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Vision-based multimodal energy
expenditure estimation for
aerobic exercise in adults
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Purpose: Estimating energy expenditure (EE) accurately and conveniently has
always been a concern in sports science. Inspired by the success of Transformer
in computer vision (CV), this paper proposed a Transformer-based method,
aiming to promote the contactless and vision-based EE estimation.

Methods: We collected 16,526 video clips from 36 participants performing
6 common aerobic exercises, labeled with continuous calorie readings from
COSMED K5. Then we specifically designed a novel approach called the Energy
Expenditure Estimation Skeleton Transformer (E3SFormer) for EE estimation,
featuring dual Transformer branches for simultaneous action recognition (AR)
and EE regression. Comprehensive experiments were conducted to compare
the EE estimation performance of our method with existing skeleton-based AR
models, the traditional heart rate (HR) formula, and a smartwatch.

Results: With pure skeleton input, our model yielded a 28.81% mean relative
error (MRE), surpassing all comparative models. With adopting the heart rate
and physical attributes of each participant as multi-modal input, our model
achieved a 15.32% MRE, substantially better than other models. In comparison,
the smartwatch showed an 18.10% MRE.

Conclusion: Extensive experimentation validates the effectiveness of
E3SFormer, aiming to inspire further research in contactless measurement for
EE. This study is the first attempt to estimating EE using Transformer, which can
promote contactless and multi-modal physiology analysis for aerobic exercise.

KEYWORDS

energy expenditure estimation, computer vision, transformer, skeleton-based action
recognition, contactless measurement

1 Introduction

Regular physical activity (PA), particularly aerobic exercise with appropriate intensity
and frequency, is beneficial to human health (Wang and Xu, 2017). A sedentary lifestyle
is associated with an elevated risk of chronic conditions, including obesity, cardiovascular
diseases, and diabetes (Kirkham and Davis, 2015; Hamasaki, 2016). Conversely, excessive
high-intensity exercise over extended periods may predispose individuals to a higher
likelihood of sports-related injuries (Neely, 1998). Energy expenditure (EE), a critical
physiological change of exercise, serves as an essential metric for monitoring and regulating
daily PA levels and optimizing sports training (Hand et al., 2020). As such, how to estimate
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EE accurately and conveniently remains a central focus of research
in the fields of sport sciences and biomedical.

Traditional methods for estimating EE include the doubly
labeled water (DLW) (Westerterp, 2017), indirect calorimetry (IC)
(White et al., 2019), and wearable sensors such as heart rate (HR)
monitors (Kalkwarf et al., 1989) and accelerometers (Crouter, 2006).
The DLW and IC are highly reliable and valid, making them the “gold
standard” for EE measurement. However, the DLW only provides
total EE over a period rather than activity-specific EE, while IC
requires participants to wear a mask connected to a stationary
metabolic cart, potentially disrupting movement and performance.
Both methods are expensive and limited in practicality (Ainslie et al.,
2003; White et al, 2019). HR monitoring, though a mature
technology, suffers from reduced accuracy during high- or low-
intensity exercise and is susceptible to environmental, emotional,
and other external factors (Shcherbina et al., 2017). Accelerometers,
widely utilized in PA research due to their convenience and lower
cost (Crouter, 2006), are prone to error influenced by sensor
placement and movement patterns (Lyden et al., 2011). With the
growing popularity of fitness tracking apps, numerous pioneering
studies have explored the integration of multiple physiological
and biochemical signals from wearable devices (Tikkanen et al.,
2014; Villar et al., 2015; Clark et al., 2017). However, the limited
availability and discomfort of such devices often restrict their
practical application.

In contrast, sports videos can be easily accessed and capture
full-body movement. Kinematic parameters such as velocity,
acceleration, and joint angles can be extracted from videos to
quantitatively describe bodily movement and PA levels, thereby
enabling us to estimate EE (Saponaro et al., 2019). Thanks to the
advancements in deep learning, many remarkable visual works
for action recognition (AR) have emerged (Tran et al, 2014;
Simonyan and Zisserman, 2014; Donahue et al., 2015; Carreira and
Zisserman, 2017; Tran et al., 2017; Lin et al., 2019; Tran et al.,
2019; Feichtenhofer, 2020; Wang et al., 2021; Feichtenhofer et al.,
2022; Tong et al., 2022), which has inspired us to estimate EE based
on videos. Currently, several studies have already demonstrated
the potential of vision-based methods. Tao et al. curated an RGB-
Depth video dataset called SPHERE-calorie in a home environment
with EE labels obtained from gas exchange measurements, and
proposed a method that first performs action recognition and then
invokes a specific model based on the identified action category
to estimate EE (Tao et al,, 2016). Masullo et al. proposed a dual-
modal convolutional neural network (CNN) to leverage human
silhouette data and accelerometer data to predict EE on SPHERE-
calorie dataset (Masullo et al., 2018). Further, a meta-learning
method was introduced to achieve personalized EE estimation on
the above dataset (Perrett et al., 2022). Nakamura et al. collected
an egocentric video dataset complemented by HR and acceleration
signals, proposing a multi-modal approach for jointly predicting
action category and EE (Nakamura et al, 2017). Peng etal
integrated four widely used AR datasets to acquire Vid2Burn
and assigned hourly EE labels through three predefined methods
(Peng et al., 2022).

However, in this field exhibit notable
shortcomings. First, in the field of AR, existing datasets are

current studies

constrained by their design, as deep learning models often identify
actions based on specific visual contexts within videos rather
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than focusing on human motion patterns. For precise estimation
of EE, a detailed understanding of body movement patterns
and their intensity is paramount. Second, existing video datasets
for EE estimation either involve activities with limited intensity
variation (MET <5.0) in controlled environments (household)
(Tao et al., 2016; Masullo et al., 2018; Perrett et al., 2022), or their
EE labels lack precision and overlook individual differences due
to their labels generated from metabolic equivalent (MET) values
(Nakamura et al., 2017; Peng et al., 2022).

To construct a comprehensive and authentic benchmark
for vision-based EE estimation, recruiting a large number of
subjects and collecting video samples of various types of physical
activities are indispensable. And the calorimeter based on oxygen
consumption (VO,) is a more ideal manner than MET to measure
EE labels. Additionally, the HR and physical attributes of the subject
are also correlated with EE.

Therefore, we introduce an authentic dataset that contains
videos of common exercises and corresponding authentic EE labels,
with additional information such as HR and subjects’ physical
attributes. The EE ground truth labels of our dataset are obtained
from the indirect calorimeter COSMED KB5. The dataset is further
enriched with multi-modal data, including real-time HR and
physical attributes of participants. Some examples from the dataset
are illustrated in Figure 1.

Based on this dataset, we propose a novel method for estimating
EE based on human skeleton and Transformer architecture, termed
as E3SFormer, which is an abbreviation for Energy Expenditure
Estimation Skeleton Transformer. First, we utilize an off-the-shelf
pose estimation method to extract the skeleton sequence of the
exerciser from videos (Cai et al., 2020). Then, we input this skeleton
sequence into a Spatio-Temporal Fusion Transformer backbone
to extract features. The extracted features, which encapsulate
information across both the temporal dimension and the spatial
dimension (i.e., human joint dimension), are subsequently fed
into two distinct Transformer network branches. One branch
is dedicated to predicting the action category, while the other
focuses on estimating EE. Different from the prior video-based or
skeleton-based methods that strongly rely on action recognition
accuracy, we introduce the independent EE regression branch
into the Transformer architecture for the first time. This dual-
branch architecture ensures a comprehensive integration of motion
dynamics and physiological context, enabling accurate and robust
EE estimation.

Intuitively, we believe that the movement features of certain
specific joints on the human body are key to action classification,
and the intensity or temporal dynamics of these joints motion
have a stronger correlation with EE. For instance, regardless of
hand movements, the action of running requires a rapid alternation
of stepping forward and backward with both legs. Therefore, we
transfer the attention of each joint from the AR branch to the EE
regression branch to enhance its performance. Based on the fact
that different individuals will have varying EE when engaging in
the same type and intensity of exercise, using only video clips or
skeleton sequences to accurately predict EE is inadequate. More
personalized data are required for this purpose. Therefore, in the
network design, we added a multi-modal data input module to
achieve more personalized EE estimation with subjects’ real-time
HR and physical attributes.
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Thus, focusing on aerobic exercise, this study aims to establish
an authentic vision-EE benchmark and design a neural network
supporting multi-modal data input for the EE estimation task.
Furthermore, we conduct experiments to demonstrate the
superiority of our method, aiming to inspire further research in
vision-based, contactless, and intelligent EE estimation.

2 Methods
2.1 Participants and data collection

Thirty-six healthy participants were recruited for the study.
Ethics approval was obtained before the commencement of this
research. Each participant signed a Written Informed Consent and
a Sports Health Survey Privacy Policy agreeing to share their data
for research purposes. The participants were also asked to complete
the Exercise Risk Screening Questionnaire prior to their participation
in this study; those with any contraindications to exercise were
excluded from the study. Six popular types of indoor exercise in
daily life are included: running, riding, elliptical, skipping, aerobics,
and high-intensity interval training (HIIT). For diversity, the first
four types are further set three speed levels (slow, medium and fast),
subdividing the dataset into 14 activity classes. Running is testing
on a treadmill with a 0% incline and speed settings of 8, 10, and
12 km/h for males and 7, 9, and 11 km/h for females. The resistance
for riding is set to 1 gear (approximately 8 kg), maintaining speeds
around 60, 80, or 100 RPMs (revolutions per minute). The speed
of the elliptical is set to 30, 50, or 70 RPMs, and the resistance is
adjusted to the maximum level each participant could sustain at the
corresponding speed. Skipping was performed at three speeds: 60,
100, and 140 RPMs. The instructional videos of aerobics and HIIT
were downloaded from the internet for the participants to follow and
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practice. For each test, the participant was required to exercise at a
constant speed for 30 min. Before and after the exercise, they were
instructed to sit quietly for 5 min each to record rest and recovery
data. Throughout this procedure, the participants were required to
wear the COSMED K5 portable metabolic system (K5 for short),
the Polar H10 heart rate band, and a smartwatch for continuous
monitoring.

The K5 measures respiratory gas exchange using the dynamic
mixing chamber (DMC) or breath-by-breath (B x B) technique
and then calculates EE based on IC, which is the most effective and
accurate approach for estimating EE during rest and aerobic exercise
(Crouter et al., 2019; White et al., 2019). The Polar H10, a chest-
worn HR monitor, was synchronized with the K5. Both ground
truth sources are recognized as the “gold standard” and have been
widely used in sports research. Simultaneously, all RGB videos were
captured by the EZVIZ S2 camera at 2.7k raw resolution and 30 fps.
Totally, over 112 original sports videos were collected from multiple
viewpoints.

2.2 Data preprocessing and split

Given the high resolution of the original videos, we down
sampled them to an 856 x 480 resolution for facilitating processing.
The samples have two kinds of EE measurement ways (DMC and B x

B); therefore, for the sake of uniformity and ease of processing, the
videos were cut into clips every 10 s and then labeled with EE and
HR. For the DMC video samples, the original records are sufficient
to assign the clip labels; for the B x B samples, the EE and HR records
were averaged over 10-s intervals as the labels of the video clips.
In this manner, we obtained 17,260 video clips annotated with EE
and HR labels, and matched them with the physical attributes of the
participants.
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Considering that there is a temporal delay between the actual
occurrence of EE in the muscles and its recording by the metabolic
system (Hughson et al., 2001), we calculated a mean delay time for
each participant similar to (Blake and Wakeling, 2013) and revised
the EE labels before cutting the videos. Then, we extract the human
body skeleton sequence using the combination of the RTMPose
(Cai et al.,, 2020) and the RTMDet models (Lyu et al., 2022). We
also write a script to filter out the unrelated moving individuals
automatically. A 10-s video clip contains 300 frames, and captures at
least 2 repetitions of movements, which contain complete exercise
cycles. After manually removing a small number of bad video clips,
we finally obtained 16,526 video clips as our dataset. Finally, we
chose to use the Euro filter (Casiez and And Vogel, 2012) to filter
the obtained skeleton data so that reduce the jitter. The preprocessing
steps above are shown in Figure 2.

The application of EE estimation based on video requires the
model to have a strong generalization on individuals not seen
in the training set. In order to evaluate the generalization of the
model, we divided the dataset into training, validation, and test sets
according to the participants. Specifically, we randomly divide the
36 participants in a roughly 6:2:2 ratio, assigning 22 participants
to the training set, with 7 participants each in the validation and
test sets. Accordingly, the number of video clips in the training,
validation, and test sets are 10,049 and 3,234 and 3,243, respectively.
This cross-subject data split ensures that the participants used for
evaluating the model’s performance are not seen during the model
training process, which allows for an effective assessment of the
model’s generalization ability.

2.3 E3SFormer: energy expenditure
estimation skeleton transformer

Accurately estimating EE requires fine-grained analysis of
video, which is a computationally intensive task. Traditional video
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understanding methods generally sample a small number of frames
in each video (Tran et al.,, 2014; Simonyan and Zisserman, 2014;
Carreira and Zisserman, 2017; Feichtenhofer et al., 2018), which
is inadequate for predicting precise EE of human motion. If all
frames of a video clip are inputted into these methods, the GPU
memory usage and inference time will be excessive, making it
unfavorable for practical applications. Furthermore, irrelevant stuff
and background in the video may affect the prediction of EE.
Therefore, we use the human body skeleton sequence of subjects
extracted from video clips when data preprocessing as input,
and then adopt a human skeleton-based method to accurately
estimate EE on our dataset and reduce computational cost and
inference time.

The overall procedure of our model E3SFormer is illustrated
in Figure 3, including a backbone and two branches for action
recognition and EE regression, respectively. The entire network
is based on the Transformer architecture (Zhu et al., 2023).
The backbone uses a spatial-temporal fusion for extracting
spatial and temporal features of an inputted human skeleton
sequence. Afterward, the features are fed into the two different
branches for different tasks simultaneously. The attention of
each joint in the action recognition branch, termed as A is
transferred to the EE regression branch to facilitate precise EE
regression.

2.3.1 Spatio-temporal motion feature extraction
The key component of the backbone is a Dual-stream Spatio-
temporal Transformer (DSTformer) block. One DSTformer block
consists of two different branches. The first branch initially performs
a Transformer along the spatial (joint) dimension, followed by
a Transformer on the temporal dimension. The second branch
switches the order of these two Transformers. The result of
these two branches is fused through adaptive weights produced
by an attention regressor. Each branch of DSTformer has the
capability of modeling comprehensive spatio-temporal information,
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FIGURE 3
Framework of E3SFormer. The human skeleton sequence x is extracted using a pose estimator from the video and then fed into a backbone to obtain
motion representation F. It is then sent to an action recognition branch (upper) and an EE estimation regression branch (lower). The category-related
joint-specific attention A, from the action branch is transferred to the EE estimation regression branch to boost its performance. The multi-modal data
z is used for more personalized EE estimation.

and different branches are interested in different spatio-temporal
aspects. The fusion operation can dynamically balance the results
of these two branches.

Specifically, we define the input skeleton sequence as x ¢
RP/*C, where T is the temporal sequence length, J is the
number of body joints, and C;, is the channel number of input.
Specifically, C;, = 3 in here, the first and second channels are
the x-coordinate and y-coordinate of body joints respectively, and
the third channel is the visibility confidence of each joint offered
by the pose estimation method (Cai et al., 2020). The skeleton
sequence x is projected to a high-dimensional feature F € RT**C,
and concatenated with a pretrained spatial position encoding Pg €
RPC and a temporal position encoding P, € R™*™*C, Then the
input feature is fed into the backbone that contains N DSTformer
blocks to get the motion representation F e R™/C. C denotes
the channel of features used in the backbone and thereafter
branches. The obtained motion representation F is then fed into
two transformer branches for both action recognition and energy
expenditure regression.

2.3.2 Spatial-based action recognition

For the action recognition branch, we first use a Self-Attention
Pooling (SAP) layer to squeeze the temporal dimension T of F,
which is defined as Equation 1:

SAP(Fj)=§T: eXp(FC(F})) -F (1)

=1 Zsz=1 exp (FC(FJ’.')) 7

where F is the slice of F along the joint dimension, FC is a Fully

Connected layer. The result of this SAP layer is denoted as Fg € R, ¢,
which is concatenated with a class token (CLS) and fed into a two
Spatial Transformer (ST) layer to model the relation shape among
the joints. The ST aims to perform Transformer operation along
the joint dimension, the key component of which is the Multi-Head
Self-Attention (MHSA). MHSA is calculated in a similar way as in
MotionBERT (Zhu et al., 2023). Residual connection is used to the
MHSA result, which is fed into a multilayer perceptron (MLP), and
followed by a residual connection. The Pre-LayerNorm trick is used
for both MHSA and MLP.
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2.3.3 Joint-specific attention for enhanced
energy expenditure regression

Every token in the action recognition branch leverages its query
to calculate the similarity of all keys to form the attention matrix,
representing which tokens should be concerned. The CLS token is
used to classify action, so in our intuition, which joints are important
for a certain action category can be represented by the attention of
the CLS token. Therefore, the average of multi-head attention of CLS
token in the second ST, which if termed as category-related joint-
specific attention A_ € R/, is used to signify the importance.

For the EE prediction branch, there are two Temporal
Transformer (TT) layers followed by an SAP layer. The only
difference between ST and TT is that TT is performed along the
temporal dimension of each joint. The result can be denoted as
F, € R”. To gain the enhanced representation for regression, we
use A_ as a weight to calculate a weighted sum of F, along the joint
dimension, resulting in F, € RC. For the integration of multi-modal
data z including heart rate and physical attributes, an MLP is used to
extract feature M of them. Then, it is concatenated with the F, and
the result of action recognition branch F, € R’ without CLS token
and fed into a Transformer layer. The result as well as F, is used to
regress EE.

We use the Cross-Entropy Loss L, to train the action recognition
branch, together with L1 Loss L, to train the EE regression branch.
The overall loss function is as Equation 2:

L=L,+aL, 2)

where « is a hyperparameter. To balance the action recognition loss
and EE regression loss, we set & = 0.2 for our E3SFormer framework.

2.4 Experiment setup

2.4.1 Comparison methods

We compared the proposed E3SFormer with two skeleton-based
action recognition frameworks, namely, ST-GCN (Yan et al., 2018)
and PoseConv3D (Duan et al., 2021), on our dataset. Among them,
the PoseConv3D is based on convolutional neural networks (CNN),
while the ST-GCN is based on graph convolutional networks (GCN).
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We modified the output channel of the last Linear layer originally
for classification to 1 for EE regression. Besides, we altered the input
channel of PoseConv3D from J to 3 (J is the number of body joints),
and used the sequence of RGB video frames as input to simply
compare the performance of the skeleton-based and video-based
approach. The altered framework is designated as RGBConv3D.
When using multi-modal data as input, the smartwatch prediction
results were added for comparison.

2.4.2 Training details

We used the pretrained weight of MotionBERT (Zhu et al,
2023) to initialize the backbone. However, the length of pretrained
temporal position encoding Py is insufficient for our fine-grained
task that has a quite long skeleton sequence. Therefore, we
performed linear interpolation on the T dimension of P from the
original number to a longer number to accommodate longer input
sequences. Our model and comparison models were implemented
by PyTorch and optimized by Lion optimizer (Chen et al., 2024) with
alearning rate of 1074, weight decay of 5 x 1074, and cosine annealing
as the learning rate decay schedule. We trained all the settings for 50
epochs with a batch size of 16, except the two CNN-based models,
PoseConv3D (Duan et al., 2021) and RGBConv3D. Considering the
larger GPU memory usage of these two models, we set the batch
size of these two models to 8. For all the skeleton-based models,
the joint coordinates were normalized to the range of [-1,1]. The
random horizontal flipping was applied as the data augmentation.
The experiments were running on two Intel Xeon 4215R CPUs with
128G memory and one NVIDIA RTX A6000 GPU.

2.4.3 Evaluation metrics

We adopted L1 Loss to train every model for EE regression,
which is also known as Mean Absolute Error (MAE). In addition to
MAE, Mean Relative Error (MRE), Pearson Correlation Coeflicient
(PCCQ), and Coefficient of Determination (R?) were also used as
evaluation metrics for the model.

3 Results
3.1 Participants demographics

Table 1 summarizes the physical attributes of the participants.
A total of 36 healthy adults gave consent to participate, including
15 males and 21 females, with an average age of 23.3 years, mostly
recruited from the university.

3.2 Dataset statistics

The dataset contains a total of 6 major categories of aerobic
exercises, which are further divided into 14 classes based on speed.
Figure 4a illustrates the distribution of video clips across each class.
Running is the most frequent category, comprising a total of 7096
clips, with 1733 in fast (_f), 2676 in medium (_m), and 2687 in
slow (_s) speed variations. The average number of video clips per
class is 1232.9. Figures 4b,c depicts the distribution of EE and HR
measurements across each exercise class, respectively. Generally
speaking, the higher the exercise intensity, the higher the EE and
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TABLE 1 The physical attributes of participants.

Characteristics

Total sample

Gender (m/f) 15/21

Age (yr) 233+3.0
Hight (cm) 1722+ 8.7
Weight (kg) 65.8 + 14.9
BMI (kg/m?) 220+34

Data presented as mean + SD.SD, standard deviation; BMI, body mass index.

HR. Among the categories, running_f shows the highest average EE
and HR, while riding_s has the lowest average EE and HR.

3.3 Joint-specific attention

Figure 5 shows the heatmaps of category-related joint-specific
attention A_ for each general exercise category in our test set. The
six subplots correspond to six categories of exercise, titled above
each subplot. The x-axis of each subplot represents joint indexes,
and their specific correspondence with human body joints, which
is originated from the Human3.6M dataset (Ionescu et al., 2014).
The y-axis represents sample indexes; thus, each row of the subplots
represents an A of a specific sample. The brighter the heatmap, the
larger the A _ value, indicating that the joint is more important for its
exercise category.

3.4 Pure skeleton results

As shown in Table 2, when we only leverage the human
skeleton sequence as input, the proposed E3SFormer surpasses all
comparison methods on most evaluation metrics, except for R, But
the R? still ranks second among all the methods and is close to
the first (0.5118 compared to 0.5175). These results demonstrate the
effectiveness of our method.

3.5 Multi-modal input results

Based on the fact that different individuals will have varying EE
values when engaging in the same type and intensity of exercise,
using only video clips or skeleton sequences to accurately predict EE
is inadequate. More personalized data are required for this purpose.

For all the comparison methods, we leverage a three-layer
multi-layer perceptron (MLP) to extract a feature of HR and
anthropometric characteristics of each input sample. The hidden
layers and output layer of the MLP have the same number of
channels as the output channels of each backbone in these methods.
The extracted attribute feature is concatenated with the backbone
feature and fed into a fully connected layer to predict EE. When
augmented with HR and anthropometric characteristics, the model
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FIGURE 4
Statistics of our dataset. (@) The number of video clips. (b) Average energy expenditure (EE) for each class. (c) Average heart rate (HR) for each class. The
_f, _m, and _s denote fast, medium, and slow speed respectively, while _x denotes no speed label.

performances are much better than without these multi-modal
data, shown in Table 3.

In addition, as the most popular wearable devices, smartwatches
also use multi-modal data for EE prediction. For comparison, the
subjects were asked to wear a smartwatch during dataset collection.
We calculated the evaluation metrics of the smartwatch on the test
set and added the results in Table 3.

3.6 Ablation study

Table 4 shows the ablation study that we conducted. The upper
half of the table is experiments using only heart rate (HR) and
physical attributes (Attr) to predict EE. The formula is given by
the American College of Sports Medicine to estimate EE based on
these data (Medicine, 2013). The parameters of the formula differ
for males and females. For males, the formula is as follows:

o (0.6309 x HR +0.1988 x W +0.2017 x A — 55.0969)
- 4.184

>

while for females, the formula is:

(04472 x HR+0.1263 x W+ 0.074 x A — 20.4022)
a 4.184

EE

>
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where EE denotes the energy expenditure (kcal/min), HR, W,
and A denote heart rate, weight, and age, respectively. The rest
three rows are the experiments using a three-layer MLP to predict
EE according to the specified data. The channel number of the
hidden layers is 512. The lower half of Table4 is the ablation
study of E3SFormer’s action recognition branch with the category-
related joint-specific attention. The “w/o AR’ refers to replacing
the joint-specific attention with average pooling for averaging
regression outputs.

3.7 Multi-view analysis

In order to analyze our model’s sensitivity to the viewpoint,
we divided the test set into subsets based on the viewpoint
and tested the model performance on each subset separately.
Due to the use of flip data augmentation during training, there
is effectively no difference between left and right viewpoints.
Therefore, the left and right perspectives were combined into a
single subset. The sample numbers of front, back, left & right
viewpoints are 157, 1803, and 1283, respectively, and the results are
shown in Table 5.
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FIGURE 5
Category-related joint-specific attention A, for each example of each general exercise category in the test set.

TABLE 2 EE regression results with pure skeleton sequence as input. TABLE 3 EE regression results with multi-modal data as input.
Method\ MAE| MRE(%)| PCCT R%*7 Method\ MAE| | MRE(%)] | PCCT | R®7
Metric Metric
ST-GCN 2.1939 36.42 0.6632 0.3722 ST-GCN 1.4895 23.06 0.8637 0.7169
PoseConv3D 2.0670 33.03 0.7232 0.5175 PoseConv3D 1.3939 21.52 0.8976 0.7861
RGBConv3D 2.5408 42.93 0.5186 0.2663 RGBConv3D 1.7382 28.83 0.8988 0.7048
E3SFormer 2.0304 28.81 0.7528 0.5118 smartwatch 1.4582 20.79 0.8271 0.6763

The | indicates the lower the better, and the T indicates the higher the better. MAE, mean E3SFormer 1.1039 15.32 0.9082 0.8225

absolute error; MRE, mean relative error; PCC, Pearson correlation coefficient; R?,

coefficient of determination. The values in bold indicate the best results. The | indicates the lower the better, and the T indicates the higher the better. MAE, mean

absolute error; MRE, mean relative error; PCC, Pearson correlation coefficient; R?,
coefficient of determination. The values in bold indicate the best results.

4 Discussion
and Kilding, 2015). The reason why half of the samples in riding do
4.1 Visualization of joint—speciﬁc attention not show this pattern, in our opinion, is that the hips are seated
on the seat of the stationary bike, thereby remaining motionless.
All subplots of Figure 5 reveal that in most samples, the hip  Actually, we also drew the heatmaps of the validation set, and found
(joint 0) has a relatively high A_ value, except for half of the samples  that the hips of most of the riding examples in the validation set are
in riding. As the joint closest to the body’s center of gravity, the  notimportant.
hip naturally holds significant importance because it can represent Apart from the hip, different exercises show different patterns
the overall movement of the body. For instance, the frequency of  of A_, and most samples within the same exercise category exhibit
vertical oscillation and the speed of horizontal movement of the  similar patterns. The left foot (joint 3) and right foot (joint 6)
body’s center of gravity are important indicators for accessing the EE  are crucial for skipping because this kind of exercise primarily
and running economy of a runner (Saunders PU et al,, 2004; Barnes  relies on the force generated by the calf muscles. For a subset
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TABLE 4 Ablation study of our method.

Ablation\ MAE| MRE (%) ] PCCT R 1

Metric

Formula 3.5047 65.02 0.7767 -0.1493
Only HR 2.7904 3275 0.7871 0.0268
Only Attr 3.0140 58.41 0.5812 0.0416
HR + Attr 1.5276 25.78 0.8712 0.7297
w/o MM w/o AR 2.1071 39.22 0.7155 0.4704
w/o MM w/AR 2.0304 28.81 0.7528 05118
w/MM w/o AR 1.8705 29.88 0.7260 0.5035
Ww/MM w/AR 1.1039 15.32 0.9082 0.8225

“Formula” denotes using a predefined set of formulas to calculate EE based on heart rate
and physical attributes. The w/o MM and w/ MM denote without and with heart rate and
physical attributes as multi-modal data, respectively. The w/o AR and w/ AR denote without
and with action recognition branch, respectively. The | indicates the lower the better, and
the T indicates the higher the better. MAE, mean absolute error; MRE, mean relative error;
PCC, Pearson correlation coefficient; R?, coefficient of determination. The values in bold
indicate the best results.

TABLE 5 Our model metrics of different viewpoints.

Viewpoint\  MAE| MRE(%)]| | PCCT | R?*]
Metric

front 1.3577 17.95 0.7557 0.5191
back 1.3089 17.50 0.9031 0.7723
left & right 1.1516 18.73 0.9530 0.8615

The | indicates the lower the better, and the T indicates the higher the better. MAE, mean
absolute error; MRE, mean relative error; PCC, Pearson correlation coefficient; R?,
coefficient of determination.

of samples in riding, all joints of the lower limbs (from joint
1-6) show relatively high importance, as it requires exerting force
with the thighs to pedal. In running, aerobics, and HIIT, the
joints of the upper limbs also hold a certain level of importance
because these exercises are accompanied by movements of the
upper limbs.

4.2 Regression results of energy
expenditure

As shown in Table 2, the PoseConv3D (Duan et al., 2021) ranks
first on R* and performs relatively better on other evaluation metrics
compared to ST-GCN (Yan et al.,, 2018), exhibiting the superior
capability to extract fine-grained features in our task. We conjecture
that this is because the issue of over-smoothing in GCNs results in
a diminished ability to extract fine-grained features in the deeper
layers of the network. Accurate estimation of EE, however, requires
precise capture of the displacement of each joint to measure muscle
contractions, a capability where CNN excel.

Despite being a CNN, the RGBConv3D performs much worse
compared to ST-GCN and PoseConv3D. The main reason, in our
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opinion, is that the inputs of RGBConv3D are RGB video clips that
contain irrelevant objects, other people, and various backgrounds,
which may disturb the prediction of EE. By contrast, PoseConv3D
renders the joint coordinates to the video space as the input of
CNN, focusing on human body movement while disregarding the
influence of background factors.

With the help of multi-modal data, the performances of all
methods improved significantly, as shown in Table 3. E3SFormer
ranks first on all of the evaluation metrics, owing to a meticulously
designed architecture. The gap between CNN-based and GCN-
based methods becomes less pronounced. The PoseConv3D does
not stand out on the evaluation metrics representing prediction
accuracy (MRE and MAE), but performs well on the evaluation
metrics related to correlation (PCC and R?). The PCC of
RGBConv3D is quite high while the R? is relatively lower, which is
related to the worst performance on MRE and MAE, showing a high
correlation but low prediction accuracy. The incorporation of multi-
modal data boosts the prediction accuracy of all methods. However,
according to the two analyses above, due to the structural advantages
of CNN, CNN-based methods exhibit better predictive correlation.

Table 3 also shows that all the metrics of our methods surpass
those of the smartwatch. We conjecture that it is because the
smartwatch is less sensitive in the early stage of exercise. The
smartwatch failed to sense the exercise intensity and estimated EE
as 0 due to the slow increase in the HR and EE values of the subject
(approximately 0.5~2.0 kcal/min). This failure is also attributed to
the dominance of the lower limbs in most of the testing exercises
(such as running, riding, and elliptical) and the small movement
amplitude of the wrist, resulting in low prediction values for the
smartwatch. The above results demonstrate the suitability of the
proposed model for product integration.

As for the ablation study results, the upper half of Table 4
shows that the neural networks are more appropriate than the
predefined formula for this task. By using nonlinear activation
functions, MLP is able to learn and model nonlinear relationships
and complex functions, which makes it capable of dealing with
nonlinear problems. Besides, both using only heart rate and using
only physical attributes are not sufficient to produce an acceptable
result, indicating that EE is related to a combination of both, rather
than either one alone.

The lower half of Table 4 show that without the joint-specific
attention, the performance will degenerate substantially. After
using the category-related joint-specific attention from the action
recognition branch, the MRE will be reduced more than 10%,
demonstrating the importance of it. It also proves that the motion
features of certain specific joints on the human body over time have
a great correlation with EE estimation. From the sports videos, we
can capture these category-related joint-specific attention. From the
sports videos, we can capture the motion characteristics of category-
related key joints through the attention mechanism, so as to predict
the motion intensity and calculate EE in a more comprehensive and
precise way.

In Table 5, it can be seen that the MRE differences across various
viewpoints are small. The other three metrics of left & right superior,
possibly because the side perspective provides more information on
limb movements. The PCC and R? of the front viewpoint are low due
to the limited sample size, and most are aerobics and HIIT videos,
which are highly complicated and difficult to predict EE. Therefore,
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the model is indeed slightly sensitive to the viewpoint, but the results
are also influenced by other factors.

4.3 Limitations and future works

This research is an effective attempt and application of artificial
intelligence (AI) in EE estimation field, but it indeed has limitations.
First, the age distribution of participants is not wide enough. Thus,
more children and elderly volunteers should be recruited to expand
our dataset. Second, the data were all collected in the gym scenario,
potentially limiting the practicability of the E3SFormer in outdoor
settings. The research in the vision-based EE estimation field is in its
early stage. This paper focuses on data collection in indoor settings
to minimize the interference of external factors, such as wind speed,
ground slope, temperature, etc. In the future, additional outdoor
exercise video data will be collected to enhance the universality
and robustness of our model. Third, the real-time performance
of the E3SFormer still needs improvement. Since the input of the
E3SFormer is a skeleton sequence rather than original videos, we
need to preprocess the video clips and use the pose estimator
to extract human skeletons. Currently, under our experimental
conditions, the inference speed of the E3SFormer is only 0.08~0.20 s
for 300-frame clips, but the preprocessing and pose estimator take
4.3~6.0 s, which has not been optimized for deployment. Future
researchers can optimize inference speed by model quantization,
model pruning, knowledge distillation, and designing more efficient
model architectures, which will improve its practicability for product
integration. If a more efficient architecture is designed in the
future, the model will be further optimized and deployed, possibly
integrated into a product that can be applied to contactless fitness
training monitoring and even predicting patients’ physical activity
levels without interference in clinical practice.

5 Conclusion

This work is the first contribution to estimating energy
expenditure using Transformer architecture. We first curate an
authentic benchmark including 16,526 aerobic exercise videos,
labeled with the COSMED K5 calorimeter, the heart rate and
physical attributes of each subject. Based on this dataset, we
proposed a dual-branch network E3SFormer that utilizes human
skeleton data from videos to regress energy expenditure. The
attention of each joint in the action recognition branch is transferred
to the energy expenditure regression branch to facilitate precise
regression. Comprehensive experiments exhibited the effectiveness
of the E3SFormer, aiming to inspire further research in contactless
and vision-based energy expenditure estimation. The outstanding
results achieved by the use of multi-modal data further demonstrate
the signification application of Al multi-modal models in contactless
motion analysis.
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