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Objective: Melasma is a common acquired facial hyperpigmentation disorder
characterized by symmetrical brown patches, often occurring in the zygomatic
region, forehead, and upper lip. Its blurred boundaries, color similarity to normal
skin, and irregular morphology—combined with lighting variability and skin
reflections—pose significant challenges for automated lesion segmentation.
This study aims to develop an effective and lightweight deep learning model
tailored for accurate melasma segmentation.

Methods: We propose a novel lightweight segmentation network, HHBSNet,
specifically designed for melasma lesion analysis. The model incorporates a
Global Channel-Spatial Attention (GCSA) module that jointly leverages channel
and spatial attention to suppress lighting interference and enhance feature
discrimination in low-contrast, irregular boundaries. In addition, a Multiscale
Cavity Fusion (MCF) module is introduced to extend the receptive field via multi-
dilation rates, enabling effective capture of lesions at various scales without
reducing resolution. The network further integrates local-global semantic fusion
and adopts a combined loss strategy of cross-entropy and focal loss to address
class imbalance.

Results: HHBSNet was evaluated on a self-constructed dataset comprising 501
practical facial melasma images. Quantitative results demonstrate that HHBSNet
outperforms existing mainstream segmentation methods, achieving a mean
Intersection over Union (Miou) of 79.69%, accuracy (ACC) of 96.68%, F-score
of 88.10%, recall of 88.18%, and precision of 87.80%.

Conclusion: The proposed HHBSNet demonstrates superior segmentation
performance and robustness in handling melasma’s challenging visual
characteristics. Its lightweight structure and strong generalization ability suggest
promising potential for application in computer-aided diagnosis and large-scale
clinical screening of facial pigmentary disorders.

melasma, deep learning, image segmentation, attention mechanism, automatic
segmentation
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1 Introduction

Melasma is a common skin pigmentation disorder affecting
millions of people worldwide (Grimes, 1995; Sheth and Pandya,
2011; Tamega et al., 2013; Handel et al., 2014). It can occur in any
gender, but is more common in women (Goh and Dlova, 1999),
with men comprising approximately 10% of reported cases (Parish,
2011). Foreign studies have shown that melasma is most commonly
seen in patients with Fitzpatrick skin types IV-VT, especially in areas
with high UV radiation intensity, such as Asians, Hispanic Latinos,
and African-Americans (Grimes, 1995; Sanchez et al., 1981; Taylor,
2003; Pandya and Guevara, 2000). Although there are usually no
self-conscious symptoms in clinical practice, melasma has caused
great distress to countless patients due to its disfiguring nature,
leading to worry, anxiety, and even low self-esteem and depression,
which may lead to suicidal tendencies in severe cases. Therefore,
melasma has become an important issue of concern to both the
medical and cosmetic fields. As a chronic and recurrent disease,
melasma has a exerts a profound negative impact on patients’ quality
of life, even more than other skin diseases such as acne and rosacea
(Balkrishnan et al., 2003). Similar to other skin diseases such as skin
cancer (Siegel et al., 2023), the treatment of melasma needs to be
predicated on precise lesion segmentation for efficient treatment.
In addition, precise lesion segmentation is also a prerequisite for
assessing treatment efficacy and disease severity (Liang et al., 2017a).

Skin lesion segmentation has traditionally relied on classical
image processing techniques, such as threshold segmentation
(Green et al., 1994; Emre Celebi et al., 2013; Celebi et al., 2008;
Arsalan et al, 2020) and edge detection, as well as machine
learning methods like active contour modeling and support vector
machines (Zortea et al., 2011). However, these methods often
necessitate complex image pre-processing and post-processing,
particularly when the contrast between the lesion and normal skin
is low. This can lead to imprecise segmentation boundaries, thereby
affecting diagnosis. In response to these challenges, researchers
have explored deep Convolutional Neural Network (CNN)-based
segmentation algorithms, which have demonstrated significant
potential in medical image segmentation due to their ability to
enhance segmentation accuracy without the need for complex pre-
processing steps. For example, Long et al. (2015) introduced an
FCN-based segmentation method that can process input images
of arbitrary sizes and has an optimized network structure to
reduce redundancy and improve computational efficiency. Despite
its strong generalization ability, FCN may sometimes sacrifice image
details, indicating room for further optimization of segmentation
accuracy. Building on this foundation, Ronneberger et al. (2015)
proposed the U-Net model, which comprises an encoder and a
decoder. U-Net’s core strength lies in its efficient use of global
positional and contextual information, enabling good training
results even with limited samples. It has been widely used in precise
segmentation tasks.

Further advancements were made by SkinNet (Vesal et al.,
2018), which introduced inflated convolution in the encoder to
enlarge the convolution kernel’s receptive field, thereby enhancing
the network’s ability to capture contextual information and
improving segmentation of complex structures. Gu et al. (2019)
developed CE-Net, which preserves subtle spatial information

features through its feature encoding, context extraction,
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and feature decoding modules. More recently, Tong et al
(2021) proposed ASCU-Net, which incorporates a triple-
attention mechanism to help the network focus on key
lesion features, thereby improving segmentation accuracy and
recognition performance.

Accurate segmentation of melasma lesions is crucial for
clinical diagnosis and treatment; however, current research still
faces several significant challenges. First, the confusion between
spots and skin texture makes it difficult to accurately distinguish
skin lesions. Second, melasma often has irregular shapes and
boundaries, which increases the complexity of segmentation
algorithms. Third, variations in lighting and reflection phenomena
interfere with image processing, affecting segmentation results.
Additionally, the labeling process is typically cumbersome and
time-consuming, requiring substantial manual intervention. These
challenges limit the effectiveness of existing methods in melasma
segmentation. Despite significant advancements in the field of
medical image segmentation through deep learning methods,
handling complex skin lesion images remains a challenge. For
instance, studies employing U-Net for melasma segmentation have
successfully facilitated the assessment of pigmented skin diseases
and supported the development of personalized treatment plans
(Liang et al, 2017a; Liang et al., 2017b; Shilaskar et al.,, 2024;
Arsalan et al.,, 2019; Awais et al., 2021). However, these methods
are often limited when dealing with complex lesion images and
cannot provide sufficiently accurate segmentation results. While
these studies have to some extent propelled the development of
melasma segmentation technology, they still fall short in addressing
the aforementioned challenges.

1. Therefore, in this study, a more effective image segmentation
method, HHBSNet, was developed to improve the accuracy of
melasma lesion segmentation and thus provide more reliable
support for clinical diagnosis and treatment. Our model
includes the following contributions:

. Global Channel-Spatial Attention (GCSA) module: Existing
methods often struggle to effectively differentiate between
lesion areas and normal skin when dealing with complex
backgrounds and noise. To enhance the model’s ability to
focus on lesion regions, we have designed a Global Channel-
Spatial Attention module. This module integrates channel
attention, channel shuffling, and spatial attention mechanisms
to capture global dependencies within the feature map. In
this way, the model can better focus on important features
while suppressing irrelevant noise information. This not only
improves segmentation accuracy but also enhances the model’s
robustness against complex backgrounds.

. Multi-scale Cavity Fusion (MCF) module: Traditional
methods often fail to accurately capture contextual information
when dealing with lesion areas that have complex shapes
and boundaries due to limited receptive fields. Our MCF
module significantly enlarges the receptive field by setting
different dilation rates while maintaining image resolution.
This allows the model to capture a broader range of contextual
information, which is particularly effective in processing
melasma images with irregular shapes and boundaries, thereby
improving segmentation accuracy.
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4. Global feature integration: Existing methods often fall short
in handling global and local information, leading to less
accurate segmentation results. Our network incorporates
global average pooling to extract global features of the image
and combines this global information with local features. This
design helps the network better understand the relationship
between different parts of the image and the whole, further
enhancing the model’s segmentation performance for skin
lesions.

To verify the effectiveness of the method in this paper, we
conducted experiments on a privately collected melasma image
dataset. The experimental results show that on this melasma
segmentation dataset, our method is competitive in performance
and outperforms existing commonly used and State-Of-The-Art
(SOTA) methods. This suggests that HHBSNet can effectively
address the challenges in melasma segmentation and provide a more
accurate and efficient tool for clinical diagnosis and treatment.

The remaining sections of this work are organized according to
the following structure: Section 2 summarizes the current state of
the art in skin lesion segmentation research, sorting out the trends
and challenges of current research. Section 3 details the network
design proposed in this study, focusing on its core technologies and
innovations. Section 4 verifies the performance and effectiveness
of the proposed method through experiments and analyzes it
in comparison with existing techniques. In Section 5, based on
the experimental findings in Section 4, the proposed method is
more comprehensively analyzed and summarized, and the existing
problems are pointed out and potential improvement directions
are proposed. In addition, the abbreviations used in the paper
are shown in Table 1.

2 Relate work
2.1 Skin disease segmentation

Skin lesion segmentation is a crucial step in the diagnosis and
treatment of skin diseases. Accurate segmentation of the lesion area
aids physicians in quantitative analysis of the lesion, monitoring its
progression, and evaluating treatment efficacy. Traditional methods
primarily rely on handcrafted features, while the advent of deep
learning has brought significant changes to this field in recent years.

In the early research of skin lesion segmentation, traditional
methods mainly relied on handcrafted features. Although these
methods can achieve segmentation goals to some extent, they
have obvious limitations, especially when facing diverse lesion
types, in terms of scalability and adaptability. Celebi et al. (2009)
proposed a histogram thresholding method based on the intensity
distribution. This method determines the segmentation threshold
by analyzing the grayscale histogram of the image to distinguish
between the lesion area and normal skin. However, it is sensitive
to lighting conditions and noise and struggles with complex
grayscale distributions in lesion areas. Otsu (1979) introduced
a variance-based thresholding method, which determines the
optimal threshold by maximizing the between-class variance of the
foreground and background. Otsu’s method, known for its simplicity
and efficiency, has been widely used in automated medical image
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TABLE 1 Symbols and abbreviations used in the article.

\[o} ’ Full name Abbreviation
1 Global Channel-Spatial Attention GCSA

2 Multi-scale Cavity Fusion MCF

3 Convolutional Neural Network CNN

4 Fully Convolutional Network FCN

5 Context Encoder Network CENet

6 State-Of-The-Art SOTA

7 Squeeze-and-Excitation Networks SENet

8 Vision Transformer ViT

9 Coordinate Attention CA

10 Efficient Channel Attention Module ECA-Net

11 Multilayer perceptron MLP

12 Batch Normalization BN

13 Stochastic Gradient Descent SGD

14 Mean Intersection over Union MIoU

15 Accuracy ACC

16 Mean Recall MRecall

17 Receiver Operating Characteristic ROC

18 False Positive Rate FPR

19 Ground Truth GT

20 HHB Melasma lesions
21 LF The left facial area
22 RF The right facial area
23 XB The chin area

24 ET The forehead area

segmentation. However, when the grayscale difference between the
lesion area and the background is not significant, the segmentation
effect is compromised. Peruch et al. (2013) enhanced segmentation
robustness through noise suppression and post-processing
techniques. They employed filtering algorithms to remove noise
and optimized segmentation results through morphological
operations and other post-processing steps. Although these methods
improved segmentation accuracy to some degree, they rely on prior
knowledge of noise characteristics, and the post-processing steps
increased computational complexity. Patifio et al. (2018) introduced
superpixel merging with color invariance to improve robustness

against illumination changes. This method divides the image into
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superpixels and then merges them based on color and texture
features to achieve segmentation. While it addresses the issue of
uneven lighting to some extent, the superpixel merging process is
complex and less adaptable to variations in the shape and size of
lesion areas. These traditional methods, though effective in certain
specific scenarios, gradually reveal their limitations when dealing
with complex skin lesion images, especially in the segmentation of
melasma. Melasma lesion areas often have complex textures and
irregular boundaries, which are difficult for traditional methods to
segment accurately.

With the rise of deep learning technology, the field of skin lesion
segmentation has witnessed a significant transformation. Deep
learning methods, which automatically learn image features, have
overcome the limitations of traditional methods and significantly
enhanced segmentation accuracy and robustness. Long et al. (2015)
introduced the Fully Convolutional Networks (FCNs), a pioneering
work of deep learning in image segmentation. FCNs replace the
fully connected layers of Convolutional Neural Networks (CNNs)
with convolutional layers to achieve pixel-level prediction, providing
an end-to-end solution for image segmentation. Ronneberger et al.
(2015) proposed the U-Net, a classic medical image segmentation
network that employs an encoder-decoder architecture with skip
connections to preserve spatial resolution. U-Net has shown
excellent performance in processing medical images, especially in
extracting lesion areas from small targets and complex backgrounds.
DeepLab (Chen et al., 2017) utilizes atrous convolutions to expand
the receptive field, thereby better capturing contextual information
in the image. This method excels in handling targets with complex
shapes and boundaries, effectively reducing boundary blurring
issues. UNet 3+ (Huang et al., 2020) further improves the U-Net
architecture by integrating full-scale skip connections to enhance
feature fusion, thereby increasing segmentation accuracy and
robustness. This method performs particularly well in processing
lesion areas with multi-scale features. Yuan et al. (2017) enhanced
segmentation performance by introducing batch normalization
and customized loss functions. These techniques help accelerate
network convergence and improve model adaptability to different
lesion types. Dai et al. (2022) developed multi-scale residual
modules to address the structural variability in lesions. These
modules effectively capture features at different scales, thereby
improving segmentation accuracy. These deep learning methods
have shown excellent performance in processing complex skin lesion
images, especially in melasma segmentation, where they can better
handle the complex textures and irregular boundaries of lesion areas.

To tackle the unique challenges in skin lesion segmentation,
researchers have developed a series of specialized models and
methods. BAT (Festa et al., 2023) applies deformable convolutions
to reduce boundary ambiguity, thereby improving segmentation
accuracy. Experiments have shown that this method can reduce
boundary ambiguity by 34%, significantly enhancing the quality
of segmentation results. MSCA-Net (Sun et al., 2023) enables real-
time inference through multi-scale coordinate attention, making
it suitable for deployment on resource-constrained platforms.
This method maintains high segmentation accuracy while
significantly reducing computational resource requirements. DC-
Net (Wang et al., 2022) leverages contrastive learning to differentiate
between malignant melanoma and benign lesions. This method
improves the recognition ability of different lesion types by learning
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the feature differences between them. These specialized models and
methods have shown excellent performance in processing complex
skin lesion images, especially in melasma segmentation, where they
can better handle the complex textures and irregular boundaries of
lesion areas.

The advent of deep learning has brought significant changes
to the field of skin lesion segmentation. From traditional methods
that rely on handcrafted features to current deep learning methods
that automatically learn features, segmentation technology has
seen a significant increase in accuracy and robustness. These
methods not only better handle complex backgrounds and multi-
scale features in lesion areas but also adapt to the diverse
needs of different lesion types. Moreover, the development of
specialized models and methods for skin lesion segmentation has
further improved segmentation precision and efficiency. With the
continuous development of technology, more efficient, accurate,
and robust skin lesion segmentation methods are expected to be
developed in the future, providing strong support for the diagnosis
and treatment of skin diseases. In the field of melasma segmentation,
further research and application of these methods will help improve
the diagnostic accuracy and treatment efficacy of melasma.

2.2 Attention mechanisms in segmentation

Attention mechanism has become a key technique to enhance
the performance of medical image segmentation, especially in
tasks such as dealing with complex textures, lesions with different
sizes or fuzzy boundaries, etc. It shows significant advantages. Its
applications range from spatial enhancement to global semantic
modeling, effectively improving the accuracy of segmentation.

Squeeze-and-Excitation Networks (SENet) (Hu et al., 2018)
introduces a feature recalibration mechanism in the channel
dimension, which improves the ability of the model to select
effective features, while CBAM (Woo et al., 2018) introduces a
spatial attention module, which can help to localize the lesion
area more accurately, and Attention U-Net (Oktay et al., 2018)
introduces a spatial attention gating mechanism, which can be
used for the segmentation of complex textures with different sizes
or ambiguous boundaries. Attention U-Net improves the Dice
coeflicient by 8.7% in the pancreas segmentation task by using the
spatial attention gating mechanism, which proves its effectiveness
in removing irrelevant regions. MA-Net (Dharejo et al., 2022) and
MA-UNet (Cai and Wang, 2022) merge multi-scale and multi-
dimensional attention mechanisms to enable the model to extract
both global context and local detail features at the same time. These
hybrid strategies significantly enhance the recognition of lesion
boundaries in complex scenarios. The SCSE module (Roy et al.,
2018) combines both spatial and channel attention to effectively
suppress background noise and enhance the robustness of feature
representation. PraNet (Fan et al., 2020) introduces the inverse
attention mechanism to gradually optimize the prediction of fuzzy
regions, and reduces the false-positive rate by 15% in polyp
segmentation, and demonstrates better accuracy in the difficult-to-
segment regions. Regions that are difficult to segment.

Vision Transformer (ViT) (Dosovitskiy et al., 2020) introduced
the self-attention mechanism in computer vision for the first time,
and realized the modeling of remote dependencies. A series of
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derived structures based on this (e.g., TransUNet (Chen et al.,
2021), MedT (Valanarasu et al., 2021), Swin-UNet (Cao et al.,
2022)) introduced the global context modeling capability into
medical image segmentation tasks. TransAttUNet (Chen et al., 2023)
combines multilevel attention with Vision Transformer and achieves
on the ISIC 2018 data set a 92.1% Coordinate Attention (CA)
(Hou et al., 2021) with Efficient Channel Attention Module (ECA-
Net) (Wang et al., 2020) introduces an efficient attention mechanism
that maintains a strong representation capability while keeping a
low computational effort, which is suitable for real-time or resource-
constrained scenarios.

In conclusion, the development of attention mechanisms,
from lightweight design to Transformer-based global modeling,
continues to push the performance ceiling of medical image
segmentation tasks.

3 Methods

We employ MobileNetV2 (pre-trained on ImageNet) as the
backbone feature extractor due to its lightweight depthwise
separable convolutions and strong representation capability. The
backbone extracts multi-scale feature maps at four resolution levels.

Figure 1 demonstrates the three core modules of the HHBSNet
framework: the GCSA module, the MCF module and the Global
feature fusion function; the GCSA module: through channel
attention, channel shuffling, and spatial attention working in
concert, the global dependencies in the feature map are captured
to effectively highlight the speckle region and suppress background
noise. And the Infusion block extracts first and final features
from the MobileNetV2 backbone and fuses them via concatenation
followed by a (1 x 1) convolution. This allows the network
to combine shallow texture details with high-level semantic
information before further processing in the GCSA module. MCF
module: Separable convolution with different cavity rates is used to
significantly expand the receptive field without loss of resolution
in order to simultaneously capture lesion edge details and wide-
area contextual information. Global feature fusion: global average
pooling is used to extract the overall semantics of the image,
and global information is fused with local features to enhance
the networks overall perception of melasma morphology and
distribution.

3.1 Global channel-spatial attention
module

In this study, the GCSA is designed to enhance the
representation of input feature maps. The module combines channel
attention, channel shuffling, and spatial attention mechanisms
designed to capture global dependencies in feature maps. The
specific flowchart is shown in Figure 2 below, and the detailed
step-by-step explanations are given below.

The input feature map F ROMW  consisting of C channels

input €
input

of spatial size HxW, is first fed into the channel-attention
submodule and then into the spatial-attention submodule. Within
the channel-attention submodule, Fy,,, is first permuted from

shape CxHxW to Wx HxC. It then passes through two
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successive Multilayer perceptron (MLP) layers to capture inter-
channel dependencies: the first MLP reduces the channel dimension
to %, followed by a ReLU activation, and the second MLP restores
the channel dimension to C. After a reverse permutation back to
CxHxW and a Sigmoid activation, the channel-attention map is
generated. Elementwise multiplication with the original input yields
the enhanced feature map. As shown in Equation 1:

F oF,

input>

G(MLP(Permute(Fmpm))) (1)

where o denotes the Sigmoid function, © denotes element-

channel =

wise multiplication, and F_, . is the resulting channel-refined
feature map.

To further mix and share information across channels, we
apply the Channel Shuffle operation. The enhanced feature map
F hannel 1s divided into 4 groups of % channels each; within each
group, channels are transposed to shuffle their order, and then
all groups are concatenated back to the original shape Cx HxW.
As shown in Equation 2:

Fyuie = ChannelShuffle(F,,q)> (2)

where Fg ¢, is the shuffled feature map.

In the spatial-attention submodule, F, ¢, first passes through a
7 x 7 convolution that reduces its channel dimension to %, followed
by Batch Normalization (BN) and ReLU activation. A second 7 x
7 convolution then restores the channel dimension to C, followed
by another BN. A Sigmoid activation generates the spatial-attention
map, which is multiplied element-wise with Fy . to produce the
final output. As shown in Equation 3:

Fspatial = 0( Conv(BN(ReLU(ConV(Fshufﬂe ) ) ) )) © Fshufﬂe’ (3)

where F,, ., is the spatially refined feature map.
The modules output F, = F,, thus contains features
enhanced by channel attention, channel shuffling, and spatial

attention, ready to be passed to the downstream segmentation head.

3.2 Multi-scale cavity fusion module

By integrating channel and spatial attention mechanisms and
using depthwise separable convolutions with different dilation rates,
the MCF module seeks to improve feature representation. For
complicated visual tasks like semantic segmentation and object
detection, this architecture is critical for gathering both extensive
and detailed contextual information in images. Figure 3 provides
an illustration of the architecture. Firstly, our MCF architecture
employs five parallel convolutional branches for multi-scale feature
extraction; each branch is configured with a different dilation rate to
expand the receptive field and capture varying spatial information.
The first branch uses a 1x 1 convolution kernel to maintain the
spatial scale and directly extract features. The second branch utilizes
a 3 x 3 convolution kernel with a dilation rate of 6 to moderately
expand the receptive field. The third branch employs a 3 x 3
convolution kernel with a dilation rate of 12 to further expand
the receptive field and capture broader contextual information. The
fourth branch uses a 3 x 3 convolution kernel with a dilation
rate of 18 to provide the widest receptive field. The fifth branch
applies global average pooling to extract global contextual features,
enhancing the model’s understanding of the overall layout. After
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input

mobilenetV2
(128x128x24)

infusion

B 3

(32x32x320)

(64x64x256)

FIGURE 1
Diagram of the overall framework of the HHBSNet model.

these processes, the feature maps have the shape Hx W x C. The
Concat function is used to concatenate the different outputs along
the channel dimension, resulting in a comprehensive feature map.
Let the input feature map be X € RP*"*C, where H, W and C are
the height, width, and number of channels, respectively. The outputs
of the five branches can be mathematically described as follows. As
shown in Equations 4-8:

OP, = flxlConv(X) (4)

OPy;, = f3><3ConvDW(X’r =[6,12,18]) (5)
OP5 = fupsampte Frtcon Fang-pooi0)) (6)
Ffeature = Concat(OP;, OP,, OP3, OP,, OP;) (7)
Output = flxlConv(Ffeature) (8)

where X denotes the input feature map with dimensions Hx W x
C, and OP; signifies the outcome of each distinct operation, r is
the dilation ratio, and f,,._,,,, is the average pooling operation. The
concatenation of various outputs in the channel dimension is known
as the Concat function. Lastly, the final output feature map’s shape
remains Hx Wx C. Two different kinds of attention mechanisms
are then used to calibrate the combined feature map. To get the
global features for each channel, the channel attention mechanism
first applies global average pooling to the combined feature map. It
then uses two fully linked layers with Sigmoid and ReLU activation
functions, respectively, to learn the importance weights for each
channel. Channel weighting is achieved by multiplying these weights
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(128x128x48) Multi-scale Cavity

Fusion module

Global Channel-Spatial
Attention module

Contact ;

upsample
by 2

3x3 ConV [kstak

upsample -
by 4

by the original feature map on a per-channel basis. As shown in
Equations 9-11.

1 H W
22 FGoj) 9

Fowe = 1% W& 5
w, = 0(FC,y(ReLU(FC,(F,,)))) (10)
Fl =w,oF (11)

where F(i,j) represents the value of the feature map at position
i,j,FC, and FC, are the two fully connected layers, ¢ denotes the
Sigmoid activation function, and w_ is the importance weight for
each channel. ® represents element-wise multiplication, and F, is
the feature map after channel weighting. To create the spatial feature
map, the spatial attention mechanism applies global pooling to the
combined feature map along the channel dimension. It then uses a
Sigmoid activation function and a 1 x 1 convolution to learn the
importance weights for every spatial position. Spatial weighting is
achieved by multiplying these weights element-wise by the original
feature map. As shown in Equations 12-14.

Fopatiar = [AvgPool(F), MaxPool(F)] (12)
Ws = g(conlel(Fsputial)) (13)
F/=woF (14)

where [-,-] denotes the concatenation operation, resulting in the
spatial feature map F,;,;, and F,' is the feature map after spatial
weighting. Finally, the output feature maps from the channel
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FIGURE 2
Schematic of the global channel-spatial attention (GCSA) structure.
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FIGURE 4

Example diagram of the melasma dataset. (a) Raw facial image captured by the VISIA multispectral system. (b) Expert-labeled melasma lesion masks.

TABLE 2 Segmentation performance of HHBSNet and baseline models on facial melasma lesions.

Model MloU ACC Precision Recall F1 Dice Specificity
U-Net 0.6656 + 0.0009 0.9373 £ 0.0002 0.7285 £ 0.0006 0.8742 +0.0008 0.7947 + 0.0006 0.4236 £ 0.0033 0.9644 + 0.0003
U-Net++ 0.6660 + 0.0021 0.9372 £+ 0.0004 0.7284 £ 0.0018 0.8738 £ 0.0017 0.7947 £ 0.0017 0.4294 + 0.0044 0.9644 + 0.0003
FPN 0.6684 + 0.0063 0.9367 £ 0.0003 0.7278 £ 0.0019 0.8736 £ 0.0021 0.7955 £ 0.0021 0.4365 £ 0.0072 0.9639 + 0.0008
MALUNet 0.6681 + 0.0084 0.9443 + 0.0031 0.8064 + 0.0306 0.7930 £ 0.0202 0.7962 + 0.0083 0.2553 £ 0.0281 0.9341 £ 0.0071
DeepLabV3 0.6679 £ 0.0041 0.9415 £ 0.0021 0.7744 £ 0.0151 0.8246 £ 0.0126 0.7942 + 0.0040 0.2867 £ 0.0296 0.9425 + 0.0046
EGEUNet 0.7071 £ 0.0064 0.9490 £ 0.0020 0.8069 +0.0193 0.8486 + 0.0054 0.8255 + 0.0064 0.2686 + 0.0046 0.9450 + 0.0013
DCSAU-Net 0.7132 £ 0.0026 0.9494 + 0.0004 0.8159 £ 0.0037 0.8480 + 0.0035 0.8298 £ 0.0019 0.2783 £ 0.0045 0.9473 + 0.0010
HHBSNet (Ours) 0.7889 £ 0.0016 0.9659 £ 0.0003 0.8777 £0.0013 0.8781 £ 0.0008 0.8778 £ 0.0009 0.2316 + 0.0015 0.9467 + 0.0001

Metrics include mean Intersection over Union (mlIoU), accuracy (ACC), precision, recall, F1-score, Dice coefficient, and specificity. Values are reported as mean + standard deviation

over 5 runs. Due to the small size of lesions relative to the facial area, Dice values may appear lower but do not reflect the overall segmentation quality. Bold numbers indicate the best

performance in each column.

attention and spatial attention mechanisms are fused through
element-wise addition. The fused feature map is then combined
with the original merged feature map through element-wise
summation to integrate and enhance the relevant features. The
enhanced feature map is subsequently processed through a 1x
1 convolution layer for dimensionality reduction and integration,

resulting in the final output feature map F,,,,. As shown
in Equations 15-16.

Ffused:Fc,+F5’ (15)

Foutput = Conlel (Ffused) (16)

where Fj, g is the feature map obtained by fusing the channel and
spatial features after weighting.

Frontiers in Physiology

4 Experience

4.1 Dataset

The melasma image dataset used in this study was collected in
2023 at the outpatient dermatology clinic of the Affiliated Hospital
of Chengdu University of Traditional Chinese Medicine. It includes
501 patients (aged 18-65 years) who were clinically diagnosed with
melasma. At the early stage of data collection, we intentionally
aimed to include a roughly balanced male-to-female ratio in order to
mitigate potential gender bias and allow the model to generalize to
male patients as well. However, as the dataset expanded, the majority
of cases were contributed by female patients, which is consistent with
the known epidemiology of melasma (around 90% female). Thus,
while our dataset contains a higher proportion of male patients than
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ranks first (lightest color) in essentially all metrics, and performs the best.

Model Rankings across Metrics

F-score(%)
Metric

This heatmap of model performance rankings shows the rank of each model on the different evaluation metrics (1 indicates the best): the Ours model
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TABLE 3 Statistical significance analysis of HHBSNet compared with
baseline models on facial melasma lesion segmentation.

Baseline t-value p-value Significance
U-Net 133.42 1.89¢-08 p <0.001
U-Net++ 75.33 1.86e-07 p < 0.001
FPN 40.90 2.13e-06 p <0.001
MALUNET 26.08 1.28e-05 p <0.001
DeepLabV3 52.78 7.72e-07 p <0.001
EGEUNet 2571 1.36e-05 p < 0.001
DCSAU-Net 81.02 1.39¢-07 p <0.001

Paired t-tests were performed on the mIoU scores over 5 independent runs. t-values,
p-values, and significance levels are reported. All comparisons show p < 0.001,
indicating that HHBSNet’s improvements are statistically significant.

the general clinical prevalence, female patients still dominate the
final dataset.

All participants provided written informed consent. To ensure
consistent lighting and color temperature, all images were captured
under standardized conditions using a VISIA multispectral skin
imaging system (Canfield Scientific, United States) in a cold-light
environment. During image acquisition, the camera was maintained
at a fixed distance of 30 cm from the participant’s face. After the
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FIGURE 6
Loss curves (solid lines) and corresponding smoothing curves (dashed

lines) on the training and validation sets.

raw data were initially cleaned and blurred, overexposed or heavily
reflected images were excluded, the melasma lesion areas were
independently labeled by a dermatologist with extensive clinical
experience using the LabelMe tool, and were uniformly cropped to
a size of 512 x 512, as shown in Figure 4 below. In order to ensure
fairness of the experiment, this dataset was divided into training,
validation, and test sets according to an 8:1:1 ratio (corresponding
to 401, 50, and 50 images, respectively). The dataset will be
made available upon reasonable request for academic and non-
commercial research purposes, subject to obtaining appropriate
ethical approval.
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4.2 Experience details

All experiments were implemented using the PyTorch
framework and conducted on a workstation equipped with an
NVIDIA GeForce RTX 3080 GPU. Input images were uniformly
resized to 512 x 512 pixels. Each model was trained for 180 epochs
with a batch size of 8. We used Stochastic Gradient Descent (SGD)
as the optimizer, with a momentum of 0.9 and an initial learning rate
of 7 x 107%, which was decayed according to a step-based schedule
to facilitate convergence. In order to improve generalization and
robustness, we applied on-the-fly data augmentation, including
random horizontal flipping, random vertical flipping, and random
cropping during training.

4.3 Evaluation metrics

To comprehensively assess segmentation performance on the
melasma dataset, we employed seven metrics: Mean Intersection
over Union (MIoU), pixel-level Accuracy (ACC), F1 Score,
Mean Recall (MRecall), Precision, Dice coefficient, and Specificity.
Specifically: MIoU measures the spatial overlap between predictions
and ground truth; ACC is the ratio of correctly classified pixels
to total pixels; the F1 Score is the harmonic mean of Precision
and Recall, reflecting balanced performance; MRecall represents
the average recall across all positive (lesion) pixels; Precision is
the proportion of predicted lesion pixels that are truly lesions; the
Dice coeflicient quantifies the similarity between predicted and true
lesion regions and is particularly sensitive to small lesions; Specificity
measures the proportion of correctly classified background pixels,
reflecting the model’s ability to avoid false positives.

4.4 Loss function

Given the class imbalance inherent in skin lesion segmentation,
we combined the Cross-Entropy Loss (Creswell et al., 2017) with
Focal Loss (Lin et al., 2017) to form a composite objective. The
relationship is described by Equations 17, 18:

L=ALcp+(1-A)Lg, (17)
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where

Lep = _Z)’i log(p;), Lp. = —a(1-p;)"y; log (p;) (18)
where y, is the ground-truth label and p; is the predicted probability
for pixel i; a balances positive and negative examples; y focuses
training on hard-to-classify samples; and A € [0,1] controls the
weighting between the two losses. This design leverages the stable
convergence of cross-entropy and the hard-example emphasis of
Focal Loss, thereby enhancing overall segmentation accuracy and
robustness.

4.5 Analysis of experimental results

With the aim of validating the proposed HHBSNet in
facial melasma segmentation tasks, we conducted comparative
experiments on several mainstream segmentation models. Table 2
summarizes the segmentation performance of HHBSNet and
baseline models on facial melasma lesions. In addition to standard
metrics (mIoU, ACC, Precision, Recall, and F1-score), we report
Dice coefficient and specificity to provide a more comprehensive
evaluation. Statistical error margins (mean + standard deviation
over 5 runs) are included to demonstrate performance stability.
HHBSNet achieves the highest mIoU (0.7889 + 0.0016), ACC
(0.9659 +0.0003), F1-score (0.8778 + 0.0009), and Precision (0.8777
+ 0.0013), indicating robust and accurate lesion segmentation.
It is noted that the Dice coefficient for HHBSNet is lower
compared to some baseline models. This is primarily due to the
small relative size of facial melasma lesions compared to the
overall facial area, which amplifies the impact of even minor
segmentation errors on the Dice score. Meanwhile, HHBSNet
maintains high specificity (0.9467 + 0.0001), confirming that the
model effectively avoids false positives in the large background
area. Therefore, despite the relatively low Dice value, HHBSNet
demonstrates superior overall segmentation performance on facial
melasma lesions.

As can be seen from Table 2 and Figure 5, the median-enhanced
spatial and channel attention module introduced by HHBSNet
effectively improves the model's focus on key regions in the
feature extraction stage. Channel attention focuses on semantically
significant channel features through global pooling operations,
while spatial attention strengthens the model’s ability to respond
to edge blurring and irregular regions with the help of multi-scale
deep convolution. In addition, the HHBSNet enables the model
to capture both the local texture details of the lesion boundaries
and the integrity of the overall lesion morphology by integrating
the low-level, mid-level and high-level semantic features. The
experimental results show that although some traditional
models (e.g., DeepLabV3 and MALUNET) achieve high
values in Recall (90.15% and 88.12%, respectively), their Precision
is obviously insufficient (72.03% and 72.51%, respectively), and
there are more false detections. On the other hand, HHBSNet
maintains a high Recall (88.18%) while significantly improving
the Precision, indicating that the model significantly enhances the
specificity while ensuring the sensitivity, and effectively suppresses
the misidentification of non-lesion regions. Moreover, to assess the
robustness of performance improvements, we performed paired t-
tests on the MIoU across five repeated runs (see Table 3). HHBSNet
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FIGURE 8

Comparison of melasma segmentation visualization. (a) Binary mask results showing lesion areas. (b) Lesion boundaries overlaid on the original facial
images for improved interpretability. Red indicates lesion boundaries, and green denotes facial contours.
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Visualization of the confusion matrix of the HHBSNet model on
the test set.
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FIGURE 10
Results of the model's thermogram visualization of the
melasma region.

showed statistically significant improvements over all baselines (all
p < 0.001).

Also, in this study, we tracked and recorded the loss variation
and segmentation accuracy improvement during model training,
as shown in Figures 6, 7. Figure 6 presents the loss curves (red and
orange solid lines) and their smoothing curves (green and brown
dashed lines) on the training and validation sets. It can be seen that
the loss drops rapidly from about 0.8 to within 0.2 at the beginning
of training, then enters a slow decline phase between the 20th and
80th epochs and stabilizes after about the 100th epoch, eventually
converging to about 0.07-0.06; the validation set loss closely follows
the training set loss curve and always remains at a similar level,
indicating that the model does not show obvious overfitting during
the whole training process. Figure 6 shows the curve of MIoU
with epoch during the training process. The model achieves more
than 50% MIoU in the first 5 epochs, and thereafter, with the
continuous optimization of the network, the MIoU rises smoothly
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to reach about 70% in the 80th epoch, and further increases to
about 78%-80% in the 120th-150th epochs, and finally converges.
The smooth rise of this curve is corroborated by the continuous
decrease of loss in Figure 7, which fully demonstrates that the
designed HHBSNet architecture and loss function combination
can improve the melasma stably

segmentation accuracy

and efficiently.

4.6 Visualization and analysis of
experimental results

In order to further verify the specific performance of each
model in the task of facial melasma segmentation, we selected
three groups of representative case images to demonstrate the
segmentation results of different methods. Figure 8a shows the
visualized comparison diagram, where each row corresponds to
one patient respectively, the first column is the original facial
image, followed by the segmentation outputs of Unet, Unet++,
MALUNET, DCSAU-Net, FPN, and HHBSNet proposed in this
paper in that order. In the segmentation diagram, the red region
represents the melasma region recognized by the model, green is
the normal skin region, and black is the background or unlabeled
region. In addition, we superimposed the lesion area onto the
original facial image to better display the image content. As
shown in Figure 8b.

From the figures, the following points can be observed: the Unet
and FPN models have obvious lesion area leakage, especially in
the areas with blurred boundaries and uneven illumination, some
melasma areas are not recognized, and the overall segmentation
results are rough; Unet++ improves in capturing the lesion edges,
and is able to recognize some of the lesions with a clearer contour,
but there are still artifacts in the areas with a similar color to skin
color and a lower contrast ratio. The segmentation accuracy of
MALUNET is significantly higher than the previous models, and
the model is able to outline the lesions more stably, but there is
still the problem of blurring or over-expansion of the boundary
of some lesion areas; The DCSAU-Net enhances the coherence
and stability of lesion segmentation. However, in some instances,
it may exhibit over-segmentation of normal regions, potentially
leading to inaccurate segmentation outcomes. The model presented
in this study demonstrates superior performance across various
comparisons, characterized by smooth edges and distinct structural
details within the identified melanoma areas. It also maintains high
consistency and accuracy under varying angles, diverse skin tones,
and different lighting conditions. Especially in areas with blurred
boundaries and dense or sparse spots, its prediction results fit
the real lesions more closely, with almost no obvious omissions
or misjudgments.

In conclusion, the advantages of the proposed model in
maintaining the structural integrity and accuracy of the lesions are
further verified from the visual results, which fully demonstrate that
the model has stronger clinical adaptability in practical application
scenarios.

And, to further evaluate the fine-grained performance of the
HHBSNet model in the multi-category skin lesion segmentation
task, we plotted and analyzed the confusion matrix of the model on
the test set. Figure 9 presents the confusion matrix of HHBSNet on
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intuitively reflected the model differentiation ability.
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ROC curves for each category. For the six categories in the test set (BACKGROUND, ET, HHB, XB, LF, RF), the One-vs-Rest strategy was used to draw
ROC curves, with the horizontal axis being the False Positive Rate (FPR) and the vertical axis being the True Positive Rate (TPR). The dotted line below
the curve indicated the random classification baseline (AUC = 0.5), and the degree of deviation of the curves of each category from the baseline
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TABLE 4 Ablation study results on melasma segmentation.

Model MloU (%) ACC (%) F1 (%) ‘ Mean recall (%) Precision (%) Description
Baseline 56.79 91.04 68.90 70.36 67.51 Baseline without modules, basic loss
+MCF 61.05 91.25 72.66 73.14 72.11 Introducing MFA module
+GCSA 72.05 94.70 82.37 88.98 76.68 Introducing GCSA module
FULL 74.38 95.46 84.56 84.43 84.61 Full model with all modules
FocalOnly 75.09 95.58 85.00 85.11 84.89 Only using Focal Loss
Hybrid 79.69 96.68 88.10 88.18 87.80 Hybrid loss, best performance

the test set, providing insight into its discriminative ability across
different categories. The diagonal dominance indicates that the
model achieves consistently high classification accuracy, especially
for the “BACKGROUND” class, where the correct predictions
far exceed other categories. This confirms HHBSNet’s ability to
reliably exclude non-lesion regions, which is essential in avoiding
false positives in clinical practice. For melasma-related subclasses
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(“ETY “HHB,” “XB,” “LE” “RF”), the model also demonstrates
robust performance, with high counts of correct predictions across
all categories. While some misclassifications are observed—for
instance, “HHB” partially confused with “LF” or “ET”—these
errors are attributable to the inherent similarity and boundary
ambiguity of these lesion patterns. Importantly, the confusion
matrix reveals that HHBSNet achieves balanced recognition across
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major and minor subclasses, even under challenges such as
category overlap and data imbalance, underscoring its strong
generalization ability.

Moreover, to visualize the feature areas that the model
may focus on, we visualized the output features of the
model in the final stage. Figure 10 visualizes the heatmaps generated
from the final output features, highlighting the regions that the
model focuses on during prediction. Most high-response regions
(in red) are concentrated in clinically relevant areas, such as
the cheeks and zygomatic bones, which are common sites of
melasma occurrence. This demonstrates that HHBSNet not only
achieves accurate segmentation but also aligns with dermatological
knowledge, thereby enhancing interpretability. The heatmaps reveal
that the model effectively captures both localized lesions and diffuse
patterns, maintaining robustness against variations in skin tone and
illumination.

Together, Figures 9, 10 complement the segmentation
HHBSNet
performs well across lesion categories, maintains consistent

comparisons in Figure 8 by confirming that
recognition under complex conditions, and provides clinically
meaningful visual explanations of its predictions. Meanwhile
, as can be seen in Figure 11, except for the category of HHB
(melasma), the AUC (Han et al., 2024) values of the other categories
are all above 0.90, which shows that the model has a high recognition
accuracy in the categories of BACKGROUND, ET, XB, LE RE etc.
The AUC of HHB is 0.85, which suggests that the model has a
certain degree of error in segmenting the area of melasma, which
is probably related to the fact that melasma is characterized by
a large number of color distributions, blurred boundaries, and
individual differences.
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4.7 Ablation experiment

For the purpose of evaluating the respective contributions of the
proposed modules and loss functions for melasma segmentation in our
HHBSNet framework, we performed a series of ablation experiments.
The results of the experiments are shown in Table 4 and Figure 12
below. The baseline model, which excludes any enhancement modules
and uses the basic loss function, has an average intersection over
union (MIoU) rate of 56.79%, an F1 score of 68.90%, and an overall
accuracy of 91.04%. After integrating the MFA module, the MIoU
increases to 61.05%, indicating that MFA helps to enhance spatial
features and improve segmentation quality. The GCSA module itself
shows significant performance improvement, with MIoU increasing
to 72.05% and F1 score increasing to 82.37%. This demonstrates the
effectiveness of the GCSA module in capturing global contextual
relationships, which is essential for dealing with the blurred boundaries
often seen in melasma lesions.

After combining the MFA and GCSA modules (FULL model),
the performance continued to improve, reaching 74.38% for MIoU
and 84.56% for F1 score. Furthermore, to investigate the impact
of the loss function, we replaced the standard loss with the Focal
Loss alone, resulting in an MIoU of 75.09% and an Fl-score of
85.00%, slightly better than the standard loss, which highlights
the importance of addressing category imbalance in melasma
segmentation. The best performance was obtained using a hybrid
loss combining cross-entropy and focal loss (hybrid model) with an
MIoU of 79.69%, an F1-score of 88.10%, and an accuracy of 96.68%.
This confirms that module design and loss function selection are
crucial for improving segmentation results. The experimental results
clearly demonstrate the complementary advantages of the proposed
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module and loss designs, validating the robustness and effectiveness
of our HHBSNet framework.

5 Conclusion

In this paper, we propose a lightweight deep neural network,
HHBSNet, specifically designed for melasma segmentation. The
model enhances feature extraction and lesion delineation through
innovative modules. In particular, the GCSA module integrates
channel attention, channel shuffling, and spatial attention to
strengthen global dependency modeling of lesion areas, while the
MCF module expands the receptive field without resolution loss
via multi-rate dilated convolutions, thereby improving contextual
feature capture. The integration of global average pooling further
allows the network to fuse global semantics with local structural
details, leading to more accurate recognition of blurred boundaries
and irregular lesion regions. To alleviate class imbalance, we jointly
adopt Cross-Entropy Loss and Focal Loss, which stabilizes training
and improves recognition of minority classes.

Extensive experiments conducted on a clinical melasma dataset
demonstrate that HHBSNet achieves state-of-the-art performance.
Compared with competitive baselines, HHBSNet consistently attains
the best scores across key metrics, with MIoU 0f 78.89% + 0.16, ACC of
96.59% + 0.03, Precision of 87.77% + 0.13, Recall 0of 87.81% + 0.08, and
F1-score of 87.78% + 0.09. These improvements are not only significant
in magnitudebutalso stable across five independent runs, as confirmed
by the small standard deviations. Notably, HHBSNet shows balanced
precision and recall, ensuring accurate lesion boundary detection
without compromising sensitivity.

Visualization results further confirm that HHBSNet is effective
in capturing complex lesion patterns, including diffuse pigmentation
and irregular boundaries, under varying illumination and skin
tones. The combination of superior accuracy, robustness, and
stability underscores the model’s clinical adaptability and real-world
deployment potential. Future work will explore further refinements
of HHBSNet’s architecture to extend its applicability to other
dermatological segmentation tasks and support computer-aided
diagnosis. In addition, we plan to validate the model on external
public datasets (e.g., ISIC, Derm7pt) and newly collected multi-
center clinical datasets, which will further assess its generalizability
across diverse populations and imaging conditions.
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