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Purpose: Estimating energy expenditure (EE) accurately and conveniently has 
always been a concern in sports science. Inspired by the success of Transformer 
in computer vision (CV), this paper proposed a Transformer-based method, 
aiming to promote the contactless and vision-based EE estimation.
Methods: We collected 16,526 video clips from 36 participants performing 
6 common aerobic exercises, labeled with continuous calorie readings from 
COSMED K5. Then we specifically designed a novel approach called the Energy 
Expenditure Estimation Skeleton Transformer (E3SFormer) for EE estimation, 
featuring dual Transformer branches for simultaneous action recognition (AR) 
and EE regression. Comprehensive experiments were conducted to compare 
the EE estimation performance of our method with existing skeleton-based AR 
models, the traditional heart rate (HR) formula, and a smartwatch.
Results: With pure skeleton input, our model yielded a 28.81% mean relative 
error (MRE), surpassing all comparative models. With adopting the heart rate 
and physical attributes of each participant as multi-modal input, our model 
achieved a 15.32% MRE, substantially better than other models. In comparison, 
the smartwatch showed an 18.10% MRE.
Conclusion: Extensive experimentation validates the effectiveness of 
E3SFormer, aiming to inspire further research in contactless measurement for 
EE. This study is the first attempt to estimating EE using Transformer, which can 
promote contactless and multi-modal physiology analysis for aerobic exercise.

KEYWORDS

energy expenditure estimation, computer vision, transformer, skeleton-based action 
recognition, contactless measurement 

 1 Introduction

Regular physical activity (PA), particularly aerobic exercise with appropriate intensity 
and frequency, is beneficial to human health (Wang and Xu, 2017). A sedentary lifestyle 
is associated with an elevated risk of chronic conditions, including obesity, cardiovascular 
diseases, and diabetes (Kirkham and Davis, 2015; Hamasaki, 2016). Conversely, excessive 
high-intensity exercise over extended periods may predispose individuals to a higher 
likelihood of sports-related injuries (Neely, 1998). Energy expenditure (EE), a critical 
physiological change of exercise, serves as an essential metric for monitoring and regulating 
daily PA levels and optimizing sports training (Hand et al., 2020). As such, how to estimate
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EE accurately and conveniently remains a central focus of research 
in the fields of sport sciences and biomedical.

Traditional methods for estimating EE include the doubly 
labeled water (DLW) (Westerterp, 2017), indirect calorimetry (IC) 
(White et al., 2019), and wearable sensors such as heart rate (HR) 
monitors (Kalkwarf et al., 1989) and accelerometers (Crouter, 2006). 
The DLW and IC are highly reliable and valid, making them the “gold 
standard” for EE measurement. However, the DLW only provides 
total EE over a period rather than activity-specific EE, while IC 
requires participants to wear a mask connected to a stationary 
metabolic cart, potentially disrupting movement and performance. 
Both methods are expensive and limited in practicality (Ainslie et al., 
2003; White et al., 2019). HR monitoring, though a mature 
technology, suffers from reduced accuracy during high- or low-
intensity exercise and is susceptible to environmental, emotional, 
and other external factors (Shcherbina et al., 2017). Accelerometers, 
widely utilized in PA research due to their convenience and lower 
cost (Crouter, 2006), are prone to error influenced by sensor 
placement and movement patterns (Lyden et al., 2011). With the 
growing popularity of fitness tracking apps, numerous pioneering 
studies have explored the integration of multiple physiological 
and biochemical signals from wearable devices (Tikkanen et al., 
2014; Villar et al., 2015; Clark et al., 2017). However, the limited 
availability and discomfort of such devices often restrict their 
practical application.

In contrast, sports videos can be easily accessed and capture 
full-body movement. Kinematic parameters such as velocity, 
acceleration, and joint angles can be extracted from videos to 
quantitatively describe bodily movement and PA levels, thereby 
enabling us to estimate EE (Saponaro et al., 2019). Thanks to the 
advancements in deep learning, many remarkable visual works 
for action recognition (AR) have emerged (Tran et al., 2014; 
Simonyan and Zisserman, 2014; Donahue et al., 2015; Carreira and 
Zisserman, 2017; Tran et al., 2017; Lin et al., 2019; Tran et al., 
2019; Feichtenhofer, 2020; Wang et al., 2021; Feichtenhofer et al., 
2022; Tong et al., 2022), which has inspired us to estimate EE based 
on videos. Currently, several studies have already demonstrated 
the potential of vision-based methods. Tao et al. curated an RGB-
Depth video dataset called SPHERE-calorie in a home environment 
with EE labels obtained from gas exchange measurements, and 
proposed a method that first performs action recognition and then 
invokes a specific model based on the identified action category 
to estimate EE (Tao et al., 2016). Masullo et al. proposed a dual-
modal convolutional neural network (CNN) to leverage human 
silhouette data and accelerometer data to predict EE on SPHERE-
calorie dataset (Masullo et al., 2018). Further, a meta-learning 
method was introduced to achieve personalized EE estimation on 
the above dataset (Perrett et al., 2022). Nakamura et al. collected 
an egocentric video dataset complemented by HR and acceleration 
signals, proposing a multi-modal approach for jointly predicting 
action category and EE (Nakamura et al., 2017). Peng et al. 
integrated four widely used AR datasets to acquire Vid2Burn 
and assigned hourly EE labels through three predefined methods
(Peng et al., 2022).

However, current studies in this field exhibit notable 
shortcomings. First, in the field of AR, existing datasets are 
constrained by their design, as deep learning models often identify 
actions based on specific visual contexts within videos rather 

than focusing on human motion patterns. For precise estimation 
of EE, a detailed understanding of body movement patterns 
and their intensity is paramount. Second, existing video datasets 
for EE estimation either involve activities with limited intensity 
variation (MET ≤5.0) in controlled environments (household) 
(Tao et al., 2016; Masullo et al., 2018; Perrett et al., 2022), or their 
EE labels lack precision and overlook individual differences due 
to their labels generated from metabolic equivalent (MET) values 
(Nakamura et al., 2017; Peng et al., 2022).

To construct a comprehensive and authentic benchmark 
for vision-based EE estimation, recruiting a large number of 
subjects and collecting video samples of various types of physical 
activities are indispensable. And the calorimeter based on oxygen 
consumption (V̇O2) is a more ideal manner than MET to measure 
EE labels. Additionally, the HR and physical attributes of the subject 
are also correlated with EE.

Therefore, we introduce an authentic dataset that contains 
videos of common exercises and corresponding authentic EE labels, 
with additional information such as HR and subjects’ physical 
attributes. The EE ground truth labels of our dataset are obtained 
from the indirect calorimeter COSMED K5. The dataset is further 
enriched with multi-modal data, including real-time HR and 
physical attributes of participants. Some examples from the dataset 
are illustrated in Figure 1.

Based on this dataset, we propose a novel method for estimating 
EE based on human skeleton and Transformer architecture, termed 
as E3SFormer, which is an abbreviation for Energy Expenditure 
Estimation Skeleton Transformer. First, we utilize an off-the-shelf 
pose estimation method to extract the skeleton sequence of the 
exerciser from videos (Cai et al., 2020). Then, we input this skeleton 
sequence into a Spatio-Temporal Fusion Transformer backbone 
to extract features. The extracted features, which encapsulate 
information across both the temporal dimension and the spatial 
dimension (i.e., human joint dimension), are subsequently fed 
into two distinct Transformer network branches. One branch 
is dedicated to predicting the action category, while the other 
focuses on estimating EE. Different from the prior video-based or 
skeleton-based methods that strongly rely on action recognition 
accuracy, we introduce the independent EE regression branch 
into the Transformer architecture for the first time. This dual-
branch architecture ensures a comprehensive integration of motion 
dynamics and physiological context, enabling accurate and robust 
EE estimation.

Intuitively, we believe that the movement features of certain 
specific joints on the human body are key to action classification, 
and the intensity or temporal dynamics of these joints’ motion 
have a stronger correlation with EE. For instance, regardless of 
hand movements, the action of running requires a rapid alternation 
of stepping forward and backward with both legs. Therefore, we 
transfer the attention of each joint from the AR branch to the EE 
regression branch to enhance its performance. Based on the fact 
that different individuals will have varying EE when engaging in 
the same type and intensity of exercise, using only video clips or 
skeleton sequences to accurately predict EE is inadequate. More 
personalized data are required for this purpose. Therefore, in the 
network design, we added a multi-modal data input module to 
achieve more personalized EE estimation with subjects’ real-time 
HR and physical attributes.
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FIGURE 1
Examples in our dataset. Physical attributes of subjects are at the bottom left corner of each sample, including gender/age, and height (cm)/weight 
(kg). Abbreviation: M, male; F, female.

Thus, focusing on aerobic exercise, this study aims to establish 
an authentic vision-EE benchmark and design a neural network 
supporting multi-modal data input for the EE estimation task. 
Furthermore, we conduct experiments to demonstrate the 
superiority of our method, aiming to inspire further research in 
vision-based, contactless, and intelligent EE estimation. 

2 Methods

2.1 Participants and data collection

Thirty-six healthy participants were recruited for the study. 
Ethics approval was obtained before the commencement of this 
research. Each participant signed a Written Informed Consent and 
a Sports Health Survey Privacy Policy agreeing to share their data 
for research purposes. The participants were also asked to complete 
the Exercise Risk Screening Questionnaire prior to their participation 
in this study; those with any contraindications to exercise were 
excluded from the study. Six popular types of indoor exercise in 
daily life are included: running, riding, elliptical, skipping, aerobics, 
and high-intensity interval training (HIIT). For diversity, the first 
four types are further set three speed levels (slow, medium and fast), 
subdividing the dataset into 14 activity classes. Running is testing 
on a treadmill with a 0% incline and speed settings of 8, 10, and 
12 km/h for males and 7, 9, and 11 km/h for females. The resistance 
for riding is set to 1 gear (approximately 8 kg), maintaining speeds 
around 60, 80, or 100 RPMs (revolutions per minute). The speed 
of the elliptical is set to 30, 50, or 70 RPMs, and the resistance is 
adjusted to the maximum level each participant could sustain at the 
corresponding speed. Skipping was performed at three speeds: 60, 
100, and 140 RPMs. The instructional videos of aerobics and HIIT
were downloaded from the internet for the participants to follow and 

practice. For each test, the participant was required to exercise at a 
constant speed for 30 min. Before and after the exercise, they were 
instructed to sit quietly for 5 min each to record rest and recovery 
data. Throughout this procedure, the participants were required to 
wear the COSMED K5 portable metabolic system (K5 for short), 
the Polar H10 heart rate band, and a smartwatch for continuous 
monitoring.

The K5 measures respiratory gas exchange using the dynamic 
mixing chamber (DMC) or breath-by-breath (B ×  B) technique 
and then calculates EE based on IC, which is the most effective and 
accurate approach for estimating EE during rest and aerobic exercise 
(Crouter et al., 2019; White et al., 2019). The Polar H10, a chest-
worn HR monitor, was synchronized with the K5. Both ground 
truth sources are recognized as the “gold standard” and have been 
widely used in sports research. Simultaneously, all RGB videos were 
captured by the EZVIZ S2 camera at 2.7k raw resolution and 30 fps. 
Totally, over 112 original sports videos were collected from multiple 
viewpoints. 

2.2 Data preprocessing and split

Given the high resolution of the original videos, we down 
sampled them to an 856 ×  480 resolution for facilitating processing. 
The samples have two kinds of EE measurement ways (DMC and B×
 B); therefore, for the sake of uniformity and ease of processing, the 
videos were cut into clips every 10 s and then labeled with EE and 
HR. For the DMC video samples, the original records are sufficient 
to assign the clip labels; for the B×  B samples, the EE and HR records 
were averaged over 10-s intervals as the labels of the video clips. 
In this manner, we obtained 17,260 video clips annotated with EE 
and HR labels, and matched them with the physical attributes of the 
participants.
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FIGURE 2
The diagram of data preprocessing.

Considering that there is a temporal delay between the actual 
occurrence of EE in the muscles and its recording by the metabolic 
system (Hughson et al., 2001), we calculated a mean delay time for 
each participant similar to (Blake and Wakeling, 2013) and revised 
the EE labels before cutting the videos. Then, we extract the human 
body skeleton sequence using the combination of the RTMPose 
(Cai et al., 2020) and the RTMDet models (Lyu et al., 2022). We 
also write a script to filter out the unrelated moving individuals 
automatically. A 10-s video clip contains 300 frames, and captures at 
least 2 repetitions of movements, which contain complete exercise 
cycles. After manually removing a small number of bad video clips, 
we finally obtained 16,526 video clips as our dataset. Finally, we 
chose to use the Euro filter (Casiez and And Vogel, 2012) to filter 
the obtained skeleton data so that reduce the jitter. The preprocessing 
steps above are shown in Figure 2.

The application of EE estimation based on video requires the 
model to have a strong generalization on individuals not seen 
in the training set. In order to evaluate the generalization of the 
model, we divided the dataset into training, validation, and test sets 
according to the participants. Specifically, we randomly divide the 
36 participants in a roughly 6:2:2 ratio, assigning 22 participants 
to the training set, with 7 participants each in the validation and 
test sets. Accordingly, the number of video clips in the training, 
validation, and test sets are 10,049 and 3,234 and 3,243, respectively. 
This cross-subject data split ensures that the participants used for 
evaluating the model’s performance are not seen during the model 
training process, which allows for an effective assessment of the 
model’s generalization ability. 

2.3 E3SFormer: energy expenditure 
estimation skeleton transformer

Accurately estimating EE requires fine-grained analysis of 
video, which is a computationally intensive task. Traditional video 

understanding methods generally sample a small number of frames 
in each video (Tran et al., 2014; Simonyan and Zisserman, 2014; 
Carreira and Zisserman, 2017; Feichtenhofer et al., 2018), which 
is inadequate for predicting precise EE of human motion. If all 
frames of a video clip are inputted into these methods, the GPU 
memory usage and inference time will be excessive, making it 
unfavorable for practical applications. Furthermore, irrelevant stuff 
and background in the video may affect the prediction of EE. 
Therefore, we use the human body skeleton sequence of subjects 
extracted from video clips when data preprocessing as input, 
and then adopt a human skeleton-based method to accurately 
estimate EE on our dataset and reduce computational cost and 
inference time.

The overall procedure of our model E3SFormer is illustrated 
in Figure 3, including a backbone and two branches for action 
recognition and EE regression, respectively. The entire network 
is based on the Transformer architecture (Zhu et al., 2023). 
The backbone uses a spatial-temporal fusion for extracting 
spatial and temporal features of an inputted human skeleton 
sequence. Afterward, the features are fed into the two different 
branches for different tasks simultaneously. The attention of 
each joint in the action recognition branch, termed as Ac, is 
transferred to the EE regression branch to facilitate precise EE 
regression.

2.3.1 Spatio-temporal motion feature extraction
The key component of the backbone is a Dual-stream Spatio-

temporal Transformer (DSTformer) block. One DSTformer block 
consists of two different branches. The first branch initially performs 
a Transformer along the spatial (joint) dimension, followed by 
a Transformer on the temporal dimension. The second branch 
switches the order of these two Transformers. The result of 
these two branches is fused through adaptive weights produced 
by an attention regressor. Each branch of DSTformer has the 
capability of modeling comprehensive spatio-temporal information, 

Frontiers in Physiology 04 frontiersin.org

https://doi.org/10.3389/fphys.2025.1666616
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Jin et al. 10.3389/fphys.2025.1666616

FIGURE 3
Framework of E3SFormer. The human skeleton sequence x is extracted using a pose estimator from the video and then fed into a backbone to obtain 
motion representation F. It is then sent to an action recognition branch (upper) and an EE estimation regression branch (lower). The category-related 
joint-specific attention Ac from the action branch is transferred to the EE estimation regression branch to boost its performance. The multi-modal data
z is used for more personalized EE estimation.

and different branches are interested in different spatio-temporal 
aspects. The fusion operation can dynamically balance the results 
of these two branches.

Specifically, we define the input skeleton sequence as x ∈
ℝT×J×Cin , where T is the temporal sequence length, J is the 
number of body joints, and Cin is the channel number of input. 
Specifically, Cin = 3 in here, the first and second channels are 
the x-coordinate and y-coordinate of body joints respectively, and 
the third channel is the visibility confidence of each joint offered 
by the pose estimation method (Cai et al., 2020). The skeleton 
sequence x is projected to a high-dimensional feature F0 ∈ ℝT×J×C, 
and concatenated with a pretrained spatial position encoding PS ∈
ℝ1×J×C and a temporal position encoding PT ∈ ℝ

T×1×C. Then the 
input feature is fed into the backbone that contains N DSTformer 
blocks to get the motion representation F ∈ ℝT×J×C. C denotes 
the channel of features used in the backbone and thereafter 
branches. The obtained motion representation F is then fed into 
two transformer branches for both action recognition and energy 
expenditure regression. 

2.3.2 Spatial-based action recognition
For the action recognition branch, we first use a Self-Attention 

Pooling (SAP) layer to squeeze the temporal dimension T of F, 
which is defined as Equation 1:

SAP(Fj) =
T

∑
t=1

exp(FC(Ft
j))

∑T
t′=1

exp(FC(Ft′
j ))
· Ft

j , (1)

where Fj is the slice of F along the joint dimension, FC is a Fully 
Connected layer. The result of this SAP layer is denoted as FS ∈ ℝJ×C, 
which is concatenated with a class token (CLS) and fed into a two 
Spatial Transformer (ST) layer to model the relation shape among 
the joints. The ST aims to perform Transformer operation along 
the joint dimension, the key component of which is the Multi-Head 
Self-Attention (MHSA). MHSA is calculated in a similar way as in 
MotionBERT (Zhu et al., 2023). Residual connection is used to the 
MHSA result, which is fed into a multilayer perceptron (MLP), and 
followed by a residual connection. The Pre-LayerNorm trick is used 
for both MHSA and MLP. 

2.3.3 Joint-specific attention for enhanced 
energy expenditure regression

Every token in the action recognition branch leverages its query 
to calculate the similarity of all keys to form the attention matrix, 
representing which tokens should be concerned. The CLS token is 
used to classify action, so in our intuition, which joints are important 
for a certain action category can be represented by the attention of 
the CLS token. Therefore, the average of multi-head attention of CLS 
token in the second ST, which if termed as category-related joint-
specific attention Ac ∈ ℝJ , is used to signify the importance.

For the EE prediction branch, there are two Temporal 
Transformer (TT) layers followed by an SAP layer. The only 
difference between ST and TT is that TT is performed along the 
temporal dimension of each joint. The result can be denoted as 
Ft ∈ ℝJ×C. To gain the enhanced representation for regression, we 
use Ac as a weight to calculate a weighted sum of Ft along the joint 
dimension, resulting in Fr ∈ ℝC. For the integration of multi-modal 
data z including heart rate and physical attributes, an MLP is used to 
extract feature M of them. Then, it is concatenated with the Ft and 
the result of action recognition branch Fc ∈ ℝ

J×C without CLS token 
and fed into a Transformer layer. The result as well as Fr is used to 
regress EE.

We use the Cross-Entropy Loss Lc to train the action recognition 
branch, together with L1 Loss Lr to train the EE regression branch. 
The overall loss function is as Equation 2:

L = Lr + αLc, (2)

where α is a hyperparameter. To balance the action recognition loss 
and EE regression loss, we set α = 0.2 for our E3SFormer framework. 

2.4 Experiment setup

2.4.1 Comparison methods
We compared the proposed E3SFormer with two skeleton-based 

action recognition frameworks, namely, ST-GCN (Yan et al., 2018) 
and PoseConv3D (Duan et al., 2021), on our dataset. Among them, 
the PoseConv3D is based on convolutional neural networks (CNN), 
while the ST-GCN is based on graph convolutional networks (GCN). 
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We modified the output channel of the last Linear layer originally 
for classification to 1 for EE regression. Besides, we altered the input 
channel of PoseConv3D from J to 3 (J is the number of body joints), 
and used the sequence of RGB video frames as input to simply 
compare the performance of the skeleton-based and video-based 
approach. The altered framework is designated as RGBConv3D. 
When using multi-modal data as input, the smartwatch prediction 
results were added for comparison. 

2.4.2 Training details
We used the pretrained weight of MotionBERT (Zhu et al., 

2023) to initialize the backbone. However, the length of pretrained 
temporal position encoding PT is insufficient for our fine-grained 
task that has a quite long skeleton sequence. Therefore, we 
performed linear interpolation on the T dimension of PT from the 
original number to a longer number to accommodate longer input 
sequences. Our model and comparison models were implemented 
by PyTorch and optimized by Lion optimizer (Chen et al., 2024) with 
a learning rate of 10−4, weight decay of 5 × 10−4, and cosine annealing 
as the learning rate decay schedule. We trained all the settings for 50 
epochs with a batch size of 16, except the two CNN-based models, 
PoseConv3D (Duan et al., 2021) and RGBConv3D. Considering the 
larger GPU memory usage of these two models, we set the batch 
size of these two models to 8. For all the skeleton-based models, 
the joint coordinates were normalized to the range of [-1,1]. The 
random horizontal flipping was applied as the data augmentation. 
The experiments were running on two Intel Xeon 4215R CPUs with 
128G memory and one NVIDIA RTX A6000 GPU. 

2.4.3 Evaluation metrics
We adopted L1 Loss to train every model for EE regression, 

which is also known as Mean Absolute Error (MAE). In addition to 
MAE, Mean Relative Error (MRE), Pearson Correlation Coefficient 
(PCC), and Coefficient of Determination (R2) were also used as 
evaluation metrics for the model. 

3 Results

3.1 Participants demographics

Table 1 summarizes the physical attributes of the participants. 
A total of 36 healthy adults gave consent to participate, including 
15 males and 21 females, with an average age of 23.3 years, mostly 
recruited from the university.

3.2 Dataset statistics

The dataset contains a total of 6 major categories of aerobic 
exercises, which are further divided into 14 classes based on speed. 
Figure 4a illustrates the distribution of video clips across each class. 
Running is the most frequent category, comprising a total of 7096 
clips, with 1733 in fast (_f), 2676 in medium (_m), and 2687 in 
slow (_s) speed variations. The average number of video clips per 
class is 1232.9. Figures 4b,c depicts the distribution of EE and HR 
measurements across each exercise class, respectively. Generally 
speaking, the higher the exercise intensity, the higher the EE and 

TABLE 1  The physical attributes of participants.

Characteristics Total sample

Gender (m/f) 15/21

Age (yr) 23.3 ± 3.0

Hight (cm) 172.2 ± 8.7

Weight (kg) 65.8 ± 14.9

BMI (kg/m2) 22.0 ± 3.4

Data presented as mean ± SD.SD, standard deviation; BMI, body mass index.

HR. Among the categories, running_f  shows the highest average EE 
and HR, while riding_s has the lowest average EE and HR.

3.3 Joint-specific attention

Figure 5 shows the heatmaps of category-related joint-specific 
attention Ac for each general exercise category in our test set. The 
six subplots correspond to six categories of exercise, titled above 
each subplot. The x-axis of each subplot represents joint indexes, 
and their specific correspondence with human body joints, which 
is originated from the Human3.6M dataset (Ionescu et al., 2014). 
The y-axis represents sample indexes; thus, each row of the subplots 
represents an Ac of a specific sample. The brighter the heatmap, the 
larger the Ac value, indicating that the joint is more important for its 
exercise category.

3.4 Pure skeleton results

As shown in Table 2, when we only leverage the human 
skeleton sequence as input, the proposed E3SFormer surpasses all 
comparison methods on most evaluation metrics, except for R2. But 
the R2 still ranks second among all the methods and is close to 
the first (0.5118 compared to 0.5175). These results demonstrate the 
effectiveness of our method.

3.5 Multi-modal input results

Based on the fact that different individuals will have varying EE 
values when engaging in the same type and intensity of exercise, 
using only video clips or skeleton sequences to accurately predict EE 
is inadequate. More personalized data are required for this purpose.

For all the comparison methods, we leverage a three-layer 
multi-layer perceptron (MLP) to extract a feature of HR and 
anthropometric characteristics of each input sample. The hidden 
layers and output layer of the MLP have the same number of 
channels as the output channels of each backbone in these methods. 
The extracted attribute feature is concatenated with the backbone 
feature and fed into a fully connected layer to predict EE. When 
augmented with HR and anthropometric characteristics, the model 
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FIGURE 4
Statistics of our dataset. (a) The number of video clips. (b) Average energy expenditure (EE) for each class. (c) Average heart rate (HR) for each class. The 
_f, _m, and _s denote fast, medium, and slow speed respectively, while _x denotes no speed label.

performances are much better than without these multi-modal 
data, shown in Table 3.

In addition, as the most popular wearable devices, smartwatches 
also use multi-modal data for EE prediction. For comparison, the 
subjects were asked to wear a smartwatch during dataset collection. 
We calculated the evaluation metrics of the smartwatch on the test 
set and added the results in Table 3. 

3.6 Ablation study

Table 4 shows the ablation study that we conducted. The upper 
half of the table is experiments using only heart rate (HR) and 
physical attributes (Attr) to predict EE. The formula is given by 
the American College of Sports Medicine to estimate EE based on 
these data (Medicine, 2013). The parameters of the formula differ 
for males and females. For males, the formula is as follows:

EE =
(0.6309×HR+ 0.1988×W+ 0.2017×A− 55.0969)

4.184
,

while for females, the formula is:

EE =
(0.4472×HR+ 0.1263×W+ 0.074×A− 20.4022)

4.184
,

where EE denotes the energy expenditure (kcal/min), HR, W, 
and A denote heart rate, weight, and age, respectively. The rest 
three rows are the experiments using a three-layer MLP to predict 
EE according to the specified data. The channel number of the 
hidden layers is 512. The lower half of Table 4 is the ablation 
study of E3SFormer’s action recognition branch with the category-
related joint-specific attention. The “w/o AR” refers to replacing 
the joint-specific attention with average pooling for averaging
regression outputs.

3.7 Multi-view analysis

In order to analyze our model’s sensitivity to the viewpoint, 
we divided the test set into subsets based on the viewpoint 
and tested the model performance on each subset separately. 
Due to the use of flip data augmentation during training, there 
is effectively no difference between left and right viewpoints. 
Therefore, the left and right perspectives were combined into a 
single subset. The sample numbers of front, back, left & right 
viewpoints are 157, 1803, and 1283, respectively, and the results are
shown in Table 5.
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FIGURE 5
Category-related joint-specific attention Ac for each example of each general exercise category in the test set.

TABLE 2  EE regression results with pure skeleton sequence as input.

Method\
Metric

MAE ↓ MRE (%) ↓ PCC ↑ R2 ↑

ST-GCN 2.1939 36.42 0.6632 0.3722

PoseConv3D 2.0670 33.03 0.7232 0.5175

RGBConv3D 2.5408 42.93 0.5186 0.2663

E3SFormer 2.0304 28.81 0.7528 0.5118

The ↓ indicates the lower the better, and the ↑ indicates the higher the better. MAE, mean 
absolute error; MRE, mean relative error; PCC, Pearson correlation coefficient; R2, 
coefficient of determination. The values in bold indicate the best results.

4 Discussion

4.1 Visualization of joint-specific attention

All subplots of Figure 5 reveal that in most samples, the hip 
(joint 0) has a relatively high Ac value, except for half of the samples 
in riding. As the joint closest to the body’s center of gravity, the 
hip naturally holds significant importance because it can represent 
the overall movement of the body. For instance, the frequency of 
vertical oscillation and the speed of horizontal movement of the 
body’s center of gravity are important indicators for accessing the EE 
and running economy of a runner (Saunders PU et al., 2004; Barnes 

TABLE 3  EE regression results with multi-modal data as input.

Method\
Metric

MAE ↓ MRE (%) ↓ PCC ↑ R2 ↑

ST-GCN 1.4895 23.06 0.8637 0.7169

PoseConv3D 1.3939 21.52 0.8976 0.7861

RGBConv3D 1.7382 28.83 0.8988 0.7048

smartwatch 1.4582 20.79 0.8271 0.6763

E3SFormer 1.1039 15.32 0.9082 0.8225

The ↓ indicates the lower the better, and the ↑ indicates the higher the better. MAE, mean 
absolute error; MRE, mean relative error; PCC, Pearson correlation coefficient; R2, 
coefficient of determination. The values in bold indicate the best results.

and Kilding, 2015). The reason why half of the samples in riding do 
not show this pattern, in our opinion, is that the hips are seated 
on the seat of the stationary bike, thereby remaining motionless. 
Actually, we also drew the heatmaps of the validation set, and found 
that the hips of most of the riding examples in the validation set are 
not important.

Apart from the hip, different exercises show different patterns 
of Ac, and most samples within the same exercise category exhibit 
similar patterns. The left foot (joint 3) and right foot (joint 6) 
are crucial for skipping because this kind of exercise primarily 
relies on the force generated by the calf muscles. For a subset 
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TABLE 4  Ablation study of our method.

Ablation\
Metric

MAE ↓ MRE (%) ↓ PCC ↑ R2 ↑

Formula 3.5047 65.02 0.7767 −0.1493

Only HR 2.7904 32.75 0.7871 0.0268

Only Attr 3.0140 58.41 0.5812 0.0416

HR + Attr 1.5276 25.78 0.8712 0.7297

w/o MM w/o AR 2.1071 39.22 0.7155 0.4704

w/o MM w/AR 2.0304 28.81 0.7528 0.5118

w/MM w/o AR 1.8705 29.88 0.7260 0.5035

w/MM w/AR 1.1039 15.32 0.9082 0.8225

“Formula” denotes using a predefined set of formulas to calculate EE based on heart rate 
and physical attributes. The w/o MM and w/ MM denote without and with heart rate and 
physical attributes as multi-modal data, respectively. The w/o AR and w/ AR denote without 
and with action recognition branch, respectively. The ↓ indicates the lower the better, and 
the ↑ indicates the higher the better. MAE, mean absolute error; MRE, mean relative error; 
PCC, Pearson correlation coefficient; R2, coefficient of determination. The values in bold 
indicate the best results.

TABLE 5  Our model metrics of different viewpoints.

Viewpoint\
Metric

MAE ↓ MRE (%) ↓ PCC ↑ R2 ↑

front 1.3577 17.95 0.7557 0.5191

back 1.3089 17.50 0.9031 0.7723

left & right 1.1516 18.73 0.9530 0.8615

The ↓ indicates the lower the better, and the ↑ indicates the higher the better. MAE, mean 
absolute error; MRE, mean relative error; PCC, Pearson correlation coefficient; R2, 
coefficient of determination.

of samples in riding, all joints of the lower limbs (from joint 
1–6) show relatively high importance, as it requires exerting force 
with the thighs to pedal. In running, aerobics, and HIIT, the 
joints of the upper limbs also hold a certain level of importance 
because these exercises are accompanied by movements of the
upper limbs. 

4.2 Regression results of energy 
expenditure

As shown in Table 2, the PoseConv3D (Duan et al., 2021) ranks 
first on R2 and performs relatively better on other evaluation metrics 
compared to ST-GCN (Yan et al., 2018), exhibiting the superior 
capability to extract fine-grained features in our task. We conjecture 
that this is because the issue of over-smoothing in GCNs results in 
a diminished ability to extract fine-grained features in the deeper 
layers of the network. Accurate estimation of EE, however, requires 
precise capture of the displacement of each joint to measure muscle 
contractions, a capability where CNN excel.

Despite being a CNN, the RGBConv3D performs much worse 
compared to ST-GCN and PoseConv3D. The main reason, in our 

opinion, is that the inputs of RGBConv3D are RGB video clips that 
contain irrelevant objects, other people, and various backgrounds, 
which may disturb the prediction of EE. By contrast, PoseConv3D 
renders the joint coordinates to the video space as the input of 
CNN, focusing on human body movement while disregarding the 
influence of background factors.

With the help of multi-modal data, the performances of all 
methods improved significantly, as shown in Table 3. E3SFormer 
ranks first on all of the evaluation metrics, owing to a meticulously 
designed architecture. The gap between CNN-based and GCN-
based methods becomes less pronounced. The PoseConv3D does 
not stand out on the evaluation metrics representing prediction 
accuracy (MRE and MAE), but performs well on the evaluation 
metrics related to correlation (PCC and R2). The PCC of 
RGBConv3D is quite high while the R2 is relatively lower, which is 
related to the worst performance on MRE and MAE, showing a high 
correlation but low prediction accuracy. The incorporation of multi-
modal data boosts the prediction accuracy of all methods. However, 
according to the two analyses above, due to the structural advantages 
of CNN, CNN-based methods exhibit better predictive correlation.

Table 3 also shows that all the metrics of our methods surpass 
those of the smartwatch. We conjecture that it is because the 
smartwatch is less sensitive in the early stage of exercise. The 
smartwatch failed to sense the exercise intensity and estimated EE 
as 0 due to the slow increase in the HR and EE values of the subject 
(approximately 0.5∼2.0 kcal/min). This failure is also attributed to 
the dominance of the lower limbs in most of the testing exercises 
(such as running, riding, and elliptical) and the small movement 
amplitude of the wrist, resulting in low prediction values for the 
smartwatch. The above results demonstrate the suitability of the 
proposed model for product integration.

As for the ablation study results, the upper half of Table 4 
shows that the neural networks are more appropriate than the 
predefined formula for this task. By using nonlinear activation 
functions, MLP is able to learn and model nonlinear relationships 
and complex functions, which makes it capable of dealing with 
nonlinear problems. Besides, both using only heart rate and using 
only physical attributes are not sufficient to produce an acceptable 
result, indicating that EE is related to a combination of both, rather 
than either one alone.

The lower half of Table 4 show that without the joint-specific 
attention, the performance will degenerate substantially. After 
using the category-related joint-specific attention from the action 
recognition branch, the MRE will be reduced more than 10%, 
demonstrating the importance of it. It also proves that the motion 
features of certain specific joints on the human body over time have 
a great correlation with EE estimation. From the sports videos, we 
can capture these category-related joint-specific attention. From the 
sports videos, we can capture the motion characteristics of category-
related key joints through the attention mechanism, so as to predict 
the motion intensity and calculate EE in a more comprehensive and 
precise way.

In Table 5, it can be seen that the MRE differences across various 
viewpoints are small. The other three metrics of left & right superior, 
possibly because the side perspective provides more information on 
limb movements. The PCC and R2 of the front viewpoint are low due 
to the limited sample size, and most are aerobics and HIIT videos, 
which are highly complicated and difficult to predict EE. Therefore, 
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the model is indeed slightly sensitive to the viewpoint, but the results 
are also influenced by other factors. 

4.3 Limitations and future works

This research is an effective attempt and application of artificial 
intelligence (AI) in EE estimation field, but it indeed has limitations. 
First, the age distribution of participants is not wide enough. Thus, 
more children and elderly volunteers should be recruited to expand 
our dataset. Second, the data were all collected in the gym scenario, 
potentially limiting the practicability of the E3SFormer in outdoor 
settings. The research in the vision-based EE estimation field is in its 
early stage. This paper focuses on data collection in indoor settings 
to minimize the interference of external factors, such as wind speed, 
ground slope, temperature, etc. In the future, additional outdoor 
exercise video data will be collected to enhance the universality 
and robustness of our model. Third, the real-time performance 
of the E3SFormer still needs improvement. Since the input of the 
E3SFormer is a skeleton sequence rather than original videos, we 
need to preprocess the video clips and use the pose estimator 
to extract human skeletons. Currently, under our experimental 
conditions, the inference speed of the E3SFormer is only 0.08∼0.20 s 
for 300-frame clips, but the preprocessing and pose estimator take 
4.3∼6.0 s, which has not been optimized for deployment. Future 
researchers can optimize inference speed by model quantization, 
model pruning, knowledge distillation, and designing more efficient 
model architectures, which will improve its practicability for product 
integration. If a more efficient architecture is designed in the 
future, the model will be further optimized and deployed, possibly 
integrated into a product that can be applied to contactless fitness 
training monitoring and even predicting patients’ physical activity 
levels without interference in clinical practice. 

5 Conclusion

This work is the first contribution to estimating energy 
expenditure using Transformer architecture. We first curate an 
authentic benchmark including 16,526 aerobic exercise videos, 
labeled with the COSMED K5 calorimeter, the heart rate and 
physical attributes of each subject. Based on this dataset, we 
proposed a dual-branch network E3SFormer that utilizes human 
skeleton data from videos to regress energy expenditure. The 
attention of each joint in the action recognition branch is transferred 
to the energy expenditure regression branch to facilitate precise 
regression. Comprehensive experiments exhibited the effectiveness 
of the E3SFormer, aiming to inspire further research in contactless 
and vision-based energy expenditure estimation. The outstanding 
results achieved by the use of multi-modal data further demonstrate 
the signification application of AI multi-modal models in contactless 
motion analysis.
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