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A 56-day feeding trial was performed to investigate the effects of the dietary
protein-to-energy (P/E) ratio on the growth performance, body composition,
and health status of large-sized grass carp, Ctenopharyngodon idella. The fish
(initial body weight 2,200.4 + 79.3 g) were randomly fed one of the six isolipidic
and isoenergetic diets (gross energy 10 kJ/g), which were formulated with
various P/E ratios (21.7 mg/kJ, 23.7 mg/kJ, 24.9 mg/kJd, 27.1 mg/kJ, 29.2 mg/kJ,
and 31.5 mg/kJ) and named P/E 21.7, P/E 23.7, P/E 24.9, P/E 27.1, P/E 29.2 mg/kJ
and P/E 31.5, respectively. After the feeding trial, the best growth performance
was observed in the P/E 29.2 group, which had the highest weight gain.
In addition, fish fed the optimal P/E diet exhibited a superior health status
in terms of tissue histology and biochemical analyses of serum and liver.
The liver transcriptome assay revealed that a suitable P/E ratio potentially
enhances growth performance and immune function by modulating the AMPK
signaling pathway, the Ras signaling pathway, and arachidonic acid metabolism,
along with affecting rRNA synthesis by regulating ribosome biogenesis gene
expression in eukaryotes. Based on the second-order polynomial regression
analysis of the growth performance and health status against P/E, the optimal
P/E range was found to be 27.36-28.93.

grass carp, Ctenopharyngodon idella, protein-to-energy ratio, growth performance,
health status

1 Introduction

The rapid development of aquaculture has been driven by the increasing global demand
for aquatic products. Aquafeed accounts for 50%-70% of aquaculture operational costs,
largely due to the incorporation of a high percentage of protein needed for tissue growth,
maintenance, and reproduction (Zehra and Khan, 2012; Gongalves et al., 2018). From
an economic standpoint, optimizing protein utilization for tissue synthesis rather than
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energy metabolism is critical. Carbohydrates can be used as the most
economical source of energy for aquaculture animals. Adequate
levels of carbohydrates, such as starch, can promote a protein-
sparing effect, which ultimately results in an optimal cost/benefit
ratio and a reduction in ammonia excretion (Enes et al., 2009;
Pérez-Jiménez et al., 2015; Zhao et al., 2024). Many studies have
implied that carbohydrate requirements vary among different fish
species. With high intestinal amylase activity and an efficient blood
glucose regulation mechanism, herbivorous fish can make good
use of carbohydrates in their diet, and carbohydrate content in
some fish diets can be as high as 40% (Mohapatra et al., 2003;
Tian et al., 2012; Kamalam et al., 2017).

The grass carp, Ctenopharyngodon idella, is a typical
herbivorous, agastric finfish and one of the most important
species cultured in China (Jin et al., 2015). Current research
predominantly focuses on individual macronutrients, such
as protein and carbohydrates. Studies on protein-to-energy
(P/E) ratio requirements have been limited primarily to young
grass carp (Yu et al, 2022). Notably, there is a lack of studies
addressing large-sized grass carp. To address this gap, it is imperative
to conduct systematic investigations into the P/E ratio requirements
specifically for large-sized grass carp.

The present study aimed to (1) evaluate the effects of the dietary
P/E ratio on growth performance in large-sized grass carp; (2)
analyze the biochemical parameters of liver, serum, and intestinal
histology to evaluate the effects of the dietary P/E ratio on health
status;, and (3) analyze the liver transcriptome profiles to explore the
effects of the dietary P/E ratio on liver metabolism. These findings
provide new insights into the P/E ratio requirements for large-sized

grass carp.

2 Materials and methods
2.1 Experimental diets and fish

The proximate composition of the experimental diets is
presented in Table 1. Six isolipidic and isoenergetic diets (gross
energy 10KkJ/g) were formulated with various P/E ratios (P/E
21.7 mg/kJ, P/E 23.7 mg/k], P/E 24.9 mg/k], P/E 27.1 mg/k], P/E
29.2 mg/kJ, and 31.5 mg/kJ) and named P/E 21.7, P/E 23.7, P/E 24.9,
P/E 27.1, P/E 29.2, and P/E 31.5, respectively. All the ingredients
were obtained from Guangdong Haid Group Co., Ltd. (China). The
diets were prepared, packed, and stored following the procedures of
a previous study (Dong et al., 2019).

This feeding trial was conducted at the Guangdong Haid Group
Co., Ltd., Seagull Island aquaculture base. Prior to the experiment,
the experimental fish were acclimated in a large net cage (8 m x
16 m x 2m) in the pond and fed a commercial feed for 30 days.
Following a 24-h fasting period, fish were randomly distributed into
24 net cages (4 m x 4 m x 2 m). Each cage contained 10 fish (initial
body weight approximately 2,200 g). Each experimental feed was
randomly assigned to one of the four cages. The fish were reared for
8 weeks and fed three times daily at 7:00, 12:00, and 17:00. Water
quality parameters were maintained within the following ranges:
temperature, 27-32 °C; ammonia nitrogen, 0.2-0.6 mg/L; dissolved
oxygen, 5-7 mg/L; pH, 6.7-7.0.
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At the end of the feeding experiment, the fish were fasted
for 24 h. After that, they were exposed to MS222 (Sigma-Aldrich,
St. Louis, MO, United States) with a concentration of 0.2% (w/v)
for 5 min until cessation of opercular movement. The number and
weight of fish per cage were recorded. Two fish were randomly
selected from each cage for serum, liver, intestinal, and muscle
sampling. The remaining fish were returned to the cage to recover.
Blood was collected from the tail vein and allowed to clot at
room temperature for 2h, then placed at 4°C for 6h. After
centrifugation (836 g, 10 min, 4 °C), the supernatant was collected
as serum samples. After dissection, before collecting tissue samples,
the weight and body length of two randomly selected fish were
recorded, along with the weights of the liver and viscera, to
calculate the hepatosomatic index (HSI), viscerosomatic index
(VSI), and condition factor (CF). Two small liver tissue samples
(from the liver tip) and two muscle tissue samples (from the dorsal
muscle, measuring approximately 3 cm x 1.5cm) were quickly
frozen in liquid nitrogen and then stored at —86 °C. Additionally,
two small liver tissue samples (from the liver tip) and two
midgut tissue samples were immediately fixed in 4% formaldehyde,
followed by standard tissue processing for dehydration, paraffin
embedding, sectioning, and HE staining (hematoxylin-eosin) for
microscopic observation and photography of liver and intestinal
tissue morphology.

All experimental procedures were performed in strict
accordance with the Management Rule of Laboratory Animals
(Chinese Order No. 676 of the State Council, revised 1 March 2017).

2.2 Proximate composition of diets and
tissues and biochemical parameters of liver
and serum

The proximate composition of diets and tissues was analyzed
with the Association of Official Analytical Collaboration (AOAC)
standard methods. For the analysis of moisture, samples were dried
in a 105 °C oven until the weight was constant. Ash, crude protein,
and crude lipid content were assayed by 550 °C incineration (8 h),
the Kjeldahl method (FOSS 2300), and the chloroform-methanol
method, respectively.

Serum and liver biochemical

indices, such as alanine

aminotransferase (ALT), superoxide dismutase (SOD), total

antioxidant  capacity (T-AOC), malondialdehyde (MDA),
triacylglycerol (TG), total cholesterol (T-CHO), high-density
lipoprotein ~ cholesterol  (HDL-C), low-density lipoprotein

cholesterol (LDL-C), hepatic glycogen, and serum glucose, were
analyzed using commercial kits (Nanjing Jiancheng Bioengineering
Institute, Nanjing, China).

a-amylase, trypsin, and lipase in the intestine were analyzed
using commercial kits (Beijing Solarbio Science and Technology
Co., Ltd., Beijing, China).

2.3 RNA isolation, cDNA library
construction, and Illumina sequencing
The detailed methods for RNA isolation, ¢cDNA library

construction, and sequencing were described previously (Liao et al.,
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TABLE 1 Formulation and composition of experimental diets (% on a dry matter basis).

Ingredients P/E21.7 P/E 23.7 P/E 24.9 P/E27.1 P/E 29.2 ‘ P/E 31.5
Soybean meal 17.2 17.2 17.2 17.2 222 27.2
Rapeseed meal 12.5 185 245 30.5 30.5 30.5
Distillers dried grains with solubles 10.0 10.0 10.0 10.0 10.0 10.0
‘Wheat meal 48.0 42.0 36.0 30.0 25.0 20.0
Soybean oil 1.50 1.50 1.50 1.50 1.50 1.50
Soya lecithin 1.50 1.50 1.50 1.50 1.50 1.50
Monocalcium phosphate 3.00 3.00 3.00 3.00 3.00 3.00
Sodium chloride 0.10 0.10 0.10 0.10 0.10 0.10
Choline chloride 0.13 0.13 0.13 0.13 0.13 0.13
Vitamin premix® 0.50 0.50 0.50 0.50 0.50 0.50
Mineral premi b 1.00 1.00 1.00 1.00 1.00 1.00
Antioxidants 0.02 0.02 0.02 0.02 0.02 0.02
Calcium 0.05 0.05 0.05 0.05 0.05 0.05
Bentonite 4.50 4.50 4.50 4.50 4.50 4.50
Proximate composition

Crude protein 22.8 24.4 25.4 27.0 28.9 30.6
Crude lipid 6.22 6.06 6.30 6.27 6.16 6.19
Energy (kJ/g)° 10.5 10.3 10.2 9.98 9.88 9.71
Protein/energy (P/E, (mg/kJ)) 21.7 23.7 249 27.1 29.2 315

#Vitamin premix (mg/kg diet): thiamin, 20; riboflavin, 20; pyridoxine, 20; cyanocobalamin, 0.02; folic acid, 5; calcium pantothenate, 50; inositol, 100; niacin, 100; biotin, 0.1; starch, 645.2;

ascorbic acid, 100; vitamin A, 110; vitamin D, 20; vitamin E, 50; vitamin K, 10.

"Mineral premix (mg/kg diet): NaCl, 500; MgSO,-7H,0, 4,575; NaH,PO,-2H, 0, 12,500; KH,PO,, 16,000; Ca(H,PO,),-H,0, 6,850; FeSO,, 1,250; C¢H,,CaO¢-5H,0, 1750; ZnSO,-7H,0, 111;

MnSO,-4H,0, 61.4; CuSO,-5H,0, 15.5; CoSO,-6H,0, 19.02; KI, 178.33; corn starch, 6,253.33.

“Estimated energy was calculated based on 16.9 k]/g protein, 37.6 kJ/g lipid, and 16.7 k]/g carbohydrate.

2024). Pooled samples from two individual fish from each
cage were used (groups P/E 21.7 and P/E 29.2 were used as
characteristic groups). The data processing and enrichment analysis
of differentially expressed genes (DEGs) between groups followed
the method used by Liao et al. (2024).

2.4 Calculations and statistical analysis

Weight gain rate (WGR, %) = (final body weight — initial body weight) /
initial body weight x 100

Feed conversion ratio (FCR) = feed consumption / body weight gain

Condition factor (CF, g/cm?) = (final body weight / final body length?)
x 100
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Hepatosomatic index (HSI, %) = (liver weight / body weight) x 100

Viscerosomatic index (VSI, %) = (viscera weight / body weight)
x 100

Liposomatic index (LSI, %) = (abdominal lipid weight / body weight)
% 100

All statistical analyses were conducted using SPSS 25.0 (IBM,
United States). All data are reported as the mean + standard error
of the mean (SEM). All data were analyzed using one-way analysis
of variance (ANOVA), followed by a Tukey’s multiple range test or an
independent sample t-test. Differences were considered statistically
significant when P < 0.05.
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3 Results

3.1 Growth performance, somatic indices,
and body composition

In the present study, no fish mortality was found in any group. As
the P/E ratio increased, the weight gain rate increased up to P/E 29.2,
after which it decreased; the weight gain rate of the P/E 29.2 group
was significantly higher than that of the P/E 21.7, P/E 23.7, and P/E
31.5 groups (P < 0.05) (Figure 1), while the feed conversion ratio
showed an opposite trend. No significant differences (P > 0.05) were
observed in HSI, VSI, LS, or CF (Supplementary Figure S1). Based
on the second-order polynomial regression analysis of the weight
gain rate against P/E, the optimal P/E level was 27.36 (Figure 1).

As the P/E ratio increased, the liver lipid content showed a
downward trend, and the glycogen content decreased and then
stabilized, while there were no significant differences (P > 0.05) in
liver moisture and protein content. Muscle lipid content showed a
downward trend with increasing P/E ratios, while protein content
showed the opposite trend. There was no significant difference (P >
0.05) in moisture content.

3.2 Biochemical parameters

In the liver, as the P/E ratio increased, the content of MDA
decreased down to P/E 29.2, after which it increased (Figure 2),
while the SOD activity showed an overall upward trend. T-AOC
was highest in the P/E 29.2 group and was significantly higher than
that in the other groups (P < 0.05). ALT activity decreased with an
increase in the dietary P/E ratio and then stabilized. The TG content
showed a decreasing trend. No significant differences (P > 0.05) in T-
CHO, HDL-C, LDL-C, or PC content were found among the groups
(Supplementary Figure S2). Based on the second-order polynomial
regression analysis of ALT activity against P/E, the optimal P/E level
was 28.93 (Figure 2).
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The MDA, T-AOC, and ALT activities in serum showed the
same trend as in the liver, while glucose levels showed an overall
decreasing trend with the increase of the dietary P/E ratio (Figure 3).
No significant differences (P > 0.05) in T-CHO, HDL-C, TG, or PC
content were found among the groups.

In the intestine, trypsin activity increased with the increase
in the dietary P/E ratio, reaching a maximum value in the
P/E 29.2 group, and then, no further increase (Figure4)
was noted. As the dietary P/E ratio increased, a-amylase
activity showed a continuous downward trend. No significant
difference (P > 0.05) in lipase activity was noted among
the groups.

3.3 Histological structure of tissues

Liver histology indicated that liver cells became smaller and
intracellular lipid content decreased with the increase in dietary P/E
ratio (Figure 5A). Increased villus quantity and height were observed
in the intestinal histology (Figure 5B).

3.4 Transcriptomic results

Liver samples from the P/E 21.7 and P/E 29.2 groups were used
for transcriptomic analysis. A total of 392 genes were differentially
expressed (P value <0.05; fold change >2) between the P/E 21.7
and P/E 29.2 groups. Compared to the P/E 21.7 group, the P/E
29.2 group up-regulated the transcription of 238 genes and down-
regulated that of 154 genes (Figure 6A). The DEGs were mostly
enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, such as the AMPK signaling pathway, arachidonic
acid metabolism, Ras signaling pathway, ribosome biogenesis in
eukaryotes, and necroptosis (Figure 6B), and in Gene Ontology
(GO) terms such as organic acid metabolic process and small
molecule metabolic process (Figure 6C).
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4

Discussion specifying crude protein levels alone (National Research Council,
2011; Liu et al, 2023). The National Research Council
The protein-to-energy (P/E) ratio represents a more reasonable  (National Research Council, 2011) recommends a suitable P/E

approach for defining protein requirements in fish than  ratio range of 19-27 mg/kJ for the majority of fish species. In
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FIGURE 5

intestinal villi.

Effects of dietary P/E ratios on the tissue histology of large-sized grass carp. (A) and (B) Representative histology of liver and intestine, respectively. The
red circles show necrosis of the liver parenchyma, namely, the damage to hepatocyte integrity (D-HI). The blue lines show the height (H) of the
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the present study, the dietary P/E ratio was varied from 21.7 to
31.5 by increasing the protein content and decreasing the starch
content. After an 8-week feeding trial, the WGR showed an overall
upward trend and then decreased with increasing dietary protein
levels. A similar phenomenon has been observed in the studies
of the dotted gizzard shad Konosirus punctatus (Liu et al., 2023),
the grass carp Ctenopharyngodon idella (Jin et al., 2015; Yu et al.,
2022), the tilapia Oreochromis niloticus (Wu et al, 2021), the
striped surubim Pseudoplatystoma reticulatum (Silva et al., 2019),
the fingerling Channa punctatus (Zehra and Khan, 2012), and
the obscure pufferfish Takifugu obscurus (Ye et al, 2017). The
observed growth reduction at high P/E ratios may be attributed
to impaired protein metabolism, an increased nitrogen metabolism
burden, and energetic inefficiency (Kiron et al., 1995; McGoogan
and Gatlin, 1999; Zehra and Khan, 2012). Conversely, the FCR
showed an opposite trend to the WGR. Notably, hepatic lipid content
decreased with an increasing P/E ratio, accompanied by reduced
hepatocyte size and intracellular lipid deposition. An isoenergetic
experimental design necessitated a reduction in dietary starch as
protein content increased. In the present study, grass carp fed
high-starch diets accumulated greater glycogen deposition in their
livers. These results are in agreement with those of several previous
studies on Nile tilapia (Gaye-Siessegger et al., 2006), grass carp
(Jin et al,, 2015), and hybrid grouper Epinephelus fuscoguttatus
Q x Epinephelus lanceolatus & (Jiang et al., 2016), which found
that a high-protein/low-carbohydrate diets lead to significantly
higher lipid gains and apparent lipid conversion values. Another
study reported that a low-protein/high-carbohydrate diet could
increase the amount of acetyl coenzyme A and dihydroxyacetone
phosphate during glycolysis, and more acetyl coenzyme A and
dihydroxyacetone phosphate were used for lipid synthesis in
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obscure pufferfish (Ye et al,, 2017). Unexpectedly, no significant
difference was observed in body condition indices was observed
with decreasing liver lipid content, which was in accordance with a
previous study (Jiang et al., 2016).

A histological structure change that followed the P/E ratio
was observed in the present study. In the low P/E ratio groups,
hepatocyte vacuolization was observed in H&E-stained livers,
suggesting lipid accumulation and potential metabolic dysfunction.
This finding aligns with that of Zhao et al. (2023), who reported that
a low P/E ratio induces hepatic structural damage and subsequent
inflammatory responses, likely due to excessive lipid deposition
resulting from impaired energy metabolism. Similar results have
been reported in other fish species (Camargo and Martinez, 2007;
Sun et al, 2019; Taj et al, 2023) and supporting the hypothesis
that a suboptimal P/E ratio disrupts hepatic homeostasis. In
addition, intestinal villus height and density significantly increased
in groups fed an optimal P/E ratio, indicating an expanded
absorptive surface area and enhanced digestive efficiency. These
morphological improvements are consistent with previous studies in
fish, which attributed such changes to balanced nutrient utilization
and improved gut health under nutritionally adequate conditions
(Xu et al., 2016; Taj et al., 2023; Zhao et al., 2024).

High protein levels in a diet stimulate proteolytic secretion
in some fish species (Péres et al., 1998; Krogdahl et al., 2003;
Bakke et al., 2011). In addition, higher levels of enzyme activities
are related to better growth performance and higher feed utilization
in fish (Furné et al,, 2005). In the present study, grass carp fed
diets with a protein content that ranged from 22.8% to 30.6%
showed a progressive increase in intestinal trypsin activity as protein
content in the diet rose, reaching a plateau at 28.9% protein. Similar
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FIGURE 6

Effects of dietary P/E ratios on the liver transcriptome of large-sized
grass carp. (A), (B) and (C) Representative volcano plot of liver gene
expression and KEGG and GO pathway enrichment for differentially
expressed genes (DEGs) between the P/E 21.7 and P/E 29.2 groups,
respectively. The spot size represents the number of DEGs significantly
enriched in a pathway. P-adjust is the corrected P-value.

results were found in gilthead sea bream Sparus aurata (Garcia-
Meilan et al., 2013). With the increased dietary P/E ratio, a-amylase
activity decreased. It is easy to understand how adjusting the protein
and starch content of the isoenergetic feed used in this study works:
a higher P/E ratio indicates more protein and less starch in the feed.
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A variety of diets with different dietary P/E ratios were designed
in the current study to determine the optimal diet for maintaining
the health status of grass carp. SOD and T-AOC are important
components of the antioxidant defense system in fish, whereas the
main product of lipid peroxidation, MDA, is a key indicator of
oxidative damage (Meng et al., 2017; Liu et al., 2021; Guo et al,,
2023). Analysis of the livers and sera of the fish revealed that
SOD and T-AOC activities, coupled with MDA levels, indicate
that an appropriate dietary P/E ratio enhances the antioxidant
capacity of grass carp. ALT, an enzyme predominantly localized
in liver parenchymal cells, is a well-established clinical indicator
of hepatic function and health. ALT levels in livers and sera
indicated that a low-protein and high-starch diet was not suitable
for grass carp. This finding is in agreement with earlier works
(Jin et al., 2015; Wang et al., 2018).

To elucidate the metabolic response of grass carp to dietary
P/E ratios, a hepatic transcriptome analysis was conducted
comparing groups fed P/E 21.7 and P/E 29.2 diets. Pathway
enrichment analysis (KEGG and GO) identified the AMPK signaling
pathway as the most significantly enriched cluster among DEGs
(Supplementary Table S1). The AMPK signaling pathway is known
to play an important role in the regulation of energy metabolic
pathways in fish (Wu et al., 2016). Several genes were up-regulated
in the P/E 29.2 group, including fatty acid synthase ( fasn), which
is an important rate-limiting enzyme involved in the lipogenesis
pathway (Zheng et al., 2013), stearoyl-CoA desaturase (scd), which
catalyzes the insertion of a cis double bond at the delta-9 position
into fatty acyl-CoA substrates, glucose-6-phosphatase catalytic
subunit 1b (g6pclb), which hydrolyzes glucose-6-phosphate to
glucose in the endoplasmic reticulum, and Ras-related protein
Rab-2A (rab2a), which modulates the liver lipid accumulation
(Morohoshi et al., 2021; Chen et al., 2022). However, carnitine
palmitoyltransferase 1Ab (cptlab, a marker gene of mitochondrial
fatty acid B-oxidation) and 6-phosphofructo-2-kinase/fructose-2,6-
bisphosphatase 1 (pfkfb1), which are involved in the synthesis and
degradation of fructose 2,6-bisphosphate, were down-regulated in
the P/E 29.2 group. These expression patterns indicate that the P/E
21.7 diet suppressed lipogenesis and enhanced lipolysis to mitigate
lipid accumulation, while simultaneously promoting glycolysis-
driven de novo lipogenesis, which elevated hepatic TG content. This
paradoxical metabolic shift aligns with the observation of increased
TG content in the liver. Similar energy metabolism results were
observed in Amur sturgeon Acipenser schrenckii after feeding them a
low-protein, high-starch diet (Zhang et al., 2023). In addition to lipid
and carbohydrate metabolism, the DEGs were also enriched in other
GO terms such as organic acid metabolic process, carboxylic acid
metabolic process, oxoacid metabolic process, and monocarboxylic
acid metabolic process.

The Ras signaling pathway was the second largest cluster of DEG
enrichment in KEGG pathways. As a core regulatory mechanism
governing proliferation, survival, growth, differentiation, and
inflammation, this pathway exhibited significant upregulation
of key genes in the P/E 29.2 group (Wennerberg et al., 2005;
Lee et al., 2002; Shaker et al., 2023). The expression of Ras signaling
pathway-related genes such as Ras-related protein Ral-A-like (rala),
which is involved in a variety of cellular processes including gene
expression, cell migration, and proliferation (Cascone et al., 2008;
Balasubramanian et al., 2010; Hiatt et al., 2018), phospholipase C,
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epsilon 1 (plcel), which participates in multiple signaling pathways
affecting cell survival, cell growth, actin organization, and T-cell
activation (Bunney and Katan, 2006; Abdou et al., 2022), ral guanine
nucleotide dissociation stimulator (ralgds, a guanine nucleotide
exchange factor activating either RalA or RalB GTPases and playing
a crucial role in intracellular transport), colony-stimulating factor
1 receptor, alpha (csfIra), which plays an important role in innate
immunity and inflammatory processes, and phospholipase A2 group
10 (pla2¢10), which may be involved in maturation and activation of
innate immune cells (Nolin etal., 2017), were up-regulated in the P/E
29.2 group. This coordinated upregulation suggests that an optimal
dietary P/E ratio enhances growth performance and immune
function. Furthermore, the up-regulated cytosolic phospholipase
A, gamma-like (pla2g4c) in the P/E 29.2 group, known to regulate
endoplasmic reticulum homeostasis and lipid droplet formation
(Hanasaki, 2002; Linkous and Yazlovitskaya, 2010; Su et al., 2017),
indicates enhanced lipid homeostasis at an optimal dietary P/E ratio.
Conversely, the down-regulation of angiopoietin-1-like (angptI),
which mediates endothelial-matrix interactions, is an unresolved
aspect requiring further investigation (d'Apolito et al., 2019).

Arachidonic acid metabolism and ribosome biogenesis in
eukaryotes were also regulated by the dietary P/E ratio. The
expression of arachidonic acid metabolism genes, such as pla2gI0,
pla2gdc, cytochrome P450 2J4-like (cyp2j4), which catalyzes the
hydroxylation of carbon-hydrogen bonds (Zhang et al., 1997),
gamma-glutamyltransferase 1 alpha (ggtla), which is involved in
arachidonic acid metabolism (Gong et al., 2024), and hydroperoxide
isomerase ALOXE3-like, which oxygenates polyunsaturated fatty
acids, was up-regulated in the P/E 29.2 group. These results indicate
that a suitable dietary P/E ratio can increase fatty acid metabolism
and enhance immune performance. The expression of ribosome
biogenesis genes such as the GAR1 homolog, ribonucleoprotein
(garl), which is responsible for 185 rRNA production and rRNA
pseudouridylation (Spaulding et al., 2022), the SNU13 homolog,
small nuclear ribonucleoprotein b (snul3b, a component of the
spliceosome and rRNA processing machinery); and the NOP58
ribonucleoprotein homolog (n0p58), which is crucial for rRNA
processing and assembly, were up-regulated in the P/E 29.2 group.
Generally, the vigorous synthesis of rRNA indicates the demand for
efficient and large-scale protein synthesis during cell proliferation.
In the present study, the up-regulated genes involved in ribosome
biogenesis in eukaryotes may partly explain the increased growth
performance in the group P/E 29.2.

5 Conclusion

The present study indicated that a dietary protein-to-energy
(P/E) ratio of 29.2 was optimal for large-sized grass carp, as it
maximized growth performance and health status, as evidenced
by superior weight gain, favorable hematological parameters, and
improved tissue histology and hepatic transcriptome profiles. At
the transcriptional level, the optimal P/E ratio enhanced growth
performance and immune function by interrupting the AMPK
signaling pathway, the Ras signaling pathway, and arachidonic acid
metabolism, in addition to affecting rRNA synthesis via regulating
the ribosome biogenesis gene expression in eukaryotes. Based on
the second-order polynomial regression analysis of the growth

Frontiers in Physiology

08

10.3389/fphys.2025.1665511

performance and health status against the P/E ratio, the optimal
P/E range was found to be 27.36-28.93. These findings provide
novel insights into the nutritional requirements of large-sized grass
carp, offering valuable guidance for optimizing feed formulations to
enhance aquaculture productivity.
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