:' frontiers ‘ Frontiers in Physiology

‘ @ Check for updates

OPEN ACCESS

Tzong-Shyuan Lee,
National Taiwan University, Taiwan

Xiangguang Shi,

Fudan University, China
Zeang Wu,

Shihezi University, China

Runwei Ma,
marw0102@163.com

Kai Liu,
ynkmlk@foxmail.com

"These authors have contributed equally
to this work

25 July 2025
20 October 2025
05 November 2025

Zhang X, Cheng L, Xie J, Ma X, Gui W, Chen J,
Liu K and Ma R (2025) Mitophagy-associated
biomarkers and macrophage involvement in
pulmonary arterial hypertension:
identification and functional implications.
Front. Physiol. 16:1673181.

doi: 10.3389/fphys.2025.1673181

© 2025 Zhang, Cheng, Xie, Ma, Gui, Chen, Liu
and Ma. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology

Original Research
05 November 2025
10.3389/fphys.2025.1673181

Mitophagy-associated
biomarkers and macrophage
Involvement in pulmonary
arterial hypertension:
iIdentification and functional
implications

Xiaoyu Zhang', Liming Cheng?, Jiahui Xie'f, Xuejuan Ma*,
Wenting Gui?, Jiaxiang Chen?, Kai Liu** and Runwei Ma'*
'Department of Cardiac Surgery, Fuwai Yunnan Hospital, Chinese Academy of Medical
Sciences/Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China,
’Department of Anesthesiology, Kunming Children’s Hospital, Kunming, Yunnan, China, *Department
of Ultrasonography, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan,

China, “Department of Comprehensive Pediatrics, Kunming Children’s Hospital, Kunming, Yunnan,
China

Background: Pulmonary arterial hypertension (PAH) is a progressive
disorder characterized by pulmonary vascular remodeling and mitochondrial
dysfunction. Recent studies have implicated impaired mitophagy in the
pathogenesis of PAH; however, the underlying mechanisms and associated
biomarkers remain insufficiently defined. This study used an integrative
approach, incorporating bulk transcriptomic profiling, single-cell RNA
sequencing (scRNA-seq), machine learning algorithms, and experimental
validation to explore the relationship between mitophagy and PAH.

Methods: Differentially expressed genes were extracted from publicly available
microarray datasets and intersected with mitophagy-related genes curated from
the MitoCarta 3.0 database. Weighted gene co-expression network analysis,
along with five distinct machine learning models, identified five candidate
mitophagy-associated biomarkers: RRAS, BECN1, MFN1, HIFIA, and TAX1BP1.
These genes demonstrated high diagnostic performance (area under the curve
>0.9) across both training and validation cohorts. Immune cell deconvolution
analysis indicated a marked increase in M1 macrophage infiltration in lung tissue
from individuals with PAH. The scRNA-seq further localized the expression of
these biomarkers predominantly to monocyte/macrophage populations and
indicated distinct pseudotemporal expression trajectories during macrophage
differentiation. Expression and co-localization of the identified biomarkers
with autophagy and inflammation markers were subsequently validated
using quantitative PCR, western blotting, and immunofluorescence in a
monocrotaline-induced PAH rat model.

Results and Conclusion: The findings underscore the involvement of
mitophagy in the pathobiology of PAH and identify five macrophage-
associated biomarkers with strong diagnostic potential. These results may
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inform future strategies aimed at early detection and targeted therapeutic
interventions in PAH.
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1 Introduction

Pulmonary arterial hypertension (PAH) is a progressive disorder
defined by sustained elevation in pulmonary arterial pressure,
with key pathological features including vascular remodeling,
inflammation, and right ventricular dysfunction (Thenappan et al.,
2018). Despite recent advances in diagnostic and therapeutic
modalities, the underlying pathophysiological mechanisms of
PAH remain only partially elucidated (Humbert et al., 2023;
Ghofrani et al.,, 2025). Current treatment options remain largely
inadequate in reversing disease progression, resulting in persistently
poor prognoses and elevated mortality rates (Yang et al., 2020).
Consequently, elucidating the molecular mechanisms underlying
PAH and identifying reliable biomarkers for early diagnosis and
novel therapeutic targets are critical priorities in ongoing research.

Among the various mitochondrial quality control processes,
mitophagy has emerged as a mechanism of growing interest.
Mitophagy involves the selective encapsulation of damaged
or dysfunctional mitochondria within autophagosomes, which
fuse with lysosomes to facilitate degradation and recycling of
mitochondrial components (Wang et al, 2023). This process
is vital for preserving mitochondrial integrity and cellular
homeostasis, particularly in response to oxidative stress or energy
deficiency (Doblado et al, 2021). Aberrations in mitophagy
whether excessive or insufficient have been associated with a
range of pathological states, including cardiovascular disease,
malignancy, and inflammatory conditions (Levine and Kroemer,
2019; Hoffmann et al., 2013; Yamamoto et al., 2023). Therefore, the
exploration of mitophagy-related pathways and biomarkers in PAH
may yield valuable insights into disease pathogenesis and support
the development of targeted diagnostic and therapeutic strategies.
that the
pulmonary diseases is frequently associated with cell-type-

Emerging evidence indicates progression  of

specific dysregulation of mitophagy (Sharma et al., 2021). The
rapid development of single-cell RNA sequencing (scRNA-
seq) technologies has provided an advanced platform for

Abbreviations: AUC, Area Under the Curve; DEGs, Differentially expressed
genes; GLM, Generalized linear model; GO, Gene Ontology; GSVA,
Gene set variation analysis; HE, Hematoxylin and Eosin; HIF1A, Hypoxia-
Inducible Factor 1 Subunit Alpha; KEGG, Kyoto Encyclopedia of Genes
and Genomes; LC3, Microtubule-Associated Protein 1 Light Chain 3;
MCT, monocrotaline; MFN1, Mitofusin-1; MRGs, Mitophagy-related genes;
NN, Neural Network; PAAT, Pulmonary Artery Acceleration Time; PAET,
Pulmonary Artery Ejection Time; PAH, Pulmonary Arterial Hypertension; PPI,
Protein-protein interaction; qPCR, Quantitative Polymerase Chain Reaction;
RF, Random Forest; ROC, Receiver Operating Characteristic; RRAS, RAS
Related; scRNA-seq, single-cell RNA sequencing; SD, Sprague-Dawley;
SVM, Support Vector Machine; TAX1BP1, Tax1-Binding Protein 1; TGF-p,
Transforming growth factor-beta; WB, Western Blot; WGCNA, Weighted
gene co-expression network analysis; XGBoost, eXtreme Gradient Boosting.
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dissecting cellular heterogeneity and characterizing intercellular
interactions within complex disease environments. This technology
enables the identification of distinct molecular profiles across
diverse cell populations, allowing for the detailed investigation
of key cellular contributors to the pathogenesis of PAH
(Ziegenhain et al., 2017; Jovic et al., 2022).

In this study, PAH was examined through the integration
datasets,
methodologies,

of publicly available single-cell

transcriptomic
transcriptomics,  machine and

experimental validation. This multi-modal approach was used to

learning

explore the involvement of mitophagy and monocyte/macrophage
populations in disease progression, with the aim of elucidating
underlying molecular mechanisms and identifying candidate
diagnostic and therapeutic targets.

2 Materials and methods
2.1 Data sources

The scRNA-seq data (GSE210248) (Crnkovic et al., 2022) and
microarray transcriptomic datasets (GSE113439) (Mura et al.,
2019) and (GSE130391) (Fu et al, 2022) were obtained
from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). The GSE210248 dataset, generated
using the GPL20301 platform, consisted of six pulmonary artery
samples, including three from patients diagnosed with PAH and
three from healthy controls. The GSE113439 and GSE130391
datasets were generated based on the GPL6244 and GPL570
platforms, respectively.

For the present analysis, the GSE113439 dataset was used as the
training set and included lung tissue samples from 15 individuals
with PAH and 11 healthy controls (Supplementary Table S1). The
GSE53408 dataset, consisting of 12 PAH lung tissue samples and
11 normal lung tissue samples, was used as the validation set in
subsequent analyses.

A total of 65 mitophagy-related genes (MRGs) (Supplementary
Table S2) were retrieved from the MitoCarta 3.0 database (https://
www.broadinstitute.org/mitocarta). A waiver for ethics approval
for the human public database component of the study has
been obtained.

2.2 Differential expression analysis

Differentially expressed genes (DEGs) between PAH and control
samples in the training set were identified using the “limma” package
(version 3.57.11), with threshold criteria set at |log, fold change
(FC)| >0.5, adj.P.Val <0.05 (Liu et al., 2021). A volcano plot was
generated using the “ggVolcano” package (version 0.0.2) to visualize
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the distribution of all DEGs (Simon et al., 2011). Additionally,
a heatmap was constructed with the “ComplexHeatmap” package
(version 2.17.0) to depict the expression patterns of DEGs and their
associations with mitochondrial autophagy-related pathways.

2.3 Establishment of the PAH animal model

Twelve male Sprague-Dawley (SD) rats (6-8 weeks old) were
procured from Beijing Sipai Fu Laboratory Animal Co., Ltd
(Production License No. SCXK [Beijing] 2019-0010; Use License
No. SYXK [Yunnan] K2022-0007) and maintained under specific
pathogen-free conditions. After 3 days of adaptive feeding, the
subjects were randomly divided into a control group (n = 6)

and a PAH group (n = 6). The PAH group was administered
a single intraperitoneal injection of monocrotaline (MCT;
60 mg/kg, Sigma-Aldrich, St. Louis, MO), in accordance with
established protocols (Zhai et al., 2022), while the control group
received an equivalent volume of sterile saline (Liangshuiting,
Lot No. L24041109). Fourteen days following injection, all
animals were anaesthetized with sodium pentobarbital (50 mg/kg,
intraperitoneally, Lot No. M50179, Cas No. 57-33-0, Shanghai
FWD Chemicals Limited) for echocardiographic assessment. At
the end of the experiment, euthanasia was performed with sodium
pentobarbital (100-200 mg/kg, intraperitoneally, Lot No. M50179,
Cas No. 57-33-0, Shanghai FWD Chemicals Limited). Lung tissues

were subsequently harvested for subsequent analyses.

2.4 Echocardiographic assessment

Fourteen days following subcutaneous administration of
monocrotaline or saline (as described in Section 2.3), SD rats
(50 mg/kg,
intraperitoneally). The anterior thoracic region was depilated,

were anaesthetized with pentobarbital sodium
and each animal was positioned in a supine orientation and
immobilized. Pulmonary resistance was assessed using a cardiac
color Doppler ultrasound system (Mindray, M9 Ultrasound System,
SP5-1s probe, Shenzhen, Guangdong, China). Sampling was
performed at the pulmonary artery in the short-axis view of the
great arteries. Pulmonary artery acceleration time (PAAT) and
pulmonary artery ejection time (PAET) were measured upon
acquisition of the systolic blood flow spectrum of the pulmonary
artery. The ratio of PAAT to PAET (PAAT/PAET) was subsequently
calculated (Trittmann et al., 2022).

2.5 Hematoxylin and eosin (H&E) staining

Paraffin-embedded lung tissue blocks were sectioned at a
thickness of 5 um. The sections were mounted on glass slides and
baked in a 64 °C oven (Tianjin Borry Instrument Equipment Co.,
Ltd., GFL-230) for 1h. Deparaffinization was performed using
xylene (SCRC, 10023418), followed by rehydration through a graded
ethanol series (100%, 95%, 80%, 70%; SCRC, 100092683), and
rinsing in distilled water. The sections were stained with hematoxylin
(Servicebio, G1076) for 5 min, the slides were counterstained with
Eosin Y (Servicebio, G1076) for 2 min. Subsequently, it dehydrated
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and became transparent. The sections were then mounted using
neutral gum (SCRC, 10004160). Representative microscopic fields
were imaged under a light microscope.

2.6 Immunofluorescence

in 4%
room

Fresh lung tissue sections (5pum) were fixed
G1101) for
temperature and subsequently permeabilized with 0.2% Triton
X-100 in PBS for 15 min. The sections were blocked with PBS

containing 5% bovine serum albumin (BSA) and 2% normal goat

paraformaldehyde (Servicebio, 30 min at

serum for 1h at room temperature. Incubation with a primary
antibody against light chain 3 (LC3) (Servicebio, GB11124; 1:2000)
was carried out overnight at 4 °C. After three PBS washes, the
sections were incubated with an HRP-conjugated goat anti-
rabbit/mouse IgG secondary antibody (Servicebio; 1:500) for 1h
at 37 °C. Following final washes, slides were mounted using an
antifade medium and examined under a fluorescence microscope.

2.7 Transmission electron microscopy
(TEM)

Lung tissue fixed in electron microscopy fixative (Servicebio,
G1102) at 4 °C for 2-4 h and embedded in pre-warmed 1% agarose
(Thermo Fisher, 16520100). Post-fixation was conducted in 1%
osmium tetroxide (Ted Pella, 18456) prepared in 0.1 M phosphate
buffer (PB, pH 7.4) for 2 h at room temperature in the dark.

The samples were rinsed with phosphate buffer and dehydrated
using a graded acetone series (Xilong Scientific, 230106), followed
by infiltration with increasing concentrations of 812 resin (SPI,
90529-77-4) and polymerization at 60°C for 48h. Ultrathin
sections (60-80 nm) were prepared using an ultramicrotome (Leica
RM2135) and mounted on 150-mesh formvar-coated copper grids.
Sections were stained with 2% uranyl acetate (SPI, 02624-AB) for
8 min in the dark, washed with 70% ethanol and ultrapure water,
and subsequently stained with 2.6% lead citrate (Sigma, 203580) for
8 min while protected from CO, exposure. After final washes, the
grids were air-dried overnight and examined using a TEM (JEOL
JEM-1400 Flash, JEOL Ltd., Tokyo, Japan) for imaging.

2.8 WGCNA

To identify gene modules most strongly associated with the
PAH phenotype, weighted gene co-expression network analysis
(WGCNA) was conducted on all samples in the training set
using the WGCNA package (version 1.72-5) (Langfelder and
Horvath, 2008). An unsigned network was constructed based on a
dissimilarity measure derived from the topological overlap matrix,
and hierarchical clustering of genes was performed using the average
linkage method. Modules were defined through the application of
a dynamic tree-cut algorithm, and correlations between module
eigengenes and the PAH phenotype were assessed. Modules with an
absolute correlation value (|correlation|) greater than 0.3 and a p-
value less than 0.05 were considered statistically significant. Select
the appropriate soft threshold power from modules one to 14, set R2
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= 0.85, and filter the soft threshold p value to 10, minModuleSize =
100, mergeCutHeight = 0.15.

For each gene, module membership (MM), defined as the
correlation with the corresponding module eigengene, and gene
significance (GS), defined as the correlation with PAH status, were
calculated. Genes within key modules satisfying MM >0.8 and GS
>0.2 were selected for downstream analyses.

2.9 Identification and functional analysis of
candidate genes

To identify candidate biomarkers associated with PAH, the
DEGs, key module genes obtained from WGCNA, and MRGs
were intersected using the ComplexUpset package (version
1.3.3) (Lex et al, 2014). Functional enrichment analysis of the
intersected gene set was conducted using the clusterProfiler package
(version 4.9.4) (Wu et al,, 2021) for Gene Ontology (GO) terms
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways,
applying a significance threshold of p < 0.05. A protein-protein
interaction (PPI) network was constructed through the STRING
database (https://cn.string-db.org/) and visualized using Cytoscape,
with the minimum interaction score set to 0.15.

2.10 Machine learning—based biomarker
selection

To further refine the list of DEGs associated with PAH and
mitophagy, five machine learning algorithms support vector
machine (SVM), generalized linear model (GLM), neural network
(NN), random forest (RF), and extreme gradient boosting
(XGBoost) were applied to the training set using the caret package
(version 6.0-94). Model interpretability and variable importance
were assessed using the DALEX package (version 2.4.3) (Guan et al.,
2023). Candidate feature genes were subsequently validated in the
independent validation set, with statistical significance defined as p <
0.05. Receiver operating characteristic (ROC) curves and area under
the curve (AUC) values were computed using the pROC package
(version 1.18.4) (Robin et al., 2011), and an AUC greater than 0.7
was considered indicative of satisfactory predictive performance.
Final biomarkers were selected based on a combination of gene
expression profiles and ROC curve analysis.

2.11 Functional annotation of biomarkers

Spearman’s correlation analysis was performed between each
identified biomarker and all other genes in the training set.
Genes were ranked according to the strength of correlation
and subjected to gene set enrichment analysis (GSEA) using
the “c2. kegg.symbols.gmt” collection from the Molecular
Signatures Database (MSigDB) (https://www.gsea-msigdb.org/
gsea/msigdb), applying a significance threshold of p < 0.05.
Circos plots depicting the chromosomal distribution of the
validated biomarkers were generated using the Circos package
(version 0.69) (Krzywinski et al., 2009).
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2.12 Immune cell infiltration analysis

The relative proportions of 22 immune cell types in PAH
and control samples from the GSE113439 training set were
estimated using the CIBERSORT algorithm (version 1.03)
(Newman et al, 2015). Group differences were assessed using
the Wilcoxon rank-sum test, and correlations between infiltrating
immune cell types and identified biomarkers were assessed
using Spearmans correlation method (|correlation| >0.3, p <
0.05). The results were visualized with the ggplot2 package
(version 3.4.2) (Gustavsson et al., 2022).

2.13 Single-cell RNA-seq data analysis

2.13.1 Quality control

Raw counts from the GSE210248 dataset were processed
using the Seurat package (version 4.1.1) (Satija et al, 2015).
Cells were retained based on the criteria of expressing more
than 200 genes, containing fewer than 10,000 unique molecular
identifier counts, and exhibiting mitochondrial gene content below
5%. Gene expression matrices were normalized and scaled using
the LogNormalize method. Highly variable genes (HVGs) were
identified using the FindVariableFeatures function with the “vst”
selection method, and the top 2,000 HVGs were selected for
downstream analyses.

2.13.2 Cell clustering and annotation

Principal component analysis was conducted on the scaled data,
and the significance of principal components (PCs) was assessed
using the JackStraw and ScoreJackStraw functions. Dimensionality
reduction and visualization were performed using Uniform
Manifold Approximation and Projection (UMAP). Clustering was
carried out as a resolution selected to optimize separation, with
statistical significance defined as p < 0.05. Cell type annotation was
conducted by cross-referencing canonical marker genes reported in
the literature (Crnkovic et al., 2022).

2.13.3 Cell—-cell communication analysis
Intercellular signaling networks were inferred using the
CellChat package in conjunction with the CellChatDB.human
reference database. Predicted ligand-receptor interactions and
enriched signaling pathways between annotated cell types were
analyzed to elucidate potential modes of cellular communication.

2.14 Gene set variation analysis (GSVA) and
pseudotime trajectory of key cells

GSVA scores for each cell were calculated using the GSVA
package (version 1.49.8) and applied to the validated biomarker
gene set. Differences in biomarker GSVA scores between PAH
and control samples across cell clusters were assessed using
the Wilcoxon rank-sum test, with statistical significance defined
as p < 0.05 (Hanzelmann et al, 2013). To identify key cell
populations, Hallmark pathway GSVA scores were computed for
each cell subcluster using the “h.all.v2022.1. Hs.symbols.gmt”
gene set. Pathways demonstrating significant differences based
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TABLE 1 Primer sequence.

Gene Sequence 5'-3'

RRAS-F GTCCTCAGCCCGACATCTCA
RRAS-R GCTGGTCACTTGAGGCTACA
BECNI1-F CTTCAATGCGACCTTCCA
BECN1-R TACAACGGCAACTCCTTAG
MEN1-F GCAGCACCAGATAATGCAGC
MFN1-R GCTCTGGTGGAGAAACTGCT
HIF1A-F AAGCAGCAGGAATTGGAACG
HIF1A-R CGTAACTGGTCAGCTGTGGT
TAXI1BP1-F TGGATGTAAAGCCAGCAGCA
TAX1BP1-R GCACCATCTGCTCCATCTCT
GAPDH-F AGTCTACTGGCGTCTTCACC
GAPDH-R CCACGATGCCAAAGTTGTCA

on the Kruskal-Wallis test (p < 0.05) were visualized in a
heatmap. Within the identified key cluster, additional sub-clustering
was performed at a resolution of 0.02 to delineate cellular
heterogeneity. Pseudotemporal ordering was reconstructed using
Monocle2, based on genes with high variability (q < 0.1), and
dimensionality reduction was performed using the DDRTree
algorithm to infer developmental trajectories and order cells
accordingly (Tonkina et al., 2021).

2.15 qPCR

Total RNA was extracted from lung tissue using TRIzol
reagent (Ambion), following the manufacturer’s protocol. After
measuring the concentration, reverse transcribe mRNA into
cDNA. Quantitative PCR (qPCR) was conducted using the
EasyPure® qPCR SuperMix Kit (TransGen Biotech, China, Cat.
No. ER101-01) with gene-specific primers (Table 1). Relative gene
expression levels were determined using the 274" method, with
GAPDH serving as the internal control.

2.16 WB

Lung tissue samples were homogenized in 500 uL of RIPA
lysis buffer (Servicebio, G2002-30 mL) supplemented with protease
inhibitor cocktail (Proteintech, PR20032) on ice for 10 min and
subsequently centrifuged at 14,000 x g for 15 min at 4 °C. Protein
concentrations in the supernatant were determined using a BCA
assay kit (Merck, BCA1-1KT). Aliquots containing 80 ug of protein
were mixed with 20 pL of 5x loading buffer, boiled for 5 min, and
separated on 10% SDS-PAGE gels (Solarbio, G2017).
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Proteins were transferred onto PVDF membranes (Merck
Millipore, SEQ00010) and blocked with 5% nonfat milk in TBS-
T for 1h at room temperature. Membranes were incubated
overnight at 4 °C with primary antibodies diluted in blocking buffer:
RRAS (Proteintech, 66959-1-Ig; 1:1000), BECN1 (Proteintech,
66665-1-Ig; 1:1000), MFN1 (Zenbio, R27027; 1:1000), TAX1BP1
(Hanan Biotechnology, HA721648; 1:1000), HIF1A (Abcam,
ab179483; 1:1000), and P-actin (Proteintech, 66009-1-Ig; 1:25,000).
After washing, membranes were incubated for 40 min at room
temperature with either HRP-conjugated goat anti-rabbit IgG
(Proteintech, SA00001-2; 1:3000) or HRP-conjugated goat anti-
mouse IgG (Servicebio, GB23301; 1:3000).

Protein bands were visualized using Immobilon® UltraPlus
Western HRP substrate (Millipore, WBULS0500) and imaged
using the Bio-Rad ChemiDoc™ XRS + system (Bio-Rad, 1708265).
Densitometric analysis was conducted in Image] (v1.8.0.345), and the
expression levels of target proteins were normalized to f-actin (relative
quantification = band gray valuetarget + band gray valuep-actin).

2.17 Dual immunofluorescence staining

Lung tissue slices (5 p m) were fixed overnight with
4% paraformaldehyde (Servicebio, G1101) at room temperature.
Following permeabilization with 0.2% Triton X-100 in PBS, the
sections were blocked with PBS containing 5% normal goat serum
and 2% BSA for 1 h at room temperature. Incubation with primary
antibodies against inducible nitric oxide synthase (iNOS) (Servicebio,
GB11119; 1:1000) and LC3 (Servicebio, GB11124; 1:2000), diluted in
blocking buffer, was carried out overnight at 4 °C. After washing, the
sections were incubated for 20 min at 37 °C with HRP-conjugated goat
anti-rabbit IgG (Servicebio, GB23303; 1:500) and HRP-conjugated
goat anti-mouse IgG (Servicebio, GB23301; 1:500).

Nuclei were counterstained with DAPI (Servicebio, G1012) for
7 min at room temperature. Slides were mounted using antifade
medium (Servicebio, G1401). Five fields per section: one central
and four peripherals were imaged using a fluorescence microscope.
Fluorescence intensity and the rate of positively stained cells were
quantified using Image-Pro Plus software.

2.18 Statistical analysis

All statistical analyses were conducted using R software
(version 4.1.3). Data are presented as mean + standard deviation.
Comparisons between two groups were conducted using either
a two-tailed Students t-test or the Wilcoxon rank-sum test, as
appropriate. p < 0.05 was considered statistically significant.

3 Results
3.1 Bioinformatics analysis and in vivo
validation of the relationship between PAH
and mitophagy

To explore the relationship between PAH and mitochondrial

dynamics, the GSE113439 training set was analyzed, and 2,753
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DEGs associated with PAH, including 698 upregulated and 2,055
downregulated genes (Figures 1A,B; Supplementary Table S3) were
identified. KEGG pathway enrichment analysis indicated that these
DEGs were significantly involved in mitophagy-related pathways
(Figure 1C). A rat model of PAH was subsequently established
through a single subcutaneous injection of monocrotaline
(60 mg/kg) at the nape (Figure 1D).

H&E staining indicated a significant increase in medial wall
thickness of pulmonary arterioles in the PAH group compared
to the control group (FigureslEJF; Supplementary Table S4).
Consistent with histological findings, echocardiographic assessment
demonstrated significantly elevated distal pulmonary vascular
resistance in PAH rats compared to controls (Figures 1G,H;
Supplementary Table S5), thereby confirming successful model
induction. Immunofluorescence staining presented a pronounced
in the PAH
group, indicative of increased autophagosome formation under
PAH conditions TEM
further structural
abnormalities in PAH lung tissue, including the formation
(Figure 1K),
immunofluorescence results.

upregulation of the autophagy marker LC3
(Figures 11J;  Supplementary Table S6).
demonstrated prominent mitochondrial

of mitophagosomes corroborating the LC3
These findings collectively indicate that PAH is associated with
mitophagosome formation and disruption of mitochondrial integrity.
However, further investigation is required to identify the specific PAH-
associated genes contributing to mitochondrial dysfunction.

3.2 ldentification and analysis of candidate
genes

Integrated bioinformatics analyses and in vivo validation
indicated a key role for mitophagy in the pathogenesis of
PAH. WGCNA was conducted on all samples in the training
set (Supplementary Table S7), with no outlier samples found
(Supplementary Figure S1A). A total of 14 co-expression modules
were identified (Figure 2A; Supplementary Figure SIB). Among
these, the blue module (module eigengene correlation with PAH
status: r = —0.81) and the turquoise module (r = 0.76) were
identified as key modules (Figure 2B). Together, these two modules
encompassed 3,343 genes, including 1,086 in the blue module
(Figure 2C) and 2,257 in the turquoise module (Figure 2D).

A total of 65 MRGs were retrieved from the MitoCarta 3.0
database. The intersection of DEGs, key module genes, and MRGs
resulted in the identification of 13 candidate genes (Figure 2E;
Supplementary Table S8). GO and KEGG pathway enrichment
analyses were performed to explore their functional relevance.
GO analysis indicated 58 significantly enriched terms, comprising
27 biological process, seven molecular function, and 24 cellular
component categories (Supplementary Table S9). The top five
enriched terms included GDP binding, GTPase activity, K48-
linked deubiquitinase activity, GTP binding, and guanyl nucleotide
binding (Figure 2F). KEGG pathway analysis identified 70 enriched
pathways, including mitophagy animal, autophagy animal, kaposi’s
sarcoma associated herpesvirus infection, neurodegenerative
disease multiple diseases, and opioid peptide signaling pathways
(Figure 2G; Supplementary Table S9).
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A PPI network was constructed using the STRING database,
comprising of 13 nodes and 54 edges (Figure 2H). Within this
network, RRAS, BECNI, MFNI, HIFIA, and TAXIBPI presented
the highest number of interactions. Overall, the results of WGCNA
and intersection analyses supported the central involvement of
mitophagy in PAH and identified 13 candidate genes implicated
in diverse biological pathways, particularly those related to
mitochondrial autophagy.

3.3 Identifying biomarkers

To further refine biomarkers associated with mitochondrial
autophagy and PAH, five machine learning models SVM, GLM,
NN, RE and XGBoost were trained using the training dataset.
Model performance was subsequently assessed. Feature importance
rankings derived from the XGBoost and neural network models
were intersected, resulting in the identification of five top candidate
genes (Figure 3A; Supplementary Table S10). These genes were
designated as key biomarkers: RRAS, BECN1, MFN1, HIFIA, and
TAX1BPI (Figures 3B,C).

The expression profiles of these five genes were assessed
across both the training set (GSE113439) and the validation set
(GSE53408). All five biomarkers demonstrated consistent patterns
of differential expression (Figure 3D; Supplementary Figure S1E;
Supplementary Table S11), with BECNI, HIFIA, MFNI, and
TAX1BPI PAH
while RRAS was upregulated. ROC curve analysis indicated

significantly ~ downregulated in samples,
excellent diagnostic performance for each biomarker, with
AUC values exceeding 0.90 in both datasets (Figure 3E;
Supplementary Figure S1F; Supplementary Table S12).

From the integrated analyses of differential gene expression
and diagnostic performance, RRAS, BECNI, MFNI, HIFIA, and
TAX1BPI were identified as robust biomarkers associated with
mitophagy dysregulation in PAH.

3.4 GSEA and immune infiltration of
biomarkers

GSEA was conducted to elucidate the biological pathways
associated with the identified biomarkers during the progression of
PAH. RRAS, BECNI, HIFIA, and TAX1BPI were most significantly
enriched in the spliceosome pathway, while MFNI presented the
strongest enrichment in the neuroactive ligand-receptor interaction
pathway. Notably, all five biomarkers exhibited co-enrichment in
both the spliceosome and neuroactive ligand-receptor interaction
pathways (Figures 4A-E; Supplementary Table S13).

Chromosomal mapping of the biomarkers indicated distinct
genomic loci: RRAS on chromosome 19, BECNI on chromosome 17,
HIF1A on chromosome 14, TAX1BPI on chromosome 7, and MFN1
on chromosome 3 (Figure 4F; Supplementary Table S14). Immune
cell infiltration in PAH versus control lung tissues was subsequently
assessed using the CIBERSORT algorithm. Among the 22 immune
cell subsets analyzed (Figure4G; Supplementary Table S15),
5cell types: M1 macrophages, eosinophils, activated natural
killer (NK) cells, activated dendritic cells, and CD8" T cells

frontiersin.org


https://doi.org/10.3389/fphys.2025.1673181
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Zhang et al. 10.3389/fphys.2025.1673181
KEGG enrichment
P PI3K-Akt signaling pathway- C:‘
ol > . . MAPK signaling pathway L )
o y H Gene Number
3 Endocylosis-
g ® 20
£ P Callcyd ° e
w Control
PAH Apoplosis. @ «
densty By Autophagy = animal L ) . 50
. H Cellular senescence. [ ] @~
05 & TNF signaling pathway
, ) é NF-kappa B signaling pathway —log(pvalue)
e X P53 signaling pathway-
b ECM-receptor interaction I ::
~Log10 ad]Pual [ IL-17 signaling pathway [ ] ! 9
B
- 6
Notch signaling pathway- | ]
Glutathione metabolism{ ®
Ferroptosis
0.01 0.02 0.03 0.04 0.05
-2 u-;fc 2 EnrichmentScore
i ey . . H
SD Rat Single MCT Injection Echo ! Tissue Collection :
H H
H H
H H
A H 1
H 1
H H
—— H ; 1
H H
! it !
H N H
! /B !
e N e
7 \ i i
i - H 1
H H
| Adaptive Feeding | Regular Feeding | 1 1
H H
H H
H H
-3 day 0 day 14 day ' '
H H
H H
H H
H H
e e H
DAPI LC3 Merge

Middle Layer Rate

FIGURE 1

x4
Q
z
-9
H J
*
60
* E
0.50 [ 2 50
o
s
£ 045 ° 5
§ oo j 404 .
5 0404 0 2 4“
Z 230 ¢
& 0.35 &
L]

e
W
S

Bioinformatics analysis of PAH-associated DEGs and in vivo validation. (A) volcano plot of DEGs in the GSE113439 training set; (B) Heatmap of DEGs;

(C) KEGG pathway enrichment analysis shows a significant association of DEGs with mitophagy-related pathways; (D) Schematic of the
monocrotaline-induced PAH rat model; (E) H&E staining of rat lung tissue demonstrating histopathological changes (Scale bar 50 um); (F) quantification
of pulmonary arterial medial wall thickness from H&E images. (G) Echocardiographic assessment of PAH model validation. (H) quantitative
echocardiographic parameters: PAAT/PAET; (I) Immunofluorescence detection of LC3 expression in rat lung tissue (Scale bar 100 um); (J) quantitative
analysis of LC3 immunofluorescence intensity; (K) TEM of mitochondrial morphology: yellow arrows indicate normal mitochondria in the CK,and blue
arrows indicate mitophagosome formation and reduced mitochondrial area in the PAH group. Scale bar: 2 um. Data are presented as mean + SEM. ns, p >
0.05; "p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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network of the 13 candidate genes.

Identification and analysis of 13 candidate genes associated with PAH and mitophagy. (A) dendrogram showing the 14 co-expression modules identified
by WGCNA; (B) Heatmap of module-trait correlations: The blue and turquoise modules exhibit the strongest correlations with PAH status;

(C) scatterplot of gene significance versus module membership for the blue model; (D) Scatterplot of gene significance versus module membership for
the turquoise model; (E) venn diagram illustrating the intersection of DEGs, key module genes, and MRGs, yielding 13 candidates; (F) GO enrichment
analysis of the 13 candidate genes, showing the top enriched term; (G) KEGG pathway enrichment bubble chart for the 13 candidate genes; (H) PPI

were found to differ significantly between the two groups
(Figure 4H; Supplementary Table S15).

Correlation analysis demonstrated a positive association
between CD8"T cells and activated NK cells, and a
negative association between CD8* T cells and eosinophils
These
findings indicate that, along with their distinct chromosomal

(Supplementary Figure S1C;  Supplementary Table S15).
distribution, the identified biomarkers are associated with specific
alterations in the immune landscape of PAH. The elevated
infiltration of M1 macrophages, eosinophils, activated NK cells,
activated dendritic cells, and CD8" T cells in PAH lung tissue
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indicates a potentially important role for these immune populations
in the pathogenesis of the disease.

3.5 Functional characterization of five key
biomarkers in macrophages revealed by
scRNA-Seq

To identify key cell populations associated with PAH, scRNA-
seq data from GSE210248 were analyzed. Following quality
control retaining cells with 200 to 10,000 found genes and
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fewer than 5% mitochondrial reads, a total of 21,794 cells were
included in the analysis (Supplementary Figure S2A,B). Highly
variable genes, including SEPTIC, TPSABI, APOE, S100A8, ACKRI,
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S100A9, CCL20, ACTA2, and LUM, were identified and annotated

(Supplementary Figure S2C). The top 30 PCs were visualized and

assessed for statistical significance (Supplementary Figure S2D-F),
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and the top 10 marker genes per cluster were displayed in
a heatmap (Supplementary Figure S2G).

UMAP of the PCs segregated the cells into 16 distinct subclusters
(Figure 5A). According to canonical marker genes from the
literature, 12 cell types were annotated: B cells, mast cells, epithelial
cells, dendritic cells, endothelial cells, NK cells, granulocytes,
smooth muscle cells, T/NK cells, monocytes/macrophages, T
cells, and fibroblasts (Figure 5B). Marker gene specificity analysis
confirmed that each cell type expressed its respective canonical
markers at the highest levels (Figure 5C).

Intercellular communication networks in control and PAH
samples were inferred using the CellChat package (Figures 5D,E).
T cells and T/NK cells were identified as major signal receivers
in both groups, with the overall signaling strength observed
to be greater in PAH. In contrast, monocytes/macrophages

emerged as the dominant signal-sending population in
PAH samples (Supplementary Figure S3A-D). Key signaling
pathways mediating interactions involving T and T/NK

cells included CCL, CXCL, MIF, galectin, IL-2, and SPP1
networks (Supplementary Figure S3E), whereas up to 12 major
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pathways were implicated in monocyte/macrophage-mediated
interactions (Supplementary Figure S3F).

To determine key PAH-associated cell types, cell cluster
proportions were compared between PAH and control samples.
Three cell populations - epithelial cells, granulocytes, and
monocytes/macrophages were significantly enriched in PAH
(Figure 6A;
of biomarker

samples Supplementary Table S16).  Evaluation
these

(Supplementary Table S16), in conjunction with the communication

expression patterns across clusters
analyses, indicated that monocytes/macrophages demonstrated the
highest signal integration strength, identifying them as the key cell
population (Figure 6B).

GSVA comparing M1 and M2 macrophage subtypes indicated
M1

enrichment in the mitotic spindle, angiogenesis, and DNA repair

distinct functional programs. macrophages presented
pathways, whereas M2 macrophages were enriched for the hedgehog
signaling, apical surface, and estrogen response late signatures
(Figure 6C; Supplementary Table S16).

Pseudotime trajectory reconstruction was performed using

Monocle2, based on highly variable genes (q < 0.1), to delineate

frontiersin.org


https://doi.org/10.3389/fphys.2025.1673181
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Zhang et al. 10.3389/fphys.2025.1673181
orig.ident cca_clusters
°0 10
10 o1 © Fibroblasts.
°2 o Toels
®3 © Monocytes / Macrophages
4 ~ 5 © T/NKcells
~ 5 s g © Smooth Muscle Cells
| e -] © Granuiocytes
g o7 g © NKcells
g o8 Eo © Endothelial Cells
Eo 9 © Dendritc Cells
° ° 10 o Epihelal
o 11 © Mast cells
o 12 -5 o Beells
s ° 13
® 14
oo
15
orig.ident group
C 10 10
Bosls]o v o oo Go s e 0. 0. é
N R de e oo 5o, ' bl
8 i > ® Donor_3 © Control
Epithelial{0 0 0 0 - + + o o - ° 6. e0- @ - pep g ( ! s § o PAH
iti 604 -+ 00000 « « « « + o e o e L.t 0 o 3 h © PAH2 0
Dendritic Cells {© © © OCooo ° ° @0 . 2 = ® PAH3 £l
Endothelial Cells 10 0 0 o « o o s s o0 s o e 660 - 0@ -0--+- 050
o5
>
) NKcells{ + o« - 0o oo o e@rccr o 0@ o o . O 100 -5 3 s
8 Granulocytes {0 0 O o 000 e et et I Y'Y TR o . Average Expression ] ]
Smooth Muscle Cells {O © © © cr00-: - 0000@: - - - co 2 -0 -5 0 0 15 -10 [ 5 15
1
T/NKcells{+ - + + -0so0cec-000@¢ P e @ e e o umapcca_1 umapcca_1
Monocytes / Macrophages {0 e O ° - - - Q@@@® - - - - - - - O e O e o =
Teells{+ -+ - - @000 00 Q-+ v v s o e e
Fibroblasts {@@@@ e - < 0ot et 0o

% O ORFENE TG, AN, S AL, ¢ Sy
SRR
Features

E

Number of interactions

‘x].-l-.D..-I

Firosass|

Fosass
Teow, Teots
Moncopes crophages Moncepes Macrophages
TiNK cos TNk ot

‘Smooih Musce Cells Smooth Musdle Cels

]

Gansocyles Ganocytes

NK eots ool

Sources (Sender)
Nurmber o nteracions
°g

Sources (Sender)

Endotnei Cets | Engomes Cots

Dendetc Cots. Cendetc ot
Epincial Eptnetal
Mast ol Mastcos

s Boris

Enomessl Cals

Epnetal

Manscyies  acrophage:
Smoom husce Cels

FIGURE 5

ligand-receptor pairs between cell types in the CK (D) and PAH (E).

M M T

Single-cell clustering and intercellular communication analyses. (A) UMAP projection of all cells prior to annotation; (B) UMAP plot with cells colored by
annotated cell type; (C) expression of canonical marker genes across the annotated cell types; (D, E) Heatmaps showing the number of potential

Number of interactions

Er

Ll T R o ]
[

Smoom husce Cels
Graruoopes
Endotnelal Cels|
Oendatic Cets

o

20

»

§
|
H
H

macrophage differentiation states and lineage bifurcation
(Supplementary Table S16). Following branch point 2, cells diverged
into State 3 and State 4, both of which were enriched for M2
macrophages, indicating the successful induction of distinct
macrophage phenotypes at this branching point (Figures 6D-F).
Temporal expression dynamics of the five biomarkers indicated that
BECNI1, MFN1, and RRAS maintained relatively stable expression
across states, whereas TAX1BP] expression exhibited a progressive
increase over pseudotime, and HIFIA expression peaked early
before declining (Figures 6G-TI).

To further explore the relationship between the identified
biomarkers and macrophage subtypes, prior bioinformatics findings
(Supplementary Figure S4A) were integrated with single-cell data.
Heatmap analysis demonstrated a negative correlation between
RRAS and M1 macrophages, while BECNI, HIFIA, MFNI,
and TAXIBPI were positively correlated with M1 macrophages
this

(Supplementary Figure S4B; ~ Supplementary Table S15),
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suggests that macrophages may be involved in disease progression in
PAH tissues. Because the identified biomarkers were associated with
M1 macrophages, we further quantified the M1/M M2 macrophage
proportion in PAH tissues (Supplementary Figure S5A) and
analyzed the correlations between the five genes (RRAS, BECNI,
MFNI1, HIF1A and TAX1BP1) and canonical M1/M2 surface
markers or functional molecules (Supplementary Figure S5B-D).
The data confirmed that all five genes are statistically linked to M1
and/or M2 macrophages.

3.6 Validation of mitophagy-related PAH
genes using qPCR, WB, and
immunofluorescence co-localization

To investigate the expression changes of the five biomarkers
in PAH, qPCR and WB analyses were conducted on rat lung

frontiersin.org


https://doi.org/10.3389/fphys.2025.1673181
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Zhang et al. 10.3389/fphys.2025.1673181
A B C
BECN1 HIFIA e e
group W Control B8 PAH o] o 1
Epneial ° ol
© 50 Dendiic celis ° Purcont Expressed
g Entometaicets o coe il .
Woas z NK eets o oo ) § .
& H ol - g Exrsion | : R
I L1 I o —t | e —
*i*- L L "‘ TN o N i = e
L] T . B o — ey
- & & ° ° 3‘”. | 72‘% s,
IS AL o 3 =
o N * e - et
o PRI Bl
D E F

5.0
3.0 N

BECN1

W cew @ e mmsER.

~

HIF1A

-
MEN1
50 .
5 . State
230 B . .
i 1
5 - . . . .2
.3
2 1.04 o . D s
s c 4
ko)
.5
o5
RRAS
50 .
30 . .
v - . .
1.0 g, - tets IR VB
05
TAX1BP1
10 . - ..
- oo - e
34 e - - sowm
areas @ s @ o P

FIGURE 6

ETER O+ ) et
0 10 15
Pseudo-time

5.0
3.0

L
°

»
o

Relative Expression
5

o
o

BECN1
. . .
wac. L3 Seo s
s L d IR ERE R
HIF1A
" .
-
- oo
-

. —
MFN1
annotation2
e ¢ . .
* M1 Macrophages
- . cots o o0 mgnamstt + M2 Macrophages
RRAS
cw. - PN
o . o B
TAX1BP1
-
.o T £
. .. . Sete
I a o0 e
o - R R
-—re~ . @ B
e L
CTERos AN ¢ €D nata S
0 5 10 15
Pseudo-time

5.0-

3.0-

Expression

0.5- <&

p—

BECN1

HIF1A

MFN1

State

EEESEAEEY

_— e =

.L —_—— e

TAX1BP1

111

State

Identification of key cell type, pseudotime trajectories, and dynamic biomarker expression. (A) bar plot showing differential proportions of cell clusters
between PAH and control samples; (B) Bubble plot illustrating the expression levels of the five candidate genes across annotated cell types; bubble size
indicates the percentage of expressing cells, and colour intensity reflects expression magnitude; (C) heatmap of pathway enrichment analysis in the

(Continued)

Frontiers in Physiology

12

frontiersin.org


https://doi.org/10.3389/fphys.2025.1673181
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Zhang et al.

10.3389/fphys.2025.1673181

FIGURE 6 (Continued)

identified key cell population; (D-F) Pseudotime trajectory analysis of the key cell type: each point represents an individual cell coloured by pseudo
time (dark blue = early state; light blue = late state). Black circles with numbers denote distinct cell-state nodes identified during trajectory inference;
(G, H) dynamic expression changes of BECN1, HIF1A, MFN1, RRAS, and TAX1BP1 along pseudotime in macrophage subtypes, stratified by cell state; (G)
and macrophage polarization (M1 vs. M2) (H); (1) Violin plots showing state-specific expression patterns of the five hub genes.

tissues. Results from both qPCR and WB analyses indicated
that, compared with the control (CK) group, the expression
level of RRAS was significantly upregulated in the PAH group.
In contrast, the expression levels of BECNI, HIFIA, TAXI1BPI,
and MFNI were significantly downregulated (Figures 7A,B;
Supplementary Table S17; Supplementary Table S18).

Additionally,
localization analysis was employed to examine the expression

immunofluorescence  double-labeling  co-
and localization of microtubule-associated protein LC3 and iNOS.
Compared with the CK, the PAH exhibited significantly increased
expression of both iNOS and LC3, accompanied by significantly
enhanced co-localization (Pearson’s correlation coeflicient R =
0.63). In contrast, minimal co-localization was observed in the
CK (Pearson’s correlation coefficient R = 0.12) (Figures 7C-G;
Supplementary Table S19). These findings indicate that iNOS may
participate in the autophagic pathway and be closely associated
with inflammatory responses. Next, combining the qPCR results
with the immunofluorescence detection of the M1 marker iNOS,
we assessed the correlation between each candidate gene and
iNOS. Pearson correlation analysis (p < 0.05) demonstrated a
positive correlation between RRAS and iNOS, while BECNI,
MENI1, HIF1A and TAXIBP1 were negatively correlated with
iNOS (Supplementary Figure S5E; Supplementary Table S20). These
findings indicate that the identified genes may differentially regulate
M1/M2 polarization and macrophage functional status in PAH.
From these results, a schematic diagram was constructed
to depict the relationship between the five biomarkers and
processes in PAH (Figure 7H). Collectively,
the identified mitochondrial-related genes were expressed in
macrophages, indicating that PAH may influence their expression,

mitochondrial

thereby affecting mitochondrial processes such as mitophagy,
mitochondrial fission, and autophagosome formation. These
findings indicate that the five biomarkers play critical roles in
the pathogenesis of PAH, potentially through the dysregulation
of mitophagy and its impact on disease progression.

4 Discussion

In this study, the relationship between PAH and mitophagy was
systematically investigated through the integration of bioinformatics
analysis, animal experiments, and scRNA-seq. Five key biomarkers
involved in the pathogenesis of PAH (RRAS, BECN1, MFNI,
HIF1A, TAX1BP1) were ultimately identified, providing new
evidence for understanding the molecular mechanisms of PAH
and developing diagnostic/therapeutic strategies. The discussion
covers mitophagy in PAH, candidate gene screening and validation,
biomarker function, immune microenvironment interplay, single-
cell macrophage insights, and mechanistic experiments.

From the analysis of the GSE113439 dataset, a total of 2,753
DEGs associated with PAH were identified. KEGG pathway
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enrichment analysis indicated that these genes were closely
linked to the mitophagy pathway. This result is consistent
with previous studies reporting the key involvement of
mitochondrial dysfunction in the initiation and progression of
PAH (Zhang et al., 2025; Zhang et al., 2022; Colon Hidalgo et al.,
2022). Mitophagy has attracted increasing attention since
2005).

mitophagy preserves mitochondrial homeostasis; in PAH its

its initial characterization (Lemasters, Physiological
dysregulation amplifies oxidative stress, drives vascular remodeling
and hastens disease progression (D'Arcy, 2024). MCT-induced
PAH rats confirmed mitophagy activation as a maladaptive
stress response, yet its stage-specific regulation remains unclear
(Mao et al., 2023; Chen et al., 2018).

WGCNA of PAH lungs intersected with DEGs and MRGs
yielded 13 candidates enriched for GDP/GTP binding, GTPase
activity, mitophagy and neurodegeneration pathways. WGCNA
of PAH lung tissue intersected with DEGs and MRGs yielded
13 candidates enriched for GDP/GTP binding, GTPase activity,
mitophagy and neurodegeneration pathways. Consistent with
previous reports (such as BECNI1 being a key regulator of
autophagy (Liang et al, 1999; Fernandez et al, 2018), HIF1A
being involved in hypoxia induced vascular remodeling (Dai et al.,
2024), and MFNI1 maintaining mitochondrial dynamics and
homeostasis) (Tabara et al., 2025).

PPI network analysis pinpointed RRAS, BECN1, MEN1, HIF1A
and TAX1BP1 as central hubs linking mitophagy to PAH. Applying
five machine-learning algorithms (SVM, GLM, NN, RE XGBoost) to
the training cohort and validating in GSE53408 identified these five
genes as robust diagnostic biomarkers with AUC >0.90. The relevant
biomarkers identified in this study reveal the pathological mechanisms
of pulmonary vascular remodeling, mitochondrial dysfunction, and
macrophage activation in PAH, and exploring their expression
characteristics in peripheral blood mononuclear cells (PBMCs) can
provide a supplement for the development of non-invasive detection
methods. Recent studies on high-altitude PAH (HAPH, an important
subtype of PAH) have shown (Wu et al., 2023). This study showed that
C1 (atypical) and C2 (intermediate) monocyte subsets were enriched
in PBMCs of HAPH patients, and the expression of HIF-1 a was
significantly reduced. This is consistent with the downregulation trend
of HIF-1A in PAH ratlung tissue in this study, suggesting that abnormal
expression of HIF-1A may exhibit a similar pattern in PBMCs. In
addition, the study suggests that HAPH has a common immune
adaptation mechanism with other types of PH, which also supports
the possibility of the markers identified in this study maintaining
consistent expression in PBMCs. I plan to include PBMC samples
from PAH patients in the future to clarify the tissue peripheral blood
expression association of these biomarkers and further extend the
clinical value of the biomarkers in this study.

Among the identified biomarkers, RRAS, a member of the RAS
superfamily and a well-established oncogene, represented a novel
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FIGURE 7 (Continued)
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iNOS in lung tissues; (E) relative expression levels of autophagy marker LC3 in lung tissues; (F) relative colocalization levels of LC3 and iNOS in lung
tissues of CK and PAH; (G) normalized Pearson’s correlation coefficient (Pearson’s R) for colocalization of LC3 + iNOS in lung tissues Scale bar 100 um;
(H) Schematic diagram of the relationship between the five biomarkers and mitochondria. In the figures, ns indicates p > 0.05; *p < 0.05; **p <

0.01; ***p < 0.001; ****p < 0.0001.

finding in the context of PAH, particularly in relation to mitophagy
(Liuetal.,,2017; Weberand Carroll, 2021). Traditionally, RRAShasbeen
associated with cell proliferation and tumorigenesis via modulation of
the MAPK and PI3K/AKT signaling pathways (Bahar et al., 2023).
However, through WGCNA, machine learning, and validation using
quantitative PCR and WB, RRAS was significantly upregulated in lung
tissues from patients with PAH, indicating a potential non-oncogenic
pathological role in the disease. Although direct evidence linking
RRAS to PAH pathogenesis remains limited, its identification as a
mitophagy-related biomarker in osteoarthritis supports its possible
involvement in mitochondrial quality control beyond its classical role
in cancer biology (Ruan et al., 2024).

Single-cell data linked RRAS to M1-macrophage state transitions;
dual immunofluorescence showed RRAS upregulation coinciding
with enhanced iNOS/LC3 co-localization (PAH R = 0.63 vs.
control R = 0.12), implying RRAS-driven mitophagy modulation via
inflammation. Concordant CIBERSORT analyses revealed expanded
MI infiltrates in PAH, and published evidence indicates RRAS can
trigger NF-kB-dependent IL-6/TNF-a release to promote vascular
remodeling and elevated pulmonary pressures (Tago et al., 2019).

Further correlation analysis between biomarker expression
and immune cell populations demonstrated a positive association
between RRAS and activated dendritic cells (DCs) as well as
eosinophils. DCs, which serve as central regulators of immune
responses, have been increasingly implicated in PAH pathogenesis
(van Uden et al., 2021; Koudstaal et al., 2020).

It can induce T cell differentiation into Th17 cells, and the
imbalance of Th17/regulatory T cells is involved in the occurrence
of hypoxia induced, chronic obstructive pulmonary disease related,
and connective tissue disease-related PAHs (Zhu et al,, 2019).
In addition, recent studies have found that the peripheral blood
eosinophil count of PAH patients is reduced, which may play
a protective role by releasing lipid mediators such as 14-HDHA
and 17-HDHA to promote regression, reduce inflammatory cell
infiltration, and maintain the homeostasis of pulmonary artery
smooth muscle cells (Shu et al., 2023).

These observations provide novel insights into the potential role
of RRAS in cardiovascular disease and highlight the need for further
mechanistic studies.

GSEA indicated that RRAS, BECNI, MFNI, HIFIA, and
TAXIBP1 were significantly enriched in the spliceosome and
neuroactive ligand-receptor interaction pathways. Dysregulation of
spliceosome function has been implicated in cardiovascular disease
and is also recognized as a contributor to mitochondrial dysfunction
(Cao etal., 2024; Zhou et al., 2025). The neuroactive ligand-receptor
interaction pathway may participate in the neuroendocrine
dysregulation observed in PAH (Chinnappan et al., 2019).

ScRNA-seq of GSE210248 identified monocytes/macrophages
as the dominant PAH-associated population; GSVA showed
M1 activation via mitotic-spindle/angiogenesis pathways and
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M2 differentiation via hedgehog signaling, underscoring
subset heterogeneity. Pseudotime trajectories revealed stable
BECNI1/MFNI1/RRAS, rising TAX1BP1, and biphasic HIFIA,
with RRAS negatively and the other four genes positively
correlated with M1 signatures, implying distinct regulatory roles.
qPCR/WB validated RRAS upregulation and downregulation
of BECNI, MFNI1, HIFIA and TAXI1BP1 in PAH lungs,
iNOS/LC3  co-

0.63), indicating inflammatory-autophagy

while immunofluorescence showed enhanced

localization (R =
crosstalk (de Lavera et al, 2017). Collectively, these findings
validate the functional significance of the identified biomarkers
and indicate that mitophagy dysfunction, potentially driven by
inflammatory dysregulation, may contribute to the pathological
progression of PAH (Marchi et al., 2023).

This study is based on lung tissue validation. Although it can
accurately reflect the core pathological features of mitochondrial
dysfunction and macrophage activation, lung biopsy is not a routine
examination for PAH patients and poses a key challenge to biomarker
transformation. Previous studies have confirmed that bronchoalveolar
lavage fluid (BALF) can be used as a minimally invasive sample
for lung marker detection in acute respiratory distress syndrome
(ARDS) subtypes (Sathe et al., 2023), and can also detect pulmonary
macrophage derived markers (such as Fizz1) associated with vascular
remodeling in hypoxia induced PAH (HPH, PAH subtypes) (Li et al.,
2024). Subsequently, lung monocytes/macrophages enriched in BALF
can be utilized to establish their expression association with lung tissue
markers through ultra sensitive techniques, and sample processing can
be optimized by combining PAH pathology. If it can be confirmed
that the levels of biomarkers in BALF are correlated with clinical
indicators of PAH, they can be converted into minimally invasive
detection indicators, which can avoid the invasiveness of lung biopsy
while retaining accurate reflection of the pathological status of PAH,
laying the foundation for clinical application.

Although our single-cell analysis was limited to lung tissue, it
remains unclear whether the five mitophagy-related biomarkers
exhibit similar M1/M2-associated expression patterns in peripheral
blood mononuclear cells (PBMCs) of PAH patients. This tissue
specificity question is critical for translating our findings into
minimally invasive diagnostic tools. Future studies should
therefore compare the transcriptional profiles of circulating
monocytes/macrophages with their pulmonary counterparts to
determine if PBMCs can serve as a surrogate for lung-based
biomarker assessment.

5 Conclusion

Integrative analyses revealed a strong association between
PAH and mitophagy, identifying RRAS, BECNI, MFNI, HIFIA,
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and TAXIBPI as potential diagnostic biomarkers. These findings
contribute to the theoretical understanding of the pathological
mechanisms involved in PAH and offer novel perspectives
for the development of diagnostic and therapeutic strategies.
Further research should focus on clinical validation and targeted
intervention studies to facilitate the translational application of these
biomarkers in clinical practice.

6 Limitations and future directions

Several limitations of this study should be acknowledged.
The heterogeneity of PAH may affect biomarker expression
patterns, underscoring the need for more refined, stratified
analyses in future research. Additionally, the underlying molecular
mechanisms require further validation by genetic knockout
models or pharmacological interventions. Future research should
prioritize clinical validation and interventional studies to support
the translational application of these biomarkers in the clinical
management of PAH.
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SUPPLEMENTARY FIGURE S1

WGCNA analysis. (A) WGCNA analysis showing no abnormal samples; (B)
WGCNA analysis identifying 14 expression modules; (C) Correlation diagram
between different immune cells; (D) Correlation heatmap of PAH in different
immune cells; (E) Validation of biomarker expression in the validation datasets; (F)
ROC curves for each biomarker in the validation set. Data are presented as mean
+ SEM. ns, p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.00L; ****p < 0.0001.

SUPPLEMENTARY FIGURE S2

Single-cell sequencing analysis. (A,B): Quality control and preprocessing of
single-cell RNA sequencing data; (C) Volcano plot of highly variable gene
screening; (D) Fragmentation plot of principal component analysis for single-cell
samples; (E): Line plot of principal component analysis; (F) Two-dimensional
scatter plot of principal component analysis (PCA); (G) Gene

enrichment heatmap.
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SUPPLEMENTARY FIGURE S3

Cell-cell communication network analysis among vascular and immune cell
populations. (A, B) Global intercellular communication network of the analyzed
cell populations. Each node represents a specific cell type, and the edge thickness
indicates the interaction strength between sender and receiver cells. The color
and size of the nodes reflect the interaction strength and total communication
probability, respectively; (C, D) Quantitative analysis of outgoing and incoming
interaction strength of each cell type. The x-axis represents outgoing interaction
strength (signal sending capacity), and the y-axis represents incoming interaction
strength (signal receiving capacity). Node size indicates the total number of
interactions; (E) Representative ligand—receptor signaling networks, including
CCL, CXCL, SPP1, and MIF pathways, demonstrating the major communication
axes among fibroblasts, macrophages, smooth muscle cells, and T cells. Thicker
lines represent stronger communication probabilities between cell types; (F)
Heatmap showing the roles of different cell types in the CCL signaling pathway,
categorized as sender, receiver, mediator, or influencer. The intensity of the color
corresponds to the interaction strength.

SUPPLEMENTARY FIGURE S4
Flowchart of biomarker screening and correlation with key cells. (A) Flowchart for
screening BECN1, HIF1A, MFN1, RRAS, and TAX1BP1; (B) Correlation analysis of
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