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Study objective: Acute sleep deprivation significantly impacts cognitive 
function, contributes to accidents, and increases the risk of chronic illnesses, 
underscoring the need for reliable and objective diagnosis. Our work aims 
to develop a machine learning-based approach to discriminate between EEG 
recordings from acutely sleep-deprived individuals and those that are well-
rested, facilitating the objective detection of acute sleep deprivation and 
enabling timely intervention to mitigate its adverse effects.
Methods: Sixty-one-channel eyes-open resting-state electroencephalography 
(EEG) data from a publicly available dataset of 71 participants were analyzed. 
Following preprocessing, EEG recordings were segmented into contiguous, 
non-overlapping 20-second epochs. For each epoch, a comprehensive set 
of features was extracted, including statistical descriptors, spectral measures, 
functional connectivity indices, and graph-theoretic metrics. Four machine 
learning classifiers - Light Gradient-Boosting Machine (LightGBM), eXtreme 
Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Classifier 
(SVC) - were trained on these features using nested stratified cross-validation 
to ensure unbiased performance evaluation. In parallel, three deep learning 
models-a Convolutional Neural Network (CNN), Long Short-Term Memory 
network (LSTM), and Transformer-were trained directly on the raw multi-
channel EEG time-series data. All models were evaluated under two conditions: 
(i) without subject-level separation, allowing the same participant to contribute 
to both training and test sets, and (ii) with subject-level separation, where 
models were tested exclusively on unseen participants. Model performance 
was assessed using accuracy, F1-score, and area under the receiver operating 
characteristic curve (AUC).
Results: Without subject-level separation, CNN achieved the highest accuracy 
(95.72%), followed by XGBoost (95.42%), LightGBM (94.83%), RF (94.53%), 
and SVC (85.25%), with the Transformer (77.39%) and LSTM (66.75%) 
models achieving lower accuracies. Under subject-level separation, RF 
achieved the highest accuracy (68.23%), followed by XGBoost (66.36%), 
LightGBM (66.21%), CNN (65.35%), and SVC (65.08%), while the Transformer 
(63.35%) and LSTM (61.70%) models achieved the lowest accuracies.
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Conclusion: This study demonstrates the potential of EEG-based machine 
learning for detecting acute sleep deprivation, while underscoring the 
challenges of achieving robust subject-level generalization. Despite reduced 
accuracy under cross-subject evaluation, these findings support the feasibility 
of developing scalable, non-invasive tools for sleep deprivation detection using 
EEG and advanced ML techniques.

KEYWORDS

acute sleep deprivation, electroencephalogram (EEG), ensemble models, feature 
importance, machine learning 

1 Introduction

Sleep deprivation induces a wide range of neurological and 
behavioral impairments that significantly undermine cognitive 
functioning. Sleep deprivation leads to a phenomenon known 
as ‘localized sleep’, wherein specific brain regions transition 
into a sleep-like state while the individual remains awake 
(Vyazovskiy et al., 2011) leading to measurable lapses in cognitive 
and motor performance (Hung et al., 2013). Moreover, sleep 
deprivation disrupts the functional connectivity of critical 
brain networks diminishing communication efficiency across 
brain regions (Bernardi et al., 2015). Notably, the cognitive 
effects of sleep deprivation are task-dependent, with executive 
functions, such as impulse control and visuomotor coordination, 
exhibiting heightened vulnerability (Bernardi et al., 2015). 
Moreover, these studies have demonstrated that the increasing 
occurrence of local neuronal off periods during extended 
wakefulness correlates with progressive declines in task performance 
(Hung et al., 2013; Bernardi et al., 2015). Collectively, these 
findings underscore the essential role of sleep in maintaining 
cognitive and behavioral stability while highlighting the intricate 
neural mechanisms through which sleep deprivation compromises 
brain function.

The real-world implications of these findings are profound, 
particularly given the high prevalence of acute sleep deprivation 
in modern society (Gohari et al., 2024). The combination of 
impaired impulse control, diminished visuomotor coordination 
and attention lapses significantly increases the likelihood of 
accidents and human errors (Kayser et al., 2022). These risks are 
particularly critical in professions requiring sustained attention 
and precise motor skills, such as healthcare, transportation, and 
manufacturing. Furthermore, cognitive deficits associated with 
acute sleep deprivation, including reduced concentration and 
impaired decision-making (Killgore et al., 2006), negatively affect 
workplace efficiency and productivity (Brossoit et al., 2019). The link 
between acute sleep deprivation and diminished impulse control 
has also been associated with behavioral impulsivity, disinhibition, 
and increased aggression, contributing to broader implications 
for mental health and social behavior (Killgore, 2010). Despite 
the adverse effects of acute sleep deprivation, current detection 
methodologies primarily rely on self-reported sleep metrics or 
laboratory-based assessments. While laboratory tests are often 
resource-intensive and impractical for real-time monitoring (Mitler 
and Miller, 1996), self-reported metrics are biased or influenced 
by financial and peer pressure considerations. Therefore, there is 

a critical need for reliable, objective, and portable tools capable 
of detecting acute sleep deprivation in real-world settings and 
mitigating its impact.

Electroencephalography (EEG) has been validated as an 
effective modality for capturing neural alterations associated 
with sleep deprivation (Lian et al., 2023). Spectral analysis 
of EEG signals consistently reveals shifts in brain oscillatory 
activity that correspond to cognitive and behavioral impairments 
(Tramonti Fantozzi et al., 2022; Gorgoni et al., 2014; Tassi et al., 
2006; Forest and Godbout, 2000). Sleep deprivation is characterized 
by increased power in low-frequency bands (delta, theta) and 
reduced power in higher-frequency bands (alpha, beta), particularly 
in cortical regions implicated in attention and visual processing 
(Lian et al., 2023; Liu et al., 2025; Hung et al., 2013).

Regional differences in neural activity have been consistently 
documented. In frontal regions, total sleep deprivation has been 
shown to lead to a marked loss of functional connectivity in 
prefrontal cortical areas, characterized by reductions in clustering 
coefficient in the alpha band and increases in path length in 
the theta band (Verweij et al., 2014). Additionally, prolonged 
wakefulness produces a robust increase in frontal low EEG activity 
(1–7 Hz), reflecting heightened sleep pressure and cortical fatigue 
(Cajochen et al., 2001). In contrast, in parietal and occipital regions, 
significant reductions in alpha-band power and increases in delta-
band power in the precuneus, inferior parietal lobule, and superior 
parietal lobule have been reported following 24 h of total sleep 
deprivation (Lian et al., 2023). Furthermore, theta-band power in 
centro-parieto-occipital areas increases substantially after prolonged 
sleep deprivation, with greater elevations correlating with more 
severe vigilance impairments (Liu et al., 2025). Collectively, these 
studies highlight the sensitivity of both frontal and posterior 
cortical regions to sleep loss, demonstrating the effectiveness of 
EEG in detecting neural alterations relevant to cognitive decline 
and underscoring its utility for machine learning-based acute sleep 
deprivation classification.

Machine learning has been widely applied in EEG-based sleep 
research, with ensemble methods (Mienye and Sun, 2022) and 
traditional classifiers frequently demonstrating robust performance. 
Ensemble techniques, such as Random Forest (RF) (Zhao et al., 
2022; Monowar et al., 2025), eXtreme Gradient Boosting (XGBoost) 
(Wang et al., 2024; Monowar et al., 2025), and Light Gradient-
Boosting Machine (LightGBM) (Wang et al., 2023; Jain and 
Ganesan, 2025), have been successfully deployed to model complex, 
nonlinear patterns in heterogeneous EEG datasets, enhancing 
generalizability and mitigating overfitting. Support Vector Machines 
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(SVMs) (Kumari et al., 2020) also remain competitive, especially in 
sleep quality (Wen, 2021) and disorder detection tasks (Falih et al., 
2024; Djemal et al., 2025; Bansal et al., 2025; Kim et al., 2025), 
due to their capacity to accommodate high-dimensional spaces and 
nonlinear separations.

Deep learning (DL) approaches, including convolutional neural 
networks (CNNs) (Zhang et al., 2023; Tanci and Hekim, 2025), 
hybrid CNN–LSTM (Long Short-Term Memory) architectures 
(Zhuang et al., 2022), and more recently Transformer-based models 
(Wan et al., 2025), have emerged as powerful tools by learning 
spatial and temporal representations directly from raw EEG signals. 
However, studies indicate that, particularly when dataset size is 
limited, traditional machine learning models, such as SVMs and 
decision trees, can offer greater robustness and interpretability 
compared to deep learning approaches, which often require 
extensive data and computational resources (Rahul et al., 2024).

Despite these advancements, the application of machine 
learning for the detection of acute sleep deprivation remains 
underexplored. Existing work in this domain is scarce, with 
only one notable study to date (Baygin, 2025). Although it 
achieved high classification accuracy, the study lacked a focus on 
interpretability, which reduces its relevance for clinical application. 
Without physiologically grounded explanations, model predictions 
remain difficult to translate into actionable neurophysiological
insights.

The present study aims to address these shortcomings 
by (i) extracting a comprehensive set of statistical, spectral, 
functional connectivity, and graph-theoretic features with 
clear neurophysiological relevance, (ii) implementing a 
nested stratified cross-validation framework with subject-level 
separation to derive realistic generalization estimates for unseen 
individuals. (iii) conducting feature importance analyses to 
enhance interpretability and lay the groundwork for clinical
integration. 

2 Methods

2.1 Dataset

For this study, we leveraged an open-source eyes-open resting-
state EEG dataset containing data from 71 healthy young adults (34 
females, 37 males), ranging from 17 to 23 years old, with a mean age 
of 20 ± 1.44 years (Xiang et al., 2024). Participants were excluded 
if they had a history of psychiatric disorders, anxiety, depressive 
symptoms, respiratory disturbances during sleep, or recent illness. 
Sleep quality was assessed prior to participation to confirm normal 
sleep patterns. A within-subject experimental design was employed, 
wherein each participant completed two sessions, one during well-
rested wakefulness, following a normal sleep cycle and another after 
acute sleep deprivation.

The order of sessions was counterbalanced to mitigate 
sequence effects, with an interval of 7 days to 1 month between 
conditions. To minimize circadian variability, the two sessions 
for each participant were scheduled within the same fixed 
timeframe (morning or afternoon), with most participants 
(81.6%) having less than a 1.5-h difference in session start 
times between conditions. For the acute sleep deprivation 

condition, participants remained awake for 24–30 h under 
continuous monitoring by experimenters. Actigraphy was used 
to ensure compliance. Both sessions followed an identical testing 
protocol, beginning with cognitive and behavioral assessments, 
including the Psychomotor Vigilance Task (PVT) to assess 
alertness. Resting-state EEG recordings were acquired using 
a 61-channel system (Brain Products GmbH, Germany) at a 
sampling rate of 500 Hz. Electrode impedance was maintained 
below 5 KΩ. EEG data were recorded for five minutes with 
eyes open. Participants were instructed to fixate on a point, 
minimize movement, and remain still to ensure high-quality data 
acquisition. One subject was excluded from data analysis due to 
incomplete data. 

2.2 EEG preprocessing

An overview of the EEG preprocessing, feature extraction, 
and analysis pipeline is presented in Figure 1. Preprocessing was 
performed in MATLAB (The MathWorks, Inc, 2024) using the 
EEGLAB toolbox (Delorme and Makeig, 2004). Data from all 61 
channels were retained for analysis. The recordings were resampled 
to 256 Hz and bandpass filtered using a finite impulse response (FIR) 
filter with cutoff frequencies set at 0.2 Hz and 45 Hz. This filtering 
range was selected to preserve frequency components relevant to 
neurophysiological processes while attenuating slow drifts and high-
frequency noise.

Artifact correction was conducted using Independent 
Component Analysis (ICA). To ensure objectivity and 
reproducibility, components associated with ocular and muscle 
activity were automatically identified and removed using the 
ICLabel classifier (Pion-Tonachini et al., 2019), applying a 
probability threshold of 70% for rejection within each artifact 
category. Following artifact removal, the data were re-referenced 
to a common average reference.

Subsequently, the EEG data were segmented into contiguous, 
non-overlapping 20-second epochs, a duration chosen to balance 
temporal resolution with the stability of spectral estimates (Möcks 
and Gasser, 1984; Mohsenvand et al., 2020). Bad epochs were 
identified using an amplitude-based criterion, whereby any epoch in 
which the standard deviation of one or more channels exceeded 50 
μV was excluded from further analysis. Following epoch rejection, 
18.6% of epochs were removed across participants. The final dataset 
included 1,681 epochs, with 858 epochs corresponding to the well-
rested wakefulness condition and 823 epochs to the acute sleep 
deprivation condition. 

2.3 Feature extraction

To extract meaningful features for distinguishing between 
acute sleep deprivation and well-rested wakefulness, we computed 
four complementary feature sets for each 20-second epoch. 
Time–frequency characteristics were obtained via a Continuous 
Wavelet Transform (CWT) (Büssow, 2007) using the Morlet wavelet, 
sampled at 256 Hz over a frequency range of 0.5–45 Hz (10 voices 
per octave), from which we derived amplitude and bandwidth 
modulation, spectral entropy, frequency centroid, peak amplitude 
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FIGURE 1
Study Diagram. (A) Open-source eyes-open EEG dataset. (B) Preprocessing pipeline. ICA refers to Independent Component Analysis. (C) Feature 
Extraction. (D) Model Training. Four machine learning models - LightGBM, (Light Gradient-Boosting Machine), XGBoost (eXtreme Gradient Boosting), 
RF (Random Forest), SVC (Support Vector Classifier), and three deep learning models - LSTM (Long Short-Term Memory), CNN (Convolutional Neural 
Network), and a Transformer-based model are trained. (E) Statistical analysis is done using the Friedman test.

and frequency, as well as skewness, kurtosis, and Hjorth mobility 
and complexity within the delta (0.5–4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz), and beta (12–30 Hz) bands.

Power-spectral features were estimated using Welch’s method
(Welch, 1967) with Hamming windows tailored to each canonical 
band (10 s (sec) for delta, 8 s for theta, 4 s for alpha, and 2 s for 
beta), with 50% overlap. From these spectra, we computed absolute 
and relative band powers, theta/alpha, delta/theta, and beta/alpha 
ratios, as well as spectral edge frequencies at the 50% and 95% 
cumulative-power thresholds.

Functional connectivity was quantified by bandpass filtering 
each epoch into the four canonical bands and computing 
both the phase-locking value (PLV) (Aydore et al., 2013) and 
coherence (Nunez et al., 1997) averaged across all unique channel 
pairs. Graph-theoretic metrics (mean node strength, weighted 
clustering coefficient, global efficiency, characteristic path length, 
and modularity) were then derived from the full weighted PLV 
adjacency matrices. All extracted features were concatenated across 
channels into a single high-dimensional vector per epoch, resulting 
in a final feature vector of size 2481.

To train the machine learning models in a supervised manner, 
labels were generated for each epoch. The well-rested wakefulness 
epochs were labelled 0, and the acute sleep deprivation epochs were 
labelled 1, making this a binary classification problem. 

2.4 Model training and evaluation

2.4.1 Machine learning models
In this study, we evaluated model performance using two 

complementary cross-validation strategies to capture both within-
subject and cross-subject generalizability. Four machine learning 
models - RF, XGBoost, LightGBM, and Support Vector Classifier 
(SVC), were trained and tested within a fully nested cross-validation 
framework to obtain unbiased performance estimates. In the epoch-
level approach (without subject-level separation), the outer loop 
employed a standard 5-fold stratified split with random shuffling, 
ensuring balanced class representation in each fold. To additionally 
assess cross-subject generalizability and mitigate potential inflation 
of performance estimates due to within-subject data leakage, we 
implemented a subject-level separation approach using a fully nested 
5-fold stratified group k-fold scheme, whereby all epochs from 
a given participant were confined to either the training or test 
partition in each outer fold, ensuring no overlap of participant data 
between model development and evaluation. For both the epoch-
level and subject-level approaches, 80% of the data was allocated to 
training and 20% to testing in each fold.

For both the epoch-level and subject-level separation analyses, 
feature scaling to the 0-1 range and feature selection were 
performed exclusively within each outer training partition to 
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TABLE 1  Grid search parameters used for hyperparameter tuning of the 
four machine learning models - LightGBM (Light Gradient-Boosting 
Machine), RF (Random Forest), XGBoost (eXtreme Gradient Boosting), 
and SVC (Support Vector Classifier).

Model name Grid parameters

LightGBM num_leaves, learning_rate, n_estimators, feature_fraction, 
bagging_fraction, bagging_freq, boosting_type

Random Forest n_estimators, max_depth, criterion, max_features, 
bootstrap

XGBoost n_estimators, learning_rate, max_depth, subsample, 
colsample_bytree

SVC C, kernel, gamma

prevent information leakage from the held-out outer test fold. The 
feature selection pipeline, adapted from (Baygin, 2025), consisted of 
two sequential steps: (i) a univariate χ2 filter (Liu and Setiono, 1995) 
retaining the top 50 features, and (ii) a multivariate embedding step 
using neighborhood component analysis (NCA) (Goldberger et al., 
2004) to select an additional 50 features based on their contribution 
to class discrimination. This approach yielded 100 features in total, 
a number chosen to balance model complexity with overfitting risk 
while retaining sufficient discriminatory information.

Hyperparameter optimization was conducted entirely within 
the inner loop of the nested framework. For each outer training 
set, an inner three-fold stratified cross-validation was performed, 
during which a randomized search explored 25 candidate parameter 
configurations (Table 1). The configuration with the highest 
mean validation performance was selected, retrained on the 
full outer training set (restricted to the selected features), and 
subsequently evaluated on the corresponding held-out outer test 
fold. This fully integrated approach, combining feature selection, 
hyperparameter tuning, and unbiased evaluation, ensures robust 
and clinically relevant estimates of generalizability. The models 
were trained using the Scikit-learn (Pedregosa et al., 2011) library 
in Python (Van Rossum and Drake, 2009).

2.4.2 Deep learning models
In addition to the aforementioned machine learning classifiers, 

we implemented a set of deep learning architectures to directly 
learn discriminative representations from the multi-channel EEG 
time series. Unlike traditional models, which rely on handcrafted 
features, these architectures operate on minimally processed 
data and are capable of jointly learning temporal, spectral, and 
spatial patterns relevant to sleep deprivation. Specifically, we 
evaluated three complementary network types: CNN, LSTM, and 
Transformer. The input to all models consisted of preprocessed 
multi-channel EEG signals, as shown in Figure 1. Consistent 
with the ML analyses, the deep learning models were also 
evaluated using both the epoch-level and subject-level separation 
approaches within a fully nested cross-validation framework. For 
the subject-level separation analysis, we used a stratified group 
k-fold scheme to ensure that data from each participant were 
assigned entirely to either the training or test set within a given 
outer fold.

The proposed CNN architecture initially applies a one-
dimensional (1D) depthwise temporal convolution independently 
to each channel, facilitating efficient extraction of channel-specific 
temporal features. This is followed by a 1D pointwise convolution 
to integrate information across channels. Subsequently, two 
residual blocks are employed, each consisting of 1D depthwise 
temporal and 1D pointwise convolutions, along with batch 
normalization, exponential linear unit (ELU) activation, and 
dropout regularization. This configuration enables deeper feature 
refinement while preserving temporal resolution. The network 
concludes with an adaptive average pooling layer, a dropout layer, 
and a fully connected output layer for binary classification, enabling 
the model to learn discriminative spatiotemporal representations 
for the detection of acute sleep deprivation.

The LSTM model was implemented with a hidden size of 
128 units in a single recurrent layer, employing a bidirectional 
architecture to capture temporal dependencies in both forward and 
backward directions. To mitigate overfitting, a dropout rate of 0.3 
was applied after the recurrent layer. The output from the final 
timestep was passed through a fully connected layer to produce a 
binary prediction indicating the presence or absence of acute sleep 
deprivation.

The proposed transformer model first projects each channel 
vector at a given time step into a 64-dimensional embedding space 
via a linear layer, followed by sinusoidal positional encoding to 
preserve temporal order. A learnable classification ([CLS]) token 
is prepended to the sequence to aggregate global context for 
the final prediction. The model consists of a stack of multi-
head self-attention encoder layers, each containing a multi-head 
attention module, position-wise feed-forward network, residual 
connections, layer normalization, and dropout regularization. The 
output corresponding to the [CLS] token is passed through 
a layer-normalized feed-forward classification head to produce 
the binary decision of acute sleep deprivation versus well-rested 
wakefulness states.

The models were trained using the AdamW optimization 
algorithm, configured with a learning rate of 1× 10−4 and a 
weight decay parameter of 1× 10−4. Binary Cross-Entropy with 
Logits Loss (BCEWithLogitsLoss) was employed as the objective 
function. Training was conducted with a mini-batch size of 64. 
All models were implemented in Python using the PyTorch 
framework (Paszke et al., 2019). 

2.4.3 Model evaluation
Model performance was evaluated using accuracy, precision, 

recall, F1-score, and the area under the Receiver Operating 
Characteristic (ROC) curve (AUC). To obtain these measures, a 
confusion matrix was first constructed, summarizing outcomes 
as true positives (TP: correctly identified positive instances), true 
negatives (TN: correctly identified negatives), false positives (FP: 
negatives incorrectly classified as positives), and false negatives (FN: 
positives incorrectly classified as negatives).

From the confusion matrix, accuracy (Equation 1) was 
computed as the overall proportion of correctly classified samples:

Accuracy = TP+TN
TP+TN+ FP+ FN

(1)

Precision (Equation 2a) and recall (Equation 2b), which quantify 
the reliability of positive predictions and the model’s sensitivity to 
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actual positives, respectively, were defined as:

Precision = TP
TP+ FP

(2a)

Recall = TP
TP+ FN

(2b)

The F1-score (Equation 3), defined as the harmonic mean 
of precision and recall, reflects the trade-off between these two 
measures, with higher values indicating better predictive capability:

F1− Score = 2 ⋅Precision ⋅Recall
Precision+Recall

(3)

The ROC curve was generated by systematically varying the 
decision threshold and, at each value, plotting the true positive rate 
(TPR (Equation 4a), equivalent to recall) against the false positive 
rate (FPR (Equation 4b), representing the proportion of negative 
instances incorrectly classified as positive).

TPR = TP
TP+ FN

(4a)

FPR = FP
FP+TN

(4b)

The AUC was then calculated as the area under the ROC 
curve to provide a threshold-independent measure of the model’s 
discriminative ability, with values approaching 1 indicating superior 
performance. 

2.5 Statistical analysis

To evaluate whether the observed differences in model 
performance were statistically significant, performance metrics 
derived from five-fold cross-validation were first subjected to the 
Friedman test (Friedman, 1937), a nonparametric alternative to 
repeated-measures analysis of variance (RM-ANOVA) (Girden, 
1992). Analyses were conducted separately for each metric - 
accuracy, F1-score, and AUC. When the Friedman test indicated 
a significant overall effect, pairwise post hoc comparisons were 
carried out using Dunn’s test (Dunn, 1964) with multiplicity-
adjusted p-values calculated to account for multiple pairwise 
comparisons. 

2.6 Interpretability

Feature importance was quantified using Shapley Additive 
exPlanations (SHAP) (Lundberg and Lee, 2017), a game-theoretic 
approach that attributes the predictive output of a model to 
individual feature contributions. For each trained classifier, SHAP 
values were computed on the held-out test data of each outer 
cross-validation fold to ensure unbiased estimates. For non-
tree-based models, feature attributions were computed using a 
model-agnostic SHAP framework with a representative subset 
of the training data serving as the background distribution. For 
tree-based models, including RF, XGBoost, and LightGBM, a 
tree-specific SHAP formulation was applied (Lundberg et al., 
2018), with outputs expressed in terms of predicted probabilities 
for the positive class to ensure that the magnitude and scale 

of SHAP values were directly comparable across models. In 
all cases, background data were subsampled (maximum 200 
instances) to improve computational efficiency while maintaining 
distributional representativeness. For each fold, feature selection 
was performed prior to SHAP computation to ensure that only 
the subset of features used by the model was evaluated. The 
resulting SHAP values, which represent the marginal contribution 
of each feature to the model output, were aligned across 
folds to the intersection of selected features. To obtain global 
feature importance, we calculated the mean absolute SHAP 
value for each feature across all samples and folds, providing a 
consistent ranking of features according to their overall predictive 
contribution. 

3 Results

Table 2 summarizes the classification performance of the seven 
evaluated models in terms of mean accuracy, F1-score, and AUC 
across five test folds, reported as mean ± standard deviation. Results 
are presented separately for evaluations conducted without and with 
subject-level separation.

In the evaluation without subject-level separation, CNN 
achieved the highest mean accuracy (0.9572 ± 0.0134), F1-score 
(0.9558 ± 0.0148), and AUC (0.9923 ± 0.0039). XGBoost followed 
closely, with an accuracy of 0.9542 ± 0.0151, F1-score of 0.9536 
± 0.0150, and AUC of 0.9862 ± 0.0081. LightGBM and Random 
Forest exhibited comparable performance, with accuracies of 0.9483 
± 0.0101 and 0.9453 ± 0.0092, respectively. SVC attained an accuracy 
of 0.8525 ± 0.0217, F1-score of 0.8480 ± 0.0223, and AUC of 0.9261 
± 0.0148. The Transformer yielded an accuracy of 0.7739 ± 0.0745, 
F1-score of 0.7944 ± 0.0589, and AUC of 0.8728 ± 0.0508, while 
LSTM recorded the lowest performance among all models in this 
setting, with an accuracy of 0.6675 ± 0.0262, F1-score of 0.6546 ±
0.0277, and AUC of 0.7289 ± 0.0281.

With subject-level separation, performance values were lower 
for all models. RF classifier obtained the highest mean accuracy 
(0.6823 ± 0.0217), F1-score (0.6702 ± 0.0451) and AUC (0.7290 
± 0.0391). LightGBM and XGBoost yielded similar results, with 
accuracies of 0.6621 ± 0.0352 and 0.6636 ± 0.0274, respectively. 
CNN achieved an accuracy of 0.6635 ± 0.0529, F1-score of 0.6415 
± 0.0806, and AUC of 0.7196 ± 0.0477. SVC recorded an accuracy 
of 0.6508 ± 0.0572, F1-score of 0.6276 ± 0.1068, and AUC of 0.6951 
± 0.0630. The transformer model yielded an accuracy of 0.6335 ±
0.0278, an F1-score of 0.6367 ± 0.0431 and an AUC of 0.6981 ±
0.0529, while LSTM reported the lowest accuracy of 0.6170 ± 0.0320, 
F1-score of 0.6059 ± 0.0455, and AUC of 0.6662 ± 0.0461. Confusion 
matrices for the two best-performing models with subject-level 
separation are presented in Figure 2.

At the epoch level (Figure 3A), Friedman tests revealed 
significant overall differences in model performance for accuracy 
(p = 0.0003), F1-score (p = 0.0003), and AUC (p = 0.0002). Post 
hoc Dunn’s tests with multiplicity-adjusted p-values showed that, 
for accuracy, the LSTM model performed significantly worse than 
both XGBoost (rank-sum difference = +25.0, p = 0.0053) and CNN 
(+24.5, p = 0.0070). For F1-score, LSTM again underperformed 
relative to LightGBM (+22.0, p = 0.0269), XGBoost (+24.0, p = 
0.0093), and CNN (+25.0, p = 0.0053). For AUC, LSTM achieved 
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TABLE 2  Performance metrics for the seven classifiers - Light 
Gradient-Boosting Machine (LightGBM), Random Forest (RF), eXtreme 
Gradient Boosting (XGBoost), Support Vector Classifier (SVC), Long 
Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and 
Transformer. The table is divided into two panels: the upper panel 
presents results obtained without subject-level separation, while the 
lower panel reports results with subject-level separation. For each 
model, the values represent the mean accuracy, F1-score, and area under 
the receiver operating characteristic curve (AUC) across five test folds, 
accompanied by the standard deviation (mean ± SD). All metrics range 
from 0 to 1.

Models

Without subject-level separation

Accuracy ±
SD

F1-score ±
SD

AUC ± SD

LightGBM 0.9483 ± 0.0101 0.9476 ± 0.0095 0.9892 ± 0.0055

Random Forest 0.9453 ± 0.0092 0.9441 ± 0.0096 0.9870 ± 0.0060

XGBoost 0.9542 ± 0.0151 0.9536 ± 0.0150 0.9862 ± 0.0081

SVC 0.8525 ± 0.0217 0.8480 ± 0.0223 0.9261 ± 0.0148

CNN 0.9572 ± 0.0134 0.9558 ± 0.0148 0.9923 ± 0.0039

LSTM 0.6675 ± 0.0262 0.6546 ± 0.0277 0.7289 ± 0.0281

Transformer 0.7739 ± 0.0745 0.7944 ± 0.0589 0.8728 ± 0.0508

With Subject-Level Separation

LightGBM 0.6621 ± 0.0352 0.6566 ± 0.0396 0.7147 ± 0.0399

Random Forest 0.6823 ± 0.0217 0.6702 ± 0.0451 0.7290 ± 0.0391

XGBoost 0.6636 ± 0.0274 0.6533 ± 0.0395 0.7053 ± 0.0335

SVC 0.6508 ± 0.0572 0.6276 ± 0.1068 0.6951 ± 0.0630

CNN 0.6635 ± 0.0529 0.6415 ± 0.0806 0.7196 ± 0.0477

LSTM 0.6170 ± 0.0320 0.6059 ± 0.0455 0.6662 ± 0.0461

Transformer 0.6335 ± 0.0278 0.6367 ± 0.0431 0.6981 ± 0.0529

Bold values represent the best performing models.

significantly lower scores than LightGBM (+24.0, p = 0.0093) and 
CNN (+27.0, p = 0.0016), while CNN also outperformed the 
Transformer (+21.0, p = 0.0443). No other pairwise comparisons 
reached statistical significance after correction. Here, the rank-sum 
difference represents the difference between the sums of the within-
fold ranks assigned to each model in the Friedman procedure, with 
positive values indicating that the first-listed model achieved higher
(better) ranks.

With subject-level separation (Figure 3B), Friedman tests 
showed no overall differences among model performance (accuracy: 
p = 0.0823, F1-score: p = 0.4137, AUC: p = 0.7076). Consistent with 
this, Dunn’s multiplicity-adjusted pairwise comparisons found no 
significant contrasts. A modest trend was noted for accuracy, with 
RF ranking above LSTM (rank-sum difference = +20.0, adjusted p 
= 0.0717). All other adjusted p-values were ≥0.40.

SHAP analysis was conducted to identify the most influential 
features for the two best-performing models under subject-level 
separation: RF and XGBoost. In the RF model, the highest mean 

absolute SHAP value was observed for Fp2_theta_meanAM (mean 
amplitude modulation in the theta band at the right frontal 
site), followed by Coh_beta (average magnitude-squared coherence 
between all channel pairs in the beta band), Fp1_theta_meanAM
(mean amplitude modulation in the theta band at the left frontal 
site), and AF3_beta_meanPeakAmplitude (mean peak amplitude 
within the beta band, indicating the strength of the strongest 
oscillations) (Figure 4A). The XGBoost model ranked Coh_beta
as the most significant feature, followed by Fp2_theta_meanAM, 
Fp1_beta_meanAM, and T7_beta_peakFrequency (single frequency 
within the beta band at the left temporal site T7 with the highest total 
energy over the epoch) (Figure 4B). While both models identified 
Fp2_theta_meanAM and Coh_beta among their top contributors, 
the differences in ranking suggest that each algorithm prioritizes 
distinct but partially overlapping neural markers.

Beeswarm plots (Figures 4C,D) illustrated both the magnitude 
and directionality of each feature’s influence on the predicted 
class. Higher Fp2_theta_meanAM values consistently increased 
the likelihood of a sleep deprivation prediction in both models, 
indicating that elevated frontal theta modulation is a key 
discriminator. In contrast, Coh_beta exhibited a more variable 
influence, with both high and low values contributing in 
different directions, suggesting interaction effects with other
features.

Correlation heatmaps (Figures 4E,F) indicated moderate-
to-strong positive correlations among spectral features within 
neighboring frontal sites. In the RF model, Fp1_theta_meanAM
and Fp2_theta_meanAM were strongly correlated. In the XGBoost 
model, a particularly high correlation was observed between 
Fpz_theta_meanAM (midline frontal theta modulation) and 
Fp2_theta_meanAM, suggesting shared frontal theta activity 
across midline and lateral sites. Across both models, Coh_beta
showed relatively low correlations with amplitude or frequency-
based features, highlighting its distinct connectivity-related
contribution.

In summary, both models relied heavily on frontal theta-band 
amplitude modulation and beta-band connectivity, underscoring 
the complementary roles of spectral dynamics and large-scale 
functional coupling in distinguishing sleep-deprived from well-
rested states. 

4 Discussion

In this study, using an open-source eyes-open resting-state 
EEG dataset, we investigated the feasibility of detecting acute 
sleep deprivation with machine learning models. We initially 
report performance at the epoch level, where data from the 
same participant may be present in both training and test 
sets. While this evaluation yielded notably high accuracies, 
particularly for the CNN, these results are likely inflated due 
to subject-specific data leakage and temporal dependencies. To 
address these limitations and assess real-world generalizability, 
we conducted a more rigorous subject-level evaluation, ensuring 
that no participant contributed data to both training and test 
sets. Under this more realistic setting, performance declined 
across all models, underscoring the difficulty of generalizing to 
previously unseen individuals. Notably, the RF classifier achieved 
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FIGURE 2
Confusion matrices for the two best-performing models with subject-level separation - (A) Random Forest (RF), (B) eXtreme Gradient Boosting 
(XGBoost). The label 0 refers to well-rested wakefulness, and 1 refers to acute sleep deprivation. A probability cutoff of 0.5 was used to derive binary 
classifications. Values in the matrices are expressed as row-normalized percentages, indicating the proportion of samples within each true class 
assigned to each predicted class.

FIGURE 3
Statistical Analysis. A Friedman test was performed to evaluate the statistical significance of observed differences in performance, for each evaluation 
metric, across all models - SVC (Support Vector Classifier), RF (Random Forest), LightGBM (Light Gradient-Boosting Machine), XGBoost (eXtreme 
Gradient Boosting), CNN (Convolutional Neural Network), Long Short-Term Memory (LSTM) and a transformer-based model. Dunn’s test was applied 
for multiple pairwise model comparisons. The results of the statistical analysis for (A) without subject-level separation and (B) with subject-level 
separation, across the three metrics - Accuracy, F1-score, and Area Under the Curve (AUC) - are presented.
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FIGURE 4
Feature importance using Shapley Additive exPlanations (SHAP) for the two best-performing models with subject-level separation–Random Forest (RF) 
(Left) and eXtreme Gradient Boosting (XGBoost) (Right). (A,B) Mean absolute SHAP values for the top 10 features, indicating average contribution 
magnitude to model predictions. (C,D) SHAP beeswarm plots showing feature impact distributions, with color denoting normalized feature values (blue 
= low, red = high). (E,F) Spearman correlation heatmaps for the top 10 SHAP-ranked features, illustrating inter-feature associations and potential 
collinearity. Features are listed in the format {ChannelName}_{FrequencyBand}_{FeatureName}. Here, meanAM refers to the mean amplitude 
modulation and coh_beta refers to the coherence in the beta band.
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the highest accuracy in this configuration and demonstrated 
greater robustness to inter-subject variability compared to the other 
models. These findings highlight the importance of subject-level 
validation in the development of EEG-based sleep deprivation 
detection systems.

The superior performance of RF under subject-level separation 
may be attributed to the tendency of deep learning models to 
overfit when trained on relatively small datasets, as in the present 
study. Deep architectures, while powerful in capturing complex 
nonlinear patterns, require large volumes of diverse training 
data to generalize effectively. In contrast, traditional ensemble-
based methods such as RF and XGBoost are less susceptible to 
overfitting in low-data regimes due to their inherent regularization 
mechanisms, bootstrap aggregation, and feature subspace sampling. 
These properties enable them to maintain more stable performance 
when confronted with limited training examples. We hypothesize, 
however, that with access to substantially larger and more 
diverse acute sleep deprivation-related EEG datasets, deep learning 
models may surpass traditional approaches in both accuracy and 
generalizability.

Feature importance derived from SHAP analysis revealed that 
the most influential predictors for the best-performing models 
(with subject-level separation) aligned closely with established 
neurophysiological effects of acute sleep deprivation (Figure 4). 
Neurophysiologically, sleep deprivation is associated with increased 
slow-wave activity, particularly in the theta band (4–7 Hz), reflecting 
drowsiness and the transition from beta to theta rhythms during 
the onset of sleep (Iber et al., 2007). Our analysis identified frontal 
theta-band amplitude modulation, most prominently at Fp2, Fp1, 
and Fpz, as consistently important across both Random Forest 
and XGBoost models, in line with evidence that frontal theta 
activity increases during sustained wakefulness, accompanied by 
significantly higher subjective sleepiness and decreased alertness 
(De Gennaro et al., 2007). In addition, beta-band connectivity 
(Coh_beta) emerged as a key contributor, representing large-
scale functional coupling between cortical regions within the 
12–30 Hz range. Intermittent increases in beta activity during 
sleep deprivation have been linked to micro-awakenings or brief 
periods of heightened cortical activation, potentially reflecting 
compensatory mechanisms to maintain alertness (Craig et al., 
2012). The identification of beta-band peak amplitude and peak 
frequency features, particularly in frontal and temporal regions 
such as AF3 and T7, further supports the view that oscillatory 
dynamics in these bands play complementary roles in distinguishing 
between well-rested and sleep-deprived states. However, contrary 
to earlier findings indicating elevated delta-band power as a 
marker of sleep deprivation (De Gennaro et al., 2007), our models 
did not identify delta-related features among the top predictors. 
One possible explanation is methodological: the use of 20-second 
epochs, while stabilizing spectral estimates, may reduce sensitivity 
to transient delta fluctuations. In addition, substantial inter-subject 
variability in delta power likely diminishes its discriminative value 
for multivariate classification. These biological and methodological 
considerations may account for why delta features did not emerge 
as dominant predictors in our study. Collectively, the SHAP 
results suggest that the discriminative features leveraged by the 
ensemble models are neurophysiologically meaningful, capturing 
both the spectral slowing characteristic of drowsiness and the 

transient beta synchrony associated with compensatory arousal 
mechanisms.

Focusing on studies that have utilized machine learning 
for the classification of acute sleep deprivation, a novel feature 
extraction method called MelPat was introduced in (Baygin, 
2025) and applied to the same open-source EEG dataset 
used in this study, achieving 97% accuracy with an 
SVC classifier. While this approach demonstrated high 
performance, our study in contrast, employed a traditional, 
well-established EEG feature set that achieved comparable 
accuracy while enabling us to link discriminative features to 
established neurophysiological biomarkers, thereby enhancing 
interpretability. Furthermore, unlike MelPat, we also evaluated 
model performance under a subject-level separation scheme, 
providing a more rigorous assessment of cross-subject 
generalizability.

Our work offers several notable contributions. First, unlike 
prior studies (Baygin, 2025) in this domain, we explicitly evaluated 
both epoch-level and subject-level separation schemes, with the 
latter providing a more realistic estimate of model performance 
in real-world scenarios by preventing within-subject data leakage. 
Second, we assessed a broad spectrum of approaches, including 
both traditional machine learning models and deep learning 
architectures, enabling a comprehensive comparison of their 
relative strengths. While deep learning models demonstrated 
strong performance under the less stringent epoch-level setting, 
our analysis also highlighted their vulnerability to overfitting in 
limited-data contexts, underscoring the need for larger and more 
diverse datasets to realize their full potential. Third, our study 
placed strong emphasis on model interpretability by employing 
SHAP analysis, which offers a unified, model-agnostic framework 
for quantifying the contribution of individual features to model 
predictions. This approach not only facilitates transparency but also 
enables direct correspondence between the most influential features 
and established neurophysiological markers of sleep deprivation, 
thereby enhancing the clinical relevance and applicability of 
our findings.

This study has certain limitations that should be considered 
when interpreting the findings. The analysis is based on an open-
source eyes-open resting-state EEG dataset obtained from a 
demographically homogeneous cohort of young, healthy adults, 
which may restrict the generalizability of the results to more 
diverse populations. Replication and benchmarking against 
independent datasets with comparable experimental protocols 
would enhance the robustness of our conclusions. However, this 
was not feasible due to the lack of suitable publicly available 
datasets. The present work conceptualized acute sleep deprivation 
as a binary state, whereas its neurocognitive and physiological 
effects likely manifest along a graded continuum. This simplification 
may obscure more nuanced patterns of impairment and recovery, 
and represents an inherent limitation of the current design. 
In the absence of a provided reference channel in the open-
source dataset, we employed a common average reference 
(CAR). However, CAR can be sensitive to montage density 
and scalp coverage and may influence sensor-level topographies 
and connectivity (Yao et al., 2019). As we did not formally 
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compare alternative re-referencing schemes, residual reference-
related distortions cannot be excluded. While the use of non-
overlapping 20-second epochs was chosen to balance temporal 
resolution with the stability of spectral estimates, this segmentation 
approach may limit sensitivity to transient or rapidly evolving 
neural dynamics. 

5 Conclusion and future work

This study represents an important step toward the development 
of EEG-based machine learning models for the objective detection 
of acute sleep deprivation and the characterization of its impact 
on cognitive readiness. While the best-performing model in 
this study achieved an accuracy of 68%, with subject-level 
separation, these findings demonstrate the overall viability 
of EEG-driven approaches for monitoring sleep deprivation 
in operational contexts. However, real-world deployment 
will require models with significantly higher performance, 
trained on larger and more diverse datasets. The present 
work lays the essential groundwork for such advancements by 
establishing a robust and interpretable pipeline that captures 
meaningful neurophysiological signatures of acute sleep loss. 
It is also important to recognize that the observed effects 
reflect transient, state-level changes associated with acute sleep 
deprivation, rather than stable, trait-like characteristics of 
individuals. Future research should examine how individual 
variability and longitudinal trajectories influence susceptibility 
to, and recovery from, acute sleep deprivation, thereby 
extending the present findings beyond transient state-level
effects.

Future research should also consider adopting multi-class or 
regression-based frameworks to better capture the graded, impact 
of sleep deprivation on cognitive and physiological function. 
Expanding model inputs to include demographic variables such as 
age and sex will also be essential to improve generalizability across 
populations. Furthermore, exploring advanced EEG features, such 
as dynamic functional connectivity (dFC) (Chen et al., 2024) and 
microstate analysis (Khoo et al., 2024), may offer complementary 
insights that improve classification performance while deepening 
our understanding of the underlying neural mechanisms. Future 
work can also explore multi-scale or overlapping windowing 
strategies to better capture fine-grained temporal dynamics. 
Finally, integrating more accessible physiological modalities such 
as photoplethysmography (PPG) may help translate these models 
into real-world, wearable monitoring systems, ultimately supporting 
continuous, non-invasive assessment of sleep-related cognitive 
readiness.
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