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University, Xiamen, China

Acute Type A aortic dissection (ATAAD) is characterized by acute onset and
rapid progression, with aortic rupture due to dissection extension being the
primary lethal mechanism. Timely identification of high-risk patients is critical
for prioritizing surgical intervention to reduce rupture incidence. This study
aimed to develop and validate an interpretable machine learning model to
predict aortic rupture in ATAAD patients, thereby improving risk classification and
supporting clinical decisions. Medical records of ATAAD patients from Xiamen
Cardiovascular Hospital (January 2019-October 2024) were retrospectively
analyzed. Predictors were screened via statistical significance (p < 0.05) using
seven machine learning algorithms, with the Salp Swarm Optimization Algorithm
(SSA) optimizing hyperparameters for Random Forest and XGBoost models. To
address class imbalance (47 rupture cases, 6.1%), SMOTE was implemented for
data augmentation. Model performance was evaluated by accuracy, Fl1-score,
precision, ROC-AUC, sensitivity, and specificity, supplemented by interpretability
analyses through feature importance ranking and SHAP. Among 774 included
ATAAD patients, the SSA-optimized Random Forest model achieved optimal
performance (test dataset: 97.41% accuracy, 0.980 ROC-AUC, 81.82% F1-score).
Key predictors included estimated glomerular filtration rate (eGFR), hypotension
at admission, and white blood cell count. This work provides a quantitative tool
for emergency care prioritization, with SSA enhancing model precision for high-
risk patient identification, though multicenter studies are needed to validate
generalizability.
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1 Introduction

Aortic dissection (AD) is a life-threatening cardiovascular
emergency characterized by a tear in the aortic intima-media
layer, allowing high-pressure blood flow to penetrate the medial
layer and propagate along the aortic axis, thereby creating true
and false lumens (Nienaber and Clough, 2015; Schussnig et al.,
2021). According to the Stanford classification, AD is categorized
based on involvement of the ascending aorta: Type A dissections
involve the ascending aorta and require emergency open surgical
repair, typically involving ascending aortic replacement with or
without hemiarch/total arch replacement (e.g., Suns procedure)
(Zhu et al., 2020). Acute Type A aortic dissection (ATAAD), defined
as occurring within 2 weeks of onset, is particularly critical due
to its rapid progression. Mortality rates escalate by 1%-2% per
hour post-onset, reaching 50% within 48 h Pichert et al. (2020),
Pape et al. (2015), with studies reporting 24-h mortality as high
as 47% rising to 55% at 48 h in untreated patients (Larsson et al.,
2024). The primary causes of death include aortic rupture and
malperfusion syndrome due to compromised blood supply to vital
organs (Pichert et al., 2020). In China, the annual incidence is 2.78
per 100,000 population with a mean onset age of 51.6 years, showing
a concerning trend toward younger demographics (Zhao et al.,
2022). Early identification of high-risk rupture patients is therefore
critical for improving survival.

Although some studies have explored preoperative rupture risk
factors in ATAAD patients, significant limitations persist: (1) Small
sample sizes (typically n < 500) increase susceptibility to type II
statistical errors; (2) Overreliance on anatomic imaging parameters
(e.g., aortic diameter); with insufficient incorporation of serological
biomarkers; (3) Limited focus on preoperative risk prediction
models (Wu et al., 2019; Lin et al., 2023).

Recent advances in machine learning offer new opportunities
to address these gaps. While random forest (RF) excels in
handling nonlinear relationships Zhou et al. (2024), neural
(NN) provide
complex datasets (Ghorrati et al., 2024). This study systematically

networks superior pattern recognition in
evaluates machine learning algorithms (including RE, NN, and
others) for ATAAD rupture prediction, leveraging both statistical
robustness and clinical transparency to optimize surgical triage

decisions.

2 Materials and methods
2.1 Study design, patients

This study was a retrospective study. The research plan has
been approved by the Ethics Committee of Xiamen Cardiovascular
Hospital of Xiamen University (approved number: KY2025-037).
Due to its retrospective design and anonymous nature, the
requirement for patient informed consent is waived. Screening
was conducted on patients diagnosed with ATAAD at Xiamen
University Affiliated Cardiovascular Hospital from 1 January 2019 to
31 October 2024. Inclusion criteria: (1) Age > 18 years, (2) onset time
< 14 days, (3) CTA diagnosis of ATAAD. Exclusion criteria: (1) Died
of other serious complications after admission,(2) Abandonment of
surgical treatment and automatic discharge, (3) Death more than
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24 h after admission, (4) Incomplete clinical data. Figure 1 provides
an overview of the research process. Ultimately, 774 eligible patients
were included in the final analysis.

2.2 Data collection and processing

Clinical variables were collected at the time of patient admission,
including demographic characteristics, clinical ~symptoms,
laboratory biochemical tests, and ultrasound results. Laboratory
variables (e.g., WBC, eGFR, and D-dimer) had missing values, with
overall missingness less than 30% for any variable. Missing data were
imputed using multiple imputation by chained equations (MICE) to
reduce potential bias and maintain statistical power.

In order to prevent information leakage, all data preprocessing
steps—including feature selection, standardization, and resampling
with SMOTE-were strictly performed within the training and
validation sets during model development, while the independent
test set remained untouched throughout the model construction
and Salp Swarm Optimization (SSA) tuning process. The dataset,
comprising 774 samples in total, was randomly divided into training
(n = 495, 64%), validation (n = 124, 16%), and test (n = 155, 20%)
sets, corresponding to an overall (8:2):2 split.

For feature selection, variables with p <0.05 in univariate
analysis were retained as candidate predictors for multivariate
modeling. Although methods such as decision tree and LASSO
regression were explored, they did not yield superior performance
compared with the univariate filtering approach.

The complete data processing pipeline and parameter settings
were documented to enhance reproducibility. The implementation
details of the SSA algorithm, including its configuration and code,
have been made publicly available in a GitHub repository: https://
github.com/elarabao/SSA-Medical-Prediction.

2.3 Salp swarm optimization algorithm

The Salp Swarm Optimization (SSA) algorithm, inspired by
the collective foraging behavior of salps in marine environments,
was employed to optimize the hyperparameters of our
predictive models (Mirjalili et al, 2017). This metaheuristic
algorithm effectively balances exploration and exploitation during
the optimization process, making it particularly suitable for

high-dimensional medical datasets.

2.3.1 Mathematical formulation

The SSA algorithm simulates the chain behavior of salps, where
the population is divided into leaders and followers. The position of
each salp in the d-dimensional search space represents a potential
solution (i.e., a set of hyperparameters). The mathematical model
consists of two main phases, which are defined by Equations 1-6.

1. Leader position update: The leader salp (best solution) guides
the swarm toward the food source (optimal solution):

g Fi+c ((ubj-1b)c, +1b;)  ifc; <05 .

T F=o ((ubj—1b))c, +1b;)  otherwise
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Patients were excluded for the following
reasons

(1) Died of other serious complications after
admission (n=18)

Y

ATAAD patients(n=774)

(2) Abandonment of surgical treatment and
automatic discharge (n=7)

(3) Death more than 24 hours after
admission (n=12)

(4) Incomplete clinical data (n=95)

Y

Y

Rupture group(n=47)

non-Rupture group(n=727)

FIGURE 1
An overview of the flow through the study.

Where:

. x]l is the position of the leader in the j dimension
. Fis the position of the food source (current best solution)

o ub; and Ib; are the upper and lower bounds of the j‘h dimension
o ¢y,¢5 are random numbers uniformly distributed in [0,1]

« ¢, is the convergence control parameter:

t)Z

=g

€ = 2e7( 2)

Where ¢ is the current iteration and T is the maximum number
of iterations. This adaptive parameter balances exploration (high ¢,
values early in optimization) and exploitation (low ¢, values later in
optimization).

2. Follower position update: Followers move in a chain-like
formation based on their preceding neighbor:

x; = % (x]’ +x;_1)

A3)

Where x; is the position of the i follower salp in the j™
dimension.

2.3.2 Implementation in medical prediction
models

The SSA algorithm was implemented to optimize two key
predictive models:

o Random Forest Optimization: The algorithm searched for
optimal values of four critical hyperparameters:

Position = [ #egimators Max_depth, min_samples_split, min_samples_leaf]

(4)

With search boundaries: n 50,500], max_depth €

[3,30], min_samples_split € [2,20], min_samples_leaf € [1,10].

estimators € [
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o XGBoost Optimization: The algorithm optimized five key
parameters:

Position = [Megimators» MaX_depth, learning_rate, gamma,

x min_child_weight] (5)
With search boundaries: #1.gai0rs € [50,500], max_depth €
[3,15], learning_rate € [0.01,0.3],
min_child_weight € [1,10].
Prior to the SSA optimization, the hyperparameters were

gamma € [0, 1],

initialized using a uniform random distribution within their
predefined search boundaries for each dimension of the search
space. Specifically, the initial positions of all salps were generated
by sampling uniformly between the lower and upper bounds of
each hyperparameter, thereby ensuring sufficient diversity in the
initial population.If prior knowledge was available, the leader salp
could optionally be initialized with a predefined parameter vector;
otherwise, it was initialized in the same manner as the other salps.
This initialization strategy provided SSA with a broad and unbiased
starting point, facilitating effective exploration during the early
optimization stages.

2.3.3 Fitness function
The optimization objective was to minimize classification error
rate evaluated through 5-fold cross-validation:

K
1
Fit =1-=> A 6
itness Kk; ccuracy;, (6)

Where K=5 represents the number of cross-validation
folds, and Accuracy, is the classification accuracy on the k'
validation fold.

The optimization process was implemented in Python 3.9 using
NumPy and Scikit-learn libraries, with parallel computation to
enhance efficiency.
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2.4 Model construction

Data augmentation was performed using the SMOTE (Synthetic
Minority Over-sampling Technique) method. Subsequently, feature
selection was conducted through P < 0.05. After inputting the last
nine clinical feature variables, seven machine learning algorithms
were applied for model construction. These algorithms include
Extreme Gradient Boosting (XGBoost), Logistic Regression (LR),
Random Forest (RF), Gaussian Naive Bayes (GNB), Support Vector
Machine (SVM), and k-Nearest Neighbor (KNN) models. Use
these algorithms to predict the incidence of preoperative aortic
dissection rupture.

2.5 Statistical analysis

The Shapiro-Wilk test was employed to assess data normality.
Normally distributed data are expressed as mean + standard
deviation, and inter-group comparisons were conducted using the
t-test. For non-normally distributed data, results are presented as
median (M) with interquartile range (P25, P75), and differences
were analyzed using the Mann-Whitney U test. Categorical data
are expressed as frequency (percentage), with group comparisons
performed using the chi-square test or Fisher’s exact test, as
appropriate. Statistical significance was defined as p < 0.05. Model
performance evaluation serves to compare the generalization
capabilities of classifiers. Within the context of disease risk
prediction, accuracy and recall are prioritized over other evaluation
metrics. The following five performance metrics were used to
evaluate the models: the area under the receiver operating
characteristic curve (AUC-ROC), accuracy, precision, specificity,
recall, and the F1 score.

3 Results
3.1 Clinical features of the patients

This prospective cohort study enrolled 774 consecutive patients
[median age: 54 years (IQR 46-64); 86.5% male], including
47 cases (6%) with preoperative aortic rupture within 24h
of admission. Tablel demonstrates significant between-group
disparities in baseline characteristics between the rupture (n = 47)
and non-rupture (n = 728) cohorts.

Demographic analysis revealed older age in the rupture
group versus non-rupture controls (median 63 vs. 53 years; P <
0.001). Laboratory profiling demonstrated a more pronounced
inflammatory and coagulopathic state in rupture cases, evidenced
by elevated leukocyte counts (median 12.3 vs. 7.9x 10°/L; P <
0.001), higher plasma D-dimer levels (median 7.8 vs. 2.3 ug/mL;
P <0.001), and increased arterial lactate concentrations (median
4.1 vs. 1.8 mmol/L; P < 0.001). Metabolic disturbances manifested
through significantly reduced glomerular filtration rates (median 58
vs. 82 mL/min/1.73m?; P < 0.001) and elevated plasma creatinine
levels (median 1.5 vs. 1.1 mg/dL; P = 0.002).

Hemodynamic evaluation showed comparable systolic (median
118 vs. 124 mmHg; P = 0.089) and diastolic blood pressures (median
68 vs. 72 mmHg; P = 0.093) between groups, but significantly lower
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mean arterial pressure in rupture cases (median 78 vs. 84 mmHg; P =
0.038). Imaging biomarkers indicated greater aortic regurgitation
severity (grade >3: 41.3% vs. 22.1%; P=0.004) and widened
alveolar-arterial oxygen gradient (median 32 vs. 22 mmHg; P =
0.001) in the rupture group. Pericardial effusion prevalence (34.8%
vs. 32.8%; P =0.751) and left ventricular ejection fraction (median
58% vs. 59%; P = 0.414) showed no statistical significance. Variables
“periaortic hematoma” and “systolic hypertension” were excluded
from analysis due to absence from the dataset.

3.2 Prediction models’ performance
comparison

To predict preoperative aortic dissection rupture within 24 h
of admission, we evaluated seven machine learning models:
logistic regression, decision tree, random forest, XGBoost, support
vector machine (SVM), k-nearest neighbors (KNN), and multilayer
perceptron (MLP). Key performance metrics are detailed in
Table 2. Figure 2 shows the convergence patterns of the Salp
Swarm Optimization-enhanced models, confirming their stable
learning behavior. Figure 3 presents a comprehensive view of model
interpretability. Global explanations from SHAP summary plots are
provided for the Random Forest and XGBoost models (subfigures
A and B), demonstrating the overall feature contributions across
the dataset. Subfigures C and D further depict local SHAP force
plots for individual patients, clearly highlighting the positive and
negative feature influences in preoperative rupture prediction. In
addition, These interpretability results provide robust evidence of
the proposed frameworK’s clinical relevance and transparency, as
detailed in the discussion.

The SSA-optimized Random Forest demonstrated superior
overall performance, achieving high accuracy (0.97) and the
highest AUC (0.98) among all models. Crucially, it maintained
balanced precision (0.75) and recall (0.90), yielding the optimal F1-
score (0.82). Compared to its baseline version, SSA optimization
yielded a 3% accuracy improvement (0.94—0.97) and 3% AUC
enhancement (0.95—0.98) while preserving critical clinical balance
between sensitivity and specificity. Similarly, SSA optimization
moderately enhanced XGBoost performance, increasing accuracy
by 1% (0.93—0.94) and maintaining AUC (0.94), while improving
precision by 5 percentage points (0.45—0.50). This optimization
elevated its F1l-score from 0.47 to 0.58, representing a clinically
significant 23% relative improvement in overall performance.

Figure 4 demonstrates the classification performance of
Subfigure (A)
operating characteristic (ROC) curve, highlighting the superior

the proposed models. shows the receiver
discrimination ability of the SSA-optimized Random Forest model
with an AUC of 0.98. Subfigures (D) through (G) display the
confusion matrices of the Random Forest, XGBoost, SSA-RF, and
SSA-XGBoost models, respectively. As shown, the SSA-enhanced
models achieved higher true positive rates with fewer false negatives,
reflecting improved sensitivity in predicting preoperative aortic
rupture. These findings confirm that the proposed optimization
strategy enhances model stability and accuracy, providing a
clinically valuable tool for risk stratification in acute type A aortic
dissection.
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TABLE 1 Preoperative characteristics and laboratory findings of the total population.

Non-rupture (n = 727) Rupture (n = 47) P-valu

Variable

Demographics

Total (n = 774)

10.3389/fphys.2025.1675853

Age (years) 54.00 (46.00-64.00) 54.00 (46.00-64.00) 63.00 (53.50-73.50) <0.001
Male (%) 605 (78.2%) 575 (79.1%) 30 (63.8%) 0.023
SBP (mmHg) 138.00 (121.75-157.00) 138.50 (122.00-157.75) 118.50 (80.00-129.75) <0.001
DBP (mmHg) 78.00 (67.00-90.25) 78.50 (67.25-91.00) 61.50 (59.25-77.75) 0.015
MAP (mmHg) 99.15 (95.42-102.33) 99.15 (94.83-103.33) 76.00 (63.92-97.42) <0.001
Hypertension 240 (31.00%) 236 (32.50%) 4(8.50%) 0.001
LVEF (%) 65.55 (63.40-67.00) 65.57 (63.00-67.00) 65.49 (64.35-65.85) 0.414
BMI 25.00 (24.00-27.00) 25.00 (24.00-27.00) 25.10 (24.10-25.60) 0.499
Obesity 300 (38.80%) 295 (40.60%) 5(10.60%) <0.001
Medical history

Marfan Syndrome 10 (1.30%) 10 (1.40%) 0 (0.00%) 0.886
Hypertension(history) 383 (49.50%) 363 (49.90%) 20 (42.60%) 0.407
Diabetes Mellitus 28 (3.60%) 25 (3.40%) 3 (6.40%) 0.519
Cerebrovascular 41 (5.30%) 36 (5.00%) 5(10.60%) 0.177
Symptoms and comorbidities

Aortic insufficiency 664 (85.80%) 617 (84.90%) 47 (100.00%) 0.008
Cold extremities 4(0.50%) 0 (0.00%) 4 (8.50%) <0.001
Hypoxemia 10 (1.30%) 10 (1.40%) 0 (0.00%) 0.886
Hematochezia/Abdominal pain 7 (0.90%) 7 (1.00%) 0 (0.00%) 1.000
Neurological symptoms 35 (4.50%) 31 (4.30%) 4 (8.50%) 0.319
Syncope 12 (1.60%) 7 (1.00%) 5 (10.60%) <0.001
Laboratory Findings

pH (AB) 7.37 (7.33-7.41) 7.38 (7.34-7.41) 7.30 (7.23-7.34) <0.001
Lac (AB) (mmol/L) 9.00 (2.30-19.00) 9.00 (2.30-18.90) 22.00 (4.60-57.10) <0.001
PaO, (mmHg) 101.00 (80.21-133.05) 101.00 (80.41-132.00) 108.00 (77.90-148.00) 0.471
OI (mmHg) 299.81 (237.25-368.50) 300.14 (239.00-367.00) 293.00 (210.50-386.50) 0.402
Neutrophil% 0.87 (0.80-0.90) 0.87 (0.79-0.90) 0.87 (0.82-0.91) 0.507
WBC (x 10°/L) 13.04 (10.03-15.86) 12.87 (9.85-15.63) 15.44 (13.43-18.17) <0.001
RBC (x 10'%/L) 4.42 (4.02-4.78) 4.43 (4.04-4.80) 4.27 (3.88-4.55) 0.027
PLT (x 10°/L) 186.00 (150.00-225.00) 187.00 (151.50-227.00) 165.00 (125.00-201.50) 0.002
TC (mmol/L) 3.34 (0.50-4.55) 3.35(0.51-4.55) 3.02 (0.39-4.53) 0.288
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TABLE 1 (Continued) Preoperative characteristics and laboratory findings of the total population.

Variable Total (n = 774) Non-rupture (n = 727) Rupture (n = 47) P-value
Cr (umol/L) 69.90 (10.98-100.58) 69.20 (10.84-98.20) 92.15 (20.10-144.00) 0.002
Alb (g/L) 33.60 (4.04-38.49) 33.90 (4.05-38.60) 28.30 (3.89-33.90) 0.007
eGFR (mL/min/1.73m?) 80.96 (58.56-97.10) 82.38 (61.23-97.85) 52.52 (35.68-67.07) <0.001
D-dimer (mg/L) 7.88 (2.97-24.73) 6.98 (2.81-22.01) 30.40 (14.41-57.42) <0.001
ALT (U/L) 17.00 (3.76-34.10) 16.50 (3.56-32.70) 32.74 (10.81-109.66) 0.001
AST (U/L) 22.80 (12.16-36.60) 22.20 (11.90-33.95) 39.60 (20.68-159.82) <0.001

SBP: Systolic Blood Pressure (mmHg); DBP: Diastolic Blood Pressure (mmHg); MAP: Mean Arterial Pressure (mmHg); LVEF: Left Ventricular Ejection Fraction (%); AB: Arterial Blood; Lac:
Lactate; PaO,: Partial pressure of oxygen; OI: Oxygenation Index; WBC: White Blood Cells; RBC: Red Blood Cells; PLT: Platelets; TC: Total Cholesterol; Cr: Creatinine; Alb: Albumin; eGFR:
Estimated Glomerular Filtration Rate; ALT: Alanine Aminotransferase; AST: Aspartate Aminotransferase.

TABLE 2 Model performance comparison.

Model ‘ Accuracy ‘ AUC ’ Precision Recall F1-score
Random Forest (Baseline) 0.94 0.95 0.53 0.80 0.64
Random Forest (SSA-Optimized) 0.97 0.98 0.75 0.90 0.82
XGBoost (Baseline) 0.93 0.94 0.45 0.50 0.47
XGBoost (SSA-Optimized) 0.94 0.94 0.50 0.70 0.58
Support Vector Machine 0.82 0.82 0.23 0.83 0.36
Logistic Regression 0.79 0.89 0.22 0.90 0.35
Decision Tree 0.88 0.70 0.26 0.50 0.34
K-Nearest Neighbors 0.75 0.80 0.15 0.60 0.24
Multilayer Perceptron 0.91 0.80 0.36 0.50 0.42
SSA Convergence Curve Convergence Curve - XGBoost Optimization
R 0.016 T
0.021
0.015
0.020
0.014
% oo E 0.013
5 0.018 s
g ﬁ 0.012
& 0.017 £
% T
a 0.016 0.011
0.015 0.010
0.014 \ 0.009
o 10 20 30 40 50 10 20 30 40 50
Iteration Iteration
a. SSA-RF b. SSA-XGB
FIGURE 2
SSA-optimized model convergence curves. (a) SSA-RF Convergence (1 - accuracy); (b) SSA-XGBoostConvergence (1 - accuracy).
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Notably, logistic regression demonstrated high sensitivity
(recall = 0.90), theoretically identifying most potential rupture
cases. However, its alarmingly low precision (0.22) implies that
78% of predicted high-risk patients would be false positives. In
clinical practice, such over-alerting could lead to unnecessary
invasive monitoring, increased healthcare costs, and patient
distress, particularly in resource-constrained settings. Similarly,
SVM showed high recall (0.83) but critically low precision (0.23),
suggesting that only 23% of its positive predictions would be
clinically valid. While decision tree models displayed moderate
accuracy (0.88), their poor discriminative capacity (AUC = 0.70)
and low precision (0.26) reflect inherent instability in handling
complex medical data patterns.

Subfigure (B) presents the precision-recall (PR) curves.
SSA-RandomForest achieved the highest PR-AUC (0.728),
outperforming other models by maintaining both high recall and
precision, which is crucial in minimizing false negatives without
excessively increasing false positives. Logistic regression performed
moderately well (PR-AUC = 0.696), whereas SSA-XGBoost showed
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modest improvement (PR-AUC = 0.506). In contrast, conventional
models such as SVM, KNN, and decision trees exhibited markedly
lower PR-AUC values, indicating limited robustness in imbalanced
clinical data scenarios.

Subfigure (C) shows the decision curve analysis (DCA). SSA-
RandomForest provided the greatest net clinical benefit across a
wide range of threshold probabilities, consistently outperforming
alternative models and the “treat all” or “treat none” strategies.
SSA-XGBoost also demonstrated modest net benefit, whereas
logistic regression, SVM, and other baseline classifiers contributed
little or no clinical utility. These results underscore the superior
clinical applicability of SSA-RandomForest, supporting its use in
preoperative rupture risk prediction for ATAAD patients.

Notably, logistic regression demonstrated high sensitivity
(recall = 0.90), theoretically identifying most potential rupture
cases. However, its alarmingly low precision (0.22) implies
that 78% of predicted high-risk patients would be false
positives. In clinical practice, such over-alerting could lead to
unnecessary invasive monitoring, increased healthcare costs, and
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FIGURE 4
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patient distress, particularly in resource-constrained settings.  predictions would be clinically valid. While decision tree
Similarly, SVM showed high recall (0.83) but critically low  models displayed moderate accuracy (0.88), their poor
precision (0.23), suggesting that only 23% of its positive  discriminative capacity (AUC = 0.70) and low precision (0.26)
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reflect inherent instability in handling complex medical data
patterns.

These findings collectively suggest that random forest optimally
balances predictive power and clinical utility, minimizing both
missed diagnoses and unnecessary interventions.

4 Discussion

Acute type A aortic dissection (ATAAD) remains a life-
threatening cardiovascular emergency characterized by abrupt
onset, rapid progression, and prohibitive mortality rates
(Larsson et al, 2024). While emergent surgical intervention
represents the cornerstone of therapeutic management Chen et al.
(2019), its implementation necessitates not only specialized
vascular surgical expertise but also coordinated multidisciplinary
support and advanced critical care infrastructure. These stringent
requirements have driven regional centralization of tertiary care
facilities, creating complex resource allocation challenges in high-
volume centers. Whereas the majority of prior machine-learning
studies in aortic dissection, exemplified by Wen et al’s multicenter
SHAP-interpretable model for postoperative reintubation Wen et al.
(2025), have emphasized postoperative risk prediction, our work
addresses the complementary yet distinct challenge of preoperative
rupture risk stratification in ATAAD. The machine learning-based
prognostic model developed herein integrates multidimensional
clinical parameters through ensemble algorithms, offering clinicians
a data-driven framework for surgical prioritization. By stratifying
rupture risk profiles, this tool facilitates optimized resource
utilization that may significantly reduce ATAAD-related mortality.
The clinical utility extends beyond individual decision-making, as
implementation of such predictive systems enables more efficient
allocation of scarce resources in overloaded tertiary referral centers.
established
dysfunction and adverse outcomes, our study provides novel

mechanistic insights into the renal-aortic interplay through SHAP

Building upon associations between renal

interpretability analysis, identifying reduced estimated glomerular
filtration rate (eGFR) as a critical biomarker for preoperative
rupture risk in aortic dissection. This finding aligns with Jin et al.
(2025) and is pathophysiologically supported by a dual-pathway
framework: (1) Chronic poorly controlled hypertension induces
renal arteriolosclerosis and parenchymal damage, exacerbating
vascular wall degeneration to elevate rupture risk Zhang X. et al.
(2021); (2) Concurrently, dissection extension into renal arteries
establishes false lumen-dominant perfusion, causing renal
ischemia and elevated false lumen pressure that promotes rupture
(Jin et al., 2025). The SHAP analysis further highlighted white
blood cell count (WBC) as a significant preoperative rupture
predictor, with elevated levels demonstrating dose-dependent
risk association. This finding aligns with existing literature where
Chen et al. (2017) reported 26.1% in-hospital mortality during
circulatory arrest in patients with WBC < 11 x 10°/L, suggesting
paradoxical immunomodulatory effects in acute aortic syndromes.
Complementing this, Zhang et al. (2021a) identified sustained
WBC elevation as a consistent mortality predictor across multiple
postoperative timepoints. While conventional wisdom associates
leukocytosis with inflammatory complications, our analysis suggests
WBC may serve as a systemic stress biomarker reflecting aortic
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wall instability rather than secondary infection. Contrasting with
established postoperative hypertension correlations Luehr et al.
(2023), our model revealed preoperative hypotension as a critical
rupture predictor. This hemodynamic paradox finds clinical
resolution through recognition of two distinct pathophysiological
states: First, Li et al. (2017) identified systemic hypotension as a
marker of impending circulatory collapse rather than therapeutic
success, while Dong et al. (2023) demonstrated 82% prevalence of
preoperative shock in rupture cases. Expanding on these clinical
observations, we hypothesize that acute blood pressure reduction
in type A dissection may specifically correlate with impending
pericardial compromise. When dissection propagates into the
pericardial cavity, rapid hematoma accumulation can induce
cardiac tamponade physiology. This process creates a biphasic
hemodynamic response: initial compensatory tachycardia maintains
cardiac output during early diastolic impairment, followed by abrupt
decompensation as ventricular filling becomes restricted.

Notably, Dong et al. (2023) cohort revealed that 76% of patients
with preoperative rupture exhibited electrocardiographic evidence
of cardiac tamponade prior to circulatory collapse. This anatomical
consideration reconciles the apparent contradiction between
systemic hypotension and ongoing dissection propagation. Rather
than reflecting therapeutic success, a sudden blood pressure drop
in this context likely represents the transition from compensated
shock to irreversible cardiovascular failure. Such hemodynamic
instability necessitates urgent surgical intervention, as medical
stabilization strategies may paradoxically delay definitive repair
in patients with evolving tamponade. These findings underscore the
critical distinction between therapeutic blood pressure control and
pathologic hypotension resulting from progressive hemodynamic
decompensation. The negative correlation with blood pressure
parameters in our model thus serves as a vital prognostic indicator,
necessitating careful clinical contextualization when interpreting
hemodynamic trends during preoperative management.

Among the evaluated machine learning models, the random
forest (RF) algorithm exhibited the most robust overall performance
in predicting the rupture of ATTAD, achieving balanced metrics
in both recall and precision. Following the integration of the
Salp Swarm Algorithm (SSA) for hyperparameter optimization,
the RF model further improved in accuracy and AUC while
maintaining stable precision and recall. This suggests that SSA
can efficiently fine-tune the ensemble’s decision boundaries,
helping to reinforce generalizability without compromising
interpretability (Mirjalili et al., 2017). The SSA-optimized RF model
thus combines strong baseline performance with refined parameter
calibration, reinforcing its suitability for medical predictive tasks.
Similarly, the application of SSA to XGBoost yielded substantial
gains in precision, improving from 0.56 to 0.71, while maintaining
high recall. This improvement indicates that SSA effectively
enhances XGBoost’s capability to discriminate true positive cases
from false positives, an essential aspect for clinical risk stratification.
The superior adaptability of tree-based algorithms to SSA-driven
optimization likely stems from their sensitivity to hyperparameters,
which benefit from SSA’s dynamic exploration of the search space.
The logistic regression (LR) model demonstrated competitive recall
despite its relatively lower precision. This phenomenon aligns
with theoretical expectations in imbalanced datasets where the
minority class is underrepresented. Under such conditions, models
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like logistic regression tend to prioritize sensitivity at the
expense of precision - a trade-off that may be clinically
acceptable, or even strategically preferable, in screening
contexts where missing true positive cases could have severe
consequences. Consequently, while exhibiting suboptimal precision,
the logistic regression model retains clinical utility as a
conservative screening instrument within multi-stage diagnostic
protocols.

Taken together, these results highlight a complementary
diagnostic strategy: LR could serve as a high-sensitivity frontline
screening tool to minimize false negatives, with subsequent
confirmation by SSA-optimized RF or XGBoost models to
improve specificity and reduce unnecessary interventions. The
current predictive model was developed based on structured
standardized CTA

extraction remains unavailable in our ongoing specialty database.

clinical parameters, as image feature
Furthermore, this single-center retrospective analysis may limit
generalizability due to regional patient demographics and
clinical practice patterns. Multicenter prospective validation
incorporating advanced imaging features is planned to strengthen its

clinical utility.
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