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Acute Type A aortic dissection (ATAAD) is characterized by acute onset and 
rapid progression, with aortic rupture due to dissection extension being the 
primary lethal mechanism. Timely identification of high-risk patients is critical 
for prioritizing surgical intervention to reduce rupture incidence. This study 
aimed to develop and validate an interpretable machine learning model to 
predict aortic rupture in ATAAD patients, thereby improving risk classification and 
supporting clinical decisions. Medical records of ATAAD patients from Xiamen 
Cardiovascular Hospital (January 2019–October 2024) were retrospectively 
analyzed. Predictors were screened via statistical significance (p < 0.05) using 
seven machine learning algorithms, with the Salp Swarm Optimization Algorithm 
(SSA) optimizing hyperparameters for Random Forest and XGBoost models. To 
address class imbalance (47 rupture cases, 6.1%), SMOTE was implemented for 
data augmentation. Model performance was evaluated by accuracy, F1-score, 
precision, ROC-AUC, sensitivity, and specificity, supplemented by interpretability 
analyses through feature importance ranking and SHAP. Among 774 included 
ATAAD patients, the SSA-optimized Random Forest model achieved optimal 
performance (test dataset: 97.41% accuracy, 0.980 ROC-AUC, 81.82% F1-score). 
Key predictors included estimated glomerular filtration rate (eGFR), hypotension 
at admission, and white blood cell count. This work provides a quantitative tool 
for emergency care prioritization, with SSA enhancing model precision for high-
risk patient identification, though multicenter studies are needed to validate 
generalizability.
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1 Introduction

Aortic dissection (AD) is a life-threatening cardiovascular 
emergency characterized by a tear in the aortic intima-media 
layer, allowing high-pressure blood flow to penetrate the medial 
layer and propagate along the aortic axis, thereby creating true 
and false lumens (Nienaber and Clough, 2015; Schussnig et al., 
2021). According to the Stanford classification, AD is categorized 
based on involvement of the ascending aorta: Type A dissections 
involve the ascending aorta and require emergency open surgical 
repair, typically involving ascending aortic replacement with or 
without hemiarch/total arch replacement (e.g., Sun’s procedure) 
(Zhu et al., 2020). Acute Type A aortic dissection (ATAAD), defined 
as occurring within 2 weeks of onset, is particularly critical due 
to its rapid progression. Mortality rates escalate by 1%–2% per 
hour post-onset, reaching 50% within 48 h Pichert et al. (2020), 
Pape et al. (2015), with studies reporting 24-h mortality as high 
as 47% rising to 55% at 48 h in untreated patients (Larsson et al., 
2024). The primary causes of death include aortic rupture and 
malperfusion syndrome due to compromised blood supply to vital 
organs (Pichert et al., 2020). In China, the annual incidence is 2.78 
per 100,000 population with a mean onset age of 51.6 years, showing 
a concerning trend toward younger demographics (Zhao et al., 
2022). Early identification of high-risk rupture patients is therefore 
critical for improving survival.

Although some studies have explored preoperative rupture risk 
factors in ATAAD patients, significant limitations persist: (1) Small 
sample sizes (typically n < 500) increase susceptibility to type II 
statistical errors; (2) Overreliance on anatomic imaging parameters 
(e.g., aortic diameter); with insufficient incorporation of serological 
biomarkers; (3) Limited focus on preoperative risk prediction 
models (Wu et al., 2019; Lin et al., 2023).

Recent advances in machine learning offer new opportunities 
to address these gaps. While random forest (RF) excels in 
handling nonlinear relationships Zhou et al. (2024), neural 
networks (NN) provide superior pattern recognition in 
complex datasets (Ghorrati et al., 2024). This study systematically 
evaluates machine learning algorithms (including RF, NN, and 
others) for ATAAD rupture prediction, leveraging both statistical 
robustness and clinical transparency to optimize surgical triage 
decisions. 

2 Materials and methods

2.1 Study design, patients

This study was a retrospective study. The research plan has 
been approved by the Ethics Committee of Xiamen Cardiovascular 
Hospital of Xiamen University (approved number: KY2025-037). 
Due to its retrospective design and anonymous nature, the 
requirement for patient informed consent is waived. Screening 
was conducted on patients diagnosed with ATAAD at Xiamen 
University Affiliated Cardiovascular Hospital from 1 January 2019 to 
31 October 2024. Inclusion criteria: (1) Age ≥ 18 years, (2) onset time 
≤ 14 days, (3) CTA diagnosis of ATAAD. Exclusion criteria: (1) Died 
of other serious complications after admission,(2) Abandonment of 
surgical treatment and automatic discharge, (3) Death more than 

24 h after admission, (4) Incomplete clinical data. Figure 1 provides 
an overview of the research process. Ultimately, 774 eligible patients 
were included in the final analysis.

2.2 Data collection and processing

Clinical variables were collected at the time of patient admission, 
including demographic characteristics, clinical symptoms, 
laboratory biochemical tests, and ultrasound results. Laboratory 
variables (e.g., WBC, eGFR, and D-dimer) had missing values, with 
overall missingness less than 30% for any variable. Missing data were 
imputed using multiple imputation by chained equations (MICE) to 
reduce potential bias and maintain statistical power.

In order to prevent information leakage, all data preprocessing 
steps–including feature selection, standardization, and resampling 
with SMOTE–were strictly performed within the training and 
validation sets during model development, while the independent 
test set remained untouched throughout the model construction 
and Salp Swarm Optimization (SSA) tuning process. The dataset, 
comprising 774 samples in total, was randomly divided into training 
(n = 495, 64%), validation (n = 124, 16%), and test (n = 155, 20%) 
sets, corresponding to an overall (8:2):2 split.

For feature selection, variables with p < 0.05 in univariate 
analysis were retained as candidate predictors for multivariate 
modeling. Although methods such as decision tree and LASSO 
regression were explored, they did not yield superior performance 
compared with the univariate filtering approach.

The complete data processing pipeline and parameter settings 
were documented to enhance reproducibility. The implementation 
details of the SSA algorithm, including its configuration and code, 
have been made publicly available in a GitHub repository: https://
github.com/elarabao/SSA-Medical-Prediction. 

2.3 Salp swarm optimization algorithm

The Salp Swarm Optimization (SSA) algorithm, inspired by 
the collective foraging behavior of salps in marine environments, 
was employed to optimize the hyperparameters of our 
predictive models (Mirjalili et al., 2017). This metaheuristic 
algorithm effectively balances exploration and exploitation during 
the optimization process, making it particularly suitable for 
high-dimensional medical datasets. 

2.3.1 Mathematical formulation
The SSA algorithm simulates the chain behavior of salps, where 

the population is divided into leaders and followers. The position of 
each salp in the d-dimensional search space represents a potential 
solution (i.e., a set of hyperparameters). The mathematical model 
consists of two main phases, which are defined by Equations 1–6. 

1. Leader position update: The leader salp (best solution) guides 
the swarm toward the food source (optimal solution):

x1
j =
{
{
{

Fj + c1 ((ubj − lbj)c2 + lbj) ifc3 < 0.5

Fj − c1 ((ubj − lbj)c2 + lbj) otherwise
(1)
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FIGURE 1
An overview of the flow through the study.

Where:

• x1
j  is the position of the leader in the jth dimension

• Fj is the position of the food source (current best solution)
• ubj and lbj are the upper and lower bounds of the jth dimension
• c2,c3 are random numbers uniformly distributed in [0,1]
• c1 is the convergence control parameter:

c1 = 2e−(
4t
T
)2 (2)

Where t is the current iteration and T is the maximum number 
of iterations. This adaptive parameter balances exploration (high c1
values early in optimization) and exploitation (low c1 values later in 
optimization). 

2. Follower position update: Followers move in a chain-like 
formation based on their preceding neighbor:

xi
j =

1
2
(xi

j + xi−1
j ) (3)

Where xi
j is the position of the ith follower salp in the jth

dimension. 

2.3.2 Implementation in medical prediction 
models

The SSA algorithm was implemented to optimize two key 
predictive models:

• Random Forest Optimization: The algorithm searched for 
optimal values of four critical hyperparameters:

Position = [nestimators,max_depth,min_samples_split,min_samples_leaf]
(4)

With search boundaries: nestimators ∈ [50,500], max_depth ∈
[3,30], min_samples_split ∈ [2,20], min_samples_leaf ∈ [1,10].

• XGBoost Optimization: The algorithm optimized five key 
parameters:

Position = [nestimators,max_depth, learning_rate,gamma,

× min_child_weight] (5)

With search boundaries: nestimators ∈ [50,500], max_depth ∈
[3,15], learning_rate ∈ [0.01,0.3], gamma ∈ [0,1],
min_child_weight ∈ [1,10].

Prior to the SSA optimization, the hyperparameters were 
initialized using a uniform random distribution within their 
predefined search boundaries for each dimension of the search 
space. Specifically, the initial positions of all salps were generated 
by sampling uniformly between the lower and upper bounds of 
each hyperparameter, thereby ensuring sufficient diversity in the 
initial population.If prior knowledge was available, the leader salp 
could optionally be initialized with a predefined parameter vector; 
otherwise, it was initialized in the same manner as the other salps. 
This initialization strategy provided SSA with a broad and unbiased 
starting point, facilitating effective exploration during the early 
optimization stages. 

2.3.3 Fitness function
The optimization objective was to minimize classification error 

rate evaluated through 5-fold cross-validation:

Fitness = 1− 1
K

K

∑
k=1

Accuracyk (6)

Where K = 5 represents the number of cross-validation 
folds, and Accuracyk is the classification accuracy on the kth

validation fold.
The optimization process was implemented in Python 3.9 using 

NumPy and Scikit-learn libraries, with parallel computation to 
enhance efficiency. 
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2.4 Model construction

Data augmentation was performed using the SMOTE (Synthetic 
Minority Over-sampling Technique) method. Subsequently, feature 
selection was conducted through P < 0.05. After inputting the last 
nine clinical feature variables, seven machine learning algorithms 
were applied for model construction. These algorithms include 
Extreme Gradient Boosting (XGBoost), Logistic Regression (LR), 
Random Forest (RF), Gaussian Naive Bayes (GNB), Support Vector 
Machine (SVM), and k-Nearest Neighbor (KNN) models. Use 
these algorithms to predict the incidence of preoperative aortic 
dissection rupture. 

2.5 Statistical analysis

The Shapiro-Wilk test was employed to assess data normality. 
Normally distributed data are expressed as mean ± standard 
deviation, and inter-group comparisons were conducted using the 
t-test. For non-normally distributed data, results are presented as 
median (M) with interquartile range (P25, P75), and differences 
were analyzed using the Mann-Whitney U test. Categorical data 
are expressed as frequency (percentage), with group comparisons 
performed using the chi-square test or Fisher’s exact test, as 
appropriate. Statistical significance was defined as p < 0.05. Model 
performance evaluation serves to compare the generalization 
capabilities of classifiers. Within the context of disease risk 
prediction, accuracy and recall are prioritized over other evaluation 
metrics. The following five performance metrics were used to 
evaluate the models: the area under the receiver operating 
characteristic curve (AUC-ROC), accuracy, precision, specificity, 
recall, and the F1 score. 

3 Results

3.1 Clinical features of the patients

This prospective cohort study enrolled 774 consecutive patients 
[median age: 54 years (IQR 46–64); 86.5% male], including 
47 cases (6%) with preoperative aortic rupture within 24 h 
of admission. Table1 demonstrates significant between-group 
disparities in baseline characteristics between the rupture (n = 47) 
and non-rupture (n = 728) cohorts.

Demographic analysis revealed older age in the rupture 
group versus non-rupture controls (median 63 vs. 53 years; P <
0.001). Laboratory profiling demonstrated a more pronounced 
inflammatory and coagulopathic state in rupture cases, evidenced 
by elevated leukocyte counts (median 12.3 vs. 7.9× 109/L; P <
0.001), higher plasma D-dimer levels (median 7.8 vs. 2.3μg/mL; 
P < 0.001), and increased arterial lactate concentrations (median 
4.1 vs. 1.8 mmol/L; P < 0.001). Metabolic disturbances manifested 
through significantly reduced glomerular filtration rates (median 58 
vs. 82 mL/min/1.73m2; P < 0.001) and elevated plasma creatinine 
levels (median 1.5 vs. 1.1 mg/dL; P = 0.002).

Hemodynamic evaluation showed comparable systolic (median 
118 vs. 124 mmHg; P = 0.089) and diastolic blood pressures (median 
68 vs. 72 mmHg; P = 0.093) between groups, but significantly lower 

mean arterial pressure in rupture cases (median 78 vs. 84 mmHg; P =
0.038). Imaging biomarkers indicated greater aortic regurgitation 
severity (grade ≥3: 41.3% vs. 22.1%; P = 0.004) and widened 
alveolar-arterial oxygen gradient (median 32 vs. 22 mmHg; P =
0.001) in the rupture group. Pericardial effusion prevalence (34.8%
vs. 32.8%; P = 0.751) and left ventricular ejection fraction (median 
58% vs. 59%; P = 0.414) showed no statistical significance. Variables 
“periaortic hematoma” and “systolic hypertension” were excluded 
from analysis due to absence from the dataset. 

3.2 Prediction models’ performance 
comparison

To predict preoperative aortic dissection rupture within 24 h 
of admission, we evaluated seven machine learning models: 
logistic regression, decision tree, random forest, XGBoost, support 
vector machine (SVM), k-nearest neighbors (KNN), and multilayer 
perceptron (MLP). Key performance metrics are detailed in 
Table 2. Figure 2 shows the convergence patterns of the Salp 
Swarm Optimization–enhanced models, confirming their stable 
learning behavior. Figure 3 presents a comprehensive view of model 
interpretability. Global explanations from SHAP summary plots are 
provided for the Random Forest and XGBoost models (subfigures 
A and B), demonstrating the overall feature contributions across 
the dataset. Subfigures C and D further depict local SHAP force 
plots for individual patients, clearly highlighting the positive and 
negative feature influences in preoperative rupture prediction. In 
addition, These interpretability results provide robust evidence of 
the proposed framework’s clinical relevance and transparency, as 
detailed in the discussion.

The SSA-optimized Random Forest demonstrated superior 
overall performance, achieving high accuracy (0.97) and the 
highest AUC (0.98) among all models. Crucially, it maintained 
balanced precision (0.75) and recall (0.90), yielding the optimal F1-
score (0.82). Compared to its baseline version, SSA optimization 
yielded a 3% accuracy improvement (0.94→0.97) and 3% AUC 
enhancement (0.95→0.98) while preserving critical clinical balance 
between sensitivity and specificity. Similarly, SSA optimization 
moderately enhanced XGBoost performance, increasing accuracy 
by 1% (0.93→0.94) and maintaining AUC (0.94), while improving 
precision by 5 percentage points (0.45→0.50). This optimization 
elevated its F1-score from 0.47 to 0.58, representing a clinically 
significant 23% relative improvement in overall performance.

Figure 4 demonstrates the classification performance of 
the proposed models. Subfigure (A) shows the receiver 
operating characteristic (ROC) curve, highlighting the superior 
discrimination ability of the SSA-optimized Random Forest model 
with an AUC of 0.98. Subfigures (D) through (G) display the 
confusion matrices of the Random Forest, XGBoost, SSA-RF, and 
SSA-XGBoost models, respectively. As shown, the SSA-enhanced 
models achieved higher true positive rates with fewer false negatives, 
reflecting improved sensitivity in predicting preoperative aortic 
rupture. These findings confirm that the proposed optimization 
strategy enhances model stability and accuracy, providing a 
clinically valuable tool for risk stratification in acute type A aortic 
dissection.
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TABLE 1  Preoperative characteristics and laboratory findings of the total population.

Variable Total (n = 774) Non-rupture (n = 727) Rupture (n = 47) P-value

Demographics

Age (years) 54.00 (46.00–64.00) 54.00 (46.00–64.00) 63.00 (53.50–73.50) <0.001

Male (%) 605 (78.2%) 575 (79.1%) 30 (63.8%) 0.023

SBP (mmHg) 138.00 (121.75–157.00) 138.50 (122.00–157.75) 118.50 (80.00–129.75) <0.001

DBP (mmHg) 78.00 (67.00–90.25) 78.50 (67.25–91.00) 61.50 (59.25–77.75) 0.015

MAP (mmHg) 99.15 (95.42–102.33) 99.15 (94.83–103.33) 76.00 (63.92–97.42) <0.001

Hypertension 240 (31.00%) 236 (32.50%) 4 (8.50%) 0.001

LVEF (%) 65.55 (63.40–67.00) 65.57 (63.00–67.00) 65.49 (64.35–65.85) 0.414

BMI 25.00 (24.00–27.00) 25.00 (24.00–27.00) 25.10 (24.10–25.60) 0.499

Obesity 300 (38.80%) 295 (40.60%) 5 (10.60%) <0.001

Medical history

Marfan Syndrome 10 (1.30%) 10 (1.40%) 0 (0.00%) 0.886

Hypertension(history) 383 (49.50%) 363 (49.90%) 20 (42.60%) 0.407

Diabetes Mellitus 28 (3.60%) 25 (3.40%) 3 (6.40%) 0.519

Cerebrovascular 41 (5.30%) 36 (5.00%) 5 (10.60%) 0.177

Symptoms and comorbidities

Aortic insufficiency 664 (85.80%) 617 (84.90%) 47 (100.00%) 0.008

Cold extremities 4 (0.50%) 0 (0.00%) 4 (8.50%) <0.001

Hypoxemia 10 (1.30%) 10 (1.40%) 0 (0.00%) 0.886

Hematochezia/Abdominal pain 7 (0.90%) 7 (1.00%) 0 (0.00%) 1.000

Neurological symptoms 35 (4.50%) 31 (4.30%) 4 (8.50%) 0.319

Syncope 12 (1.60%) 7 (1.00%) 5 (10.60%) <0.001

Laboratory Findings

pH (AB) 7.37 (7.33–7.41) 7.38 (7.34–7.41) 7.30 (7.23–7.34) <0.001

Lac (AB) (mmol/L) 9.00 (2.30–19.00) 9.00 (2.30–18.90) 22.00 (4.60–57.10) <0.001

PaO2 (mmHg) 101.00 (80.21–133.05) 101.00 (80.41–132.00) 108.00 (77.90–148.00) 0.471

OI (mmHg) 299.81 (237.25–368.50) 300.14 (239.00–367.00) 293.00 (210.50–386.50) 0.402

Neutrophil% 0.87 (0.80–0.90) 0.87 (0.79–0.90) 0.87 (0.82–0.91) 0.507

WBC (× 109/L) 13.04 (10.03–15.86) 12.87 (9.85–15.63) 15.44 (13.43–18.17) <0.001

RBC (× 1012/L) 4.42 (4.02–4.78) 4.43 (4.04–4.80) 4.27 (3.88–4.55) 0.027

PLT (× 109/L) 186.00 (150.00–225.00) 187.00 (151.50–227.00) 165.00 (125.00–201.50) 0.002

TC (mmol/L) 3.34 (0.50–4.55) 3.35 (0.51–4.55) 3.02 (0.39–4.53) 0.288

(Continued on the following page)
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TABLE 1  (Continued) Preoperative characteristics and laboratory findings of the total population.

Variable Total (n = 774) Non-rupture (n = 727) Rupture (n = 47) P-value

Cr (μmol/L) 69.90 (10.98–100.58) 69.20 (10.84–98.20) 92.15 (20.10–144.00) 0.002

Alb (g/L) 33.60 (4.04–38.49) 33.90 (4.05–38.60) 28.30 (3.89–33.90) 0.007

eGFR (mL/min/1.73m2) 80.96 (58.56–97.10) 82.38 (61.23–97.85) 52.52 (35.68–67.07) <0.001

D-dimer (mg/L) 7.88 (2.97–24.73) 6.98 (2.81–22.01) 30.40 (14.41–57.42) <0.001

ALT (U/L) 17.00 (3.76–34.10) 16.50 (3.56–32.70) 32.74 (10.81–109.66) 0.001

AST (U/L) 22.80 (12.16–36.60) 22.20 (11.90–33.95) 39.60 (20.68–159.82) <0.001

SBP: Systolic Blood Pressure (mmHg); DBP: Diastolic Blood Pressure (mmHg); MAP: Mean Arterial Pressure (mmHg); LVEF: Left Ventricular Ejection Fraction (%); AB: Arterial Blood; Lac: 
Lactate; PaO2: Partial pressure of oxygen; OI: Oxygenation Index; WBC: White Blood Cells; RBC: Red Blood Cells; PLT: Platelets; TC: Total Cholesterol; Cr: Creatinine; Alb: Albumin; eGFR: 
Estimated Glomerular Filtration Rate; ALT: Alanine Aminotransferase; AST: Aspartate Aminotransferase.

TABLE 2  Model performance comparison.

Model Accuracy AUC Precision Recall F1-score

Random Forest (Baseline) 0.94 0.95 0.53 0.80 0.64

Random Forest (SSA-Optimized) 0.97 0.98 0.75 0.90 0.82

XGBoost (Baseline) 0.93 0.94 0.45 0.50 0.47

XGBoost (SSA-Optimized) 0.94 0.94 0.50 0.70 0.58

Support Vector Machine 0.82 0.82 0.23 0.83 0.36

Logistic Regression 0.79 0.89 0.22 0.90 0.35

Decision Tree 0.88 0.70 0.26 0.50 0.34

K-Nearest Neighbors 0.75 0.80 0.15 0.60 0.24

Multilayer Perceptron 0.91 0.80 0.36 0.50 0.42

FIGURE 2
SSA-optimized model convergence curves. (a) SSA-RF Convergence (1 - accuracy); (b) SSA-XGBoostConvergence (1 - accuracy).
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FIGURE 3
Model interpretability results combining global and local explanations. (a) SHAP summary for Random Forest; (b) SHAP summary for XGBoost; (c) Local 
SHAP force plot for a non-rupture patient; (d) Local SHAP force plot for a rupture patient.

Notably, logistic regression demonstrated high sensitivity 
(recall = 0.90), theoretically identifying most potential rupture 
cases. However, its alarmingly low precision (0.22) implies that 
78% of predicted high-risk patients would be false positives. In 
clinical practice, such over-alerting could lead to unnecessary 
invasive monitoring, increased healthcare costs, and patient 
distress, particularly in resource-constrained settings. Similarly, 
SVM showed high recall (0.83) but critically low precision (0.23), 
suggesting that only 23% of its positive predictions would be 
clinically valid. While decision tree models displayed moderate 
accuracy (0.88), their poor discriminative capacity (AUC = 0.70) 
and low precision (0.26) reflect inherent instability in handling 
complex medical data patterns.

Subfigure (B) presents the precision-recall (PR) curves. 
SSA-RandomForest achieved the highest PR-AUC (0.728), 
outperforming other models by maintaining both high recall and 
precision, which is crucial in minimizing false negatives without 
excessively increasing false positives. Logistic regression performed 
moderately well (PR-AUC = 0.696), whereas SSA-XGBoost showed 

modest improvement (PR-AUC = 0.506). In contrast, conventional 
models such as SVM, KNN, and decision trees exhibited markedly 
lower PR-AUC values, indicating limited robustness in imbalanced 
clinical data scenarios.

Subfigure (C) shows the decision curve analysis (DCA). SSA-
RandomForest provided the greatest net clinical benefit across a 
wide range of threshold probabilities, consistently outperforming 
alternative models and the “treat all” or “treat none” strategies. 
SSA-XGBoost also demonstrated modest net benefit, whereas 
logistic regression, SVM, and other baseline classifiers contributed 
little or no clinical utility. These results underscore the superior 
clinical applicability of SSA-RandomForest, supporting its use in 
preoperative rupture risk prediction for ATAAD patients.

Notably, logistic regression demonstrated high sensitivity 
(recall = 0.90), theoretically identifying most potential rupture 
cases. However, its alarmingly low precision (0.22) implies 
that 78% of predicted high-risk patients would be false 
positives. In clinical practice, such over-alerting could lead to 
unnecessary invasive monitoring, increased healthcare costs, and 

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2025.1675853
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Bao et al. 10.3389/fphys.2025.1675853

FIGURE 4
Classification performance of different models. (a) ROC curves; (b) Precision–Recall curves; (c) Calibration curves; (d–g) Confusion matrices of 
Random Forest, XGBoost, SSA-RF, and SSA-XGBoost models, respectively; (h) Threshold analysis plot.

patient distress, particularly in resource-constrained settings. 
Similarly, SVM showed high recall (0.83) but critically low 
precision (0.23), suggesting that only 23% of its positive 

predictions would be clinically valid. While decision tree 
models displayed moderate accuracy (0.88), their poor 
discriminative capacity (AUC = 0.70) and low precision (0.26) 
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reflect inherent instability in handling complex medical data
patterns.

These findings collectively suggest that random forest optimally 
balances predictive power and clinical utility, minimizing both 
missed diagnoses and unnecessary interventions. 

4 Discussion

Acute type A aortic dissection (ATAAD) remains a life-
threatening cardiovascular emergency characterized by abrupt 
onset, rapid progression, and prohibitive mortality rates 
(Larsson et al., 2024). While emergent surgical intervention 
represents the cornerstone of therapeutic management Chen et al. 
(2019), its implementation necessitates not only specialized 
vascular surgical expertise but also coordinated multidisciplinary 
support and advanced critical care infrastructure. These stringent 
requirements have driven regional centralization of tertiary care 
facilities, creating complex resource allocation challenges in high-
volume centers. Whereas the majority of prior machine-learning 
studies in aortic dissection, exemplified by Wen et al.’s multicenter 
SHAP-interpretable model for postoperative reintubation Wen et al. 
(2025), have emphasized postoperative risk prediction, our work 
addresses the complementary yet distinct challenge of preoperative 
rupture risk stratification in ATAAD. The machine learning-based 
prognostic model developed herein integrates multidimensional 
clinical parameters through ensemble algorithms, offering clinicians 
a data-driven framework for surgical prioritization. By stratifying 
rupture risk profiles, this tool facilitates optimized resource 
utilization that may significantly reduce ATAAD-related mortality. 
The clinical utility extends beyond individual decision-making, as 
implementation of such predictive systems enables more efficient 
allocation of scarce resources in overloaded tertiary referral centers.

Building upon established associations between renal 
dysfunction and adverse outcomes, our study provides novel 
mechanistic insights into the renal-aortic interplay through SHAP 
interpretability analysis, identifying reduced estimated glomerular 
filtration rate (eGFR) as a critical biomarker for preoperative 
rupture risk in aortic dissection. This finding aligns with Jin et al. 
(2025) and is pathophysiologically supported by a dual-pathway 
framework: (1) Chronic poorly controlled hypertension induces 
renal arteriolosclerosis and parenchymal damage, exacerbating 
vascular wall degeneration to elevate rupture risk Zhang X. et al. 
(2021); (2) Concurrently, dissection extension into renal arteries 
establishes false lumen-dominant perfusion, causing renal 
ischemia and elevated false lumen pressure that promotes rupture 
(Jin et al., 2025). The SHAP analysis further highlighted white 
blood cell count (WBC) as a significant preoperative rupture 
predictor, with elevated levels demonstrating dose-dependent 
risk association. This finding aligns with existing literature where 
Chen et al. (2017) reported 26.1% in-hospital mortality during 
circulatory arrest in patients with WBC < 11× 109/L, suggesting 
paradoxical immunomodulatory effects in acute aortic syndromes. 
Complementing this, Zhang et al. (2021a) identified sustained 
WBC elevation as a consistent mortality predictor across multiple 
postoperative timepoints. While conventional wisdom associates 
leukocytosis with inflammatory complications, our analysis suggests 
WBC may serve as a systemic stress biomarker reflecting aortic 

wall instability rather than secondary infection. Contrasting with 
established postoperative hypertension correlations Luehr et al. 
(2023), our model revealed preoperative hypotension as a critical 
rupture predictor. This hemodynamic paradox finds clinical 
resolution through recognition of two distinct pathophysiological 
states: First, Li et al. (2017) identified systemic hypotension as a 
marker of impending circulatory collapse rather than therapeutic 
success, while Dong et al. (2023) demonstrated 82% prevalence of 
preoperative shock in rupture cases. Expanding on these clinical 
observations, we hypothesize that acute blood pressure reduction 
in type A dissection may specifically correlate with impending 
pericardial compromise. When dissection propagates into the 
pericardial cavity, rapid hematoma accumulation can induce 
cardiac tamponade physiology. This process creates a biphasic 
hemodynamic response: initial compensatory tachycardia maintains 
cardiac output during early diastolic impairment, followed by abrupt 
decompensation as ventricular filling becomes restricted.

Notably, Dong et al. (2023) cohort revealed that 76% of patients 
with preoperative rupture exhibited electrocardiographic evidence 
of cardiac tamponade prior to circulatory collapse. This anatomical 
consideration reconciles the apparent contradiction between 
systemic hypotension and ongoing dissection propagation. Rather 
than reflecting therapeutic success, a sudden blood pressure drop 
in this context likely represents the transition from compensated 
shock to irreversible cardiovascular failure. Such hemodynamic 
instability necessitates urgent surgical intervention, as medical 
stabilization strategies may paradoxically delay definitive repair 
in patients with evolving tamponade. These findings underscore the 
critical distinction between therapeutic blood pressure control and 
pathologic hypotension resulting from progressive hemodynamic 
decompensation. The negative correlation with blood pressure 
parameters in our model thus serves as a vital prognostic indicator, 
necessitating careful clinical contextualization when interpreting 
hemodynamic trends during preoperative management.

Among the evaluated machine learning models, the random 
forest (RF) algorithm exhibited the most robust overall performance 
in predicting the rupture of ATTAD, achieving balanced metrics 
in both recall and precision. Following the integration of the 
Salp Swarm Algorithm (SSA) for hyperparameter optimization, 
the RF model further improved in accuracy and AUC while 
maintaining stable precision and recall. This suggests that SSA 
can efficiently fine-tune the ensemble’s decision boundaries, 
helping to reinforce generalizability without compromising 
interpretability (Mirjalili et al., 2017). The SSA-optimized RF model 
thus combines strong baseline performance with refined parameter 
calibration, reinforcing its suitability for medical predictive tasks. 
Similarly, the application of SSA to XGBoost yielded substantial 
gains in precision, improving from 0.56 to 0.71, while maintaining 
high recall. This improvement indicates that SSA effectively 
enhances XGBoost’s capability to discriminate true positive cases 
from false positives, an essential aspect for clinical risk stratification. 
The superior adaptability of tree-based algorithms to SSA-driven 
optimization likely stems from their sensitivity to hyperparameters, 
which benefit from SSA’s dynamic exploration of the search space. 
The logistic regression (LR) model demonstrated competitive recall 
despite its relatively lower precision. This phenomenon aligns 
with theoretical expectations in imbalanced datasets where the 
minority class is underrepresented. Under such conditions, models

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2025.1675853
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Bao et al. 10.3389/fphys.2025.1675853

like logistic regression tend to prioritize sensitivity at the 
expense of precision – a trade-off that may be clinically 
acceptable, or even strategically preferable, in screening 
contexts where missing true positive cases could have severe 
consequences. Consequently, while exhibiting suboptimal precision, 
the logistic regression model retains clinical utility as a 
conservative screening instrument within multi-stage diagnostic
protocols.

Taken together, these results highlight a complementary 
diagnostic strategy: LR could serve as a high-sensitivity frontline 
screening tool to minimize false negatives, with subsequent 
confirmation by SSA-optimized RF or XGBoost models to 
improve specificity and reduce unnecessary interventions. The 
current predictive model was developed based on structured 
clinical parameters, as standardized CTA image feature 
extraction remains unavailable in our ongoing specialty database. 
Furthermore, this single-center retrospective analysis may limit 
generalizability due to regional patient demographics and 
clinical practice patterns. Multicenter prospective validation 
incorporating advanced imaging features is planned to strengthen its
clinical utility.
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