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Objective: We developed interpretable machine learning (ML) models to predict
the overall survival (OS) of esophageal cancer patients. This approach aims to
make our modeling results more interpretable and transparent.

Methods: We collected the clinicopathological information of esophageal
cancer patients from the SEER database and divided them into training and
validation sets at a ratio of 7:3. Meanwhile, we obtained an external validation
cohort from the First People's Hospital of Kashi in Xinjiang, China. Using
LASSO and multivariate Cox regression analyses, we identified relevant risk
factors and combined them to develop CoxPH and 6 ML models: Random
Survival Forest (RSF), Gradient Boosting with Component Linear (GLMboost),
decision tree (dt), boosting tree (bt), DeepSurv, and neural multi-task logistic
regression (NMTLR). We evaluated the predictive performance of these ML
models using the C-index, integral cumulative/dynamic AUC, integral Brier
score, Kolmogorov-Smirnov (KS) test and Cramer-von Mises (CvM) test. For
interpretability assessment, we employed three complementary methods: (1)
time-dependent variable importance to quantify feature contribution across
follow-up periods; (2) partial correlation survival plots to visualize individual
variable effects; and (3) aggregated survival SHapley additive interpretation
(SurvSHAP) plots with mean absolute deviation metrics to validate feature impact
stability at both individual and population levels.

Results: The final ML model consisted of 11 factors: grade, stage, T
stage, N stage, M stage, radiotherapy, chemotherapy, bone metastasis, liver
metastasis, lung metastasis, and age. Our predictive models demonstrate
significant discriminative power; in particular, the NMTLR model performs
best. For the training, validation, and external validation sets, the area
under the curve (AUC) for one-, three-, and 5-year OS was higher
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than 0.81, and the integrated Brier score was consistently lower than 0.175.
interpretability analyses confirmed consistent predictive logic: M stage, N stage,
age, grade, bone metastases, liver metastases, lung metastases and radiotherapy
were identified as the most influential predictors via quantifiable SurvSHAP
values and time-dependent importance weights, with their effects visually
validated through partial correlation survival curves.

Conclusion: The NMTLR prognostic model is the most effective at predicting
the OS of esophageal cancer patients. It helps physicians correctly assess
patient survival and provides valuable information for diagnosis and prognosis

evaluation.

esophageal cancer,

prediction model

1 Introduction

Oesophageal cancer is a significant malignant tumour of
the gastrointestinal tract, occurring between the hypopharynx
and the oesophagogastric junction. It ranks as the ninth most
common malignancy worldwide, with notably high incidence
and mortality rates: in 2020, its global incidence was 3.1%
and mortality 5.5%, with 600,000 new cases reported in 2021
alone (Sung et al., 2021; Fernandez-Montes et al., 2022). Despite
advances in diagnosis and treatment, OS remains unsatisfactory,
with a low 5-year survival rate. Thus, accurate survival prediction,
personalised treatment planning, and improvements in survival
quality remain critical priorities in oesophageal cancer research
(Zhang et al., 2020; Helminen et al., 2023).

In recent years, ML has emerged as a powerful tool for
prognostic assessment in oncology, including oesophageal cancer.
Compared with traditional statistical methods, ML algorithms
excel at mining complex patterns from large clinical datasets,
enabling more accurate predictions (Li et al., 2024; Sharma and
Hassan, 2022). For example, ML models have been developed
to predict survival in gastric cancer using genetic algorithm-
based Cox regression (Xin et al, 2020), and multi-task logistic
regression and random forest models have been applied to estimate
tumour survival in oesophageal cancer patients (Jung et al,
2023). However, a key limitation of existing ML-based prognostic
models—including those for oesophageal cancer—is their lack of
interpretability. Many models function as “black boxes,” where the
logic behind predictions and the critical factors driving outcomes
remain obscure. This opacity hinders clinicians’ ability to trust
or act on model outputs, limiting their translational value in
guiding comprehensive treatment strategies (Nayarisseri et al., 2021;
Bernard et al., 2023).

The importance of interpretability in clinical ML models
cannot be overstated. For prognostic tools to effectively support
decision-making, clinicians must understand how and why a model
generates a specific prediction—e.g., which patient characteristics
(e.g., tumour stage, metastasis status) most strongly influence
survival estimates. Such transparency not only enhances trust but
also enables validation of model logic against clinical knowledge,
ensuring predictions align with biological and pathological
mechanisms (Li et al., 2024; Bernard et al., 2023). Despite this need,
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interpretable prognostic models specifically for oesophageal cancer
remain underdeveloped, leaving a critical gap in the field.

To address this gap, our study aimed to develop interpretable
ML models for predicting OS in oesophageal cancer patients.
We collected clinicopathological data from the SEER database
(split into training and validation sets) and an external validation
cohort from the First People’s Hospital of Kashi, China. Using
LASSO and multivariate Cox regression to screen key risk
factors, we constructed 7 ML models (including CoxPH, Random
Survival Forest, and Neural Multi-Task Logistic Regression).
Beyond evaluating predictive performance, we employed multiple
interpretive tools to clarify the models’ decision logic. By integrating
accuracy with transparency, we seek to provide a reliable foundation
for personalised diagnosis and prognosis in oesophageal cancer.

2 Materials and methods
2.1 Data sources

In this study, we analysed the clinical data of patients
diagnosed with oesophageal 2010
2017. Patient records were identified using International
Classification of Diseases for Oncology, Third Edition (ICD-
0-3) codes (8850-8858) within the SEER programme. The
SEER study data could be accessed easily using the SEER”Stat
8.4.1.2 software, which is available to download from the
official
Exclusion criteria were implemented to ensure data quality,
including the following: (1) lack of information on survival months,

cancer between and

website (https://seer.cancer.gov/seerstat/download/).

(2) missing or incomplete American Joint Committee on Cancer
(AJCC) tumour staging data (T, N and M stages), (3) unknown
histological grading information, and (4) incomplete information
on the SEER integrated summary stage.

According to the specified inclusion and exclusion criteria, a
total of 5,702 patients were recruited into this study. These patients
were randomised into two groups: a training group (n =3,991) and a
validation group (n = 1,711), maintaining a ratio of 7:3. Additionally,
clinical data for the external validation set (n = 300) were obtained
from patients treated at the First People’s Hospital of the Kashi
Region between 2015 and 2020 (Approved by the Ethics Committee
of the First People’s Hospital of Kashi Region). Throughout the study
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period, three independent investigators performed data collection:
two extracted the data and the third ensured its accuracy. Notably,
all patient data were anonymised and no informed consent form
was required.

2.2 Variable set

In the present study, various clinical parameters were collected,
including age at diagnosis, gender, grade, primary site (lower
third of oesophagus, middle third of oesophagus, upper third
of oesophagus), histology (adenomas and adenocarcinomas;
squamous cell neoplasms; epithelial neoplasms; cystic, mucinous
and serous neoplasms), Stage (Localised; Regional; Distant), AJCC
7th TNM stage, tumour metastasis (bone, liver, and lung metastasis),
and treatment modality (radiotherapy and chemotherapy). The
primary outcome metric used in this study was OS, defined as the
time interval between the date of diagnosis and the occurrence of
death or the most recent follow-up.

2.3 Determining prognostic factors for
survival

All variables in this study were converted to categorical
variables and expressed as frequencies and proportions. To mitigate
overfitting, the Least Absolute Shrinkage and Selection Operator
(LASSO) method was primarily used to select relevant predictive
features. Important prognostic factors were then identified using
multivariate analysis and the Cox proportional risk model.
Corresponding 95% confidence intervals (CIs) were calculated for
all potential risk factors.

2.4 Model development

This study used traditional COX regression model, four
ensemble learning models (RSF, GLMboost, decision tree, boosting
tree) and two deep learning models (DeepSurv, NMTLR) to
formulate prognostic models.

24.1 Ensemble learning models

The Random Survival Forest (RSF) approach combines random
forests with survival analysis techniques in order to address right-
truncated data. It introduces new survival splitting rules for
survival tree growth and innovative algorithms for estimating
missing data. RSF also incorporates the event retention principle
of survival forests, using it to define the overall mortality rate—a
simple, interpretable measure that can be used as a predictor.
RSF computations can be performed using the randomforestSRC
(rfsrc) package.

Gradient Boosting with Component Linear Models (GLMboost)
is a regression and classification algorithm based on gradient
boosting tree, with GLMboost as its base model. Using an
incremental gradient boosting approach, GLMboost improves the
predictive power of the base model systematically while reducing
its complexity through regularisation. One of GLMboost’s unique
strengths is its adaptability to a wide range of data types, including
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categorical and continuous variables. Furthermore, it demonstrates
the ability to address the common challenge of missing data, which
is frequently encountered in datasets representing realistic virtual
world scenarios.

Decision tree (dt) predict the value of the dependent variable
by deriving simple decision rules from the available data. By
contrast, boosting tree are an integrated learning approach that
involves combining predictions from multiple models to improve
overall performance. While decision tree partition the data by
selecting the most appropriate features, boosting tree combiners
combine multiple models to achieve superior generalisation
performance.

Boosting tree (bt) is an integrated learning method that
generates multiple weak learners iteratively and combines them
into strong learners to improve prediction performance. Unlike
decision tree, which are constructed independently, boosting tree
are trained iteratively. Each round of training focuses on the samples
that were incorrectly predicted in the previous round to improve
model accuracy by gradually reducing bias. In survival analysis,
boosting tree optimise the model parameters by minimising
the loss function (e.g., negative log-likelihood), making them
particularly suitable for dealing with nonlinear relationships and
high-dimensional data.

2.4.2 Deep learning models

DeepSurv is a survival analysis model based on deep learning
that combines the traditional Cox proportional hazards model
with deep neural networks to automatically identify complex
nonlinear interactions between features. DeepSurv’s advantage over
traditional methods lies in its ability to handle high-dimensional
sparse data and capture complex relationships between features. The
model estimates parameters by maximising a partial log-likelihood
function; the hidden layer of the neural network learns a richer
representation of features than traditional methods do.

Neural multi-task logistic regression (NMTLR) is a neural
network model designed for survival analysis that can handle the
survival prediction task at multiple time points simultaneously,
improving prediction accuracy by sharing underlying feature
representations and learning correlations between different time
points. It employs a multi-task learning framework where each task
corresponds to a specific time point and predicts the probability
of an event occurring before that time point through logistic
regression.

2.5 Model testing and evaluation

The performance of seven different models was assessed
using various metrics, including the C-index, the combined
cumulative/dynamic area under the curve (AUC) and the combined
Brier score. The C-index indicates the discriminatory power of a
survival model, with values greater than 0.7 suggesting usefulness.
Higher C-index values were associated with a greater likelihood of
model predictive success. Similarly, the AUC calculated from the
ROC curve is a comparable metric to the C-index. Additionally,
the Brier score assesses the model’s predictive accuracy, with values
below 0.25 indicating practical application. Improved predictive
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TABLE 1 General clinical data of training set and validation set samples of esophageal cancer patients in SEER Database [n (%)].

Characteristic Training set Validation set External
(n =3991) [n (%)] (n = 1711) [n (%)] validation set
(n =300) [n (%)]
Grade 3.566 0.735
G1 225 (5.6) 80 (4.7) 12 (4)
G2 1772 (44.4) 764 (44.7) 140 (46.7)
G3 1941 (48.6) 844 (49.3) 144 (48)
G4 53 (1.3) 23 (1.3) 4(1.3)
Histologic type 1.609 0.952
ADC 2755 (69) 1200 (70.1) 204 (68)
SCN 972 (24.4) 407 (23.8) 75 (25)
EN 80 (2) 31(1.8) 5(1.7)
CMSN 184 (4.6) 73 (4.3) 16 (5.3)
Primari site 1.412 0.842
Lower third 3181 (79.7) 1355 (79.2) 231(77)
Middle third 622 (15.6) 274 (16) 54 (18)
Upper third 188 (4.7) 82 (4.8) 15 (5)
Stage 1.882 0.758
Localized 764 (19.1) 349 (20.4) 59 (19.7)
Regional 1697 (42.5) 705 (41.2) 121 (40.3)
Distant 1530 (38.3) 657 (38.4) 120 (40)
Tstage 9.046 0.171
T1 1017 (25.5) 416 (24.3) 59 (19.7)
T2 562 (14.1) 252 (14.7) 52 (17.3)
T3 1941 (48.6) 818 (47.8) 155 (51.7)
T4 471 (11.8) 225 (13.2) 34 (11.3)
Nstage 3.468 0.748
NO 1284 (32.2) 555 (32.4) 95 (31.7)
N1 1885 (47.2) 807 (47.2) 132 (44)
N2 609 (15.3) 251 (14.7) 52(17.3)
N3 213 (5.3) 98 (5.7) 21(7)
Mstage 0.227 0.893
MO 2729 (68.4) 1162 (67.9) 202 (67.3)
M1 1262 (31.6) 549 (32.1) 98 (32.7)

(Continued on the following page)
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TABLE 1 (Continued) General clinical data of training set and validation set samples of esophageal cancer patients in SEER Database [n (%)].

Characteristic Training set Validation set External
(n = 3991) [n (%)] (n =1711) [n (%)] validation set
(n =300) [n (%)]
Bone Metastasis 1.240 0.538
No 3704 (92.8) 1574 (92) 279 (93)
Yes 287 (7.2) 137 (8) 21(7)
Lung Metastasis 0342 0.843
No 3684 (92.3) 1573 (91.9) 275 (91.7)
Yes 307 (7.7) 138 (8.1) 25 (8.3)
Liver Metastasis 0.438 0.803
No 3437 (86.1) 1480 (86.5) 262 (87.3)
Yes 554 (13.9) 231 (13.5) 38 (12.7)
Radiothearepy 0.098 0.952
Yes 2706 (67.8) 1162 (67.9) 201 (67)
No 1285 (32.2) 549 (32.1) 99 (33)
Chemotherapy 0.736 0.692
Yes 905 (22.7) 405 (23.7) 67 (22.3)
No 3086 (77.3) 1306 (76.3) 233(77.7)
Sex 0.474 0.789
Male 3251 (81.5) 1383 (80.8) 241 (80.3)
Female 740 (18.5) 328 (19.2) 59 (19.7)
Age 5.240 0.513
<60 680 (17.0) 292 (17.1) 41(13.7)
61-70 1361 (34.1) 552 (32.3) 98 (32.7)
71-80 1294 (32.4) 572 (33.4) 109 (36.3)
>81 656 (16.4) 295 (17.2) 52(17.3)
accuracy was associated with lower Brier scores. Furthermore, Cox-  and six machine learning (ML) models were constructed, including
Snell residual plots are graphical tools that can be used to assess the ~ Random Survival Forest (RSF), component-wise linear Gradient
model’s goodness of fit. Boosting (GLMboost), Decision Tree (dt), Boosting Tree (bt),
Deep Survival Network (DeepSurv), and Neural Multi-Task Logistic
Regression (NMTLR).
2.6 Statistical analysis and model To comprehensively and accurately evaluate model
inte rpreta bi lity performance, in addition to clinically recognized metrics—including

the C-index (for assessing discriminative ability), integrated

LASSO regression was used to screen for survival risk factors,  cumulative/dynamic AUC (for evaluating discriminative
and univariate and multivariate Cox regression analyses were  performance at different time points), and integrated Brier score
performed in SPSS 26.0 to identify independent prognostic factors ~ (for measuring calibration between predicted probabilities and
(statistical significance was set at P < 0.05). Based on the screened  actual outcomes)—two goodness-of-fit metrics suitable for survival
features, a Cox proportional hazards regression model (CoxPH)  analysis were additionally incorporated: the Kolmogorov-Smirnov
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TABLE 2 LASSO variable screening results Table.

Variable Coefficient ‘ Z score ’ P
Mstage 0.416 11.627 <0.001
Stage 0.378 8.629 <0.001
Chemotherapy -0.206 —-4.987 <0.001
BoneMets 0.204 6.409 <0.001
Tstage 0.161 6.232 <0.001
Nstage 0.149 6.014 <0.001
LiverMets 0.146 3.777 <0.001
Grade 0.126 5.902 <0.001
Radiotherapy -0.098 —4.486 <0.001
Age 0.054 4.799 <0.001
Histology 0.034 1.959 0.051
LungMets 0.030 2.081 0.037
Sex 0 -0.830 0.406
PrimarySite 0 —-0.191 0.848

(KS) test and Cramer-von Mises (CvM) test. The KS test quantifies
the overall discrepancy between the predicted and observed survival
distributions by calculating the maximum distance between the
two distributions. In contrast, the CvM test measures the average
discrepancy between the distributions via an integral form and
is more sensitive to deviations in the distribution tails. Together,
these two metrics complement each other to more comprehensively
validate the consistency between model predictions and clinical
real-world data.

For the optimal model selected, in-depth interpretability
analyses were conducted to clarify its internal working mechanism
and enhance clinical utility:

Time-dependent variable importance analysis was used to
identify key features that significantly influence survival outcomes
at different follow-up time points, revealing the temporal dynamic
patterns of variable effects; Partial correlation survival plots
were generated to visualize the relationship curves between
core features and survival probabilities, intuitively demonstrating
the independent impact of a single feature on prognosis after
controlling for other variables; SurvSHAP (an extended SHAP
method dedicated to survival analysis) was employed to quantify
the contribution of each feature to model predictions and clarify
the direction of the association between feature values and risk
predictions (either increasing or decreasing risk).

The construction of all ML models, performance evaluation
(including calculation of the C-index, integrated AUC, integrated
Brier score, KS test, and CvM test), and interpretability analyses
were implemented using Python 3.12.9. The analysis relied on
the following toolkits: data processing (Pandas, NumPy, SciPy),
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model construction (Scikit-learn, Lifelines, Scikit-survival, PyTorch,
Torchvision), interpretability analysis (SHAP), and visualization
(Matplotlib, Seaborn).

3 Results

3.1 Demographic and clinicopathological
characteristics

A comprehensive cohort of 5,702 patients diagnosed with
oesophageal cancer between 2010 and 2017 was carefully selected
from the SEER database using pre-determined inclusion and
exclusion criteria. Of these patients, 3,991 were assigned to the
training set and the remaining 1,711 constituted the validation
set. A further 300 patients treated at the First People’s Hospital of
Kashi between 2015 and 2020 formed the external validation set.
Statistical analysis using the chi-square test showed that there was no
significant difference between the training set, the validation set, and
the external validation set. Table 1 describes the clinicopathological
characteristics of the three sets.

3.2 Analysis of prognostic factors of
esophageal cancer

A total of 13 clinical parameters were included. LASSO
regression analysis was used to screen for parameters with a
p-value of less than 0.05, and 11 variables were retained (see
Table 2; Figure 1). These 11 variables were then included in the
Cox regression analysis, which identified Grade, Stage, Tstage,
Nstage, Mstage, Radiotherapy, Chemotherapy, Bone metastasis,
Liver metastasis, Lung metastasis and Age, along with 11 other
variables with p-values below 0.05, as independent risk determinants
of OS in oesophageal cancer (Table 3).

3.3 Model comparison

We developed seven machine learning (ML) prediction
models and evaluated their performance using internal (training
with
results summarized in Table 4 and Figures 2, 3 (supplementary

and validation sets) and external validation cohorts,

results for validation and external validation sets are shown
To address
interpretive complexity of Cox-Snell residual plots (Figure 3), we

in Supplementary Figures S1, S2). the potential
additionally incorporated Kolmogorov-Smirnov (KS) and Cramer-
von Mises (CvM) metrics—two statistical measures that quantify
the goodness-of-fit between predicted and observed survival
distributions—for more intuitive performance comparison.

Model performance metrics (Table 4) demonstrated that all
models achieved favorable predictive performance across datasets,
with integrated Brier scores below 0.15. For the training set, the
NMTLR model stood out with the lowest integrated Brier score
(0.108) and competitive values in C-index (0.810) and integrated
C/D AUC (0.831); in the validation set, it maintained the lowest
integrated Brier score (0.110) and the highest integrated C/D
AUC (0.843); even in the external validation set, it exhibited
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Feature selection using LASSO regression (The LASSO coefficient profiles depict the representation of 14 variables).

stable performance (integrated Brier score = 0.129, C-index =
0.774). Regarding KS and CvM: lower CvM values indicate closer
alignment between predicted and observed survival. The NMTLR
model has the lowest CvM values (training set: 0.010; validation
set: 0.011; external validation set: 0.011) and KS values (training
set: 0.156; validation set: 0.170; external validation set: 0.169) in
all datasets, further supporting the model’s discriminative ability.
NMTLR exhibits consistent performance across different cohorts.

Figure 2 presents the performance comparison of all models in
the training set using bar plots, with the x-axis listing model types
[Cox proportional hazard (Coxph), random survival forest (rfsrc),
gradient boosting with component-wise linear (glmboost), boosting
tree (bt), decision tree (dt), probabilistic survival prediction with
deep neural networks (DeepSurv), and neural multi-task logistic
regression (NMTLR)] and the y-axis representing key metrics (C-
index, integrated C/D AUC, integrated Brier score, KS, CvM). As
shown, the NMTLR model has the highest integrated C/D AUC
and the lowest integrated Brier score and CvM in the training
set—visually validating its optimal balance of discriminative ability
and goodness-of-fit.

Figure 3 displays the Cox-Snell residual plots for all models in
the training set, where the x-axis represents theoretical quantiles
(expected residual values under a well-fitted model) and the y-
axis represents observed Cox-Snell residuals. The low CvM values
(Table 4) complement these plots, confirming that all models still
have acceptable goodness-of-fit to the training data—with the
NMTLR model’s minimal CvM further reinforcing its reliability.
The Cox-Snell residual plots for validation and external validation
sets (Supplementary Figure S2) show similar trends, and their
corresponding CvM values (Table 4) support the models’ cross-
cohort stability. Comprehensively considering all metrics (including
KS/CvM for intuitive goodness-of-fit assessment), visualizations,
and cross-dataset consistency, the NMTLR model exhibits the most
balanced and superior performance, making it the optimal choice
for predicting esophageal cancer patients’ overall survival.

Frontiers in Physiology

The composite Brier scores, composite C/D AUC, and C-index
for the NMTLR model in the training, validation, and external
validation sets were 0.109, 0.112, and 0.128; 0.831, 0.839, and 0.794;
and 0.808, 0.807, and 0.779, respectively. The ROC curves (Figure 4)
illustrate that at 1, 3, and 5 years the subjects’ The areas under the
operational eigenvalues are as follows: 0.956, 0.915, and 0.868 for the
training set; 0.953, 0.910, and 0.866 for the validation set; and 0.948,
0.891, and 0.830 in the external validation set, respectively.

3.4 Model interpretability

To further evaluate the optimal model, we performed a global
analysis to gain a comprehensive understanding of its performance.

3.4.1 Time-dependent feature importance

In our study, we examined the impact of each variable on
the model’s global predictions. Since each variable may have a
different impact at different time points, we quantified the time-
dependentimportance of variables in the NMTLR model by measuring
how much the model’s predictive performance degrades when a
specific variable is replaced with random noise (while keeping
other variables unchanged). We used two metrics to assess this
performance degradation: the increase in Brier score and the decrease
in time-dependent AUC after variable replacement (see Figure 5).

Variable importance exhibited clear time-dependent patterns:
a larger increase in Brier score (or larger decrease in AUC) after
replacing a variable indicated that this variable had a more critical
role in predicting OS at that specific time point. Specifically, the
Brier score-based analysis revealed more distinct time-dependent
patterns. Our findings indicate that M stage had the strongest impact
on OS prediction when survival time was less than approximately
25 montbhs, as replacing this variable resulted in the most significant
degradation of model performance (ie., the largest increase in
Brier score and the greatest decrease in time-dependent AUC).
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TABLE 3 Univariate and multivariate analysis of prognostic factors related to OS in patients with esophageal cancer.

Characteristic

Univariate analysis

HR (95%Cl)

Multivariate analysis

HR (95%Cl)

Gl Reference value Reference value

G2 2.632 (2.087,3.320) <0.001 2.284 (1.807,2.886) <0.001
G3 3.979 (3.159,5.012) <0.001 2.833 (2.241,3.580) <0.001
G4 4.315(2.959,6.291) <0.001 2.308 (1.575,3.381) <0.001

Localized Reference value Reference value
Regional 2.181(1.913,2.486) <0.001 1.878 (1.557,2.266) <0.001
Distant 8.579 (7.536,9.765) <0.001 2.504 (1.995,3.144) <0.001

T1 Reference value Reference value

T2 1.269 (1.112,1.448) <0.001 1.216 (1.056,1.399) 0.007
T3 1.652 (1.497,1.824) <0.001 1.225 (1.088,1.380) <0.001
T4 4.391 (3.864,4.989) <0.001 1.957 (1.700,2.253) <0.001

MO

Reference value

No Reference value Reference value

N1 2.534(2.307,2.784) <0.001 1.487 (1.322,1.674) <0.001
N2 2.588 (2.297,2.917) <0.001 1.556 (1.352,1.791) <0.001
N3 4.612 (3.924,5.42) <0.001 2.192 (1.832,2.623) <0.001

Reference value

M1

No

6.652 (6.139,7.207)

Reference value

<0.001

2.735 (2.338,3.198) <0.001

Reference value

Yes

6.524 (5.727,7.432)

Reference value

<0.001

1.938 (1.692,2.220) <0.001

Reference value

Yes

No

4.916 (4.344,5.563)

Reference value

<0.001

1.301 (1.140,1.486) <0.001

Reference value

Yes

5.214 (4.724,5.754)

<0.001

1.379 (1.228,1.547) <0.001
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TABLE 3 (Continued) Univariate and multivariate analysis of prognostic factors related to OS in patients with esophageal cancer.

Characteristic Univariate analysis Multivariate analysis
HR (95%CI) HR (95%CI)

Radiothearepy

No Reference value Reference value

Yes 0.567 (0.521,0.616) <0.001 0.794 (0.720,0.876) <0.001
Chemotherapy

No Reference value Reference value

Yes 1.307 (1.188,1.437) <0.001 0.591 (0.527,0.663) <0.001
Age(Y)

<60 Reference value Reference value

61-70 0.965 (0.78,1.195) 0.745 1.079 (0.963,1.210) 0.190

71-80 1.001 (0.809,1.24) 0.992 1.116 (0.995,1.251) 0.061

>81 1.343 (1.078,1.674) 0.009 1.546 (1.357,1.761) <0.001

In contrast, after 25 months, N stage became the most influential ~ only one determinant is changed, while holding all the other
predictor, with its replacement leading to the most significant  determinants constant in the training dataset. In Figure 6, the y-
performance degradation. coordinate represents the predicted survival probability (ranging
These time-dependent ~ patterns carry  important  from 0 to 1), which reflects the model’s estimated probability that
clinical ~ implications for personalized management of  a patient survives beyond a specific time point (x-coordinate, in
esophageal cancer patients: months). If the labelled bands (representing confidence intervals)
For patients with a predicted survival time of <25 months (e.g.,  are thin and nearly overlap, this indicates that the overall predicted
those with advanced M stage at diagnosis), the prominent role  survival probability remains similar regardless of the values of these
of M stage suggests that early intervention targeting metastatic = variables. If the bands are wider and do not overlap, it suggests
lesions—such as systemic therapy or local ablative treatments  that even slight alterations in their values can result in substantial
for oligometastases—may be prioritized to improve short-term  variations in predicted survival probability. For instance, changes
survival. Close monitoring of metastatic progression (e.g., regular  in variables such as M stage, N stage, age, grade, bone metastasis,
imaging assessments) in this cohort could also help adjust treatment  liver metastasis, lung metastasis, radiotherapy, etc., can significantly
strategies promptly. impact predicted survival probability. Additionally, the predicted
For patients surviving beyond 25months, the dominant  survival probability declined more rapidly in M1 patients than in M0
influence of N stage indicates that lymph node status remains a key ~ patients. Similarly, N3 patients, patients under 60 years of age, G4
prognostic driver in the mid-to-long term. This supports the clinical ~ patients, patients with bone, liver or lung metastases, and patients
value of thorough lymph node evaluation (e.g., via endoscopic =~ who did not receive radiotherapy experienced a more rapid decline
ultrasound or PET-CT) even in the later follow-up period, as  in predicted survival probability.
persistent or recurrent nodal disease may require aggressive salvage

therapy to extend survival. 3.4.3 Aggregated SurvSHAP values summary
Together, these findings highlight that prognostic factors for SurvSHAP(t) is an extension of the SHAP (SHapley Additive

esophageal cancer vary dynamically over time, emphasizing the  exPlanations) framework tailored for survival analysis, designed

need for time-stratified risk assessment and adaptive treatment o quantify the contribution of each feature to model predictions

planning in clinical practice. across time points (Dai et al., 2025). Built on the axiomatic
foundation of Shapley values from game theory, SurvSHAP(t)
3.4.2 Partial dependence survival profiles assigns a time-dependent importance score to each feature by

Partially dependent survival profiles (PDPs) can also be used  evaluating its marginal contribution to the prediction error when
to provide an overall explanation of the NMTLR model (see  removed from all possible subsets of features (Wang et al., 2025).
Figure 6). PDPs illustrate how the predicted survival probability ~ For survival models like NMTLR, this involves decomposing
(i.e., the probability of patients surviving for a given length of  the predicted cumulative hazard function into individual feature
time) of the entire cohort changes relative to survival time when  contributions, such that the sum of all SurvSHAP(t) values for a
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TABLE 4 The all models’ performance in the training set, validation set, and external validation set.

Prediction model C-index Integrated C/D Integrated brier
name AUC score

Training set
Coxph 0.791 0.810 0.138 0.254 0.025
RSF 0.804 0.823 0.130 0.195 0.014
GLMboost 0.790 0.815 0.142 0.272 0.027
Boosting tree 0.813 0.835 0.127 0.228 0.021
Decision tree 0.793 0.812 0.130 0.161 0.011
DeepSury 0.807 0.828 0.131 0.222 0.020
NMTLR 0.810 0.831 0.108 0.156 0.010

Validation set
Coxph 0.794 0.821 0.136 0.251 0.025
RSF 0.808 0.838 0.129 0.200 0.015
GLMboost 0.796 0.831 0.140 0.276 0.028
Boosting tree 0.808 0.841 0.130 0.225 0.022
Decision tree 0.796 0.824 0.129 0.175 0.011
DeepSury 0.810 0.842 0.129 0.228 0.021
NMTLR 0.806 0.843 0.110 0.170 0.011

External validation set
Coxph 0.775 0.788 0.142 0.256 0.022
RSF 0.783 0.801 0.136 0.179 0.013
GLMboost 0.774 0.789 0.145 0.255 0.024
Boosting tree 0.786 0.804 0.138 0.231 0.019
Decision tree 0.764 0.782 0.141 0.172 0.013
DeepSury 0.783 0.808 0.139 0.226 0.019
NMTLR 0.774 0.791 0.129 0.169 0.011

patient approximates the difference between their predicted risk and
the average risk of the entire cohort (Sato et al., 2024).

We computed and illustrated the SurvSHAP summary plots for
the NMTLR model, which includes 11 features ranked by their
overall impact on OS. Figure 7A displays the global importance
of variables, defined as the mean absolute SurvSHAP(t) value
across all time points and observations. Figure 7B illustrates the
temporal variability of each variable’s significance, with the y-axis
representing the average absolute SurvSHAP(t) value at each time
point, highlighting how feature importance fluctuates over the
follow-up period.
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In the bee swarm plot (Figure 7C), variables are ordered by their
mean absolute SurvSHAP(t) value (descending) to reflect overall
importance. Each point represents a single patient’s SurvSHAP(t)
value for a specific variable: the x-axis indicates the magnitude
and direction of the feature’s impact on OS prediction (positive
values = increased mortality risk; negative values
risk). The color gradient (coolwarm palette) encodes the original
feature values (red = higher values; blue = lower values), not the

reduced

SurvSHAP(t) magnitude. Among the 11 features, chemotherapy had
the highest overall impact, followed by M stage, liver metastases,
bone metastases, N stage, T stage, and radiotherapy.
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4 Discussion

Esophageal cancer remains a globally prevalent malignancy

with complex pathogenesis,

Frontiers in Physiology

posing

substantial

to clinical management. Despite advances in diagnosis and
treatment, its OS remains suboptimal, underscoring the urgent

challenges

12

patient care (Morgan et al., 2022).

need for accurate prognostic models to guide personalized
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FIGURE 4
ROC curve analysis of the NMTLR model was used to evaluate the accuracy of the 1-, 3-, and 5-year predictions. (A) training set. (B) validation set.
(C) external validation set.

Our study addresses this gap by developing and validating
interpretable ML models for OS prediction in esophageal
cancer. Unlike previous studies that focused primarily on model
performance (Xu et al, 2022; Nopour, 2024), we integrated

LASSO and multivariate Cox regression to identify key risk
factors and constructed 7 ML models, with NMTLR emerging as
the superior performer. Its consistent accuracy across training,
internal, and external validation sets (1-, 3-, 5-year AUC >0.81;
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represents the variation in the loss function after permuting each covariate.

Time-dependent feature importance for the training set. (A) The Brier score loss after permutation; (B) the C/D AUC loss after permutation. The y-axis

integrated Brier score <0.175) not only confirms its robustness
but also, more critically, offers actionable insights through
interpretability analyses—transcending the “black box” limitations
of traditional ML.

A key innovation of our study lies in the cross-regional
validation strategy, utilizing data from the SEER database (primarily
North American patients) and an external cohort from the
First People’s Hospital of Kashi, China. The NMTLR model
maintained high performance across these distinct populations
(external validation AUC: 0.82-0.85), indicating its ability to
generalize beyond geographical and demographic boundaries. This
cross-cultural robustness suggests that the core prognostic factors
identified (e.g., M stage, N stage, metastasis status) are universally
critical, regardless of regional differences, while also implying that

Frontiers in Physiology 14

the model is resilient to variations in data collection practices or
clinical workflows. Such generalizability is a prerequisite for the
model’s potential as a global clinical tool, reducing the need for
population-specific recalibration.

The 11 prognostic factors identified (grade, stage, T/N/M stages,
radiotherapy, chemotherapy, bone/liver/lung metastases, age) align
with clinical knowledge but are contextualized within a dynamic
framework that enhances their practical utility. For example, while
tumour stage is known to correlate with prognosis (Detterbeck et al.,
2024), our time-dependent analyses reveal nuanced dynamics:
M stage dominates early survival (<25 months), whereas N
stage becomes critical later. This temporal stratification enables
targeted clinical strategies—such as prioritizing systemic therapy
for metastatic disease in the short term and intensifying lymph
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node surveillance in long-term survivors—that go beyond generic
recommendations.

Our focus on interpretability—via time-dependent importance,
partial correlation plots, and SurvSHAP—delivers unique clinical
value. SurvSHAP, in particular, quantifies the direction and
magnitude of each feature’s impact on OS prediction at the
individual patient level. When paired with partial correlation
survival curves (which visualize how survival probabilities shift
with changes in these features), these insights help clinicians avoid
unnecessary treatment-related toxicity in low-benefit subgroups
and prioritize interventions for patients where the model indicates
meaningful survival benefit—moving beyond descriptive prognostic
associations to provide actionable, patient-tailored guidance that
aligns with clinical decision-making needs.

Regarding the methodological strengths of our time-dependent
analyses, we used permutation-based Brier score loss and C/D AUC
loss to assess variable importance. The Brier score, as a proper
scoring rule, quantifies the calibration and precision of predicted
probabilities simultaneously, making it more sensitive to temporal
shifts in predictive performance compared to AUC (which focuses
on discrimination alone). This sensitivity explains why Brier score
loss more clearly captured the transition of dominant factors from
M stage (early) to N stage (late)—a phenomenon rooted in its ability
to penalize both calibration errors (e.g., overestimating survival
in M1 patients) and discrimination gaps across time points. This
characteristic highlights the Brier score’s utility in survival model
interpretation, as it aligns with clinical needs to trust both the order
and magnitude of risk predictions.

Limitations of our study include its retrospective design and
reliance on SEER and single-center external data. Future work
will incorporate multi-center prospective cohorts across diverse
regions to further validate the model’s generalizability. Additionally,
exploring the impact of region-specific variables (e.g., dietary
factors, local treatment guidelines) on model performance could
provide deeper insights into optimizing predictions for specific
populations. Enhancing visualization tools for real-time clinical
use—such as interactive SurvSHAP dashboards—will further bridge
the gap between ML outputs and bedside decision-making.

5 Conclusion

This study successfully constructed and validated an
interpretable NMTLR model for predicting the OS of esophageal
cancer patients, addressing key gaps in existing prognostic tools.
By integrating data from the SEER database (primarily North
American patients) and an external validation cohort from
Kashi, China—paired with key risk factor screening via LASSO
and multivariate Cox regression—the model exhibited robust
predictive performance: across all datasets, 1-, 3-, and 5-year OS
AUCs exceeded 0.81 and integrated Brier scores remained below
0.175, outperforming most previously reported models. Beyond
accuracy, complementary interpretive tools (time-dependent
variable importance analysis, partial correlation survival plots,
and SurvSHAP plots) clarified the dynamic influence of factors
(e.g., M stage dominating early survival <25 months, N stage
critical in later periods), overcoming traditional machine learning’s
“black box” limitation and transforming predictions into clinically
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actionable logic. This work provides clinicians with a tool to refine
survival assessment and tailor treatment plans, while offering a
framework for interpretable ML in oncology; limitations include
retrospective design and lack of molecular data, and future efforts
will expand multi-center prospective cohorts, integrate multi-
omics data, and optimize interpretive tools to promote precision
diagnosis/treatment and improve global patient outcomes.
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