The intricate interactions between microbiota and standard cancer
therapies—chemotherapy, immunotherapy, and radiation therapy—are
discussed, highlighting microbiome influences on therapeutic efficacy
and adverse effect profiles. We also critically assess the impact of
modifiable factors such as diet, medications, lifestyle, and environmental
exposures on microbiome composition and cancer risk. The review
evaluates emerging therapeutic interventions, including dietary modifications,
probiotics, prebiotics, fecal microbiota transplantation (FMT), and engineered
live biotherapeutics. Despite notable advancements, significant hurdles
remain, including clarifying causality, methodological standardization, and
equitable global research representation. Addressing these challenges, we
propose a strategic research agenda aimed at harnessing microbiome
insights to advance precision oncology and improve Gl cancer
outcomes globally.

gut microbiome, gastrointestinal cancers, microbial dysbiosis, cancerimmunotherapy,
microbiome-derived biomarkers, microbiota-targeted therapy
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1 Introduction

Gastrointestinal (GI) cancers—comprising colorectal, gastric,
liver, pancreatic, biliary, and esophageal malignancies—pose an
escalating global health threat, accounting for over 4.4 million
deaths annually (Sung et al., 2021). This rising incidence, projected
to increase by approximately 58% by 2040, is influenced by
demographic transitions, increased obesity rates, dietary shifts
toward processed foods, and reduced physical activity (Arnold et al.,
20205 Bray et al., 2018). Despite substantial progress in diagnosis and
treatment modalities, the prognosis for many GI cancers remains
unfavorable, notably for pancreatic (<12%) and hepatobiliary
cancers (<20%) (Ferlay et al., 2019).

Historically, the recognition of microbial contributions to
GI cancers began with the identification of Helicobacter pylori
as a gastric carcinogen in 1984 (Marshall and Warren, 1984).
Subsequent advances in sequencing technologies expanded this
paradigm, revealing complex microbial communities—collectively
termed microbiomes—as integral regulators of tumor initiation,
progression, and response to treatments (Garrett, 2015). These
microbial ecosystems interact bidirectionally with host genetics,
immune function, metabolism, and environmental factors,
profoundly influencing cancer pathophysiology (Schwabe and
Jobin, 2013; Brennan and Garrett, 2016).

Technological have

innovations significantly accelerated

microbiome research, enabling precise microbial profiling
through metagenomics, metatranscriptomics, metaproteomics, and
metabolomics (Qin et al., 2010; Proctor, 2019). Complementing
these advances, computational methodologies, including machine
learning, network analysis, and causal inference frameworks,
have transformed descriptive microbial datasets into mechanistic
understanding (Zeller et al., 2014; Chen et al., 2010). Furthermore,
novel spatial-omics and single-cell analytical techniques are now
elucidating detailed microbe-host interactions within tumor
microenvironments, providing unprecedented spatial resolution
(Shi et al., 2022; Geva-Zatorsky et al., 2017).

This review integrates current knowledge, systematically
discussing microbial dysbiosis across specific GI cancers, elucidating
mechanistic pathways, evaluating microbiome-based biomarkers,
and examining interactions between microbiota and cancer
therapies. It also highlights how diet, medications, lifestyle, and
environmental exposures modulate microbial communities, and
critically appraises microbiome-targeted therapeutic interventions.
In this narrative review, we synthesize current evidence placing
the gut microbiome at the intersection of gastrointestinal (GI)
cancer biology and precision oncology. Drawing on findings from
epidemiological studies, mechanistic research, and clinical trials,
we provide an integrated perspective on how the microbiome
influences GI cancers. We first describe disease-specific dysbiosis
patterns, then dissect key mechanistic pathways linking microbial
activity to tumor development and progression We further
evaluate emerging microbial biomarkers for diagnosis and
prognosis and examine the interplay between the microbiome and
cancer therapies. Environmental modulators of the microbiome
and therapeutic strategies targeting the microbiome are also
discussed. We conclude by identifying current knowledge gaps
and outlining future directions for research in this rapidly
evolving field.
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2 Microbiome dysbiosis across major
Gl cancers

2.1 Colorectal cancers

Exhibit
enrichment of pathogenic bacteria such as Fusobacterium

distinct microbial signatures characterized by
nucleatum, Escherichia coli strains possessing the polyketide
synthase (pks) genomic island, and enterotoxigenic Bacteroides
fragilis. These pathogens are consistently associated with colorectal
carcinogenesis and poor patient outcomes (Sears, 2009; Tilg and
Adolph, 2015; Kostic et al., 2013). In particular, Fusobacterium
nucleatum promotes tumorigenesis by modulating immune
responses, facilitating cellular proliferation, and influencing
chemotherapy resistance, while pks + E. coli strains produce
genotoxic colibactin, directly inducing DNA damage and

mutagenesis (Cuevas-Ramos et al., 2010; Nougayrede et al., 2006).

2.2 Gastric cancer

Gastric Cancer is associated with a shift in microbiome

composition toward increased abundance of Streptococcus,
Prevotella, and nitrosating bacterial species capable of generating
carcinogenic ~ N-nitroso compounds.  Persistent  dysbiosis
following Helicobacter pylori eradication strongly correlates with
increased risk of progression to intestinal-type adenocarcinoma,
underscoring the role of the broader microbiome rather than
a single pathogen in gastric carcinogenesis (Yu et al, 2024;

Plummer et al., 2015).

2.3 Esophageal cancer

In Barrett’s esophagus and esophageal adenocarcinoma,
microbiome  dysbiosis  predominantly increased
colonization by gram-negative anaerobes, which metabolize bile

involves

acids and exacerbate inflammation through interleukin-8 (IL-8)
mediated pathways (Sharma et al, 2022; Blackett etal., 2022).
Notably, Porphyromonas-positive squamous cell carcinoma tumors
exhibit heightened PD-L1 expression, implicating these microbes in
immune modulation and potentially influencing responsiveness to
immunotherapies (Yagi et al., 2019).

2.4 Pancreatic cancer

Pancreatic ~ tumors are  characterized by  distinct
microbial communities, notably enriched in Proteobacteria,
Enterobacteriaceae, Malassezia, and Fusobacterium species.
Evidence indicates that microbial translocation from the gut
to the pancreas can activate innate immune pathways and
potentiate inflammation-driven carcinogenesis. Such intratumoral
microbial colonization may contribute significantly to tumor
progression and resistance to chemotherapy, thus highlighting
the potential for microbiome-targeted therapeutic strategies
in pancreatic cancer management (Pushalkar et al, 2018;

Riquelme et al., 2019; Ren et al., 2017).
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FIGURE 1

Mechanistic pathways linking the gut microbiome to Gl tumorigenesis. The microbiome promotes tumor initiation and progression through immune
modulation, genotoxin production (e.g., colibactin, BFT), metabolite-driven oncogenic signaling (secondary bile acids), chronic inflammation via
pattern-recognition receptors, epigenetic alterations, and stem cell niche reprogramming.

2.5 Hepatobiliary cancers

Hepatobiliary malignancies exhibit characteristic microbial
alterations linked closely to chronic liver disease. Gut microbiota
dysbiosis, notably in the context of cirrhosis, promotes hepatic
inflammation and fibrosis primarily through Toll-like receptor 4
(TLR4) mediated signaling pathways (Seki et al., 2007; Schnabl
and Brenner, 2014). Furthermore, enrichment of Akkermansia
muciniphila has been associated with improved responses to
immune checkpoint inhibitors in hepatocellular carcinoma,
providing a predictive biomarker and potential therapeutic target
(Zheng et al., 2019). Additionally, shifts in biliary microbiota have
been correlated with the development of cholangiocarcinoma,
emphasizing the importance of microbiome monitoring in
hepatobiliary oncology (Ridlon et al., 2014).

3 Mechanistic pathways linking the
gut microbiome to Gl tumorigenesis

The gut microbiome plays a pivotal role in gastrointestinal (GI)
tumorigenesis through a multifaceted network of mechanisms.
These include modulation of immune responses, induction of
DNA damage, alteration of host metabolism, engagement with
pattern recognition receptors, epigenetic modifications, and
reprogramming of the stem cell niche. Understanding these

Frontiers in Physiology

03

pathways provides insights into potential targets for prevention
and therapy (Figure 1).

3.1 Immune modulation and immune
escape

The gut microbiome significantly influences immune
homeostasis and tumor immune surveillance. Commensal-
derived  metabolites, including short-chain fatty acids

(SCFAs), modulate antigen-presenting cell function and T-
cell differentiation, promoting anti-inflammatory and anti-
(Belkaid and Hand, 2014).
pathogenic microbes like Fusobacterium nucleatum employ

tumor responses Conversely,
mechanisms such as the Fap2 protein, which engages inhibitory
receptors (e.g., TIGIT) on immune cells, creating immune-
privileged tumor microenvironments and facilitating tumor

immune evasion (Gur et al., 2015).

3.2 Microbial genotoxins and DNA damage

Certain gut microbiota species produce genotoxins such
as colibactin (pks + Escherichia coli) and Bacteroides fragilis
toxin (BFT). Colibactin induces specific DNA alkylation damage
associated with a unique mutational signature (COSMIC SBS
88), to colorectal

significantly ~ contributing carcinogenesis
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(Nougayrede et al, 2006). BFT promotes epithelial disruption
and P-catenin activation, potentiating chronic inflammation and
tumorigenesis via IL-17-driven pathways (Wu et al., 2003).

3.3 Metabolite-driven oncogenic signaling

Microbial metabolites, notably secondary bile acids like
deoxycholic and lithocholic acids, are implicated in cancer
progression. These metabolites can activate oncogenic signaling
pathways such as FXR-SHP and YAP/TAZ, leading to increased
cellular proliferation and tumor growth, especially in hepatocellular
carcinoma (Yoshimoto et al, 2013). Reduced abundance of
beneficial microbes producing SCFAs exacerbates oxidative
stress and metabolic dysregulation in colonocytes, favoring
pro-tumorigenic environment (Louis et al., 2014).

3.4 Pattern recognition

Cross-talk with Oncogenes: Microbial products such as
lipopolysaccharide (LPS) engage host pattern recognition receptors,
particularly TLR4, leading to sustained inflammatory signaling via
NF-kB pathways. This inflammatory environment synergizes with
host genetic mutations (e.g., KRAS, TP53) to drive tumor initiation
and progression (Rakoff-Nahoum et al., 2004).

3.5 Epigenetic rewiring

Gut microbiome dysbiosis influences host epigenetic
modifications, notably through butyrate-mediated inhibition

of histone deacetylases (HDACs). Butyrate-mediated HDAC

inhibition leads to hyperacetylation of histones, altering
gene expression patterns involved in tumor suppression
and inflammation (Donohoe et al, 2012). Conversely,

reduced butyrate levels due to dysbiosis contribute to DNA
hypermethylation of tumor suppressor

carcinogenesis (Louis et al., 2014).

genes, accelerating

3.6 Stem cell niche reprogramming

Microbial interactions alter stem cell dynamics, promoting
tumor initiation and progression. Enterotoxigenic B. fragilis and
high-fat dietary patterns shift intestinal stem cells toward a
regenerative, foetal-like phenotype marked by enhanced plasticity,
significantly increasing susceptibility to tumorigenic mutations and
promoting tumorigenesis (Schell et al., 2020).

4 Microbiome-derived biomarkers for

early detection, prognosis, and

treatment selection

4.1 Non-invasive early detection tools
Traditional screening methods for colorectal cancer (CRC), such

as fecal immunochemical tests (FIT), have limitations in sensitivity
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and specificity. Recent studies have demonstrated that metagenomic
profiling of fecal samples can identify distinct microbial signatures
associated with early-stage CRC. For instance, Yu et al. (2017)
reported that specific microbial markers could distinguish CRC
patients from healthy controls with high accuracy, suggesting their
potential as non-invasive diagnostic tools. Similarly, Zeller et al.
(2014) found that with
FIT improved the detection rate of CRC, particularly in

integrating microbial biomarkers

early stages.

4.2 Risk stratification and surveillance:
integrating microbiome and host genetics

Beyond detection, the gut microbiome holds promise in
stratifying individuals based on cancer risk. Polygenic microbiome
risk scores, which combine host genetic factors with microbial
composition data, have been developed to predict the likelihood
of adenoma progression and CRC development (Vogtmann et al.,
2016). Moreover, salivary microbiome profiling has emerged as a
potential tool for identifying precancerous conditions. Chen et al.
(2015) demonstrated that specific ratios of oral bacteria, such as
Porphyromonas endodontalis to Prevotella melaninogenica, were
predictive of intestinal metaplasia in gastric cancer, highlighting the
utility of oral microbiota as biomarkers for early intervention.

4.3 Predictive biomarkers of therapy
response: microbiome’s role in treatment
efficacy

The composition of the gut microbiome significantly influences
the efficacy of cancer therapies. High intratumoral levels of
Fusobacterium nucleatum have been associated with reduced
responsiveness to adjuvant chemotherapy in CRC patients.
Mima et al. (2016) found that patients with elevated E nucleatum
levels had shorter survival times, suggesting that microbial
profiling could inform treatment decisions. Conversely, beneficial
microbes like Akkermansia muciniphila and members of the
Ruminococcaceae family have been linked to favorable responses
to immune checkpoint inhibitors. Studies by Gopalakrishnan et al.
(2018) and Routy et al. (2018) indicated that the presence of these
bacteria correlated with improved outcomes in patients undergoing
immunotherapy, underscoring the potential of microbiome
modulation to enhance treatment efficacy.

5 Microbiome interplay with cancer
therapies and supportive care

The gut microbiome significantly modulates cancer treatment
efficacy and toxicity through its influence on chemotherapy,
immunotherapy, and radiotherapy outcomes (Alexander et al.,
2017; Gopalakrishnan et al., 2018). Gut microbial enzymes like
B-glucuronidase from Clostridium and Escherichia species can
reactivate irinotecan metabolites in the gut, leading to severe
diarrhea and gastrointestinal toxicity (Wallace et al, 2010).
Selective enzyme inhibitors (e.g., DRB 156) are under clinical
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immune and metabolic pathways linked to Gl cancer.
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TABLE 1 Microbiome-targeted therapeutic strategies in gastrointestinal cancers. Summary of key microbiome-based interventions, main findings, and

current development stages.

Strategy Key findings Development stage

Faecal microbiota transplantation (FMT) | Oral-capsule FMT accelerates microbiome recovery after HSCT and cuts grade >2 GVHD by Phase ITI
40% (Khoruts et al., 2021)

Responder-FMT Restores ICI benefit in 30%-50% of refractory melanoma/GI-cancer patients (Davar et al., Phase IT
2021)

Antibiotic-conditioned FMT 18% partial responses in heavily-pretreated GI cancers (Baruch et al., 2021) Phase I/II

Engineered probiotics E. coli Nissle secreting anti-PD-L1 nanobodies shrinks CRC in mice (Gurbatri et al., 2024) Phase I

Prebiotic/synbiotic fibres Resistant-starch supplementation restores butyrate and reduces adenoma multiplicity Translational
(O’Keefe et al., 2015)

Bacteriophage therapy CRISPR-phage targeting F. nucleatum reduces tumour burden in ApcMin/ + mice Pre-clinical
(Bullman et al., 2017)

evaluation to mitigate these adverse effects (Stringer et al., 2009).
Furthermore, bacterial thioguanine methyltransferase contributes
to chemoresistance by converting thiopurine drugs into inactive

metabolites (Huang et al., 2018).

In the context of immune checkpoint blockade therapy, high
microbial diversity and the abundance of Akkermansia muciniphila,
Ruminococcus bromii, and Bifidobacterium longum are associated
with improved responses to PD-1/PD-L1 inhibitors across various
cancers (Gopalakrishnan et al,, 2018; Routy et al., 2018). Conversely,

Frontiers in Physiology

antibiotic use around treatment initiation reduces efficacy by
disrupting gut microbiome balance and modulating immune cell
function (Derosa et al.,, 2018). Fecal microbiota transplantation
from responders shows promise in restoring immunotherapy
sensitivity (Baruch et al., 2021).

Radiotherapy can damage the gut microbiota, leading to radiation
proctitis and enteritis. Butyrate-producing bacteria like Eubacterium
hallii and Roseburia intestinalis can ameliorate these toxicities by
enhancing epithelial repair through IL-22/STAT3 pathways (Houlden
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etal, 2015). Trials such as RADIOTIDE CRC are investigating
short-chain fatty acid supplementation to prevent radiation-induced
gut damage (NCT05987121).

Perioperative antibiotic prophylaxis reduces postoperative
infections but may increase cancer recurrence by depleting
beneficial gut microbes, underscoring the importance of
microbiome-sparing protocols (Mik et al, 2016) and precision
microbiome approaches guided by recent multi-omics and
therapeutic insights (Methé et al., 2012; Bindels et al, 2025;

Liang et al.,, 2024). Engineered bacterial and probiotic therapies,

including strains secreting anti-PD-L1 nanobodies, have
demonstrated improved antitumor responses and immunotherapy
outcomes (Gurbatri et al, 2022; Gopalakrishnan et al,

2018), allowing for personalized supportive care interventions
(Dohlman et al., 2021; Alexander et al., 2017).

5.1 Diet, medications, lifestyle, and
environmental modulators of the
oncogenic microbiome

The gut microbiome’s composition and function are dynamically
responsive to dietary, medicinal, lifestyle, and environmental
influences, each profoundly affecting cancer risk and progression
(Zitvogel et al, 2018; Turnbaugh et al., 2007). Dietary patterns
significantly shape microbiota composition and metabolite
production. For instance, fiber-rich Mediterranean diets have
been consistently linked to increased populations of beneficial
microbes, such as Roseburia and Faecalibacterium species, which
produce protective short-chain fatty acids and reduce carcinogenic
metabolites (David et al., 2014). Conversely, Western diets
characterized by high intake of red meat, processed foods, and
emulsifiers favor pathogenic microbial blooms, notably sulfate-
reducing Bilophila wadsworthia, promoting pro-carcinogenic
environments through increased production of DNA-damaging
agents like hydrogen sulfide (Devkota et al., 2012) (Figure 2).

Medication use also profoundly influences microbiome
dynamics. Proton pump inhibitors (PPIs) significantly alter
microbial diversity by reducing gastric acidity, facilitating
colonization of oral microbes in the gut and increasing colorectal
cancer risk (Imhann et al., 2016). Broad-spectrum antibiotics cause
lasting reductions in microbial diversity, significantly impairing
immune checkpoint inhibitor efficacy (Gopalakrishnan et al., 2018).
Conversely, non-steroidal anti-inflammatory drugs (NSAIDs)
exhibit chemopreventive effects partly attributable to microbiome
modulation via arachidonic acid pathways (Alexander et al., 2017).

Lifestyle factors such as physical activity and environmental
exposures further modulate microbiome composition. Regular
moderate-intensity exercise enhances the abundance of beneficial
microbial taxa like Akkermansia and Eubacterium through
improved gut motility and mucin turnover (Clarke et al,
2014). Sedentary behavior reduces these protective microbiota
populations, promoting a pro-inflammatory state (Allen et al,
2018). Environmental factors, including exposure to urban green
spaces, have been associated with increased microbial diversity
and anti-inflammatory metabolite production, potentially reducing
cancer risk (Ruokolainen et al., 2015). However, emerging evidence
suggests adverse impacts of microplastic ingestion and heavy metal

Frontiers in Physiology

06

10.3389/fphys.2025.1676796

exposure on microbial community stability and redox balance,
underscoring the complexity of environmental influences on the
microbiome and their potential implications for cancer risk and
prevention strategies (Leslie et al., 2022) (Table 1).

6 Cross-cutting challenges,
knowledge gaps, and methodological
priorities

Despite significant advances, translating microbiome science
into routine gastro-oncology practice presents considerable
challenges (Supplementary Figure S1).  Establishing causality
remains a key obstacle. While animal models have demonstrated
that specific microbes like F. nucleatum and pks + E. coli can
drive tumorigenesis, human studies remain largely correlative
(Kostic et al., 2013; Louis et al., 2014). Innovative approaches,
including Mendelian randomization using host microbiome-
related SNPs, are promising but often hampered by population
stratification and limited sample sizes (Wang et al., 2019). Large-
scale bidirectional studies and causal mediation analyses are needed
to clarify these complex interactions and provide robust evidence.

Standardization and reproducibility pose additional hurdles.
Methodological variations in sample collection, DNA extraction,
and bioinformatics pipelines hinder cross-study comparability
(Costea et al, 2017). Initiatives like the Microbiome Quality
Control Consortium have recommended standardized protocols,
including mock community controls and comprehensive
metadata reporting, to enable consistent and reproducible data
integration (Sinha et al., 2017).

Spatial and functional resolution of microbiome data is
another area requiring development. While bulk sequencing has
illuminated general dysbiosis patterns, spatial transcriptomics and
microbial FISH are now revealing micro-niches of bacteria within
tumor microenvironments that could influence cancer behavior
(Geller et al., 2017). Integrating spatial metabolomics with isotope
tracing will deepen our understanding of local microbe-host
interactions and nutrient exchanges (Bouslimani et al., 2016).

Regulatory science for live biotherapeutics is also critical.
Current FDA guidelines treat engineered probiotics as biologics,
requiring rigorous strain-level genomic characterization, stability
assessments, and standardized potency assays (Yadav and Chauhan,
2021). Establishing consistent regulatory frameworks will be
essential to facilitate safe and effective clinical translation of
microbiome-based therapies.

Finally, equity and representation must be prioritized.
Most metagenomic studies have been conducted in Western
populations, limiting generalizability to other regions (Huttenhower
etal., 2012). Global initiatives, including harmonized stool
banks and open-access biobanks, are crucial for ensuring
that the benefits of microbiome-based oncology reach all
populations (Sinha et al., 2017).

The gut microbiome has emerged as a critical player in the
pathogenesis and treatment of GI cancers, offering opportunities
for both prevention and therapy. Dysbiosis drives oncogenesis
through genotoxic, metabolic, epigenetic, and immunomodulatory
pathways, while also influencing patient responses to chemotherapy,
and radiotherapy (Kostic al., 2013;

immunotherapy, et
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Tilg et 2018). 'This the
microbiome as both a biomarker and a therapeutic target
(Gopalakrishnan et al., 2018).

By 2030, we anticipate major milestones: the integration of

al., intricate interplay positions

multi-omics microbiome profiles into routine cancer screening,
regulatory approval of microbiome-informed diagnostics, and
widespread use of live biotherapeutics in clinical practice
(Sampson et al., 2017). Advances in causal inference, standardized
protocols, and federated data-sharing will accelerate discovery, while
ensuring equitable access to microbiome-based interventions will
be essential for addressing global disparities (Human Microbiome
Project Consortium, 2012; Almeida et al., 2024).

In summary, the microbiome is at the nexus of host
genetics, lifestyle, environment, and therapy response. Achieving
precision onco-microbiomics requires collaborative efforts across
disciplines, bridging basic research and clinical translation
(Marshall and Warren, 1984). This approach holds the promise of
transforming GI cancer care from reactive to proactive management,
ultimately improving survival rates and patient quality of life
worldwide (Qin et al., 2010).
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