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Study objective: Acute sleep deprivation significantly impacts cognitive
function, contributes to accidents, and increases the risk of chronic illnesses,
underscoring the need for reliable and objective diagnosis. Our work aims
to develop a machine learning-based approach to discriminate between EEG
recordings from acutely sleep-deprived individuals and those that are well-
rested, facilitating the objective detection of acute sleep deprivation and
enabling timely intervention to mitigate its adverse effects.

Methods: Sixty-one-channel eyes-open resting-state electroencephalography
(EEG) data from a publicly available dataset of 71 participants were analyzed.
Following preprocessing, EEG recordings were segmented into contiguous,
non-overlapping 20-second epochs. For each epoch, a comprehensive set
of features was extracted, including statistical descriptors, spectral measures,
functional connectivity indices, and graph-theoretic metrics. Four machine
learning classifiers - Light Gradient-Boosting Machine (LightGBM), eXtreme
Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Classifier
(SVC) - were trained on these features using nested stratified cross-validation
to ensure unbiased performance evaluation. In parallel, three deep learning
models-a Convolutional Neural Network (CNN), Long Short-Term Memory
network (LSTM), and Transformer-were trained directly on the raw multi-
channel EEG time-series data. All models were evaluated under two conditions:
(i) without subject-level separation, allowing the same participant to contribute
to both training and test sets, and (ii) with subject-level separation, where
models were tested exclusively on unseen participants. Model performance
was assessed using accuracy, Fl1-score, and area under the receiver operating
characteristic curve (AUC).

Results: Without subject-level separation, CNN achieved the highest accuracy
(95.72%), followed by XGBoost (95.42%), LightGBM (94.83%), RF (94.53%),
and SVC (85.25%), with the Transformer (77.39%) and LSTM (66.75%)
models achieving lower accuracies. Under subject-level separation, RF
achieved the highest accuracy (68.23%), followed by XGBoost (66.36%),
LightGBM (66.21%), CNN (65.35%), and SVC (65.08%), while the Transformer
(63.35%) and LSTM (61.70%) models achieved the lowest accuracies.
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Conclusion: This study demonstrates the potential of EEG-based machine
learning for detecting acute sleep deprivation, while underscoring the
challenges of achieving robust subject-level generalization. Despite reduced
accuracy under cross-subject evaluation, these findings support the feasibility
of developing scalable, non-invasive tools for sleep deprivation detection using
EEG and advanced ML techniques.

KEYWORDS

acute sleep deprivation, electroencephalogram (EEG), ensemble models, feature
importance, machine learning

1 Introduction

Sleep deprivation induces a wide range of neurological and
behavioral impairments that significantly undermine cognitive
functioning. Sleep deprivation leads to a phenomenon known
as ‘localized sleep, wherein specific brain regions transition
into a sleep-like state while the individual remains awake
(Vyazovskiy et al., 2011) leading to measurable lapses in cognitive
and motor performance (Hung et al, 2013). Moreover, sleep
deprivation disrupts the functional connectivity of critical
brain networks diminishing communication efficiency across
brain regions (Bernardi et al., 2015). Notably, the cognitive
effects of sleep deprivation are task-dependent, with executive
functions, such as impulse control and visuomotor coordination,
exhibiting heightened vulnerability (Bernardi et al., 2015).
Moreover, these studies have demonstrated that the increasing
occurrence of local neuronal off periods during extended
wakefulness correlates with progressive declines in task performance
(Hung et al, 2013; Bernardi et al, 2015). Collectively, these
findings underscore the essential role of sleep in maintaining
cognitive and behavioral stability while highlighting the intricate
neural mechanisms through which sleep deprivation compromises
brain function.

The real-world implications of these findings are profound,
particularly given the high prevalence of acute sleep deprivation
in modern society (Gohari et al, 2024). The combination of
impaired impulse control, diminished visuomotor coordination
and attention lapses significantly increases the likelihood of
accidents and human errors (Kayser et al., 2022). These risks are
particularly critical in professions requiring sustained attention
and precise motor skills, such as healthcare, transportation, and
manufacturing. Furthermore, cognitive deficits associated with
acute sleep deprivation, including reduced concentration and
impaired decision-making (Killgore et al., 2006), negatively affect
workplace efficiency and productivity (Brossoit et al., 2019). The link
between acute sleep deprivation and diminished impulse control
has also been associated with behavioral impulsivity, disinhibition,
and increased aggression, contributing to broader implications
for mental health and social behavior (Killgore, 2010). Despite
the adverse effects of acute sleep deprivation, current detection
methodologies primarily rely on self-reported sleep metrics or
laboratory-based assessments. While laboratory tests are often
resource-intensive and impractical for real-time monitoring (Mitler
and Miller, 1996), self-reported metrics are biased or influenced
by financial and peer pressure considerations. Therefore, there is
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a critical need for reliable, objective, and portable tools capable
of detecting acute sleep deprivation in real-world settings and
mitigating its impact.

Electroencephalography (EEG) has been validated as an
effective modality for capturing neural alterations associated
with sleep deprivation (Lian et al, 2023). Spectral analysis
of EEG signals consistently reveals shifts in brain oscillatory
activity that correspond to cognitive and behavioral impairments
(Tramonti Fantozzi et al.,, 2022; Gorgoni et al., 2014; Tassi et al,,
20065 Forest and Godbout, 2000). Sleep deprivation is characterized
by increased power in low-frequency bands (delta, theta) and
reduced power in higher-frequency bands (alpha, beta), particularly
in cortical regions implicated in attention and visual processing
(Lian et al., 2023; Liu et al., 2025; Hung et al., 2013).

Regional differences in neural activity have been consistently
documented. In frontal regions, total sleep deprivation has been
shown to lead to a marked loss of functional connectivity in
prefrontal cortical areas, characterized by reductions in clustering
coefficient in the alpha band and increases in path length in
the theta band (Verweij et al., 2014). Additionally, prolonged
wakefulness produces a robust increase in frontal low EEG activity
(1-7 Hz), reflecting heightened sleep pressure and cortical fatigue
(Cajochen etal., 2001). In contrast, in parietal and occipital regions,
significant reductions in alpha-band power and increases in delta-
band power in the precuneus, inferior parietal lobule, and superior
parietal lobule have been reported following 24 h of total sleep
deprivation (Lian et al., 2023). Furthermore, theta-band power in
centro-parieto-occipital areas increases substantially after prolonged
sleep deprivation, with greater elevations correlating with more
severe vigilance impairments (Liu et al., 2025). Collectively, these
studies highlight the sensitivity of both frontal and posterior
cortical regions to sleep loss, demonstrating the effectiveness of
EEG in detecting neural alterations relevant to cognitive decline
and underscoring its utility for machine learning-based acute sleep
deprivation classification.

Machine learning has been widely applied in EEG-based sleep
research, with ensemble methods (Mienye and Sun, 2022) and
traditional classifiers frequently demonstrating robust performance.
Ensemble techniques, such as Random Forest (RF) (Zhao et al.,
2022; Monowar et al., 2025), eXtreme Gradient Boosting (XGBoost)
(Wang et al., 2024; Monowar et al., 2025), and Light Gradient-
Boosting Machine (LightGBM) (Wang et al, 2023; Jain and
Ganesan, 2025), have been successfully deployed to model complex,
nonlinear patterns in heterogeneous EEG datasets, enhancing
generalizability and mitigating overfitting. Support Vector Machines
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(SVMs) (Kumari et al., 2020) also remain competitive, especially in
sleep quality (Wen, 2021) and disorder detection tasks (Falih et al.,
2024; Djemal et al.,, 2025; Bansal et al.,, 2025; Kim et al,, 2025),
due to their capacity to accommodate high-dimensional spaces and
nonlinear separations.

Deep learning (DL) approaches, including convolutional neural
networks (CNNs) (Zhang et al.,, 2023; Tanci and Hekim, 2025),
hybrid CNN-LSTM (Long Short-Term Memory) architectures
(Zhuang et al., 2022), and more recently Transformer-based models
(Wan et al., 2025), have emerged as powerful tools by learning
spatial and temporal representations directly from raw EEG signals.
However, studies indicate that, particularly when dataset size is
limited, traditional machine learning models, such as SVMs and
decision trees, can offer greater robustness and interpretability
compared to deep learning approaches, which often require
extensive data and computational resources (Rahul et al., 2024).

Despite these advancements, the application of machine
learning for the detection of acute sleep deprivation remains
underexplored. Existing work in this domain is scarce, with
only one notable study to date (Baygin, 2025). Although it
achieved high classification accuracy, the study lacked a focus on
interpretability, which reduces its relevance for clinical application.
Without physiologically grounded explanations, model predictions
remain difficult to translate into actionable neurophysiological
insights.

The present study aims to address these shortcomings
by (i) extracting a comprehensive set of statistical, spectral,
with
implementing

functional connectivity, and graph-theoretic features

(ii)

nested stratified cross-validation framework with subject-level

clear neurophysiological relevance, a
separation to derive realistic generalization estimates for unseen
individuals. (iii) conducting feature importance analyses to
enhance interpretability and lay the groundwork for clinical

integration.

2 Methods
2.1 Dataset

For this study, we leveraged an open-source eyes-open resting-
state EEG dataset containing data from 71 healthy young adults (34
females, 37 males), ranging from 17 to 23 years old, with a mean age
of 20 + 1.44 years (Xiang et al., 2024). Participants were excluded
if they had a history of psychiatric disorders, anxiety, depressive
symptoms, respiratory disturbances during sleep, or recent illness.
Sleep quality was assessed prior to participation to confirm normal
sleep patterns. A within-subject experimental design was employed,
wherein each participant completed two sessions, one during well-
rested wakefulness, following a normal sleep cycle and another after
acute sleep deprivation.

The order of sessions was counterbalanced to mitigate
sequence effects, with an interval of 7 days to 1 month between
conditions. To minimize circadian variability, the two sessions
for each participant were scheduled within the same fixed
timeframe (morning or afternoon), with most participants
(81.6%) having less than a 1.5-h difference in session start
times between conditions. For the acute sleep deprivation

Frontiers in Physiology

03

10.3389/fphys.2025.1668129

condition, participants remained awake for 24-30h under
continuous monitoring by experimenters. Actigraphy was used
to ensure compliance. Both sessions followed an identical testing
protocol, beginning with cognitive and behavioral assessments,
including the Psychomotor Vigilance Task (PVT) to assess
alertness. Resting-state EEG recordings were acquired using
a 61-channel system (Brain Products GmbH, Germany) at a
sampling rate of 500 Hz. Electrode impedance was maintained
below 5KQ. EEG data were recorded for five minutes with
eyes open. Participants were instructed to fixate on a point,
minimize movement, and remain still to ensure high-quality data
acquisition. One subject was excluded from data analysis due to
incomplete data.

2.2 EEG preprocessing

An overview of the EEG preprocessing, feature extraction,
and analysis pipeline is presented in Figure 1. Preprocessing was
performed in MATLAB (The MathWorks, Inc, 2024) using the
EEGLAB toolbox (Delorme and Makeig, 2004). Data from all 61
channels were retained for analysis. The recordings were resampled
to 256 Hz and bandpass filtered using a finite impulse response (FIR)
filter with cutoft frequencies set at 0.2 Hz and 45 Hz. This filtering
range was selected to preserve frequency components relevant to
neurophysiological processes while attenuating slow drifts and high-
frequency noise.

Artifact
Component

correction was conducted using Independent
(ICA). To
reproducibility, components associated with ocular and muscle

Analysis ensure objectivity and
activity were automatically identified and removed using the
ICLabel classifier (Pion-Tonachini et al, 2019), applying a
probability threshold of 70% for rejection within each artifact
category. Following artifact removal, the data were re-referenced
to a common average reference.

Subsequently, the EEG data were segmented into contiguous,
non-overlapping 20-second epochs, a duration chosen to balance
temporal resolution with the stability of spectral estimates (Mdcks
and Gasser, 1984; Mohsenvand et al., 2020). Bad epochs were
identified using an amplitude-based criterion, whereby any epoch in
which the standard deviation of one or more channels exceeded 50
uV was excluded from further analysis. Following epoch rejection,
18.6% of epochs were removed across participants. The final dataset
included 1,681 epochs, with 858 epochs corresponding to the well-
rested wakefulness condition and 823 epochs to the acute sleep
deprivation condition.

2.3 Feature extraction

To extract meaningful features for distinguishing between
acute sleep deprivation and well-rested wakefulness, we computed
four complementary feature sets for each 20-second epoch.
Time-frequency characteristics were obtained via a Continuous
Wavelet Transform (CWT) (Biissow, 2007) using the Morlet wavelet,
sampled at 256 Hz over a frequency range of 0.5-45 Hz (10 voices
per octave), from which we derived amplitude and bandwidth
modulation, spectral entropy, frequency centroid, peak amplitude
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FIGURE 1
Study Diagram. (A) Open-source eyes-open EEG dataset. (B) Preprocessing pipeline. ICA refers to Independent Component Analysis. (C) Feature
Extraction. (D) Model Training. Four machine learning models - LightGBM, (Light Gradient-Boosting Machine), XGBoost (eXtreme Gradient Boosting),
RF (Random Forest), SVC (Support Vector Classifier), and three deep learning models - LSTM (Long Short-Term Memory), CNN (Convolutional Neural
Network), and a Transformer-based model are trained. (E) Statistical analysis is done using the Friedman test.

and frequency, as well as skewness, kurtosis, and Hjorth mobility
and complexity within the delta (0.5-4 Hz), theta (4-8 Hz), alpha
(8-12 Hz), and beta (12-30 Hz) bands.

Power-spectral features were estimated using Welch’s method
(Welch, 1967) with Hamming windows tailored to each canonical
band (10s (sec) for delta, 8 s for theta, 4 s for alpha, and 2's for
beta), with 50% overlap. From these spectra, we computed absolute
and relative band powers, theta/alpha, delta/theta, and beta/alpha
ratios, as well as spectral edge frequencies at the 50% and 95%
cumulative-power thresholds.

Functional connectivity was quantified by bandpass filtering
each epoch into the four canonical bands and computing
both the phase-locking value (PLV) (Aydore et al., 2013) and
coherence (Nunez et al., 1997) averaged across all unique channel
pairs. Graph-theoretic metrics (mean node strength, weighted
clustering coeflicient, global efficiency, characteristic path length,
and modularity) were then derived from the full weighted PLV
adjacency matrices. All extracted features were concatenated across
channels into a single high-dimensional vector per epoch, resulting
in a final feature vector of size 2481.

To train the machine learning models in a supervised manner,
labels were generated for each epoch. The well-rested wakefulness
epochs were labelled 0, and the acute sleep deprivation epochs were
labelled 1, making this a binary classification problem.
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2.4 Model training and evaluation

2.4.1 Machine learning models

In this study, we evaluated model performance using two
complementary cross-validation strategies to capture both within-
subject and cross-subject generalizability. Four machine learning
models - RE XGBoost, LightGBM, and Support Vector Classifier
(SVC), were trained and tested within a fully nested cross-validation
framework to obtain unbiased performance estimates. In the epoch-
level approach (without subject-level separation), the outer loop
employed a standard 5-fold stratified split with random shuffling,
ensuring balanced class representation in each fold. To additionally
assess cross-subject generalizability and mitigate potential inflation
of performance estimates due to within-subject data leakage, we
implemented a subject-level separation approach using a fully nested
5-fold stratified group k-fold scheme, whereby all epochs from
a given participant were confined to either the training or test
partition in each outer fold, ensuring no overlap of participant data
between model development and evaluation. For both the epoch-
level and subject-level approaches, 80% of the data was allocated to
training and 20% to testing in each fold.

For both the epoch-level and subject-level separation analyses,
feature scaling to the 0-1 range and feature selection were
performed exclusively within each outer training partition to
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TABLE 1 Grid search parameters used for hyperparameter tuning of the
four machine learning models - LightGBM (Light Gradient-Boosting
Machine), RF (Random Forest), XGBoost (eXtreme Gradient Boosting),
and SVC (Support Vector Classifier).

Model name  Grid parameters

LightGBM num_leaves, learning_rate, n_estimators, feature_fraction,

bagging_fraction, bagging_freq, boosting_type

Random Forest n_estimators, max_depth, criterion, max_features,

bootstrap
XGBoost n_estimators, learning_rate, max_depth, subsample,
colsample_bytree
SvVC C, kernel, gamma

prevent information leakage from the held-out outer test fold. The
feature selection pipeline, adapted from (Baygin, 2025), consisted of
two sequential steps: (i) a univariate XZ filter (Liu and Setiono, 1995)
retaining the top 50 features, and (ii) a multivariate embedding step
using neighborhood component analysis (NCA) (Goldberger et al,
2004) to select an additional 50 features based on their contribution
to class discrimination. This approach yielded 100 features in total,
a number chosen to balance model complexity with overfitting risk
while retaining sufficient discriminatory information.

Hyperparameter optimization was conducted entirely within
the inner loop of the nested framework. For each outer training
set, an inner three-fold stratified cross-validation was performed,
during which a randomized search explored 25 candidate parameter
configurations (Table 1). The configuration with the highest
mean validation performance was selected, retrained on the
full outer training set (restricted to the selected features), and
subsequently evaluated on the corresponding held-out outer test
fold. This fully integrated approach, combining feature selection,
hyperparameter tuning, and unbiased evaluation, ensures robust
and clinically relevant estimates of generalizability. The models
were trained using the Scikit-learn (Pedregosa et al., 2011) library
in Python (Van Rossum and Drake, 2009).

2.4.2 Deep learning models

In addition to the aforementioned machine learning classifiers,
we implemented a set of deep learning architectures to directly
learn discriminative representations from the multi-channel EEG
time series. Unlike traditional models, which rely on handcrafted
features, these architectures operate on minimally processed
data and are capable of jointly learning temporal, spectral, and
spatial patterns relevant to sleep deprivation. Specifically, we
evaluated three complementary network types: CNN, LSTM, and
Transformer. The input to all models consisted of preprocessed
multi-channel EEG signals, as shown in Figure 1. Consistent
with the ML analyses, the deep learning models were also
evaluated using both the epoch-level and subject-level separation
approaches within a fully nested cross-validation framework. For
the subject-level separation analysis, we used a stratified group
k-fold scheme to ensure that data from each participant were
assigned entirely to either the training or test set within a given
outer fold.
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The proposed CNN architecture initially applies a one-
dimensional (1D) depthwise temporal convolution independently
to each channel, facilitating efficient extraction of channel-specific
temporal features. This is followed by a 1D pointwise convolution
to integrate information across channels. Subsequently, two
residual blocks are employed, each consisting of 1D depthwise
temporal and 1D pointwise convolutions, along with batch
normalization, exponential linear unit (ELU) activation, and
dropout regularization. This configuration enables deeper feature
refinement while preserving temporal resolution. The network
concludes with an adaptive average pooling layer, a dropout layer,
and a fully connected output layer for binary classification, enabling
the model to learn discriminative spatiotemporal representations
for the detection of acute sleep deprivation.

The LSTM model was implemented with a hidden size of
128 units in a single recurrent layer, employing a bidirectional
architecture to capture temporal dependencies in both forward and
backward directions. To mitigate overfitting, a dropout rate of 0.3
was applied after the recurrent layer. The output from the final
timestep was passed through a fully connected layer to produce a
binary prediction indicating the presence or absence of acute sleep
deprivation.

The proposed transformer model first projects each channel
vector at a given time step into a 64-dimensional embedding space
via a linear layer, followed by sinusoidal positional encoding to
preserve temporal order. A learnable classification ([CLS]) token
is prepended to the sequence to aggregate global context for
the final prediction. The model consists of a stack of multi-
head self-attention encoder layers, each containing a multi-head
attention module, position-wise feed-forward network, residual
connections, layer normalization, and dropout regularization. The
output corresponding to the [CLS] token is passed through
a layer-normalized feed-forward classification head to produce
the binary decision of acute sleep deprivation versus well-rested
wakefulness states.

The models were trained using the AdamW optimization
algorithm, configured with a learning rate of 1x10™* and a
weight decay parameter of 1x 107*. Binary Cross-Entropy with
Logits Loss (BCEWithLogitsLoss) was employed as the objective
function. Training was conducted with a mini-batch size of 64.
All models were implemented in Python using the PyTorch
framework (Paszke et al., 2019).

2.4.3 Model evaluation
Model performance was evaluated using accuracy, precision,
recall, Fl-score, and the area under the Receiver Operating
Characteristic (ROC) curve (AUC). To obtain these measures, a
confusion matrix was first constructed, summarizing outcomes
as true positives (TP: correctly identified positive instances), true
negatives (TN: correctly identified negatives), false positives (FP:
negatives incorrectly classified as positives), and false negatives (FN:
positives incorrectly classified as negatives).
From the confusion matrix, accuracy (Equation 1) was
computed as the overall proportion of correctly classified samples:
Accuracy = __IP+IN
TP+ TN+ FP+FN

Precision (Equation 2a) and recall (Equation 2b), which quantify
the reliability of positive predictions and the model’s sensitivity to

1
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actual positives, respectively, were defined as:

TP
Precision = 2
recision = ———> (2a)
TP
Recall = ———— 2b
TPy AN (2b)

The Fl-score (Equation 3), defined as the harmonic mean
of precision and recall, reflects the trade-off between these two
measures, with higher values indicating better predictive capability:

F1 - Score = 2 - Precision - Recall

A3)

Precision + Recall

The ROC curve was generated by systematically varying the
decision threshold and, at each value, plotting the true positive rate
(TPR (Equation 4a), equivalent to recall) against the false positive
rate (FPR (Equation 4b), representing the proportion of negative
instances incorrectly classified as positive).

TP
TPR = 4
R= o N (42)
FP
FPR= 1T 4b
FP+ TN (4)

The AUC was then calculated as the area under the ROC
curve to provide a threshold-independent measure of the model’s
discriminative ability, with values approaching 1 indicating superior
performance.

2.5 Statistical analysis

To evaluate whether the observed differences in model
performance were statistically significant, performance metrics
derived from five-fold cross-validation were first subjected to the
Friedman test (Friedman, 1937), a nonparametric alternative to
repeated-measures analysis of variance (RM-ANOVA) (Girden,
1992). Analyses were conducted separately for each metric -
accuracy, Fl-score, and AUC. When the Friedman test indicated
a significant overall effect, pairwise post hoc comparisons were
carried out using Dunn’s test (Dunn, 1964) with multiplicity-
adjusted p-values calculated to account for multiple pairwise
comparisons.

2.6 Interpretability

Feature importance was quantified using Shapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017), a game-theoretic
approach that attributes the predictive output of a model to
individual feature contributions. For each trained classifier, SHAP
values were computed on the held-out test data of each outer
cross-validation fold to ensure unbiased estimates. For non-
tree-based models, feature attributions were computed using a
model-agnostic SHAP framework with a representative subset
of the training data serving as the background distribution. For
tree-based models, including RE, XGBoost, and LightGBM, a
tree-specific SHAP formulation was applied (Lundberg et al.,
2018), with outputs expressed in terms of predicted probabilities
for the positive class to ensure that the magnitude and scale
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of SHAP values were directly comparable across models. In
all cases, background data were subsampled (maximum 200
instances) to improve computational efficiency while maintaining
distributional representativeness. For each fold, feature selection
was performed prior to SHAP computation to ensure that only
the subset of features used by the model was evaluated. The
resulting SHAP values, which represent the marginal contribution
of each feature to the model output, were aligned across
folds to the intersection of selected features. To obtain global
feature importance, we calculated the mean absolute SHAP
value for each feature across all samples and folds, providing a
consistent ranking of features according to their overall predictive
contribution.

3 Results

Table 2 summarizes the classification performance of the seven
evaluated models in terms of mean accuracy, F1-score, and AUC
across five test folds, reported as mean + standard deviation. Results
are presented separately for evaluations conducted without and with
subject-level separation.

In the evaluation without subject-level separation, CNN
achieved the highest mean accuracy (0.9572 + 0.0134), Fl-score
(0.9558 + 0.0148), and AUC (0.9923 + 0.0039). XGBoost followed
closely, with an accuracy of 0.9542 + 0.0151, Fl-score of 0.9536
+ 0.0150, and AUC of 0.9862 + 0.0081. LightGBM and Random
Forest exhibited comparable performance, with accuracies of 0.9483
+0.0101 and 0.9453 + 0.0092, respectively. SVC attained an accuracy
0f 0.8525 + 0.0217, F1-score of 0.8480 + 0.0223, and AUC of 0.9261
+ 0.0148. The Transformer yielded an accuracy of 0.7739 + 0.0745,
Fl-score of 0.7944 + 0.0589, and AUC of 0.8728 + 0.0508, while
LSTM recorded the lowest performance among all models in this
setting, with an accuracy of 0.6675 + 0.0262, F1-score of 0.6546 +
0.0277, and AUC of 0.7289 + 0.0281.

With subject-level separation, performance values were lower
for all models. RF classifier obtained the highest mean accuracy
(0.6823 + 0.0217), Fl-score (0.6702 + 0.0451) and AUC (0.7290
+ 0.0391). LightGBM and XGBoost yielded similar results, with
accuracies of 0.6621 + 0.0352 and 0.6636 + 0.0274, respectively.
CNN achieved an accuracy of 0.6635 + 0.0529, F1-score of 0.6415
+ 0.0806, and AUC of 0.7196 + 0.0477. SVC recorded an accuracy
of 0.6508 + 0.0572, F1-score of 0.6276 + 0.1068, and AUC of 0.6951
+ 0.0630. The transformer model yielded an accuracy of 0.6335 +
0.0278, an Fl-score of 0.6367 + 0.0431 and an AUC of 0.6981 +
0.0529, while LSTM reported the lowest accuracy of 0.6170 + 0.0320,
F1-score of 0.6059 + 0.0455, and AUC of 0.6662 + 0.0461. Confusion
matrices for the two best-performing models with subject-level
separation are presented in Figure 2.

At the epoch level (Figure3A), Friedman tests revealed
significant overall differences in model performance for accuracy
(p = 0.0003), Fl-score (p = 0.0003), and AUC (p = 0.0002). Post
hoc Dunn’s tests with multiplicity-adjusted p-values showed that,
for accuracy, the LSTM model performed significantly worse than
both XGBoost (rank-sum difference = +25.0, p = 0.0053) and CNN
(+24.5, p = 0.0070). For Fl-score, LSTM again underperformed
relative to LightGBM (+22.0, p = 0.0269), XGBoost (+24.0, p =
0.0093), and CNN (+25.0, p = 0.0053). For AUC, LSTM achieved
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TABLE 2 Performance metrics for the seven classifiers - Light
Gradient-Boosting Machine (LightGBM), Random Forest (RF), eXtreme
Gradient Boosting (XGBoost), Support Vector Classifier (SVC), Long
Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and
Transformer. The table is divided into two panels: the upper panel
presents results obtained without subject-level separation, while the
lower panel reports results with subject-level separation. For each
model, the values represent the mean accuracy, F1-score, and area under
the receiver operating characteristic curve (AUC) across five test folds,
accompanied by the standard deviation (mean + SD). All metrics range

fromOtol.

Without subject-level separation

Models
Accuracy + | Fl-score + AUC + SD
SD SD
LightGBM 0.9483+0.0101 | 0.9476 +0.0095 | 0.9892 +0.0055
Random Forest 09453 +0.0092 | 0.9441 £0.0096 | 0.9870 % 0.0060
XGBoost 0.9542+0.0151 | 0.9536+0.0150 | 0.9862 + 0.0081
SVC 0.8525+0.0217 | 0.8480+0.0223 | 0.9261+0.0148
CNN 0.9572+0.0134 | 0.9558 +0.0148 | 0.9923 + 0.0039
LSTM 0.6675+0.0262 | 0.6546+0.0277 | 0.7289 +0.0281
Transformer 0.7739 +0.0745 | 0.7944 +0.0589 | 0.8728 +0.0508

With Subject-Level Separation

LightGBM 0.6621 + 0.0352 0.6566 + 0.0396 0.7147 £ 0.0399
Random Forest 0.6823 +0.0217 0.6702 + 0.0451 0.7290 + 0.0391
XGBoost 0.6636 + 0.0274 0.6533 + 0.0395 0.7053 +0.0335
svC 0.6508 + 0.0572 0.6276 + 0.1068 0.6951 + 0.0630
CNN 0.6635 + 0.0529 0.6415 + 0.0806 0.7196 + 0.0477
LSTM 0.6170 + 0.0320 0.6059 + 0.0455 0.6662 + 0.0461
Transformer 0.6335 + 0.0278 0.6367 £ 0.0431 0.6981 + 0.0529

Bold values represent the best performing models.

significantly lower scores than LightGBM (+24.0, p = 0.0093) and
CNN (4+27.0, p = 0.0016), while CNN also outperformed the
Transformer (+21.0, p = 0.0443). No other pairwise comparisons
reached statistical significance after correction. Here, the rank-sum
difference represents the difference between the sums of the within-
fold ranks assigned to each model in the Friedman procedure, with
positive values indicating that the first-listed model achieved higher
(better) ranks.

With subject-level separation (Figure 3B), Friedman tests
showed no overall differences among model performance (accuracy:
p =0.0823, Fl1-score: p = 0.4137, AUC: p = 0.7076). Consistent with
this, Dunn’s multiplicity-adjusted pairwise comparisons found no
significant contrasts. A modest trend was noted for accuracy, with
RF ranking above LSTM (rank-sum difference = +20.0, adjusted p
=0.0717). All other adjusted p-values were >0.40.

SHAP analysis was conducted to identify the most influential
features for the two best-performing models under subject-level
separation: RF and XGBoost. In the RF model, the highest mean
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absolute SHAP value was observed for Fp2_theta_meanAM (mean
amplitude modulation in the theta band at the right frontal
site), followed by Coh_beta (average magnitude-squared coherence
between all channel pairs in the beta band), Fpl_theta_meanAM
(mean amplitude modulation in the theta band at the left frontal
site), and AF3_beta_meanPeakAmplitude (mean peak amplitude
within the beta band, indicating the strength of the strongest
oscillations) (Figure 4A). The XGBoost model ranked Coh_beta
as the most significant feature, followed by Fp2_theta_meanAM,
Fpl_beta_meanAM, and T7_beta_peakFrequency (single frequency
within the beta band at the left temporal site T7 with the highest total
energy over the epoch) (Figure 4B). While both models identified
Fp2_theta_meanAM and Coh_beta among their top contributors,
the differences in ranking suggest that each algorithm prioritizes
distinct but partially overlapping neural markers.

Beeswarm plots (Figures 4C,D) illustrated both the magnitude
and directionality of each features influence on the predicted
class. Higher Fp2_theta_meanAM values consistently increased
the likelihood of a sleep deprivation prediction in both models,
indicating that elevated frontal theta modulation is a key
discriminator. In contrast, Coh_beta exhibited a more variable
influence, with both high and low values contributing in
different directions, suggesting interaction effects with other
features.

Correlation heatmaps (Figures 4E,F) indicated moderate-
to-strong positive correlations among spectral features within
neighboring frontal sites. In the RF model, FpI_theta_meanAM
and Fp2_theta_meanAM were strongly correlated. In the XGBoost
model, a particularly high correlation was observed between
Fpz_theta_meanAM (midline frontal theta modulation) and
Fp2_theta_meanAM, suggesting shared frontal theta activity
across midline and lateral sites. Across both models, Coh_beta
showed relatively low correlations with amplitude or frequency-
based features, highlighting its distinct connectivity-related
contribution.

In summary, both models relied heavily on frontal theta-band
amplitude modulation and beta-band connectivity, underscoring
the complementary roles of spectral dynamics and large-scale
functional coupling in distinguishing sleep-deprived from well-
rested states.

4 Discussion

In this study, using an open-source eyes-open resting-state
EEG dataset, we investigated the feasibility of detecting acute
sleep deprivation with machine learning models. We initially
report performance at the epoch level, where data from the
same participant may be present in both training and test
sets. While this evaluation yielded notably high accuracies,
particularly for the CNN, these results are likely inflated due
to subject-specific data leakage and temporal dependencies. To
address these limitations and assess real-world generalizability,
we conducted a more rigorous subject-level evaluation, ensuring
that no participant contributed data to both training and test
sets. Under this more realistic setting, performance declined
across all models, underscoring the difficulty of generalizing to
previously unseen individuals. Notably, the RF classifier achieved
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FIGURE 2
Confusion matrices for the two best-performing models with subject-level separation - (A) Random Forest (RF), (B) eXtreme Gradient Boosting

(XGBoost). The label O refers to well-rested wakefulness, and 1 refers to acute sleep deprivation. A probability cutoff of 0.5 was used to derive binary
classifications. Values in the matrices are expressed as row-normalized percentages, indicating the proportion of samples within each true class
assigned to each predicted class.
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Statistical Analysis. A Friedman test was performed to evaluate the statistical significance of observed differences in performance, for each evaluation
metric, across all models - SVC (Support Vector Classifier), RF (Random Forest), LightGBM (Light Gradient-Boosting Machine), XGBoost (eXtreme
Gradient Boosting), CNN (Convolutional Neural Network), Long Short-Term Memory (LSTM) and a transformer-based model. Dunn’s test was applied
for multiple pairwise model comparisons. The results of the statistical analysis for (A) without subject-level separation and (B) with subject-level
separation, across the three metrics - Accuracy, F1-score, and Area Under the Curve (AUC) - are presented
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the highest accuracy in this configuration and demonstrated
greater robustness to inter-subject variability compared to the other
models. These findings highlight the importance of subject-level
validation in the development of EEG-based sleep deprivation
detection systems.

The superior performance of RF under subject-level separation
may be attributed to the tendency of deep learning models to
overfit when trained on relatively small datasets, as in the present
study. Deep architectures, while powerful in capturing complex
nonlinear patterns, require large volumes of diverse training
data to generalize effectively. In contrast, traditional ensemble-
based methods such as RF and XGBoost are less susceptible to
overfitting in low-data regimes due to their inherent regularization
mechanisms, bootstrap aggregation, and feature subspace sampling.
These properties enable them to maintain more stable performance
when confronted with limited training examples. We hypothesize,
however, that with access to substantially larger and more
diverse acute sleep deprivation-related EEG datasets, deep learning
models may surpass traditional approaches in both accuracy and
generalizability.

Feature importance derived from SHAP analysis revealed that
the most influential predictors for the best-performing models
(with subject-level separation) aligned closely with established
neurophysiological effects of acute sleep deprivation (Figure 4).
Neurophysiologically, sleep deprivation is associated with increased
slow-wave activity, particularly in the theta band (4-7 Hz), reflecting
drowsiness and the transition from beta to theta rhythms during
the onset of sleep (Iber et al., 2007). Our analysis identified frontal
theta-band amplitude modulation, most prominently at Fp2, Fpl,
and Fpz, as consistently important across both Random Forest
and XGBoost models, in line with evidence that frontal theta
activity increases during sustained wakefulness, accompanied by
significantly higher subjective sleepiness and decreased alertness
(De Gennaro et al., 2007). In addition, beta-band connectivity
(Coh_beta) emerged as a key contributor, representing large-
scale functional coupling between cortical regions within the
12-30 Hz range. Intermittent increases in beta activity during
sleep deprivation have been linked to micro-awakenings or brief
periods of heightened cortical activation, potentially reflecting
compensatory mechanisms to maintain alertness (Craig et al.,
2012). The identification of beta-band peak amplitude and peak
frequency features, particularly in frontal and temporal regions
such as AF3 and T7, further supports the view that oscillatory
dynamics in these bands play complementary roles in distinguishing
between well-rested and sleep-deprived states. However, contrary
to earlier findings indicating elevated delta-band power as a
marker of sleep deprivation (De Gennaro et al., 2007), our models
did not identify delta-related features among the top predictors.
One possible explanation is methodological: the use of 20-second
epochs, while stabilizing spectral estimates, may reduce sensitivity
to transient delta fluctuations. In addition, substantial inter-subject
variability in delta power likely diminishes its discriminative value
for multivariate classification. These biological and methodological
considerations may account for why delta features did not emerge
as dominant predictors in our study. Collectively, the SHAP
results suggest that the discriminative features leveraged by the
ensemble models are neurophysiologically meaningful, capturing
both the spectral slowing characteristic of drowsiness and the
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transient beta synchrony associated with compensatory arousal
mechanisms.

Focusing on studies that have utilized machine learning
for the classification of acute sleep deprivation, a novel feature
extraction method called MelPat was introduced in (Baygin,
2025) and applied to the same open-source EEG dataset
this
classifier.

used in study, achieving 97% an
svC While this

performance, our study in contrast, employed a traditional,

accuracy  with
approach demonstrated high

well-established EEG feature set that achieved comparable
accuracy while enabling us to link discriminative features to
established neurophysiological biomarkers, thereby enhancing
interpretability. Furthermore, unlike MelPat, we also evaluated
model performance under a subject-level separation scheme,
providing a more rigorous assessment of cross-subject
generalizability.

Our work offers several notable contributions. First, unlike
prior studies (Baygin, 2025) in this domain, we explicitly evaluated
both epoch-level and subject-level separation schemes, with the
latter providing a more realistic estimate of model performance
in real-world scenarios by preventing within-subject data leakage.
Second, we assessed a broad spectrum of approaches, including
both traditional machine learning models and deep learning
architectures, enabling a comprehensive comparison of their
relative strengths. While deep learning models demonstrated
strong performance under the less stringent epoch-level setting,
our analysis also highlighted their vulnerability to overfitting in
limited-data contexts, underscoring the need for larger and more
diverse datasets to realize their full potential. Third, our study
placed strong emphasis on model interpretability by employing
SHAP analysis, which offers a unified, model-agnostic framework
for quantifying the contribution of individual features to model
predictions. This approach not only facilitates transparency but also
enables direct correspondence between the most influential features
and established neurophysiological markers of sleep deprivation,
thereby enhancing the clinical relevance and applicability of
our findings.

This study has certain limitations that should be considered
when interpreting the findings. The analysis is based on an open-
source eyes-open resting-state EEG dataset obtained from a
demographically homogeneous cohort of young, healthy adults,
which may restrict the generalizability of the results to more
diverse populations. Replication and benchmarking against
independent datasets with comparable experimental protocols
would enhance the robustness of our conclusions. However, this
was not feasible due to the lack of suitable publicly available
datasets. The present work conceptualized acute sleep deprivation
as a binary state, whereas its neurocognitive and physiological
effects likely manifest along a graded continuum. This simplification
may obscure more nuanced patterns of impairment and recovery,
and represents an inherent limitation of the current design.
In the absence of a provided reference channel in the open-
source dataset, we employed a common average reference
(CAR). However, CAR can be sensitive to montage density
and scalp coverage and may influence sensor-level topographies
and connectivity (Yao et al, 2019). As we did not formally
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compare alternative re-referencing schemes, residual reference-
related distortions cannot be excluded. While the use of non-
overlapping 20-second epochs was chosen to balance temporal
resolution with the stability of spectral estimates, this segmentation
approach may limit sensitivity to transient or rapidly evolving
neural dynamics.

5 Conclusion and future work

This study represents an important step toward the development
of EEG-based machine learning models for the objective detection
of acute sleep deprivation and the characterization of its impact
on cognitive readiness. While the best-performing model in
this study achieved an accuracy of 68%, with subject-level
separation, these findings demonstrate the overall viability
of EEG-driven approaches for monitoring sleep deprivation
in operational contexts. However, real-world deployment
will require models with significantly higher performance,
trained on larger and more diverse datasets. The present
work lays the essential groundwork for such advancements by
establishing a robust and interpretable pipeline that captures
meaningful neurophysiological signatures of acute sleep loss.
It is also important to recognize that the observed effects
reflect transient, state-level changes associated with acute sleep
deprivation, rather than stable, trait-like characteristics of
individuals. Future research should examine how individual
variability and longitudinal trajectories influence susceptibility
thereby

extending the present findings beyond transient state-level

to, and recovery from, acute sleep deprivation,
effects.

Future research should also consider adopting multi-class or
regression-based frameworks to better capture the graded, impact
of sleep deprivation on cognitive and physiological function.
Expanding model inputs to include demographic variables such as
age and sex will also be essential to improve generalizability across
populations. Furthermore, exploring advanced EEG features, such
as dynamic functional connectivity (dFC) (Chen et al., 2024) and
microstate analysis (Khoo et al., 2024), may offer complementary
insights that improve classification performance while deepening
our understanding of the underlying neural mechanisms. Future
work can also explore multi-scale or overlapping windowing
strategies to better capture fine-grained temporal dynamics.
Finally, integrating more accessible physiological modalities such
as photoplethysmography (PPG) may help translate these models
into real-world, wearable monitoring systems, ultimately supporting
continuous, non-invasive assessment of sleep-related cognitive

readiness.
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