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Background: Pulmonary arterial hypertension (PAH) is a progressive 
disorder characterized by pulmonary vascular remodeling and mitochondrial 
dysfunction. Recent studies have implicated impaired mitophagy in the 
pathogenesis of PAH; however, the underlying mechanisms and associated 
biomarkers remain insufficiently defined. This study used an integrative 
approach, incorporating bulk transcriptomic profiling, single-cell RNA 
sequencing (scRNA-seq), machine learning algorithms, and experimental 
validation to explore the relationship between mitophagy and PAH.
Methods: Differentially expressed genes were extracted from publicly available 
microarray datasets and intersected with mitophagy-related genes curated from 
the MitoCarta 3.0 database. Weighted gene co-expression network analysis, 
along with five distinct machine learning models, identified five candidate 
mitophagy-associated biomarkers: RRAS, BECN1, MFN1, HIF1A, and TAX1BP1. 
These genes demonstrated high diagnostic performance (area under the curve 
>0.9) across both training and validation cohorts. Immune cell deconvolution 
analysis indicated a marked increase in M1 macrophage infiltration in lung tissue 
from individuals with PAH. The scRNA-seq further localized the expression of 
these biomarkers predominantly to monocyte/macrophage populations and 
indicated distinct pseudotemporal expression trajectories during macrophage 
differentiation. Expression and co-localization of the identified biomarkers 
with autophagy and inflammation markers were subsequently validated 
using quantitative PCR, western blotting, and immunofluorescence in a 
monocrotaline-induced PAH rat model.
Results and Conclusion: The findings underscore the involvement of 
mitophagy in the pathobiology of PAH and identify five macrophage-
associated biomarkers with strong diagnostic potential. These results may
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inform future strategies aimed at early detection and targeted therapeutic 
interventions in PAH.

KEYWORDS

biomarkers, macrophages, mitophagy, pulmonary arterial hypertension, single-cell RNA 
sequencing 

1 Introduction

Pulmonary arterial hypertension (PAH) is a progressive disorder 
defined by sustained elevation in pulmonary arterial pressure, 
with key pathological features including vascular remodeling, 
inflammation, and right ventricular dysfunction (Thenappan et al., 
2018). Despite recent advances in diagnostic and therapeutic 
modalities, the underlying pathophysiological mechanisms of 
PAH remain only partially elucidated (Humbert et al., 2023; 
Ghofrani et al., 2025). Current treatment options remain largely 
inadequate in reversing disease progression, resulting in persistently 
poor prognoses and elevated mortality rates (Yang et al., 2020). 
Consequently, elucidating the molecular mechanisms underlying 
PAH and identifying reliable biomarkers for early diagnosis and 
novel therapeutic targets are critical priorities in ongoing research.

Among the various mitochondrial quality control processes, 
mitophagy has emerged as a mechanism of growing interest. 
Mitophagy involves the selective encapsulation of damaged 
or dysfunctional mitochondria within autophagosomes, which 
fuse with lysosomes to facilitate degradation and recycling of 
mitochondrial components (Wang et al., 2023). This process 
is vital for preserving mitochondrial integrity and cellular 
homeostasis, particularly in response to oxidative stress or energy 
deficiency (Doblado et al., 2021). Aberrations in mitophagy 
whether excessive or insufficient have been associated with a 
range of pathological states, including cardiovascular disease, 
malignancy, and inflammatory conditions (Levine and Kroemer, 
2019; Hoffmann et al., 2013; Yamamoto et al., 2023). Therefore, the 
exploration of mitophagy-related pathways and biomarkers in PAH 
may yield valuable insights into disease pathogenesis and support 
the development of targeted diagnostic and therapeutic strategies.

Emerging evidence indicates that the progression of 
pulmonary diseases is frequently associated with cell-type-
specific dysregulation of mitophagy (Sharma et al., 2021). The 
rapid development of single-cell RNA sequencing (scRNA-
seq) technologies has provided an advanced platform for 

Abbreviations: AUC, Area Under the Curve; DEGs, Differentially expressed 
genes; GLM, Generalized linear model; GO, Gene Ontology; GSVA, 
Gene set variation analysis; HE, Hematoxylin and Eosin; HIF1A, Hypoxia-
Inducible Factor 1 Subunit Alpha; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; LC3, Microtubule-Associated Protein 1 Light Chain 3; 
MCT, monocrotaline; MFN1, Mitofusin-1; MRGs, Mitophagy-related genes; 
NN, Neural Network; PAAT, Pulmonary Artery Acceleration Time; PAET, 
Pulmonary Artery Ejection Time; PAH, Pulmonary Arterial Hypertension; PPI, 
Protein-protein interaction; qPCR, Quantitative Polymerase Chain Reaction; 
RF, Random Forest; ROC, Receiver Operating Characteristic; RRAS, RAS 
Related; scRNA-seq, single-cell RNA sequencing; SD, Sprague-Dawley; 
SVM, Support Vector Machine; TAX1BP1, Tax1-Binding Protein 1; TGF-β, 
Transforming growth factor-beta; WB, Western Blot; WGCNA, Weighted 
gene co-expression network analysis; XGBoost, eXtreme Gradient Boosting.

dissecting cellular heterogeneity and characterizing intercellular 
interactions within complex disease environments. This technology 
enables the identification of distinct molecular profiles across 
diverse cell populations, allowing for the detailed investigation 
of key cellular contributors to the pathogenesis of PAH 
(Ziegenhain et al., 2017; Jovic et al., 2022).

In this study, PAH was examined through the integration 
of publicly available transcriptomic datasets, single-cell 
transcriptomics, machine learning methodologies, and 
experimental validation. This multi-modal approach was used to 
explore the involvement of mitophagy and monocyte/macrophage 
populations in disease progression, with the aim of elucidating 
underlying molecular mechanisms and identifying candidate 
diagnostic and therapeutic targets. 

2 Materials and methods

2.1 Data sources

The scRNA-seq data (GSE210248) (Crnkovic et al., 2022) and 
microarray transcriptomic datasets (GSE113439) (Mura et al., 
2019) and (GSE130391) (Fu et al., 2022) were obtained 
from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). The GSE210248 dataset, generated 
using the GPL20301 platform, consisted of six pulmonary artery 
samples, including three from patients diagnosed with PAH and 
three from healthy controls. The GSE113439 and GSE130391 
datasets were generated based on the GPL6244 and GPL570 
platforms, respectively.

For the present analysis, the GSE113439 dataset was used as the 
training set and included lung tissue samples from 15 individuals 
with PAH and 11 healthy controls (Supplementary Table S1). The 
GSE53408 dataset, consisting of 12 PAH lung tissue samples and 
11 normal lung tissue samples, was used as the validation set in 
subsequent analyses.

A total of 65 mitophagy-related genes (MRGs) (Supplementary
Table S2) were retrieved from the MitoCarta 3.0 database (https://
www.broadinstitute.org/mitocarta). A waiver for ethics approval 
for the human public database component of the study has 
been obtained. 

2.2 Differential expression analysis

Differentially expressed genes (DEGs) between PAH and control 
samples in the training set were identified using the “limma” package 
(version 3.57.11), with threshold criteria set at |log2 fold change 
(FC)| >0.5, adj.P.Val <0.05 (Liu et al., 2021). A volcano plot was 
generated using the “ggVolcano” package (version 0.0.2) to visualize 
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the distribution of all DEGs (Simon et al., 2011). Additionally, 
a heatmap was constructed with the “ComplexHeatmap” package 
(version 2.17.0) to depict the expression patterns of DEGs and their 
associations with mitochondrial autophagy-related pathways. 

2.3 Establishment of the PAH animal model

Twelve male Sprague–Dawley (SD) rats (6–8 weeks old) were 
procured from Beijing Sipai Fu Laboratory Animal Co., Ltd 
(Production License No. SCXK [Beijing] 2019–0010; Use License 
No. SYXK [Yunnan] K2022-0007) and maintained under specific 
pathogen-free conditions. After 3 days of adaptive feeding, the 
subjects were randomly divided into a control group (n = 6) 
and a PAH group (n = 6). The PAH group was administered 
a single intraperitoneal injection of monocrotaline (MCT; 
60 mg/kg, Sigma-Aldrich, St. Louis, MO), in accordance with 
established protocols (Zhai et al., 2022), while the control group 
received an equivalent volume of sterile saline (Liangshuiting, 
Lot No. L24041109). Fourteen days following injection, all 
animals were anaesthetized with sodium pentobarbital (50 mg/kg, 
intraperitoneally, Lot No. M50179, Cas No. 57–33–0, Shanghai 
FWD Chemicals Limited) for echocardiographic assessment. At 
the end of the experiment, euthanasia was performed with sodium 
pentobarbital (100–200 mg/kg, intraperitoneally, Lot No. M50179, 
Cas No. 57–33–0, Shanghai FWD Chemicals Limited). Lung tissues 
were subsequently harvested for subsequent analyses. 

2.4 Echocardiographic assessment

Fourteen days following subcutaneous administration of 
monocrotaline or saline (as described in Section 2.3), SD rats 
were anaesthetized with pentobarbital sodium (50 mg/kg, 
intraperitoneally). The anterior thoracic region was depilated, 
and each animal was positioned in a supine orientation and 
immobilized. Pulmonary resistance was assessed using a cardiac 
color Doppler ultrasound system (Mindray, M9 Ultrasound System, 
SP5-1s probe, Shenzhen, Guangdong, China). Sampling was 
performed at the pulmonary artery in the short-axis view of the 
great arteries. Pulmonary artery acceleration time (PAAT) and 
pulmonary artery ejection time (PAET) were measured upon 
acquisition of the systolic blood flow spectrum of the pulmonary 
artery. The ratio of PAAT to PAET (PAAT/PAET) was subsequently 
calculated (Trittmann et al., 2022). 

2.5 Hematoxylin and eosin (H&E) staining

Paraffin-embedded lung tissue blocks were sectioned at a 
thickness of 5 μm. The sections were mounted on glass slides and 
baked in a 64 °C oven (Tianjin Borry Instrument Equipment Co., 
Ltd., GFL-230) for 1 h. Deparaffinization was performed using 
xylene (SCRC, 10023418), followed by rehydration through a graded 
ethanol series (100%, 95%, 80%, 70%; SCRC, 100092683), and 
rinsing in distilled water. The sections were stained with hematoxylin 
(Servicebio, G1076) for 5 min, the slides were counterstained with 
Eosin Y (Servicebio, G1076) for 2 min. Subsequently, it dehydrated 

and became transparent. The sections were then mounted using 
neutral gum (SCRC, 10004160). Representative microscopic fields 
were imaged under a light microscope. 

2.6 Immunofluorescence

Fresh lung tissue sections (5 μm) were fixed in 4% 
paraformaldehyde (Servicebio, G1101) for 30 min at room 
temperature and subsequently permeabilized with 0.2% Triton 
X-100 in PBS for 15 min. The sections were blocked with PBS 
containing 5% bovine serum albumin (BSA) and 2% normal goat 
serum for 1 h at room temperature. Incubation with a primary 
antibody against light chain 3 (LC3) (Servicebio, GB11124; 1:2000) 
was carried out overnight at 4 °C. After three PBS washes, the 
sections were incubated with an HRP-conjugated goat anti-
rabbit/mouse IgG secondary antibody (Servicebio; 1:500) for 1 h 
at 37 °C. Following final washes, slides were mounted using an 
antifade medium and examined under a fluorescence microscope. 

2.7 Transmission electron microscopy 
(TEM)

Lung tissue fixed in electron microscopy fixative (Servicebio, 
G1102) at 4 °C for 2–4 h and embedded in pre-warmed 1% agarose 
(Thermo Fisher, 16520100). Post-fixation was conducted in 1% 
osmium tetroxide (Ted Pella, 18456) prepared in 0.1 M phosphate 
buffer (PB, pH 7.4) for 2 h at room temperature in the dark.

The samples were rinsed with phosphate buffer and dehydrated 
using a graded acetone series (Xilong Scientific, 230106), followed 
by infiltration with increasing concentrations of 812 resin (SPI, 
90529-77-4) and polymerization at 60 °C for 48 h. Ultrathin 
sections (60–80 nm) were prepared using an ultramicrotome (Leica 
RM2135) and mounted on 150-mesh formvar-coated copper grids. 
Sections were stained with 2% uranyl acetate (SPI, 02624-AB) for 
8 min in the dark, washed with 70% ethanol and ultrapure water, 
and subsequently stained with 2.6% lead citrate (Sigma, 203580) for 
8 min while protected from CO2 exposure. After final washes, the 
grids were air-dried overnight and examined using a TEM (JEOL 
JEM-1400 Flash, JEOL Ltd., Tokyo, Japan) for imaging. 

2.8 WGCNA

To identify gene modules most strongly associated with the 
PAH phenotype, weighted gene co-expression network analysis 
(WGCNA) was conducted on all samples in the training set 
using the WGCNA package (version 1.72-5) (Langfelder and 
Horvath, 2008). An unsigned network was constructed based on a 
dissimilarity measure derived from the topological overlap matrix, 
and hierarchical clustering of genes was performed using the average 
linkage method. Modules were defined through the application of 
a dynamic tree-cut algorithm, and correlations between module 
eigengenes and the PAH phenotype were assessed. Modules with an 
absolute correlation value (|correlation|) greater than 0.3 and a p-
value less than 0.05 were considered statistically significant. Select 
the appropriate soft threshold power from modules one to 14, set R2 
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= 0.85, and filter the soft threshold β value to 10, minModuleSize = 
100, mergeCutHeight = 0.15.

For each gene, module membership (MM), defined as the 
correlation with the corresponding module eigengene, and gene 
significance (GS), defined as the correlation with PAH status, were 
calculated. Genes within key modules satisfying MM >0.8 and GS 
>0.2 were selected for downstream analyses. 

2.9 Identification and functional analysis of 
candidate genes

To identify candidate biomarkers associated with PAH, the 
DEGs, key module genes obtained from WGCNA, and MRGs 
were intersected using the ComplexUpset package (version 
1.3.3) (Lex et al., 2014). Functional enrichment analysis of the 
intersected gene set was conducted using the clusterProfiler package 
(version 4.9.4) (Wu et al., 2021) for Gene Ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, 
applying a significance threshold of p < 0.05. A protein-protein 
interaction (PPI) network was constructed through the STRING 
database (https://cn.string-db.org/) and visualized using Cytoscape, 
with the minimum interaction score set to 0.15. 

2.10 Machine learning–based biomarker 
selection

To further refine the list of DEGs associated with PAH and 
mitophagy, five machine learning algorithms support vector 
machine (SVM), generalized linear model (GLM), neural network 
(NN), random forest (RF), and extreme gradient boosting 
(XGBoost) were applied to the training set using the caret package 
(version 6.0–94). Model interpretability and variable importance 
were assessed using the DALEX package (version 2.4.3) (Guan et al., 
2023). Candidate feature genes were subsequently validated in the 
independent validation set, with statistical significance defined as p < 
0.05. Receiver operating characteristic (ROC) curves and area under 
the curve (AUC) values were computed using the pROC package 
(version 1.18.4) (Robin et al., 2011), and an AUC greater than 0.7 
was considered indicative of satisfactory predictive performance. 
Final biomarkers were selected based on a combination of gene 
expression profiles and ROC curve analysis. 

2.11 Functional annotation of biomarkers

Spearman’s correlation analysis was performed between each 
identified biomarker and all other genes in the training set. 
Genes were ranked according to the strength of correlation 
and subjected to gene set enrichment analysis (GSEA) using 
the “c2. kegg.symbols.gmt” collection from the Molecular 
Signatures Database (MSigDB) (https://www.gsea-msigdb.org/
gsea/msigdb), applying a significance threshold of p < 0.05. 
Circos plots depicting the chromosomal distribution of the 
validated biomarkers were generated using the Circos package 
(version 0.69) (Krzywinski et al., 2009). 

2.12 Immune cell infiltration analysis

The relative proportions of 22 immune cell types in PAH 
and control samples from the GSE113439 training set were 
estimated using the CIBERSORT algorithm (version 1.03) 
(Newman et al., 2015). Group differences were assessed using 
the Wilcoxon rank-sum test, and correlations between infiltrating 
immune cell types and identified biomarkers were assessed 
using Spearman’s correlation method (|correlation| >0.3, p < 
0.05). The results were visualized with the ggplot2 package 
(version 3.4.2) (Gustavsson et al., 2022). 

2.13 Single‐cell RNA‐seq data analysis

2.13.1 Quality control
Raw counts from the GSE210248 dataset were processed 

using the Seurat package (version 4.1.1) (Satija et al., 2015). 
Cells were retained based on the criteria of expressing more 
than 200 genes, containing fewer than 10,000 unique molecular 
identifier counts, and exhibiting mitochondrial gene content below 
5%. Gene expression matrices were normalized and scaled using 
the LogNormalize method. Highly variable genes (HVGs) were 
identified using the FindVariableFeatures function with the “vst” 
selection method, and the top 2,000 HVGs were selected for 
downstream analyses. 

2.13.2 Cell clustering and annotation
Principal component analysis was conducted on the scaled data, 

and the significance of principal components (PCs) was assessed 
using the JackStraw and ScoreJackStraw functions. Dimensionality 
reduction and visualization were performed using Uniform 
Manifold Approximation and Projection (UMAP). Clustering was 
carried out as a resolution selected to optimize separation, with 
statistical significance defined as p < 0.05. Cell type annotation was 
conducted by cross-referencing canonical marker genes reported in 
the literature (Crnkovic et al., 2022). 

2.13.3 Cell–cell communication analysis
Intercellular signaling networks were inferred using the 

CellChat package in conjunction with the CellChatDB.human 
reference database. Predicted ligand–receptor interactions and 
enriched signaling pathways between annotated cell types were 
analyzed to elucidate potential modes of cellular communication. 

2.14 Gene set variation analysis (GSVA) and 
pseudotime trajectory of key cells

GSVA scores for each cell were calculated using the GSVA 
package (version 1.49.8) and applied to the validated biomarker 
gene set. Differences in biomarker GSVA scores between PAH 
and control samples across cell clusters were assessed using 
the Wilcoxon rank-sum test, with statistical significance defined 
as p < 0.05 (Hänzelmann et al., 2013). To identify key cell 
populations, Hallmark pathway GSVA scores were computed for 
each cell subcluster using the “h.all.v2022.1. Hs.symbols.gmt” 
gene set. Pathways demonstrating significant differences based 
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TABLE 1  Primer sequence.

Gene Sequence 5’-3’

RRAS-F GTCCTCAGCCCGACATCTCA

RRAS-R GCTGGTCACTTGAGGCTACA

BECN1-F CTTCAATGCGACCTTCCA

BECN1-R TACAACGGCAACTCCTTAG

MFN1-F GCAGCACCAGATAATGCAGC

MFN1-R GCTCTGGTGGAGAAACTGCT

HIF1A-F AAGCAGCAGGAATTGGAACG

HIF1A-R CGTAACTGGTCAGCTGTGGT

TAX1BP1-F TGGATGTAAAGCCAGCAGCA

TAX1BP1-R GCACCATCTGCTCCATCTCT

GAPDH-F AGTCTACTGGCGTCTTCACC

GAPDH-R CCACGATGCCAAAGTTGTCA

on the Kruskal–Wallis test (p < 0.05) were visualized in a 
heatmap. Within the identified key cluster, additional sub-clustering 
was performed at a resolution of 0.02 to delineate cellular 
heterogeneity. Pseudotemporal ordering was reconstructed using 
Monocle2, based on genes with high variability (q < 0.1), and 
dimensionality reduction was performed using the DDRTree 
algorithm to infer developmental trajectories and order cells 
accordingly (Ionkina et al., 2021). 

2.15 qPCR

Total RNA was extracted from lung tissue using TRIzol 
reagent (Ambion), following the manufacturer’s protocol. After 
measuring the concentration, reverse transcribe mRNA into 
cDNA. Quantitative PCR (qPCR) was conducted using the
EasyPure® qPCR SuperMix Kit (TransGen Biotech, China, Cat. 
No. ER101-01) with gene-specific primers (Table 1). Relative gene 
expression levels were determined using the 2−ΔΔCt method, with 
GAPDH serving as the internal control.

2.16 WB

Lung tissue samples were homogenized in 500 µL of RIPA 
lysis buffer (Servicebio, G2002-30 mL) supplemented with protease 
inhibitor cocktail (Proteintech, PR20032) on ice for 10 min and 
subsequently centrifuged at 14,000 × g for 15 min at 4 °C. Protein 
concentrations in the supernatant were determined using a BCA 
assay kit (Merck, BCA1-1KT). Aliquots containing 80 µg of protein 
were mixed with 20 µL of 5× loading buffer, boiled for 5 min, and 
separated on 10% SDS–PAGE gels (Solarbio, G2017).

Proteins were transferred onto PVDF membranes (Merck 
Millipore, SEQ00010) and blocked with 5% nonfat milk in TBS-
T for 1 h at room temperature. Membranes were incubated 
overnight at 4 °C with primary antibodies diluted in blocking buffer: 
RRAS (Proteintech, 66959-1-Ig; 1:1000), BECN1 (Proteintech, 
66665-1-Ig; 1:1000), MFN1 (Zenbio, R27027; 1:1000), TAX1BP1 
(Hanan Biotechnology, HA721648; 1:1000), HIF1A (Abcam, 
ab179483; 1:1000), and β-actin (Proteintech, 66009-1-Ig; 1:25,000). 
After washing, membranes were incubated for 40 min at room 
temperature with either HRP-conjugated goat anti-rabbit IgG 
(Proteintech, SA00001-2; 1:3000) or HRP-conjugated goat anti-
mouse IgG (Servicebio, GB23301; 1:3000).

Protein bands were visualized using Immobilon® UltraPlus 
Western HRP substrate (Millipore, WBULS0500) and imaged 
using the Bio-Rad ChemiDoc™ XRS + system (Bio-Rad, 1708265). 
Densitometric analysis was conducted in ImageJ (v1.8.0.345), and the 
expression levels of target proteins were normalized to β-actin (relative 
quantification = band gray valuetarget ÷ band gray valueβ-actin). 

2.17 Dual immunofluorescence staining

Lung tissue slices (5 μ m) were fixed overnight with 
4% paraformaldehyde (Servicebio, G1101) at room temperature. 
Following permeabilization with 0.2% Triton X-100 in PBS, the 
sections were blocked with PBS containing 5% normal goat serum 
and 2% BSA for 1 h at room temperature. Incubation with primary 
antibodies against inducible nitric oxide synthase (iNOS) (Servicebio, 
GB11119; 1:1000) and LC3 (Servicebio, GB11124; 1:2000), diluted in 
blocking buffer, was carried out overnight at 4 °C. After washing, the 
sections were incubated for 20 min at 37 °C with HRP-conjugated goat 
anti-rabbit IgG (Servicebio, GB23303; 1:500) and HRP-conjugated 
goat anti-mouse IgG (Servicebio, GB23301; 1:500).

Nuclei were counterstained with DAPI (Servicebio, G1012) for 
7 min at room temperature. Slides were mounted using antifade 
medium (Servicebio, G1401). Five fields per section: one central 
and four peripherals were imaged using a fluorescence microscope. 
Fluorescence intensity and the rate of positively stained cells were 
quantified using Image-Pro Plus software. 

2.18 Statistical analysis

All statistical analyses were conducted using R software 
(version 4.1.3). Data are presented as mean ± standard deviation. 
Comparisons between two groups were conducted using either 
a two-tailed Student’s t-test or the Wilcoxon rank-sum test, as 
appropriate. p < 0.05 was considered statistically significant. 

3 Results

3.1 Bioinformatics analysis and in vivo
validation of the relationship between PAH 
and mitophagy

To explore the relationship between PAH and mitochondrial 
dynamics, the GSE113439 training set was analyzed, and 2,753 
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DEGs associated with PAH, including 698 upregulated and 2,055 
downregulated genes (Figures 1A,B; Supplementary Table S3) were 
identified. KEGG pathway enrichment analysis indicated that these 
DEGs were significantly involved in mitophagy-related pathways 
(Figure 1C). A rat model of PAH was subsequently established 
through a single subcutaneous injection of monocrotaline 
(60 mg/kg) at the nape (Figure 1D).

H&E staining indicated a significant increase in medial wall 
thickness of pulmonary arterioles in the PAH group compared 
to the control group (Figures 1E,F; Supplementary Table S4). 
Consistent with histological findings, echocardiographic assessment 
demonstrated significantly elevated distal pulmonary vascular 
resistance in PAH rats compared to controls (Figures 1G,H; 
Supplementary Table S5), thereby confirming successful model 
induction. Immunofluorescence staining presented a pronounced 
upregulation of the autophagy marker LC3 in the PAH 
group, indicative of increased autophagosome formation under 
PAH conditions (Figures 1I,J; Supplementary Table S6). TEM 
further demonstrated prominent mitochondrial structural 
abnormalities in PAH lung tissue, including the formation 
of mitophagosomes (Figure 1K), corroborating the LC3 
immunofluorescence results. 

These findings collectively indicate that PAH is associated with 
mitophagosome formation and disruption of mitochondrial integrity. 
However, further investigation is required to identify the specific PAH-
associated genes contributing to mitochondrial dysfunction. 

3.2 Identification and analysis of candidate 
genes

Integrated bioinformatics analyses and in vivo validation 
indicated a key role for mitophagy in the pathogenesis of 
PAH. WGCNA was conducted on all samples in the training 
set (Supplementary Table S7), with no outlier samples found 
(Supplementary Figure S1A). A total of 14 co-expression modules 
were identified (Figure 2A; Supplementary Figure S1B). Among 
these, the blue module (module eigengene correlation with PAH 
status: r = −0.81) and the turquoise module (r = 0.76) were 
identified as key modules (Figure 2B). Together, these two modules 
encompassed 3,343 genes, including 1,086 in the blue module 
(Figure 2C) and 2,257 in the turquoise module (Figure 2D).

A total of 65 MRGs were retrieved from the MitoCarta 3.0 
database. The intersection of DEGs, key module genes, and MRGs 
resulted in the identification of 13 candidate genes (Figure 2E; 
Supplementary Table S8). GO and KEGG pathway enrichment 
analyses were performed to explore their functional relevance. 
GO analysis indicated 58 significantly enriched terms, comprising 
27 biological process, seven molecular function, and 24 cellular 
component categories (Supplementary Table S9). The top five 
enriched terms included GDP binding, GTPase activity, K48-
linked deubiquitinase activity, GTP binding, and guanyl nucleotide 
binding (Figure 2F). KEGG pathway analysis identified 70 enriched 
pathways, including mitophagy animal, autophagy animal, kaposi’s 
sarcoma associated herpesvirus infection, neurodegenerative 
disease multiple diseases, and opioid peptide signaling pathways 
(Figure 2G; Supplementary Table S9).

A PPI network was constructed using the STRING database, 
comprising of 13 nodes and 54 edges (Figure 2H). Within this 
network, RRAS, BECN1, MFN1, HIF1A, and TAX1BP1 presented 
the highest number of interactions. Overall, the results of WGCNA 
and intersection analyses supported the central involvement of 
mitophagy in PAH and identified 13 candidate genes implicated 
in diverse biological pathways, particularly those related to 
mitochondrial autophagy. 

3.3 Identifying biomarkers

To further refine biomarkers associated with mitochondrial 
autophagy and PAH, five machine learning models SVM, GLM, 
NN, RF, and XGBoost were trained using the training dataset. 
Model performance was subsequently assessed. Feature importance 
rankings derived from the XGBoost and neural network models 
were intersected, resulting in the identification of five top candidate 
genes (Figure 3A; Supplementary Table S10). These genes were 
designated as key biomarkers: RRAS, BECN1, MFN1, HIF1A, and 
TAX1BP1 (Figures 3B,C).

The expression profiles of these five genes were assessed 
across both the training set (GSE113439) and the validation set 
(GSE53408). All five biomarkers demonstrated consistent patterns 
of differential expression (Figure 3D; Supplementary Figure S1E; 
Supplementary Table S11), with BECN1, HIF1A, MFN1, and 
TAX1BP1 significantly downregulated in PAH samples, 
while RRAS was upregulated. ROC curve analysis indicated 
excellent diagnostic performance for each biomarker, with 
AUC values exceeding 0.90 in both datasets (Figure 3E; 
Supplementary Figure S1F; Supplementary Table S12).

From the integrated analyses of differential gene expression 
and diagnostic performance, RRAS, BECN1, MFN1, HIF1A, and 
TAX1BP1 were identified as robust biomarkers associated with 
mitophagy dysregulation in PAH. 

3.4 GSEA and immune infiltration of 
biomarkers

GSEA was conducted to elucidate the biological pathways 
associated with the identified biomarkers during the progression of 
PAH. RRAS, BECN1, HIF1A, and TAX1BP1 were most significantly 
enriched in the spliceosome pathway, while MFN1 presented the 
strongest enrichment in the neuroactive ligand–receptor interaction 
pathway. Notably, all five biomarkers exhibited co-enrichment in 
both the spliceosome and neuroactive ligand–receptor interaction 
pathways (Figures 4A–E; Supplementary Table S13).

Chromosomal mapping of the biomarkers indicated distinct 
genomic loci: RRAS on chromosome 19, BECN1 on chromosome 17, 
HIF1A on chromosome 14, TAX1BP1 on chromosome 7, and MFN1
on chromosome 3 (Figure 4F; Supplementary Table S14). Immune 
cell infiltration in PAH versus control lung tissues was subsequently 
assessed using the CIBERSORT algorithm. Among the 22 immune 
cell subsets analyzed (Figure 4G; Supplementary Table S15), 
5 cell types: M1 macrophages, eosinophils, activated natural 
killer (NK) cells, activated dendritic cells, and CD8+ T cells 
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FIGURE 1
Bioinformatics analysis of PAH‐associated DEGs and in vivo validation. (A) volcano plot of DEGs in the GSE113439 training set; (B) Heatmap of DEGs;
(C) KEGG pathway enrichment analysis shows a significant association of DEGs with mitophagy‐related pathways; (D) Schematic of the 
monocrotaline‐induced PAH rat model; (E) H&E staining of rat lung tissue demonstrating histopathological changes (Scale bar 50 μm); (F) quantification 
of pulmonary arterial medial wall thickness from H&E images. (G) Echocardiographic assessment of PAH model validation. (H) quantitative 
echocardiographic parameters: PAAT/PAET; (I) Immunofluorescence detection of LC3 expression in rat lung tissue (Scale bar 100 μm); (J) quantitative 
analysis of LC3 immunofluorescence intensity; (K) TEM of mitochondrial morphology: yellow arrows indicate normal mitochondria in the CK,and blue 
arrows indicate mitophagosome formation and reduced mitochondrial area in the PAH group. Scale bar: 2 μm. Data are presented as mean ± SEM. ns, p > 
0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001. 
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FIGURE 2
Identification and analysis of 13 candidate genes associated with PAH and mitophagy. (A) dendrogram showing the 14 co‐expression modules identified 
by WGCNA; (B) Heatmap of module-trait correlations: The blue and turquoise modules exhibit the strongest correlations with PAH status;
(C) scatterplot of gene significance versus module membership for the blue model; (D) Scatterplot of gene significance versus module membership for 
the turquoise model; (E) venn diagram illustrating the intersection of DEGs, key module genes, and MRGs, yielding 13 candidates; (F) GO enrichment 
analysis of the 13 candidate genes, showing the top enriched term; (G) KEGG pathway enrichment bubble chart for the 13 candidate genes; (H) PPI 
network of the 13 candidate genes.

were found to differ significantly between the two groups 
(Figure 4H; Supplementary Table S15).

Correlation analysis demonstrated a positive association 
between CD8+ T cells and activated NK cells, and a 
negative association between CD8+ T cells and eosinophils 
(Supplementary Figure S1C; Supplementary Table S15). These 
findings indicate that, along with their distinct chromosomal 
distribution, the identified biomarkers are associated with specific 
alterations in the immune landscape of PAH. The elevated 
infiltration of M1 macrophages, eosinophils, activated NK cells, 
activated dendritic cells, and CD8+ T cells in PAH lung tissue 

indicates a potentially important role for these immune populations 
in the pathogenesis of the disease. 

3.5 Functional characterization of five key 
biomarkers in macrophages revealed by 
scRNA‐Seq

To identify key cell populations associated with PAH, scRNA-
seq data from GSE210248 were analyzed. Following quality 
control retaining cells with 200 to 10,000 found genes and 
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FIGURE 3
Identification of biomarkers and ROC analyses. (A) cumulative residual distribution plot; (B) Ranking of feature importance for candidate genes across five 
machine learning model; (C) feature importance ranking in the XGBLinear and neural network (NNet) model; (D) validation of biomarker expression in the 
training datasets; (E) ROC curves for each biomarker in the training set. Data are presented as mean ± SEM. ns, p > 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p
< 0.001; ∗∗∗∗p < 0.0001. 

fewer than 5% mitochondrial reads, a total of 21,794 cells were 
included in the analysis (Supplementary Figure S2A,B). Highly 
variable genes, including SEPTIC, TPSAB1, APOE, S100A8, ACKR1, 

S100A9, CCL20, ACTA2, and LUM, were identified and annotated 
(Supplementary Figure S2C). The top 30 PCs were visualized and 
assessed for statistical significance (Supplementary Figure S2D-F), 
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FIGURE 4
GSEA enrichment analysis, chromosomal localization, and immune infiltration analysis. (A–E) GSEA enrichment analysis of five candidate genes;
(F) chromosomal localization map of five candidate genes; (G) infiltration analysis of 22 immune cell types between PAH patients and normal controls; (H)
box plots of estimated proportions of 22 immune cell types in control and PAH lung tissues. In the figures, ns indicates p > 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p 
< 0.001; ∗∗∗∗p < 0.0001.

and the top 10 marker genes per cluster were displayed in 
a heatmap (Supplementary Figure S2G).

UMAP of the PCs segregated the cells into 16 distinct subclusters 
(Figure 5A). According to canonical marker genes from the 
literature, 12 cell types were annotated: B cells, mast cells, epithelial 
cells, dendritic cells, endothelial cells, NK cells, granulocytes, 
smooth muscle cells, T/NK cells, monocytes/macrophages, T 
cells, and fibroblasts (Figure 5B). Marker gene specificity analysis 
confirmed that each cell type expressed its respective canonical 
markers at the highest levels (Figure 5C).

Intercellular communication networks in control and PAH 
samples were inferred using the CellChat package (Figures 5D,E). 
T cells and T/NK cells were identified as major signal receivers 
in both groups, with the overall signaling strength observed 
to be greater in PAH. In contrast, monocytes/macrophages 
emerged as the dominant signal-sending population in 
PAH samples (Supplementary Figure S3A-D). Key signaling 
pathways mediating interactions involving T and T/NK 
cells included CCL, CXCL, MIF, galectin, IL-2, and SPP1 
networks (Supplementary Figure S3E), whereas up to 12 major 

pathways were implicated in monocyte/macrophage-mediated 
interactions (Supplementary Figure S3F).

To determine key PAH-associated cell types, cell cluster 
proportions were compared between PAH and control samples. 
Three cell populations - epithelial cells, granulocytes, and 
monocytes/macrophages were significantly enriched in PAH 
samples (Figure 6A; Supplementary Table S16). Evaluation 
of biomarker expression patterns across these clusters 
(Supplementary Table S16), in conjunction with the communication 
analyses, indicated that monocytes/macrophages demonstrated the 
highest signal integration strength, identifying them as the key cell 
population (Figure 6B).

GSVA comparing M1 and M2 macrophage subtypes indicated 
distinct functional programs. M1 macrophages presented 
enrichment in the mitotic spindle, angiogenesis, and DNA repair 
pathways, whereas M2 macrophages were enriched for the hedgehog 
signaling, apical surface, and estrogen response late signatures 
(Figure 6C; Supplementary Table S16).

Pseudotime trajectory reconstruction was performed using 
Monocle2, based on highly variable genes (q < 0.1), to delineate 
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FIGURE 5
Single‐cell clustering and intercellular communication analyses. (A) UMAP projection of all cells prior to annotation; (B) UMAP plot with cells colored by 
annotated cell type; (C) expression of canonical marker genes across the annotated cell types; (D, E) Heatmaps showing the number of potential 
ligand-receptor pairs between cell types in the CK (D) and PAH (E).

macrophage differentiation states and lineage bifurcation 
(Supplementary Table S16). Following branch point 2, cells diverged 
into State 3 and State 4, both of which were enriched for M2 
macrophages, indicating the successful induction of distinct 
macrophage phenotypes at this branching point (Figures 6D–F). 
Temporal expression dynamics of the five biomarkers indicated that 
BECN1, MFN1, and RRAS maintained relatively stable expression 
across states, whereas TAX1BP1 expression exhibited a progressive 
increase over pseudotime, and HIF1A expression peaked early 
before declining (Figures 6G–I).

To further explore the relationship between the identified 
biomarkers and macrophage subtypes, prior bioinformatics findings 
(Supplementary Figure S4A) were integrated with single-cell data. 
Heatmap analysis demonstrated a negative correlation between 
RRAS and M1 macrophages, while BECN1, HIF1A, MFN1, 
and TAX1BP1 were positively correlated with M1 macrophages 
(Supplementary Figure S4B; Supplementary Table S15), this 

suggests that macrophages may be involved in disease progression in 
PAH tissues. Because the identified biomarkers were associated with 
M1 macrophages, we further quantified the M1/M M2 macrophage 
proportion in PAH tissues (Supplementary Figure S5A) and 
analyzed the correlations between the five genes (RRAS, BECN1, 
MFN1, HIF1A and TAX1BP1) and canonical M1/M2 surface 
markers or functional molecules (Supplementary Figure S5B–D). 
The data confirmed that all five genes are statistically linked to M1 
and/or M2 macrophages. 

3.6 Validation of mitophagy-related PAH 
genes using qPCR, WB, and 
immunofluorescence co-localization

To investigate the expression changes of the five biomarkers 
in PAH, qPCR and WB analyses were conducted on rat lung 
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FIGURE 6
Identification of key cell type, pseudotime trajectories, and dynamic biomarker expression. (A) bar plot showing differential proportions of cell clusters 
between PAH and control samples; (B) Bubble plot illustrating the expression levels of the five candidate genes across annotated cell types; bubble size 
indicates the percentage of expressing cells, and colour intensity reflects expression magnitude; (C) heatmap of pathway enrichment analysis in the 
 (Continued)
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FIGURE 6 (Continued)

identified key cell population; (D-F) Pseudotime trajectory analysis of the key cell type: each point represents an individual cell coloured by pseudo 
time (dark blue = early state; light blue = late state). Black circles with numbers denote distinct cell-state nodes identified during trajectory inference;
(G, H) dynamic expression changes of BECN1, HIF1A, MFN1, RRAS, and TAX1BP1 along pseudotime in macrophage subtypes, stratified by cell state; (G)
and macrophage polarization (M1 vs. M2) (H); (I) Violin plots showing state-specific expression patterns of the five hub genes.

tissues. Results from both qPCR and WB analyses indicated 
that, compared with the control (CK) group, the expression 
level of RRAS was significantly upregulated in the PAH group. 
In contrast, the expression levels of BECN1, HIF1A, TAX1BP1, 
and MFN1 were significantly downregulated (Figures 7A,B; 
Supplementary Table S17; Supplementary Table S18).

Additionally, immunofluorescence double-labeling co-
localization analysis was employed to examine the expression 
and localization of microtubule-associated protein LC3 and iNOS. 
Compared with the CK, the PAH exhibited significantly increased 
expression of both iNOS and LC3, accompanied by significantly 
enhanced co-localization (Pearson’s correlation coefficient R = 
0.63). In contrast, minimal co-localization was observed in the 
CK (Pearson’s correlation coefficient R = 0.12) (Figures 7C–G; 
Supplementary Table S19). These findings indicate that iNOS may 
participate in the autophagic pathway and be closely associated 
with inflammatory responses. Next, combining the qPCR results 
with the immunofluorescence detection of the M1 marker iNOS, 
we assessed the correlation between each candidate gene and 
iNOS. Pearson correlation analysis (p < 0.05) demonstrated a 
positive correlation between RRAS and iNOS, while BECN1, 
MFN1, HIF1A and TAX1BP1 were negatively correlated with 
iNOS (Supplementary Figure S5E; Supplementary Table S20). These 
findings indicate that the identified genes may differentially regulate 
M1/M2 polarization and macrophage functional status in PAH.

From these results, a schematic diagram was constructed 
to depict the relationship between the five biomarkers and 
mitochondrial processes in PAH (Figure 7H). Collectively, 
the identified mitochondrial-related genes were expressed in 
macrophages, indicating that PAH may influence their expression, 
thereby affecting mitochondrial processes such as mitophagy, 
mitochondrial fission, and autophagosome formation. These 
findings indicate that the five biomarkers play critical roles in 
the pathogenesis of PAH, potentially through the dysregulation 
of mitophagy and its impact on disease progression. 

4 Discussion

In this study, the relationship between PAH and mitophagy was 
systematically investigated through the integration of bioinformatics 
analysis, animal experiments, and scRNA-seq. Five key biomarkers 
involved in the pathogenesis of PAH (RRAS, BECN1, MFN1, 
HIF1A, TAX1BP1) were ultimately identified, providing new 
evidence for understanding the molecular mechanisms of PAH 
and developing diagnostic/therapeutic strategies. The discussion 
covers mitophagy in PAH, candidate gene screening and validation, 
biomarker function, immune microenvironment interplay, single-
cell macrophage insights, and mechanistic experiments.

From the analysis of the GSE113439 dataset, a total of 2,753 
DEGs associated with PAH were identified. KEGG pathway 

enrichment analysis indicated that these genes were closely 
linked to the mitophagy pathway. This result is consistent 
with previous studies reporting the key involvement of 
mitochondrial dysfunction in the initiation and progression of 
PAH (Zhang et al., 2025; Zhang et al., 2022; Colon Hidalgo et al., 
2022). Mitophagy has attracted increasing attention since 
its initial characterization (Lemasters, 2005). Physiological 
mitophagy preserves mitochondrial homeostasis; in PAH its 
dysregulation amplifies oxidative stress, drives vascular remodeling 
and hastens disease progression (D'Arcy, 2024). MCT-induced 
PAH rats confirmed mitophagy activation as a maladaptive 
stress response, yet its stage-specific regulation remains unclear 
(Mao et al., 2023; Chen et al., 2018).

WGCNA of PAH lungs intersected with DEGs and MRGs 
yielded 13 candidates enriched for GDP/GTP binding, GTPase 
activity, mitophagy and neurodegeneration pathways. WGCNA 
of PAH lung tissue intersected with DEGs and MRGs yielded 
13 candidates enriched for GDP/GTP binding, GTPase activity, 
mitophagy and neurodegeneration pathways. Consistent with 
previous reports (such as BECN1 being a key regulator of 
autophagy (Liang et al., 1999; Fernández et al., 2018), HIF1A 
being involved in hypoxia induced vascular remodeling (Dai et al., 
2024), and MFN1 maintaining mitochondrial dynamics and 
homeostasis) (Tábara et al., 2025).

PPI network analysis pinpointed RRAS, BECN1, MFN1, HIF1A 
and TAX1BP1 as central hubs linking mitophagy to PAH. Applying 
five machine-learning algorithms (SVM, GLM, NN, RF, XGBoost) to 
the training cohort and validating in GSE53408 identified these five 
genes as robust diagnostic biomarkers with AUC >0.90. The relevant 
biomarkers identified in this study reveal the pathological mechanisms 
of pulmonary vascular remodeling, mitochondrial dysfunction, and 
macrophage activation in PAH, and exploring their expression 
characteristics in peripheral blood mononuclear cells (PBMCs) can 
provide a supplement for the development of non-invasive detection 
methods. Recent studies on high-altitude PAH (HAPH, an important 
subtype of PAH) have shown (Wu et al., 2023). This study showed that 
C1 (atypical) and C2 (intermediate) monocyte subsets were enriched 
in PBMCs of HAPH patients, and the expression of HIF-1 α was 
significantly reduced. This is consistent with the downregulation trend 
of HIF-1A in PAH rat lung tissue in this study, suggesting that abnormal 
expression of HIF-1A may exhibit a similar pattern in PBMCs. In 
addition, the study suggests that HAPH has a common immune 
adaptation mechanism with other types of PH, which also supports 
the possibility of the markers identified in this study maintaining 
consistent expression in PBMCs. I plan to include PBMC samples 
from PAH patients in the future to clarify the tissue peripheral blood 
expression association of these biomarkers and further extend the 
clinical value of the biomarkers in this study. 

Among the identified biomarkers, RRAS, a member of the RAS 
superfamily and a well-established oncogene, represented a novel 
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FIGURE 7
Validation of the Relationship between Biomarkers and Mitochondria. (A) expression levels of RRAS, BECN1, MFN1, HIF1A and TAX1BP1 in rat lung tissues 
detected by qPCR; (B) protein expression levels of RRAS, BECN1, MFN1, HIF1A and TAX1BP1 in rat lung tissues detected by WB; (C) expression and 
localization of LC3 and iNOS detected by immunofluorescence double-labeling colocalization analysis; (D) relative expression levels of 
 (Continued)
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FIGURE 7 (Continued)

iNOS in lung tissues; (E) relative expression levels of autophagy marker LC3 in lung tissues; (F) relative colocalization levels of LC3 and iNOS in lung 
tissues of CK and PAH; (G) normalized Pearson’s correlation coefficient (Pearson’s R) for colocalization of LC3 + iNOS in lung tissues Scale bar 100 μm;
(H) Schematic diagram of the relationship between the five biomarkers and mitochondria. In the figures, ns indicates p > 0.05; ∗p < 0.05; ∗∗p < 
0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

finding in the context of PAH, particularly in relation to mitophagy 
(Liu et al., 2017; Weber and Carroll, 2021). Traditionally, RRAS has been 
associated with cell proliferation and tumorigenesis via modulation of 
the MAPK and PI3K/AKT signaling pathways (Bahar et al., 2023). 
However, through WGCNA, machine learning, and validation using 
quantitative PCR and WB, RRAS was significantly upregulated in lung 
tissues from patients with PAH, indicating a potential non-oncogenic 
pathological role in the disease. Although direct evidence linking 
RRAS to PAH pathogenesis remains limited, its identification as a 
mitophagy-related biomarker in osteoarthritis supports its possible 
involvement in mitochondrial quality control beyond its classical role 
in cancer biology (Ruan et al., 2024). 

Single-cell data linked RRAS to M1-macrophage state transitions; 
dual immunofluorescence showed RRAS upregulation coinciding 
with enhanced iNOS/LC3 co-localization (PAH R = 0.63 vs. 
control R = 0.12), implying RRAS-driven mitophagy modulation via 
inflammation. Concordant CIBERSORT analyses revealed expanded 
M1 infiltrates in PAH, and published evidence indicates RRAS can 
trigger NF-κB–dependent IL-6/TNF-α release to promote vascular 
remodeling and elevated pulmonary pressures (Tago et al., 2019). 

Further correlation analysis between biomarker expression 
and immune cell populations demonstrated a positive association 
between RRAS and activated dendritic cells (DCs) as well as 
eosinophils. DCs, which serve as central regulators of immune 
responses, have been increasingly implicated in PAH pathogenesis 
(van Uden et al., 2021; Koudstaal et al., 2020).

It can induce T cell differentiation into Th17 cells, and the 
imbalance of Th17/regulatory T cells is involved in the occurrence 
of hypoxia induced, chronic obstructive pulmonary disease related, 
and connective tissue disease-related PAHs (Zhu et al., 2019). 
In addition, recent studies have found that the peripheral blood 
eosinophil count of PAH patients is reduced, which may play 
a protective role by releasing lipid mediators such as 14-HDHA 
and 17-HDHA to promote regression, reduce inflammatory cell 
infiltration, and maintain the homeostasis of pulmonary artery 
smooth muscle cells (Shu et al., 2023).

These observations provide novel insights into the potential role 
of RRAS in cardiovascular disease and highlight the need for further 
mechanistic studies.

GSEA indicated that RRAS, BECN1, MFN1, HIF1A, and 
TAX1BP1 were significantly enriched in the spliceosome and 
neuroactive ligand–receptor interaction pathways. Dysregulation of 
spliceosome function has been implicated in cardiovascular disease 
and is also recognized as a contributor to mitochondrial dysfunction 
(Cao et al., 2024; Zhou et al., 2025). The neuroactive ligand–receptor 
interaction pathway may participate in the neuroendocrine 
dysregulation observed in PAH (Chinnappan et al., 2019).

ScRNA-seq of GSE210248 identified monocytes/macrophages 
as the dominant PAH-associated population; GSVA showed 
M1 activation via mitotic-spindle/angiogenesis pathways and 

M2 differentiation via hedgehog signaling, underscoring 
subset heterogeneity. Pseudotime trajectories revealed stable 
BECN1/MFN1/RRAS, rising TAX1BP1, and biphasic HIF1A, 
with RRAS negatively and the other four genes positively 
correlated with M1 signatures, implying distinct regulatory roles. 
qPCR/WB validated RRAS upregulation and downregulation 
of BECN1, MFN1, HIF1A and TAX1BP1 in PAH lungs, 
while immunofluorescence showed enhanced iNOS/LC3 co-
localization (R = 0.63), indicating inflammatory-autophagy 
crosstalk (de Lavera et al., 2017). Collectively, these findings 
validate the functional significance of the identified biomarkers 
and indicate that mitophagy dysfunction, potentially driven by 
inflammatory dysregulation, may contribute to the pathological 
progression of PAH (Marchi et al., 2023).

This study is based on lung tissue validation. Although it can 
accurately reflect the core pathological features of mitochondrial 
dysfunction and macrophage activation, lung biopsy is not a routine 
examination for PAH patients and poses a key challenge to biomarker 
transformation. Previous studies have confirmed that bronchoalveolar 
lavage fluid (BALF) can be used as a minimally invasive sample 
for lung marker detection in acute respiratory distress syndrome 
(ARDS) subtypes (Sathe et al., 2023), and can also detect pulmonary 
macrophage derived markers (such as Fizz1) associated with vascular 
remodeling in hypoxia induced PAH (HPH, PAH subtypes) (Li et al., 
2024). Subsequently, lung monocytes/macrophages enriched in BALF 
can be utilized to establish their expression association with lung tissue 
markers through ultra sensitive techniques, and sample processing can 
be optimized by combining PAH pathology. If it can be confirmed 
that the levels of biomarkers in BALF are correlated with clinical 
indicators of PAH, they can be converted into minimally invasive 
detection indicators, which can avoid the invasiveness of lung biopsy 
while retaining accurate reflection of the pathological status of PAH, 
laying the foundation for clinical application. 

Although our single-cell analysis was limited to lung tissue, it 
remains unclear whether the five mitophagy-related biomarkers 
exhibit similar M1/M2-associated expression patterns in peripheral 
blood mononuclear cells (PBMCs) of PAH patients. This tissue 
specificity question is critical for translating our findings into 
minimally invasive diagnostic tools. Future studies should 
therefore compare the transcriptional profiles of circulating 
monocytes/macrophages with their pulmonary counterparts to 
determine if PBMCs can serve as a surrogate for lung-based 
biomarker assessment. 

5 Conclusion

Integrative analyses revealed a strong association between 
PAH and mitophagy, identifying RRAS, BECN1, MFN1, HIF1A,
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and TAX1BP1 as potential diagnostic biomarkers. These findings 
contribute to the theoretical understanding of the pathological 
mechanisms involved in PAH and offer novel perspectives 
for the development of diagnostic and therapeutic strategies. 
Further research should focus on clinical validation and targeted 
intervention studies to facilitate the translational application of these 
biomarkers in clinical practice. 

6 Limitations and future directions

Several limitations of this study should be acknowledged. 
The heterogeneity of PAH may affect biomarker expression 
patterns, underscoring the need for more refined, stratified 
analyses in future research. Additionally, the underlying molecular 
mechanisms require further validation by genetic knockout 
models or pharmacological interventions. Future research should 
prioritize clinical validation and interventional studies to support 
the translational application of these biomarkers in the clinical 
management of PAH.
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SUPPLEMENTARY FIGURE S1
WGCNA analysis. (A) WGCNA analysis showing no abnormal samples; (B)
WGCNA analysis identifying 14 expression modules; (C) Correlation diagram 
between different immune cells; (D) Correlation heatmap of PAH in different 
immune cells; (E) Validation of biomarker expression in the validation datasets; (F)
ROC curves for each biomarker in the validation set. Data are presented as mean 
± SEM. ns, p > 0.05; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.

SUPPLEMENTARY FIGURE S2
Single-cell sequencing analysis. (A,B): Quality control and preprocessing of 
single-cell RNA sequencing data; (C) Volcano plot of highly variable gene 
screening; (D) Fragmentation plot of principal component analysis for single-cell 
samples; (E): Line plot of principal component analysis; (F) Two-dimensional 
scatter plot of principal component analysis (PCA); (G) Gene 
enrichment heatmap.
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SUPPLEMENTARY FIGURE S3
Cell–cell communication network analysis among vascular and immune cell 
populations. (A, B) Global intercellular communication network of the analyzed 
cell populations. Each node represents a specific cell type, and the edge thickness 
indicates the interaction strength between sender and receiver cells. The color 
and size of the nodes reflect the interaction strength and total communication 
probability, respectively; (C, D) Quantitative analysis of outgoing and incoming 
interaction strength of each cell type. The x-axis represents outgoing interaction 
strength (signal sending capacity), and the y-axis represents incoming interaction 
strength (signal receiving capacity). Node size indicates the total number of 
interactions; (E) Representative ligand–receptor signaling networks, including 
CCL, CXCL, SPP1, and MIF pathways, demonstrating the major communication 
axes among fibroblasts, macrophages, smooth muscle cells, and T cells. Thicker 
lines represent stronger communication probabilities between cell types; (F)
Heatmap showing the roles of different cell types in the CCL signaling pathway, 
categorized as sender, receiver, mediator, or influencer. The intensity of the color 
corresponds to the interaction strength.

SUPPLEMENTARY FIGURE S4
Flowchart of biomarker screening and correlation with key cells. (A) Flowchart for 
screening BECN1, HIF1A, MFN1, RRAS, and TAX1BP1; (B) Correlation analysis of 

BECN1, HIF1A, MFN1, RRAS, and TAX1BP1 with M1-type macrophages. The colour 
and size of the circles indicate the correlation of gene expression, where the 
colour ranges from blue to red, representing the correlation from negative to 
positive, and the larger the circle, the stronger the correlation.

SUPPLEMENTARY FIGURE S5
Correlation between M1/M2 macrophages and PAH, as well as five candidate 
genes. (A) Bar chart of the M1/M2 ratio of macrophages in PAH and control 
tissues calculated based on single-cell bioinformatics analysis; (B) Bubble plot of 
the expression of 5 candidate genes (RRAS, BECN1, MFN1, HIF1A, TAX1BP1) in 
M1/M2 macrophages; (C) Correlation heatmap between 5 candidate genes 
(RRAS, BECN1, MFN1, HIF1A, TAX1BP1) and typical markers of M1/M2 (such as M1: 
CCL5, M2: CD163, MRC1) (correlation coefficient r is represented by color, −0.5 is 
significant negative correlation, 1.0 is significant positive correlation); (D) The 
correlation heatmap between 5 candidate genes (RRAS, BECN1, MFN1, HIF1A, 
TAX1BP1) and functional factors (such as M1: IDO1, MMP9, IRF1, IRF5, CXCL9, M2: 
TGFβ family, CCL22, LYVE1, VEGF family, etc.) (correlation coefficient r is 
represented by color, −0.5 is a significant negative correlation, 1.0 is a significant 
positive correlation) ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; (E) Scatter plots 
(correlation coefficient R2) of 5 candidate genes (RRAS, BECN1, MFN1, HIF1A, 
TAX1BP1) and iNOS.
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