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based on the SEER database and 
external validation in China

Abudouresuli Tuersun1,2,3†, Saimaitikari Abudoubari1,2,3†, 
Abudoushalamu Abudouwake4†, Huerxidan Tuerdi5, 
Abulizi Maimaitiyiming6, Pahatijiang Nijiati2, Ya Qiu1,2* and 
Jianquan Wang2,7*
1Department of Radiology, The First People’s Hospital of Kashi Prefecture, Kashgar Prefecture, China, 
2Xinjiang Key Laboratory of Artificial Intelligence Assisted Imaging Diagnose, The First People’s 
Hospital of Kashi Prefecture, Kashgar Prefecture, China, 3Shanghai Key Laboratory of Artificial 
Intelligence, Shanghai, China, 4Department of Dermatology, The First People’s Hospital of Kashi 
Prefecture, Zhoukou, China, 5Department of Geriatrics, Shache County People’s Hospital, Zhoukou, 
China, 6Department of Ultrasound, Shache County People’s Hospital, Zhoukou, China, 7Remote 
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Objective: We developed interpretable machine learning (ML) models to predict 
the overall survival (OS) of esophageal cancer patients. This approach aims to 
make our modeling results more interpretable and transparent.
Methods: We collected the clinicopathological information of esophageal 
cancer patients from the SEER database and divided them into training and 
validation sets at a ratio of 7:3. Meanwhile, we obtained an external validation 
cohort from the First People’s Hospital of Kashi in Xinjiang, China. Using 
LASSO and multivariate Cox regression analyses, we identified relevant risk 
factors and combined them to develop CoxPH and 6 ML models: Random 
Survival Forest (RSF), Gradient Boosting with Component Linear (GLMboost), 
decision tree (dt), boosting tree (bt), DeepSurv, and neural multi-task logistic 
regression (NMTLR). We evaluated the predictive performance of these ML 
models using the C-index, integral cumulative/dynamic AUC, integral Brier 
score, Kolmogorov-Smirnov (KS) test and Cramer-von Mises (CvM) test. For 
interpretability assessment, we employed three complementary methods: (1) 
time-dependent variable importance to quantify feature contribution across 
follow-up periods; (2) partial correlation survival plots to visualize individual 
variable effects; and (3) aggregated survival SHapley additive interpretation 
(SurvSHAP) plots with mean absolute deviation metrics to validate feature impact 
stability at both individual and population levels.
Results: The final ML model consisted of 11 factors: grade, stage, T 
stage, N stage, M stage, radiotherapy, chemotherapy, bone metastasis, liver 
metastasis, lung metastasis, and age. Our predictive models demonstrate 
significant discriminative power; in particular, the NMTLR model performs 
best. For the training, validation, and external validation sets, the area 
under the curve (AUC) for one-, three-, and 5-year OS was higher
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than 0.81, and the integrated Brier score was consistently lower than 0.175. 
interpretability analyses confirmed consistent predictive logic: M stage, N stage, 
age, grade, bone metastases, liver metastases, lung metastases and radiotherapy 
were identified as the most influential predictors via quantifiable SurvSHAP 
values and time-dependent importance weights, with their effects visually 
validated through partial correlation survival curves.
Conclusion: The NMTLR prognostic model is the most effective at predicting 
the OS of esophageal cancer patients. It helps physicians correctly assess 
patient survival and provides valuable information for diagnosis and prognosis 
evaluation.

KEYWORDS

esophageal cancer, interpretable machine learning, overall survival, SurvSHAP, 
prediction model 

1 Introduction

Oesophageal cancer is a significant malignant tumour of 
the gastrointestinal tract, occurring between the hypopharynx 
and the oesophagogastric junction. It ranks as the ninth most 
common malignancy worldwide, with notably high incidence 
and mortality rates: in 2020, its global incidence was 3.1% 
and mortality 5.5%, with 600,000 new cases reported in 2021 
alone (Sung et al., 2021; Fernández-Montes et al., 2022). Despite 
advances in diagnosis and treatment, OS remains unsatisfactory, 
with a low 5-year survival rate. Thus, accurate survival prediction, 
personalised treatment planning, and improvements in survival 
quality remain critical priorities in oesophageal cancer research 
(Zhang et al., 2020; Helminen et al., 2023).

In recent years, ML has emerged as a powerful tool for 
prognostic assessment in oncology, including oesophageal cancer. 
Compared with traditional statistical methods, ML algorithms 
excel at mining complex patterns from large clinical datasets, 
enabling more accurate predictions (Li et al., 2024; Sharma and 
Hassan, 2022). For example, ML models have been developed 
to predict survival in gastric cancer using genetic algorithm-
based Cox regression (Xin et al., 2020), and multi-task logistic 
regression and random forest models have been applied to estimate 
tumour survival in oesophageal cancer patients (Jung et al., 
2023). However, a key limitation of existing ML-based prognostic 
models—including those for oesophageal cancer—is their lack of 
interpretability. Many models function as “black boxes,” where the 
logic behind predictions and the critical factors driving outcomes 
remain obscure. This opacity hinders clinicians’ ability to trust 
or act on model outputs, limiting their translational value in 
guiding comprehensive treatment strategies (Nayarisseri et al., 2021;
Bernard et al., 2023).

The importance of interpretability in clinical ML models 
cannot be overstated. For prognostic tools to effectively support 
decision-making, clinicians must understand how and why a model 
generates a specific prediction—e.g., which patient characteristics 
(e.g., tumour stage, metastasis status) most strongly influence 
survival estimates. Such transparency not only enhances trust but 
also enables validation of model logic against clinical knowledge, 
ensuring predictions align with biological and pathological 
mechanisms (Li et al., 2024; Bernard et al., 2023). Despite this need, 

interpretable prognostic models specifically for oesophageal cancer 
remain underdeveloped, leaving a critical gap in the field.

To address this gap, our study aimed to develop interpretable 
ML models for predicting OS in oesophageal cancer patients. 
We collected clinicopathological data from the SEER database 
(split into training and validation sets) and an external validation 
cohort from the First People’s Hospital of Kashi, China. Using 
LASSO and multivariate Cox regression to screen key risk 
factors, we constructed 7 ML models (including CoxPH, Random 
Survival Forest, and Neural Multi-Task Logistic Regression). 
Beyond evaluating predictive performance, we employed multiple 
interpretive tools to clarify the models’ decision logic. By integrating 
accuracy with transparency, we seek to provide a reliable foundation 
for personalised diagnosis and prognosis in oesophageal cancer. 

2 Materials and methods

2.1 Data sources

In this study, we analysed the clinical data of patients 
diagnosed with oesophageal cancer between 2010 and 
2017. Patient records were identified using International 
Classification of Diseases for Oncology, Third Edition (ICD-
O-3) codes (8850–8858) within the SEER programme. The 
SEER study data could be accessed easily using the SEER∗Stat 
8.4.1.2 software, which is available to download from the 
official website (https://seer.cancer.gov/seerstat/download/).
Exclusion criteria were implemented to ensure data quality, 
including the following: (1) lack of information on survival months, 
(2) missing or incomplete American Joint Committee on Cancer 
(AJCC) tumour staging data (T, N and M stages), (3) unknown 
histological grading information, and (4) incomplete information 
on the SEER integrated summary stage.

According to the specified inclusion and exclusion criteria, a 
total of 5,702 patients were recruited into this study. These patients 
were randomised into two groups: a training group (n = 3,991) and a 
validation group (n = 1,711), maintaining a ratio of 7:3. Additionally, 
clinical data for the external validation set (n = 300) were obtained 
from patients treated at the First People’s Hospital of the Kashi 
Region between 2015 and 2020 (Approved by the Ethics Committee 
of the First People’s Hospital of Kashi Region). Throughout the study 
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period, three independent investigators performed data collection: 
two extracted the data and the third ensured its accuracy. Notably, 
all patient data were anonymised and no informed consent form 
was required. 

2.2 Variable set

In the present study, various clinical parameters were collected, 
including age at diagnosis, gender, grade, primary site (lower 
third of oesophagus, middle third of oesophagus, upper third 
of oesophagus), histology (adenomas and adenocarcinomas; 
squamous cell neoplasms; epithelial neoplasms; cystic, mucinous 
and serous neoplasms), Stage (Localised; Regional; Distant), AJCC 
7th TNM stage, tumour metastasis (bone, liver, and lung metastasis), 
and treatment modality (radiotherapy and chemotherapy). The 
primary outcome metric used in this study was OS, defined as the 
time interval between the date of diagnosis and the occurrence of 
death or the most recent follow-up. 

2.3 Determining prognostic factors for 
survival

All variables in this study were converted to categorical 
variables and expressed as frequencies and proportions. To mitigate 
overfitting, the Least Absolute Shrinkage and Selection Operator 
(LASSO) method was primarily used to select relevant predictive 
features. Important prognostic factors were then identified using 
multivariate analysis and the Cox proportional risk model. 
Corresponding 95% confidence intervals (CIs) were calculated for 
all potential risk factors. 

2.4 Model development

This study used traditional COX regression model, four 
ensemble learning models (RSF, GLMboost, decision tree, boosting 
tree) and two deep learning models (DeepSurv, NMTLR) to 
formulate prognostic models. 

2.4.1 Ensemble learning models
The Random Survival Forest (RSF) approach combines random 

forests with survival analysis techniques in order to address right-
truncated data. It introduces new survival splitting rules for 
survival tree growth and innovative algorithms for estimating 
missing data. RSF also incorporates the event retention principle 
of survival forests, using it to define the overall mortality rate—a 
simple, interpretable measure that can be used as a predictor. 
RSF computations can be performed using the randomforestSRC 
(rfsrc) package.

Gradient Boosting with Component Linear Models (GLMboost) 
is a regression and classification algorithm based on gradient 
boosting tree, with GLMboost as its base model. Using an 
incremental gradient boosting approach, GLMboost improves the 
predictive power of the base model systematically while reducing 
its complexity through regularisation. One of GLMboost’s unique 
strengths is its adaptability to a wide range of data types, including 

categorical and continuous variables. Furthermore, it demonstrates 
the ability to address the common challenge of missing data, which 
is frequently encountered in datasets representing realistic virtual 
world scenarios.

Decision tree (dt) predict the value of the dependent variable 
by deriving simple decision rules from the available data. By 
contrast, boosting tree are an integrated learning approach that 
involves combining predictions from multiple models to improve 
overall performance. While decision tree partition the data by 
selecting the most appropriate features, boosting tree combiners 
combine multiple models to achieve superior generalisation 
performance.

Boosting tree (bt) is an integrated learning method that 
generates multiple weak learners iteratively and combines them 
into strong learners to improve prediction performance. Unlike 
decision tree, which are constructed independently, boosting tree 
are trained iteratively. Each round of training focuses on the samples 
that were incorrectly predicted in the previous round to improve 
model accuracy by gradually reducing bias. In survival analysis, 
boosting tree optimise the model parameters by minimising 
the loss function (e.g., negative log-likelihood), making them 
particularly suitable for dealing with nonlinear relationships and 
high-dimensional data. 

2.4.2 Deep learning models
DeepSurv is a survival analysis model based on deep learning 

that combines the traditional Cox proportional hazards model 
with deep neural networks to automatically identify complex 
nonlinear interactions between features. DeepSurv’s advantage over 
traditional methods lies in its ability to handle high-dimensional 
sparse data and capture complex relationships between features. The 
model estimates parameters by maximising a partial log-likelihood 
function; the hidden layer of the neural network learns a richer 
representation of features than traditional methods do.

Neural multi-task logistic regression (NMTLR) is a neural 
network model designed for survival analysis that can handle the 
survival prediction task at multiple time points simultaneously, 
improving prediction accuracy by sharing underlying feature 
representations and learning correlations between different time 
points. It employs a multi-task learning framework where each task 
corresponds to a specific time point and predicts the probability 
of an event occurring before that time point through logistic 
regression.

2.5 Model testing and evaluation

The performance of seven different models was assessed 
using various metrics, including the C-index, the combined 
cumulative/dynamic area under the curve (AUC) and the combined 
Brier score. The C-index indicates the discriminatory power of a 
survival model, with values greater than 0.7 suggesting usefulness. 
Higher C-index values were associated with a greater likelihood of 
model predictive success. Similarly, the AUC calculated from the 
ROC curve is a comparable metric to the C-index. Additionally, 
the Brier score assesses the model’s predictive accuracy, with values 
below 0.25 indicating practical application. Improved predictive 
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TABLE 1  General clinical data of training set and validation set samples of esophageal cancer patients in SEER Database [n (%)].

Characteristic Training set
(n = 3991) [n (%)]

Validation set
(n = 1711) [n (%)]

External 
validation set

(n = 300) [n (%)]

Χ2 P

Grade 3.566 0.735

  G1 225 (5.6) 80 (4.7) 12 (4)

  G2 1772 (44.4) 764 (44.7) 140 (46.7)

  G3 1941 (48.6) 844 (49.3) 144 (48)

  G4 53 (1.3) 23 (1.3) 4 (1.3)

Histologic type 1.609 0.952

  ADC 2755 (69) 1200 (70.1) 204 (68)

  SCN 972 (24.4) 407 (23.8) 75 (25)

  EN 80 (2) 31 (1.8) 5 (1.7)

  CMSN 184 (4.6) 73 (4.3) 16 (5.3)

Primari site 1.412 0.842

  Lower third 3181 (79.7) 1355 (79.2) 231 (77)

  Middle third 622 (15.6) 274 (16) 54 (18)

  Upper third 188 (4.7) 82 (4.8) 15 (5)

Stage 1.882 0.758

  Localized 764 (19.1) 349 (20.4) 59 (19.7)

  Regional 1697 (42.5) 705 (41.2) 121 (40.3)

  Distant 1530 (38.3) 657 (38.4) 120 (40)

Tstage 9.046 0.171

  T1 1017 (25.5) 416 (24.3) 59 (19.7)

  T2 562 (14.1) 252 (14.7) 52 (17.3)

  T3 1941 (48.6) 818 (47.8) 155 (51.7)

  T4 471 (11.8) 225 (13.2) 34 (11.3)

Nstage 3.468 0.748

  N0 1284 (32.2) 555 (32.4) 95 (31.7)

  N1 1885 (47.2) 807 (47.2) 132 (44)

  N2 609 (15.3) 251 (14.7) 52 (17.3)

  N3 213 (5.3) 98 (5.7) 21 (7)

Mstage 0.227 0.893

  M0 2729 (68.4) 1162 (67.9) 202 (67.3)

  M1 1262 (31.6) 549 (32.1) 98 (32.7)

(Continued on the following page)
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TABLE 1  (Continued) General clinical data of training set and validation set samples of esophageal cancer patients in SEER Database [n (%)].

Characteristic Training set
(n = 3991) [n (%)]

Validation set
(n = 1711) [n (%)]

External 
validation set

(n = 300) [n (%)]

Χ2 P

Bone Metastasis 1.240 0.538

  No 3704 (92.8) 1574 (92) 279 (93)

  Yes 287 (7.2) 137 (8) 21 (7)

Lung Metastasis 0.342 0.843

  No 3684 (92.3) 1573 (91.9) 275 (91.7)

  Yes 307 (7.7) 138 (8.1) 25 (8.3)

Liver Metastasis 0.438 0.803

  No 3437 (86.1) 1480 (86.5) 262 (87.3)

  Yes 554 (13.9) 231 (13.5) 38 (12.7)

Radiothearepy 0.098 0.952

  Yes 2706 (67.8) 1162 (67.9) 201 (67)

  No 1285 (32.2) 549 (32.1) 99 (33)

Chemotherapy 0.736 0.692

  Yes 905 (22.7) 405 (23.7) 67 (22.3)

  No 3086 (77.3) 1306 (76.3) 233 (77.7)

Sex 0.474 0.789

  Male 3251 (81.5) 1383 (80.8) 241 (80.3)

  Female 740 (18.5) 328 (19.2) 59 (19.7)

Age 5.240 0.513

 <60 680 (17.0) 292 (17.1) 41 (13.7)

 61–70 1361 (34.1) 552 (32.3) 98 (32.7)

 71–80 1294 (32.4) 572 (33.4) 109 (36.3)

 >81 656 (16.4) 295 (17.2) 52 (17.3)

accuracy was associated with lower Brier scores. Furthermore, Cox-
Snell residual plots are graphical tools that can be used to assess the 
model’s goodness of fit. 

2.6 Statistical analysis and model 
interpretability

LASSO regression was used to screen for survival risk factors, 
and univariate and multivariate Cox regression analyses were 
performed in SPSS 26.0 to identify independent prognostic factors 
(statistical significance was set at P < 0.05). Based on the screened 
features, a Cox proportional hazards regression model (CoxPH) 

and six machine learning (ML) models were constructed, including 
Random Survival Forest (RSF), component-wise linear Gradient 
Boosting (GLMboost), Decision Tree (dt), Boosting Tree (bt), 
Deep Survival Network (DeepSurv), and Neural Multi-Task Logistic 
Regression (NMTLR).

To comprehensively and accurately evaluate model 
performance, in addition to clinically recognized metrics—including 
the C-index (for assessing discriminative ability), integrated 
cumulative/dynamic AUC (for evaluating discriminative 
performance at different time points), and integrated Brier score 
(for measuring calibration between predicted probabilities and 
actual outcomes)—two goodness-of-fit metrics suitable for survival 
analysis were additionally incorporated: the Kolmogorov-Smirnov 
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TABLE 2  LASSO variable screening results Table.

Variable Coefficient Z score P

Mstage 0.416 11.627 <0.001

Stage 0.378 8.629 <0.001

Chemotherapy −0.206 −4.987 <0.001

BoneMets 0.204 6.409 <0.001

Tstage 0.161 6.232 <0.001

Nstage 0.149 6.014 <0.001

LiverMets 0.146 3.777 <0.001

Grade 0.126 5.902 <0.001

Radiotherapy −0.098 −4.486 <0.001

Age 0.054 4.799 <0.001

Histology 0.034 1.959 0.051

LungMets 0.030 2.081 0.037

Sex 0 −0.830 0.406

PrimarySite 0 −0.191 0.848

(KS) test and Cramer-von Mises (CvM) test. The KS test quantifies 
the overall discrepancy between the predicted and observed survival 
distributions by calculating the maximum distance between the 
two distributions. In contrast, the CvM test measures the average 
discrepancy between the distributions via an integral form and 
is more sensitive to deviations in the distribution tails. Together, 
these two metrics complement each other to more comprehensively 
validate the consistency between model predictions and clinical 
real-world data.

For the optimal model selected, in-depth interpretability 
analyses were conducted to clarify its internal working mechanism 
and enhance clinical utility:

Time-dependent variable importance analysis was used to 
identify key features that significantly influence survival outcomes 
at different follow-up time points, revealing the temporal dynamic 
patterns of variable effects; Partial correlation survival plots 
were generated to visualize the relationship curves between 
core features and survival probabilities, intuitively demonstrating 
the independent impact of a single feature on prognosis after 
controlling for other variables; SurvSHAP (an extended SHAP 
method dedicated to survival analysis) was employed to quantify 
the contribution of each feature to model predictions and clarify 
the direction of the association between feature values and risk 
predictions (either increasing or decreasing risk).

The construction of all ML models, performance evaluation 
(including calculation of the C-index, integrated AUC, integrated 
Brier score, KS test, and CvM test), and interpretability analyses 
were implemented using Python 3.12.9. The analysis relied on 
the following toolkits: data processing (Pandas, NumPy, SciPy), 

model construction (Scikit-learn, Lifelines, Scikit-survival, PyTorch, 
Torchvision), interpretability analysis (SHAP), and visualization 
(Matplotlib, Seaborn). 

3 Results

3.1 Demographic and clinicopathological 
characteristics

A comprehensive cohort of 5,702 patients diagnosed with 
oesophageal cancer between 2010 and 2017 was carefully selected 
from the SEER database using pre-determined inclusion and 
exclusion criteria. Of these patients, 3,991 were assigned to the 
training set and the remaining 1,711 constituted the validation 
set. A further 300 patients treated at the First People’s Hospital of 
Kashi between 2015 and 2020 formed the external validation set. 
Statistical analysis using the chi-square test showed that there was no 
significant difference between the training set, the validation set, and 
the external validation set. Table 1 describes the clinicopathological 
characteristics of the three sets. 

3.2 Analysis of prognostic factors of 
esophageal cancer

A total of 13 clinical parameters were included. LASSO 
regression analysis was used to screen for parameters with a 
p-value of less than 0.05, and 11 variables were retained (see 
Table 2; Figure 1). These 11 variables were then included in the 
Cox regression analysis, which identified Grade, Stage, Tstage, 
Nstage, Mstage, Radiotherapy, Chemotherapy, Bone metastasis, 
Liver metastasis, Lung metastasis and Age, along with 11 other 
variables with p-values below 0.05, as independent risk determinants 
of OS in oesophageal cancer (Table 3). 

3.3 Model comparison

We developed seven machine learning (ML) prediction 
models and evaluated their performance using internal (training 
and validation sets) and external validation cohorts, with 
results summarized in Table 4 and Figures 2, 3 (supplementary 
results for validation and external validation sets are shown 
in Supplementary Figures S1, S2). To address the potential 
interpretive complexity of Cox-Snell residual plots (Figure 3), we 
additionally incorporated Kolmogorov-Smirnov (KS) and Cramer-
von Mises (CvM) metrics—two statistical measures that quantify 
the goodness-of-fit between predicted and observed survival 
distributions—for more intuitive performance comparison.

Model performance metrics (Table 4) demonstrated that all 
models achieved favorable predictive performance across datasets, 
with integrated Brier scores below 0.15. For the training set, the 
NMTLR model stood out with the lowest integrated Brier score 
(0.108) and competitive values in C-index (0.810) and integrated 
C/D AUC (0.831); in the validation set, it maintained the lowest 
integrated Brier score (0.110) and the highest integrated C/D 
AUC (0.843); even in the external validation set, it exhibited 
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FIGURE 1
Feature selection using LASSO regression (The LASSO coefficient profiles depict the representation of 14 variables).

stable performance (integrated Brier score = 0.129, C-index = 
0.774). Regarding KS and CvM: lower CvM values indicate closer 
alignment between predicted and observed survival.The NMTLR 
model has the lowest CvM values (training set: 0.010; validation 
set: 0.011; external validation set: 0.011) and KS values (training 
set: 0.156; validation set: 0.170; external validation set: 0.169) in 
all datasets, further supporting the model’s discriminative ability. 
NMTLR exhibits consistent performance across different cohorts.

Figure 2 presents the performance comparison of all models in 
the training set using bar plots, with the x-axis listing model types 
[Cox proportional hazard (Coxph), random survival forest (rfsrc), 
gradient boosting with component-wise linear (glmboost), boosting 
tree (bt), decision tree (dt), probabilistic survival prediction with 
deep neural networks (DeepSurv), and neural multi-task logistic 
regression (NMTLR)] and the y-axis representing key metrics (C-
index, integrated C/D AUC, integrated Brier score, KS, CvM). As 
shown, the NMTLR model has the highest integrated C/D AUC 
and the lowest integrated Brier score and CvM in the training 
set—visually validating its optimal balance of discriminative ability 
and goodness-of-fit.

Figure 3 displays the Cox-Snell residual plots for all models in 
the training set, where the x-axis represents theoretical quantiles 
(expected residual values under a well-fitted model) and the y-
axis represents observed Cox-Snell residuals. The low CvM values 
(Table 4) complement these plots, confirming that all models still 
have acceptable goodness-of-fit to the training data—with the 
NMTLR model’s minimal CvM further reinforcing its reliability. 
The Cox-Snell residual plots for validation and external validation 
sets (Supplementary Figure S2) show similar trends, and their 
corresponding CvM values (Table 4) support the models’ cross-
cohort stability. Comprehensively considering all metrics (including 
KS/CvM for intuitive goodness-of-fit assessment), visualizations, 
and cross-dataset consistency, the NMTLR model exhibits the most 
balanced and superior performance, making it the optimal choice 
for predicting esophageal cancer patients’ overall survival.

The composite Brier scores, composite C/D AUC, and C-index 
for the NMTLR model in the training, validation, and external 
validation sets were 0.109, 0.112, and 0.128; 0.831, 0.839, and 0.794; 
and 0.808, 0.807, and 0.779, respectively.The ROC curves (Figure 4) 
illustrate that at 1, 3, and 5 years the subjects’ The areas under the 
operational eigenvalues are as follows: 0.956, 0.915, and 0.868 for the 
training set; 0.953, 0.910, and 0.866 for the validation set; and 0.948, 
0.891, and 0.830 in the external validation set, respectively. 

3.4 Model interpretability

To further evaluate the optimal model, we performed a global 
analysis to gain a comprehensive understanding of its performance. 

3.4.1 Time-dependent feature importance
In our study, we examined the impact of each variable on 

the model’s global predictions. Since each variable may have a 
different impact at different time points, we quantified the time-
dependent importance of variables in the NMTLR model by measuring 
how much the model’s predictive performance degrades when a 
specific variable is replaced with random noise (while keeping 
other variables unchanged). We used two metrics to assess this 
performance degradation: the increase in Brier score and the decrease 
in time-dependent AUC after variable replacement (see Figure 5). 

Variable importance exhibited clear time-dependent patterns: 
a larger increase in Brier score (or larger decrease in AUC) after 
replacing a variable indicated that this variable had a more critical 
role in predicting OS at that specific time point. Specifically, the 
Brier score-based analysis revealed more distinct time-dependent 
patterns. Our findings indicate that M stage had the strongest impact 
on OS prediction when survival time was less than approximately 
25 months, as replacing this variable resulted in the most significant 
degradation of model performance (i.e., the largest increase in 
Brier score and the greatest decrease in time-dependent AUC). 
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TABLE 3  Univariate and multivariate analysis of prognostic factors related to OS in patients with esophageal cancer.

Characteristic Univariate analysis Multivariate analysis

HR (95%CI) P HR (95%CI) P

Tumor grade

  G1 Reference value Reference value

  G2 2.632 (2.087,3.320) <0.001 2.284 (1.807,2.886) <0.001

  G3 3.979 (3.159,5.012) <0.001 2.833 (2.241,3.580) <0.001

  G4 4.315 (2.959,6.291) <0.001 2.308 (1.575,3.381) <0.001

Tumor stage

  Localized Reference value Reference value

  Regional 2.181 (1.913,2.486) <0.001 1.878 (1.557,2.266) <0.001

  Distant 8.579 (7.536,9.765) <0.001 2.504 (1.995,3.144) <0.001

TNM-T

  T1 Reference value Reference value

  T2 1.269 (1.112,1.448) <0.001 1.216 (1.056,1.399) 0.007

  T3 1.652 (1.497,1.824) <0.001 1.225 (1.088,1.380) <0.001

  T4 4.391 (3.864,4.989) <0.001 1.957 (1.700,2.253) <0.001

TNM-N

  N0 Reference value Reference value

  N1 2.534 (2.307,2.784) <0.001 1.487 (1.322,1.674) <0.001

  N2 2.588 (2.297,2.917) <0.001 1.556 (1.352,1.791) <0.001

  N3 4.612 (3.924,5.42) <0.001 2.192 (1.832,2.623) <0.001

TNM-M

  M0 Reference value Reference value

  M1 6.652 (6.139,7.207) <0.001 2.735 (2.338,3.198) <0.001

Bone Metastasis

  No Reference value Reference value

  Yes 6.524 (5.727,7.432) <0.001 1.938 (1.692,2.220) <0.001

Lung Metastasis

  No Reference value Reference value

  Yes 4.916 (4.344,5.563) <0.001 1.301 (1.140,1.486) <0.001

Liver Metastasis

  No Reference value Reference value

  Yes 5.214 (4.724,5.754) <0.001 1.379 (1.228,1.547) <0.001

(Continued on the following page)
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TABLE 3  (Continued) Univariate and multivariate analysis of prognostic factors related to OS in patients with esophageal cancer.

Characteristic Univariate analysis Multivariate analysis

HR (95%CI) P HR (95%CI) P

Radiothearepy

  No Reference value Reference value

  Yes 0.567 (0.521,0.616) <0.001 0.794 (0.720,0.876) <0.001

Chemotherapy

  No Reference value Reference value

  Yes 1.307 (1.188,1.437) <0.001 0.591 (0.527,0.663) <0.001

Age(Y)

 <60 Reference value Reference value

 61–70 0.965 (0.78,1.195) 0.745 1.079 (0.963,1.210) 0.190

 71–80 1.001 (0.809,1.24) 0.992 1.116 (0.995,1.251) 0.061

 >81 1.343 (1.078,1.674) 0.009 1.546 (1.357,1.761) <0.001

In contrast, after 25 months, N stage became the most influential 
predictor, with its replacement leading to the most significant 
performance degradation.

These time-dependent patterns carry important 
clinical implications for personalized management of 
esophageal cancer patients: 

For patients with a predicted survival time of <25 months (e.g., 
those with advanced M stage at diagnosis), the prominent role 
of M stage suggests that early intervention targeting metastatic 
lesions—such as systemic therapy or local ablative treatments 
for oligometastases—may be prioritized to improve short-term 
survival. Close monitoring of metastatic progression (e.g., regular 
imaging assessments) in this cohort could also help adjust treatment 
strategies promptly.

For patients surviving beyond 25 months, the dominant 
influence of N stage indicates that lymph node status remains a key 
prognostic driver in the mid-to-long term. This supports the clinical 
value of thorough lymph node evaluation (e.g., via endoscopic 
ultrasound or PET-CT) even in the later follow-up period, as 
persistent or recurrent nodal disease may require aggressive salvage 
therapy to extend survival.

Together, these findings highlight that prognostic factors for 
esophageal cancer vary dynamically over time, emphasizing the 
need for time-stratified risk assessment and adaptive treatment 
planning in clinical practice. 

3.4.2 Partial dependence survival profiles
Partially dependent survival profiles (PDPs) can also be used 

to provide an overall explanation of the NMTLR model (see 
Figure 6). PDPs illustrate how the predicted survival probability 
(i.e., the probability of patients surviving for a given length of 
time) of the entire cohort changes relative to survival time when 

only one determinant is changed, while holding all the other 
determinants constant in the training dataset. In Figure 6, the y-
coordinate represents the predicted survival probability (ranging 
from 0 to 1), which reflects the model’s estimated probability that 
a patient survives beyond a specific time point (x-coordinate, in 
months). If the labelled bands (representing confidence intervals) 
are thin and nearly overlap, this indicates that the overall predicted 
survival probability remains similar regardless of the values of these 
variables. If the bands are wider and do not overlap, it suggests 
that even slight alterations in their values can result in substantial 
variations in predicted survival probability. For instance, changes 
in variables such as M stage, N stage, age, grade, bone metastasis, 
liver metastasis, lung metastasis, radiotherapy, etc., can significantly 
impact predicted survival probability. Additionally, the predicted 
survival probability declined more rapidly in M1 patients than in M0 
patients. Similarly, N3 patients, patients under 60 years of age, G4 
patients, patients with bone, liver or lung metastases, and patients 
who did not receive radiotherapy experienced a more rapid decline 
in predicted survival probability. 

3.4.3 Aggregated SurvSHAP values summary
SurvSHAP(t) is an extension of the SHAP (SHapley Additive 

exPlanations) framework tailored for survival analysis, designed 
to quantify the contribution of each feature to model predictions 
across time points (Dai et al., 2025). Built on the axiomatic 
foundation of Shapley values from game theory, SurvSHAP(t) 
assigns a time-dependent importance score to each feature by 
evaluating its marginal contribution to the prediction error when 
removed from all possible subsets of features (Wang et al., 2025). 
For survival models like NMTLR, this involves decomposing 
the predicted cumulative hazard function into individual feature 
contributions, such that the sum of all SurvSHAP(t) values for a 
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TABLE 4  The all models’ performance in the training set, validation set, and external validation set.

Prediction model 
name

C-index Integrated C/D 
AUC

Integrated brier 
score

KS CvM

Training set

  Coxph 0.791 0.810 0.138 0.254 0.025

  RSF 0.804 0.823 0.130 0.195 0.014

  GLMboost 0.790 0.815 0.142 0.272 0.027

  Boosting tree 0.813 0.835 0.127 0.228 0.021

  Decision tree 0.793 0.812 0.130 0.161 0.011

  DeepSurv 0.807 0.828 0.131 0.222 0.020

  NMTLR 0.810 0.831 0.108 0.156 0.010

Validation set

  Coxph 0.794 0.821 0.136 0.251 0.025

  RSF 0.808 0.838 0.129 0.200 0.015

  GLMboost 0.796 0.831 0.140 0.276 0.028

  Boosting tree 0.808 0.841 0.130 0.225 0.022

  Decision tree 0.796 0.824 0.129 0.175 0.011

  DeepSurv 0.810 0.842 0.129 0.228 0.021

  NMTLR 0.806 0.843 0.110 0.170 0.011

External validation set

  Coxph 0.775 0.788 0.142 0.256 0.022

  RSF 0.783 0.801 0.136 0.179 0.013

  GLMboost 0.774 0.789 0.145 0.255 0.024

  Boosting tree 0.786 0.804 0.138 0.231 0.019

  Decision tree 0.764 0.782 0.141 0.172 0.013

  DeepSurv 0.783 0.808 0.139 0.226 0.019

  NMTLR 0.774 0.791 0.129 0.169 0.011

patient approximates the difference between their predicted risk and 
the average risk of the entire cohort (Sato et al., 2024).

We computed and illustrated the SurvSHAP summary plots for 
the NMTLR model, which includes 11 features ranked by their 
overall impact on OS. Figure 7A displays the global importance 
of variables, defined as the mean absolute SurvSHAP(t) value 
across all time points and observations. Figure 7B illustrates the 
temporal variability of each variable’s significance, with the y-axis 
representing the average absolute SurvSHAP(t) value at each time 
point, highlighting how feature importance fluctuates over the 
follow-up period.

In the bee swarm plot (Figure 7C), variables are ordered by their 
mean absolute SurvSHAP(t) value (descending) to reflect overall 
importance. Each point represents a single patient’s SurvSHAP(t) 
value for a specific variable: the x-axis indicates the magnitude 
and direction of the feature’s impact on OS prediction (positive 
values = increased mortality risk; negative values = reduced 
risk). The color gradient (coolwarm palette) encodes the original 
feature values (red = higher values; blue = lower values), not the 
SurvSHAP(t) magnitude. Among the 11 features, chemotherapy had 
the highest overall impact, followed by M stage, liver metastases, 
bone metastases, N stage, T stage, and radiotherapy. 
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FIGURE 2
Model performance for the training set was displayed in the form of bar plots. Cox proportional hazard (Coxph); random survival forest (rfsrc); gradient 
boosting with component-wise linear (glmboost); boosting tree (bt); decision tree (dt); Probabilistic Survival Prediction with Deep Neural Networks 
(DeepSurv); neural multi-task logistic regression (NMTLR).
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FIGURE 3
The Cox-Snell residual plots were displayed for all models in the training dataset.

4 Discussion

Esophageal cancer remains a globally prevalent malignancy 
with complex pathogenesis, posing substantial challenges 

to clinical management. Despite advances in diagnosis and 
treatment, its OS remains suboptimal, underscoring the urgent 
need for accurate prognostic models to guide personalized 
patient care (Morgan et al., 2022).
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FIGURE 4
ROC curve analysis of the NMTLR model was used to evaluate the accuracy of the 1-, 3-, and 5-year predictions. (A) training set. (B) validation set.
(C) external validation set.

Our study addresses this gap by developing and validating 
interpretable ML models for OS prediction in esophageal 
cancer. Unlike previous studies that focused primarily on model 
performance (Xu et al., 2022; Nopour, 2024), we integrated 

LASSO and multivariate Cox regression to identify key risk 
factors and constructed 7 ML models, with NMTLR emerging as 
the superior performer. Its consistent accuracy across training, 
internal, and external validation sets (1-, 3-, 5-year AUC >0.81; 
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FIGURE 5
Time-dependent feature importance for the training set. (A) The Brier score loss after permutation; (B) the C/D AUC loss after permutation. The y-axis 
represents the variation in the loss function after permuting each covariate.

integrated Brier score <0.175) not only confirms its robustness 
but also, more critically, offers actionable insights through 
interpretability analyses—transcending the “black box” limitations 
of traditional ML.

A key innovation of our study lies in the cross-regional 
validation strategy, utilizing data from the SEER database (primarily 
North American patients) and an external cohort from the 
First People’s Hospital of Kashi, China. The NMTLR model 
maintained high performance across these distinct populations 
(external validation AUC: 0.82–0.85), indicating its ability to 
generalize beyond geographical and demographic boundaries. This 
cross-cultural robustness suggests that the core prognostic factors 
identified (e.g., M stage, N stage, metastasis status) are universally 
critical, regardless of regional differences, while also implying that 

the model is resilient to variations in data collection practices or 
clinical workflows. Such generalizability is a prerequisite for the 
model’s potential as a global clinical tool, reducing the need for 
population-specific recalibration.

The 11 prognostic factors identified (grade, stage, T/N/M stages, 
radiotherapy, chemotherapy, bone/liver/lung metastases, age) align 
with clinical knowledge but are contextualized within a dynamic 
framework that enhances their practical utility. For example, while 
tumour stage is known to correlate with prognosis (Detterbeck et al., 
2024), our time-dependent analyses reveal nuanced dynamics: 
M stage dominates early survival (<25 months), whereas N 
stage becomes critical later. This temporal stratification enables 
targeted clinical strategies—such as prioritizing systemic therapy 
for metastatic disease in the short term and intensifying lymph 
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FIGURE 6
PDP can provide a global explanation for the NMTLR model. The survival function values of any covariates are depicted on the y-axis. The larger the 
differences between levels of a factor, the greater the impact of the same factor on OS. A lower numerical value indicates a lower probability of survival.
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FIGURE 7
The SurvSHAP summary plot provides an overall interpretation of the global impact. (A) The length of the bar chart represents the overall significance 
of the variables. (B) The curve graph displays the cumulative importance of each variable. (C) Each point on the bee swarm plot represents a specific 
feature of a particular patient. The y-coordinate of the point is determined by the feature it represents, while the x-coordinate is determined by its 
impact on the model output. The features on the y-axis are sorted according to their significance.
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node surveillance in long-term survivors—that go beyond generic 
recommendations.

Our focus on interpretability—via time-dependent importance, 
partial correlation plots, and SurvSHAP—delivers unique clinical 
value. SurvSHAP, in particular, quantifies the direction and 
magnitude of each feature’s impact on OS prediction at the 
individual patient level. When paired with partial correlation 
survival curves (which visualize how survival probabilities shift 
with changes in these features), these insights help clinicians avoid 
unnecessary treatment-related toxicity in low-benefit subgroups 
and prioritize interventions for patients where the model indicates 
meaningful survival benefit—moving beyond descriptive prognostic 
associations to provide actionable, patient-tailored guidance that 
aligns with clinical decision-making needs.

Regarding the methodological strengths of our time-dependent 
analyses, we used permutation-based Brier score loss and C/D AUC 
loss to assess variable importance. The Brier score, as a proper 
scoring rule, quantifies the calibration and precision of predicted 
probabilities simultaneously, making it more sensitive to temporal 
shifts in predictive performance compared to AUC (which focuses 
on discrimination alone). This sensitivity explains why Brier score 
loss more clearly captured the transition of dominant factors from 
M stage (early) to N stage (late)—a phenomenon rooted in its ability 
to penalize both calibration errors (e.g., overestimating survival 
in M1 patients) and discrimination gaps across time points. This 
characteristic highlights the Brier score’s utility in survival model 
interpretation, as it aligns with clinical needs to trust both the order 
and magnitude of risk predictions.

Limitations of our study include its retrospective design and 
reliance on SEER and single-center external data. Future work 
will incorporate multi-center prospective cohorts across diverse 
regions to further validate the model’s generalizability. Additionally, 
exploring the impact of region-specific variables (e.g., dietary 
factors, local treatment guidelines) on model performance could 
provide deeper insights into optimizing predictions for specific 
populations. Enhancing visualization tools for real-time clinical 
use—such as interactive SurvSHAP dashboards—will further bridge 
the gap between ML outputs and bedside decision-making. 

5 Conclusion

This study successfully constructed and validated an 
interpretable NMTLR model for predicting the OS of esophageal 
cancer patients, addressing key gaps in existing prognostic tools. 
By integrating data from the SEER database (primarily North 
American patients) and an external validation cohort from 
Kashi, China—paired with key risk factor screening via LASSO 
and multivariate Cox regression—the model exhibited robust 
predictive performance: across all datasets, 1-, 3-, and 5-year OS 
AUCs exceeded 0.81 and integrated Brier scores remained below 
0.175, outperforming most previously reported models. Beyond 
accuracy, complementary interpretive tools (time-dependent 
variable importance analysis, partial correlation survival plots, 
and SurvSHAP plots) clarified the dynamic influence of factors 
(e.g., M stage dominating early survival <25 months, N stage 
critical in later periods), overcoming traditional machine learning’s 
“black box” limitation and transforming predictions into clinically 

actionable logic. This work provides clinicians with a tool to refine 
survival assessment and tailor treatment plans, while offering a 
framework for interpretable ML in oncology; limitations include 
retrospective design and lack of molecular data, and future efforts 
will expand multi-center prospective cohorts, integrate multi-
omics data, and optimize interpretive tools to promote precision 
diagnosis/treatment and improve global patient outcomes.
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