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Objective: Melasma is a common acquired facial hyperpigmentation disorder 
characterized by symmetrical brown patches, often occurring in the zygomatic 
region, forehead, and upper lip. Its blurred boundaries, color similarity to normal 
skin, and irregular morphology—combined with lighting variability and skin 
reflections—pose significant challenges for automated lesion segmentation. 
This study aims to develop an effective and lightweight deep learning model 
tailored for accurate melasma segmentation.
Methods: We propose a novel lightweight segmentation network, HHBSNet, 
specifically designed for melasma lesion analysis. The model incorporates a 
Global Channel-Spatial Attention (GCSA) module that jointly leverages channel 
and spatial attention to suppress lighting interference and enhance feature 
discrimination in low-contrast, irregular boundaries. In addition, a Multiscale 
Cavity Fusion (MCF) module is introduced to extend the receptive field via multi-
dilation rates, enabling effective capture of lesions at various scales without 
reducing resolution. The network further integrates local-global semantic fusion 
and adopts a combined loss strategy of cross-entropy and focal loss to address 
class imbalance.
Results: HHBSNet was evaluated on a self-constructed dataset comprising 501 
practical facial melasma images. Quantitative results demonstrate that HHBSNet 
outperforms existing mainstream segmentation methods, achieving a mean 
Intersection over Union (Miou) of 79.69%, accuracy (ACC) of 96.68%, F-score 
of 88.10%, recall of 88.18%, and precision of 87.80%.
Conclusion: The proposed HHBSNet demonstrates superior segmentation 
performance and robustness in handling melasma’s challenging visual 
characteristics. Its lightweight structure and strong generalization ability suggest 
promising potential for application in computer-aided diagnosis and large-scale 
clinical screening of facial pigmentary disorders.
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melasma, deep learning, image segmentation, attention mechanism, automatic 
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1 Introduction

Melasma is a common skin pigmentation disorder affecting 
millions of people worldwide (Grimes, 1995; Sheth and Pandya, 
2011; Tamega et al., 2013; Handel et al., 2014). It can occur in any 
gender, but is more common in women (Goh and Dlova, 1999), 
with men comprising approximately 10% of reported cases (Parish, 
2011). Foreign studies have shown that melasma is most commonly 
seen in patients with Fitzpatrick skin types IV-VI, especially in areas 
with high UV radiation intensity, such as Asians, Hispanic Latinos, 
and African-Americans (Grimes, 1995; Sanchez et al., 1981; Taylor, 
2003; Pandya and Guevara, 2000). Although there are usually no 
self-conscious symptoms in clinical practice, melasma has caused 
great distress to countless patients due to its disfiguring nature, 
leading to worry, anxiety, and even low self-esteem and depression, 
which may lead to suicidal tendencies in severe cases. Therefore, 
melasma has become an important issue of concern to both the 
medical and cosmetic fields. As a chronic and recurrent disease, 
melasma has a exerts a profound negative impact on patients’ quality 
of life, even more than other skin diseases such as acne and rosacea 
(Balkrishnan et al., 2003). Similar to other skin diseases such as skin 
cancer (Siegel et al., 2023), the treatment of melasma needs to be 
predicated on precise lesion segmentation for efficient treatment. 
In addition, precise lesion segmentation is also a prerequisite for 
assessing treatment efficacy and disease severity (Liang et al., 2017a).

Skin lesion segmentation has traditionally relied on classical 
image processing techniques, such as threshold segmentation 
(Green et al., 1994; Emre  Celebi et al., 2013; Celebi et al., 2008; 
Arsalan et al., 2020) and edge detection, as well as machine 
learning methods like active contour modeling and support vector 
machines (Zortea et al., 2011). However, these methods often 
necessitate complex image pre-processing and post-processing, 
particularly when the contrast between the lesion and normal skin 
is low. This can lead to imprecise segmentation boundaries, thereby 
affecting diagnosis. In response to these challenges, researchers 
have explored deep Convolutional Neural Network (CNN)-based 
segmentation algorithms, which have demonstrated significant 
potential in medical image segmentation due to their ability to 
enhance segmentation accuracy without the need for complex pre-
processing steps. For example, Long et al. (2015) introduced an 
FCN-based segmentation method that can process input images 
of arbitrary sizes and has an optimized network structure to 
reduce redundancy and improve computational efficiency. Despite 
its strong generalization ability, FCN may sometimes sacrifice image 
details, indicating room for further optimization of segmentation 
accuracy. Building on this foundation, Ronneberger et al. (2015) 
proposed the U-Net model, which comprises an encoder and a 
decoder. U-Net’s core strength lies in its efficient use of global 
positional and contextual information, enabling good training 
results even with limited samples. It has been widely used in precise 
segmentation tasks.

Further advancements were made by SkinNet (Vesal et al., 
2018), which introduced inflated convolution in the encoder to 
enlarge the convolution kernel’s receptive field, thereby enhancing 
the network’s ability to capture contextual information and 
improving segmentation of complex structures. Gu et al. (2019) 
developed CE-Net, which preserves subtle spatial information 
features through its feature encoding, context extraction, 

and feature decoding modules. More recently, Tong et al. 
(2021) proposed ASCU-Net, which incorporates a triple-
attention mechanism to help the network focus on key 
lesion features, thereby improving segmentation accuracy and
recognition performance.

Accurate segmentation of melasma lesions is crucial for 
clinical diagnosis and treatment; however, current research still 
faces several significant challenges. First, the confusion between 
spots and skin texture makes it difficult to accurately distinguish 
skin lesions. Second, melasma often has irregular shapes and 
boundaries, which increases the complexity of segmentation 
algorithms. Third, variations in lighting and reflection phenomena 
interfere with image processing, affecting segmentation results. 
Additionally, the labeling process is typically cumbersome and 
time-consuming, requiring substantial manual intervention. These 
challenges limit the effectiveness of existing methods in melasma 
segmentation. Despite significant advancements in the field of 
medical image segmentation through deep learning methods, 
handling complex skin lesion images remains a challenge. For 
instance, studies employing U-Net for melasma segmentation have 
successfully facilitated the assessment of pigmented skin diseases 
and supported the development of personalized treatment plans 
(Liang et al., 2017a; Liang et al., 2017b; Shilaskar et al., 2024; 
Arsalan et al., 2019; Awais et al., 2021). However, these methods 
are often limited when dealing with complex lesion images and 
cannot provide sufficiently accurate segmentation results. While 
these studies have to some extent propelled the development of 
melasma segmentation technology, they still fall short in addressing 
the aforementioned challenges. 

1. Therefore, in this study, a more effective image segmentation 
method, HHBSNet, was developed to improve the accuracy of 
melasma lesion segmentation and thus provide more reliable 
support for clinical diagnosis and treatment. Our model 
includes the following contributions:

2. Global Channel-Spatial Attention (GCSA) module: Existing 
methods often struggle to effectively differentiate between 
lesion areas and normal skin when dealing with complex 
backgrounds and noise. To enhance the model’s ability to 
focus on lesion regions, we have designed a Global Channel-
Spatial Attention module. This module integrates channel 
attention, channel shuffling, and spatial attention mechanisms 
to capture global dependencies within the feature map. In 
this way, the model can better focus on important features 
while suppressing irrelevant noise information. This not only 
improves segmentation accuracy but also enhances the model’s 
robustness against complex backgrounds.

3. Multi-scale Cavity Fusion (MCF) module: Traditional 
methods often fail to accurately capture contextual information 
when dealing with lesion areas that have complex shapes 
and boundaries due to limited receptive fields. Our MCF 
module significantly enlarges the receptive field by setting 
different dilation rates while maintaining image resolution. 
This allows the model to capture a broader range of contextual 
information, which is particularly effective in processing 
melasma images with irregular shapes and boundaries, thereby 
improving segmentation accuracy.
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4. Global feature integration: Existing methods often fall short 
in handling global and local information, leading to less 
accurate segmentation results. Our network incorporates 
global average pooling to extract global features of the image 
and combines this global information with local features. This 
design helps the network better understand the relationship 
between different parts of the image and the whole, further 
enhancing the model’s segmentation performance for skin 
lesions.

To verify the effectiveness of the method in this paper, we 
conducted experiments on a privately collected melasma image 
dataset. The experimental results show that on this melasma 
segmentation dataset, our method is competitive in performance 
and outperforms existing commonly used and State-Of-The-Art 
(SOTA) methods. This suggests that HHBSNet can effectively 
address the challenges in melasma segmentation and provide a more 
accurate and efficient tool for clinical diagnosis and treatment.

The remaining sections of this work are organized according to 
the following structure: Section 2 summarizes the current state of 
the art in skin lesion segmentation research, sorting out the trends 
and challenges of current research. Section 3 details the network 
design proposed in this study, focusing on its core technologies and 
innovations. Section 4 verifies the performance and effectiveness 
of the proposed method through experiments and analyzes it 
in comparison with existing techniques. In Section 5, based on 
the experimental findings in Section 4, the proposed method is 
more comprehensively analyzed and summarized, and the existing 
problems are pointed out and potential improvement directions 
are proposed. In addition, the abbreviations used in the paper 
are shown in Table 1.

2 Relate work

2.1 Skin disease segmentation

Skin lesion segmentation is a crucial step in the diagnosis and 
treatment of skin diseases. Accurate segmentation of the lesion area 
aids physicians in quantitative analysis of the lesion, monitoring its 
progression, and evaluating treatment efficacy. Traditional methods 
primarily rely on handcrafted features, while the advent of deep 
learning has brought significant changes to this field in recent years.

In the early research of skin lesion segmentation, traditional 
methods mainly relied on handcrafted features. Although these 
methods can achieve segmentation goals to some extent, they 
have obvious limitations, especially when facing diverse lesion 
types, in terms of scalability and adaptability. Celebi et al. (2009) 
proposed a histogram thresholding method based on the intensity 
distribution. This method determines the segmentation threshold 
by analyzing the grayscale histogram of the image to distinguish 
between the lesion area and normal skin. However, it is sensitive 
to lighting conditions and noise and struggles with complex 
grayscale distributions in lesion areas. Otsu (1979) introduced 
a variance-based thresholding method, which determines the 
optimal threshold by maximizing the between-class variance of the 
foreground and background. Otsu’s method, known for its simplicity 
and efficiency, has been widely used in automated medical image 

TABLE 1  Symbols and abbreviations used in the article.

No. Full name Abbreviation

1 Global Channel-Spatial Attention GCSA

2 Multi-scale Cavity Fusion MCF

3 Convolutional Neural Network CNN

4 Fully Convolutional Network FCN

5 Context Encoder Network CENet

6 State-Of-The-Art SOTA

7 Squeeze-and-Excitation Networks SENet

8 Vision Transformer ViT

9 Coordinate Attention CA

10 Efficient Channel Attention Module ECA-Net

11 Multilayer perceptron MLP

12 Batch Normalization BN

13 Stochastic Gradient Descent SGD

14 Mean Intersection over Union MIoU

15 Accuracy ACC

16 Mean Recall MRecall

17 Receiver Operating Characteristic ROC

18 False Positive Rate FPR

19 Ground Truth GT

20 HHB Melasma lesions

21 LF The left facial area

22 RF The right facial area

23 XB The chin area

24 ET The forehead area

segmentation. However, when the grayscale difference between the 
lesion area and the background is not significant, the segmentation 
effect is compromised. Peruch et al. (2013) enhanced segmentation 
robustness through noise suppression and post-processing 
techniques. They employed filtering algorithms to remove noise 
and optimized segmentation results through morphological 
operations and other post-processing steps. Although these methods 
improved segmentation accuracy to some degree, they rely on prior 
knowledge of noise characteristics, and the post-processing steps 
increased computational complexity. Patiño et al. (2018) introduced 
superpixel merging with color invariance to improve robustness 
against illumination changes. This method divides the image into 
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superpixels and then merges them based on color and texture 
features to achieve segmentation. While it addresses the issue of 
uneven lighting to some extent, the superpixel merging process is 
complex and less adaptable to variations in the shape and size of 
lesion areas. These traditional methods, though effective in certain 
specific scenarios, gradually reveal their limitations when dealing 
with complex skin lesion images, especially in the segmentation of 
melasma. Melasma lesion areas often have complex textures and 
irregular boundaries, which are difficult for traditional methods to 
segment accurately.

With the rise of deep learning technology, the field of skin lesion 
segmentation has witnessed a significant transformation. Deep 
learning methods, which automatically learn image features, have 
overcome the limitations of traditional methods and significantly 
enhanced segmentation accuracy and robustness. Long et al. (2015) 
introduced the Fully Convolutional Networks (FCNs), a pioneering 
work of deep learning in image segmentation. FCNs replace the 
fully connected layers of Convolutional Neural Networks (CNNs) 
with convolutional layers to achieve pixel-level prediction, providing 
an end-to-end solution for image segmentation. Ronneberger et al. 
(2015) proposed the U-Net, a classic medical image segmentation 
network that employs an encoder-decoder architecture with skip 
connections to preserve spatial resolution. U-Net has shown 
excellent performance in processing medical images, especially in 
extracting lesion areas from small targets and complex backgrounds. 
DeepLab (Chen et al., 2017) utilizes atrous convolutions to expand 
the receptive field, thereby better capturing contextual information 
in the image. This method excels in handling targets with complex 
shapes and boundaries, effectively reducing boundary blurring 
issues. UNet 3+ (Huang et al., 2020) further improves the U-Net 
architecture by integrating full-scale skip connections to enhance 
feature fusion, thereby increasing segmentation accuracy and 
robustness. This method performs particularly well in processing 
lesion areas with multi-scale features. Yuan et al. (2017) enhanced 
segmentation performance by introducing batch normalization 
and customized loss functions. These techniques help accelerate 
network convergence and improve model adaptability to different 
lesion types. Dai et al. (2022) developed multi-scale residual 
modules to address the structural variability in lesions. These 
modules effectively capture features at different scales, thereby 
improving segmentation accuracy. These deep learning methods 
have shown excellent performance in processing complex skin lesion 
images, especially in melasma segmentation, where they can better 
handle the complex textures and irregular boundaries of lesion areas.

To tackle the unique challenges in skin lesion segmentation, 
researchers have developed a series of specialized models and 
methods. BAT (Festa et al., 2023) applies deformable convolutions 
to reduce boundary ambiguity, thereby improving segmentation 
accuracy. Experiments have shown that this method can reduce 
boundary ambiguity by 34%, significantly enhancing the quality 
of segmentation results. MSCA-Net (Sun et al., 2023) enables real-
time inference through multi-scale coordinate attention, making 
it suitable for deployment on resource-constrained platforms. 
This method maintains high segmentation accuracy while 
significantly reducing computational resource requirements. DC-
Net (Wang et al., 2022) leverages contrastive learning to differentiate 
between malignant melanoma and benign lesions. This method 
improves the recognition ability of different lesion types by learning 

the feature differences between them. These specialized models and 
methods have shown excellent performance in processing complex 
skin lesion images, especially in melasma segmentation, where they 
can better handle the complex textures and irregular boundaries of 
lesion areas.

The advent of deep learning has brought significant changes 
to the field of skin lesion segmentation. From traditional methods 
that rely on handcrafted features to current deep learning methods 
that automatically learn features, segmentation technology has 
seen a significant increase in accuracy and robustness. These 
methods not only better handle complex backgrounds and multi-
scale features in lesion areas but also adapt to the diverse 
needs of different lesion types. Moreover, the development of 
specialized models and methods for skin lesion segmentation has 
further improved segmentation precision and efficiency. With the 
continuous development of technology, more efficient, accurate, 
and robust skin lesion segmentation methods are expected to be 
developed in the future, providing strong support for the diagnosis 
and treatment of skin diseases. In the field of melasma segmentation, 
further research and application of these methods will help improve 
the diagnostic accuracy and treatment efficacy of melasma. 

2.2 Attention mechanisms in segmentation

Attention mechanism has become a key technique to enhance 
the performance of medical image segmentation, especially in 
tasks such as dealing with complex textures, lesions with different 
sizes or fuzzy boundaries, etc. It shows significant advantages. Its 
applications range from spatial enhancement to global semantic 
modeling, effectively improving the accuracy of segmentation.

Squeeze-and-Excitation Networks (SENet) (Hu et al., 2018) 
introduces a feature recalibration mechanism in the channel 
dimension, which improves the ability of the model to select 
effective features, while CBAM (Woo et al., 2018) introduces a 
spatial attention module, which can help to localize the lesion 
area more accurately, and Attention U-Net (Oktay et al., 2018) 
introduces a spatial attention gating mechanism, which can be 
used for the segmentation of complex textures with different sizes 
or ambiguous boundaries. Attention U-Net improves the Dice 
coefficient by 8.7% in the pancreas segmentation task by using the 
spatial attention gating mechanism, which proves its effectiveness 
in removing irrelevant regions. MA-Net (Dharejo et al., 2022) and 
MA-UNet (Cai and Wang, 2022) merge multi-scale and multi-
dimensional attention mechanisms to enable the model to extract 
both global context and local detail features at the same time. These 
hybrid strategies significantly enhance the recognition of lesion 
boundaries in complex scenarios. The SCSE module (Roy et al., 
2018) combines both spatial and channel attention to effectively 
suppress background noise and enhance the robustness of feature 
representation. PraNet (Fan et al., 2020) introduces the inverse 
attention mechanism to gradually optimize the prediction of fuzzy 
regions, and reduces the false-positive rate by 15% in polyp 
segmentation, and demonstrates better accuracy in the difficult-to-
segment regions. Regions that are difficult to segment.

Vision Transformer (ViT) (Dosovitskiy et al., 2020) introduced 
the self-attention mechanism in computer vision for the first time, 
and realized the modeling of remote dependencies. A series of 
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derived structures based on this (e.g., TransUNet (Chen et al., 
2021), MedT (Valanarasu et al., 2021), Swin-UNet (Cao et al., 
2022)) introduced the global context modeling capability into 
medical image segmentation tasks. TransAttUNet (Chen et al., 2023) 
combines multilevel attention with Vision Transformer and achieves 
on the ISIC 2018 data set a 92.1% Coordinate Attention (CA) 
(Hou et al., 2021) with Efficient Channel Attention Module (ECA-
Net) (Wang et al., 2020) introduces an efficient attention mechanism 
that maintains a strong representation capability while keeping a 
low computational effort, which is suitable for real-time or resource-
constrained scenarios.

In conclusion, the development of attention mechanisms, 
from lightweight design to Transformer-based global modeling, 
continues to push the performance ceiling of medical image 
segmentation tasks. 

3 Methods

We employ MobileNetV2 (pre-trained on ImageNet) as the 
backbone feature extractor due to its lightweight depthwise 
separable convolutions and strong representation capability. The 
backbone extracts multi-scale feature maps at four resolution levels.

Figure 1 demonstrates the three core modules of the HHBSNet 
framework: the GCSA module, the MCF module and the Global 
feature fusion function; the GCSA module: through channel 
attention, channel shuffling, and spatial attention working in 
concert, the global dependencies in the feature map are captured 
to effectively highlight the speckle region and suppress background 
noise. And the Infusion block extracts first and final features 
from the MobileNetV2 backbone and fuses them via concatenation 
followed by a (1 × 1) convolution. This allows the network 
to combine shallow texture details with high-level semantic 
information before further processing in the GCSA module. MCF 
module: Separable convolution with different cavity rates is used to 
significantly expand the receptive field without loss of resolution 
in order to simultaneously capture lesion edge details and wide-
area contextual information. Global feature fusion: global average 
pooling is used to extract the overall semantics of the image, 
and global information is fused with local features to enhance 
the network’s overall perception of melasma morphology and 
distribution.

3.1 Global channel-spatial attention 
module

In this study, the GCSA is designed to enhance the 
representation of input feature maps. The module combines channel 
attention, channel shuffling, and spatial attention mechanisms 
designed to capture global dependencies in feature maps. The 
specific flowchart is shown in Figure 2 below, and the detailed 
step-by-step explanations are given below.

The input feature map Finput ∈ ℝ
C×H×W, consisting of C channels 

of spatial size H×W, is first fed into the channel-attention 
submodule and then into the spatial-attention submodule. Within 
the channel-attention submodule, Finput is first permuted from 
shape C×H×W to W× H×C. lt then passes through two 

successive Multilayer perceptron (MLP) layers to capture inter-
channel dependencies: the first MLP reduces the channel dimension 
to C

4
, followed by a ReLU activation, and the second MLP restores 

the channel dimension to C. After a reverse permutation back to 
C×H×W and a Sigmoid activation, the channel-attention map is 
generated. Elementwise multiplication with the original input yields 
the enhanced feature map. As shown in Equation 1:

Fchannel = σ(MLP(Permute(Finput))) ⊙ Finput, (1)

where σ denotes the Sigmoid function, ⊙ denotes element-
wise multiplication, and Fchannel is the resulting channel-refined 
feature map.

To further mix and share information across channels, we 
apply the Channel Shuffle operation. The enhanced feature map 
Fchannel is divided into 4 groups of C

4
 channels each; within each 

group, channels are transposed to shuffle their order, and then 
all groups are concatenated back to the original shape C×H×W.
As shown in Equation 2:

Fshuffle = ChannelShuffle(Fchannel), (2)

where Fshuffle is the shuffled feature map.
In the spatial-attention submodule, Fshuffle first passes through a 

7× 7 convolution that reduces its channel dimension to C
4

, followed 
by Batch Normalization (BN) and ReLU activation. A second 7×
7 convolution then restores the channel dimension to C, followed 
by another BN. A Sigmoid activation generates the spatial-attention 
map, which is multiplied element-wise with Fshuffle to produce the 
final output. As shown in Equation 3:

Fspatial = σ(Conv(BN(ReLU(Conv(Fshuffle))))) ⊙ Fshuffle, (3)

where Fspatial is the spatially refined feature map.
The module’s output Fout = Fspatial thus contains features 

enhanced by channel attention, channel shuffling, and spatial 
attention, ready to be passed to the downstream segmentation head. 

3.2 Multi-scale cavity fusion module

By integrating channel and spatial attention mechanisms and 
using depthwise separable convolutions with different dilation rates, 
the MCF module seeks to improve feature representation. For 
complicated visual tasks like semantic segmentation and object 
detection, this architecture is critical for gathering both extensive 
and detailed contextual information in images. Figure 3 provides 
an illustration of the architecture. Firstly, our MCF architecture 
employs five parallel convolutional branches for multi-scale feature 
extraction; each branch is configured with a different dilation rate to 
expand the receptive field and capture varying spatial information. 
The first branch uses a 1× 1 convolution kernel to maintain the 
spatial scale and directly extract features. The second branch utilizes 
a 3 × 3 convolution kernel with a dilation rate of 6 to moderately 
expand the receptive field. The third branch employs a 3 × 3 
convolution kernel with a dilation rate of 12 to further expand 
the receptive field and capture broader contextual information. The 
fourth branch uses a 3 × 3 convolution kernel with a dilation 
rate of 18 to provide the widest receptive field. The fifth branch 
applies global average pooling to extract global contextual features, 
enhancing the model’s understanding of the overall layout. After 
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FIGURE 1
Diagram of the overall framework of the HHBSNet model.

these processes, the feature maps have the shape H×W×C. The 
Concat function is used to concatenate the different outputs along 
the channel dimension, resulting in a comprehensive feature map. 
Let the input feature map be X ∈ ℝH×W×C, where H,W and C are 
the height, width, and number of channels, respectively. The outputs 
of the five branches can be mathematically described as follows. As 
shown in Equations 4–8:

OP1 = f1×1Conv(X) (4)

OP2,3,4 = f3×3ConvDW(X, r = [6,12,18]) (5)

OP5 = fupsample( f1×1conv( favg−pool(X))) (6)

F feature = Concat(OP1,OP2,OP3,OP4,OP5) (7)

Output = f1×1Conv(F feature) (8)

where X denotes the input feature map with dimensions H×W×
C, and OPi signifies the outcome of each distinct operation, r is 
the dilation ratio, and favg−pool is the average pooling operation. The 
concatenation of various outputs in the channel dimension is known 
as the Concat function. Lastly, the final output feature map’s shape 
remains H×W×C. Two different kinds of attention mechanisms 
are then used to calibrate the combined feature map. To get the 
global features for each channel, the channel attention mechanism 
first applies global average pooling to the combined feature map. It 
then uses two fully linked layers with Sigmoid and ReLU activation 
functions, respectively, to learn the importance weights for each 
channel. Channel weighting is achieved by multiplying these weights 

by the original feature map on a per-channel basis. As shown in 
Equations 9–11.

Faνg =
1

H×W

H

∑
i=1

W

∑
j=1

F(i, j) (9)

wc = σ(FC2(ReLU(FC1(Faνg)))) (10)

F′c = wc ⊙ F (11)

where F(i, j) represents the value of the feature map at position 
i, j,FC1 and FC2 are the two fully connected layers, σ denotes the 
Sigmoid activation function, and wc is the importance weight for 
each channel. ⊙ represents element-wise multiplication, and F′c  is 
the feature map after channel weighting. To create the spatial feature 
map, the spatial attention mechanism applies global pooling to the 
combined feature map along the channel dimension. It then uses a 
Sigmoid activation function and a 1 × 1 convolution to learn the 
importance weights for every spatial position. Spatial weighting is 
achieved by multiplying these weights element-wise by the original 
feature map. As shown in Equations 12–14.

Fspatial = [AvgPool(F),MaxPool(F)] (12)

ws = σ(Conv1×1(Fspatial)) (13)

Fs
′ = ws ⊙ F (14)

where [·, ·] denotes the concatenation operation, resulting in the 
spatial feature map Fspatial, and Fs

′ is the feature map after spatial 
weighting. Finally, the output feature maps from the channel 
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FIGURE 2
Schematic of the global channel-spatial attention (GCSA) structure.

FIGURE 3
Schematic of the structure of the multiscale cavity fusion module (MCF).
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FIGURE 4
Example diagram of the melasma dataset. (a) Raw facial image captured by the VISIA multispectral system. (b) Expert-labeled melasma lesion masks.

TABLE 2  Segmentation performance of HHBSNet and baseline models on facial melasma lesions.

Model MIoU ACC Precision Recall F1 Dice Specificity

U-Net 0.6656 ± 0.0009 0.9373 ± 0.0002 0.7285 ± 0.0006 0.8742 ± 0.0008 0.7947 ± 0.0006 0.4236 ± 0.0033 0.9644 ± 0.0003

U-Net++ 0.6660 ± 0.0021 0.9372 ± 0.0004 0.7284 ± 0.0018 0.8738 ± 0.0017 0.7947 ± 0.0017 0.4294 ± 0.0044 0.9644 ± 0.0003

FPN 0.6684 ± 0.0063 0.9367 ± 0.0003 0.7278 ± 0.0019 0.8736 ± 0.0021 0.7955 ± 0.0021 0.4365 ± 0.0072 0.9639 ± 0.0008

MALUNet 0.6681 ± 0.0084 0.9443 ± 0.0031 0.8064 ± 0.0306 0.7930 ± 0.0202 0.7962 ± 0.0083 0.2553 ± 0.0281 0.9341 ± 0.0071

DeepLabV3 0.6679 ± 0.0041 0.9415 ± 0.0021 0.7744 ± 0.0151 0.8246 ± 0.0126 0.7942 ± 0.0040 0.2867 ± 0.0296 0.9425 ± 0.0046

EGEUNet 0.7071 ± 0.0064 0.9490 ± 0.0020 0.8069 ± 0.0193 0.8486 ± 0.0054 0.8255 ± 0.0064 0.2686 ± 0.0046 0.9450 ± 0.0013

DCSAU-Net 0.7132 ± 0.0026 0.9494 ± 0.0004 0.8159 ± 0.0037 0.8480 ± 0.0035 0.8298 ± 0.0019 0.2783 ± 0.0045 0.9473 ± 0.0010

HHBSNet (Ours) 0.7889 ± 0.0016 0.9659 ± 0.0003 0.8777 ± 0.0013 0.8781 ± 0.0008 0.8778 ± 0.0009 0.2316 ± 0.0015 0.9467 ± 0.0001

Metrics include mean Intersection over Union (mIoU), accuracy (ACC), precision, recall, F1-score, Dice coefficient, and specificity. Values are reported as mean ± standard deviation 
over 5 runs. Due to the small size of lesions relative to the facial area, Dice values may appear lower but do not reflect the overall segmentation quality. Bold numbers indicate the best 
performance in each column.

attention and spatial attention mechanisms are fused through 
element-wise addition. The fused feature map is then combined 
with the original merged feature map through element-wise 
summation to integrate and enhance the relevant features. The 
enhanced feature map is subsequently processed through a 1×
1 convolution layer for dimensionality reduction and integration, 
resulting in the final output feature map Foutput. As shown
in Equations 15–16.

F fused = Fc
′ + Fs
′ (15)

Foutput = Conv1×1(F fused) (16)

where F fused is the feature map obtained by fusing the channel and 
spatial features after weighting. 

4 Experience

4.1 Dataset

The melasma image dataset used in this study was collected in 
2023 at the outpatient dermatology clinic of the Affiliated Hospital 
of Chengdu University of Traditional Chinese Medicine. It includes 
501 patients (aged 18–65 years) who were clinically diagnosed with 
melasma. At the early stage of data collection, we intentionally 
aimed to include a roughly balanced male-to-female ratio in order to 
mitigate potential gender bias and allow the model to generalize to 
male patients as well. However, as the dataset expanded, the majority 
of cases were contributed by female patients, which is consistent with 
the known epidemiology of melasma (around 90% female). Thus, 
while our dataset contains a higher proportion of male patients than 
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FIGURE 5
This heatmap of model performance rankings shows the rank of each model on the different evaluation metrics (1 indicates the best): the Ours model 
ranks first (lightest color) in essentially all metrics, and performs the best.

TABLE 3  Statistical significance analysis of HHBSNet compared with 
baseline models on facial melasma lesion segmentation.

Baseline t-value p-value Significance

U-Net 133.42 1.89e-08 p < 0.001

U-Net++ 75.33 1.86e-07 p < 0.001

FPN 40.90 2.13e-06 p < 0.001

MALUNET 26.08 1.28e-05 p < 0.001

DeepLabV3 52.78 7.72e-07 p < 0.001

EGEUNet 25.71 1.36e-05 p < 0.001

DCSAU-Net 81.02 1.39e-07 p < 0.001

Paired t-tests were performed on the mIoU scores over 5 independent runs. t-values, 
p-values, and significance levels are reported. All comparisons show p < 0.001, 
indicating that HHBSNet’s improvements are statistically significant.

the general clinical prevalence, female patients still dominate the 
final dataset.

All participants provided written informed consent. To ensure 
consistent lighting and color temperature, all images were captured 
under standardized conditions using a VISIA multispectral skin 
imaging system (Canfield Scientific, United States) in a cold-light 
environment. During image acquisition, the camera was maintained 
at a fixed distance of 30 cm from the participant’s face. After the 

FIGURE 6
Loss curves (solid lines) and corresponding smoothing curves (dashed 
lines) on the training and validation sets.

raw data were initially cleaned and blurred, overexposed or heavily 
reflected images were excluded, the melasma lesion areas were 
independently labeled by a dermatologist with extensive clinical 
experience using the LabelMe tool, and were uniformly cropped to 
a size of 512 × 512, as shown in Figure 4 below. In order to ensure 
fairness of the experiment, this dataset was divided into training, 
validation, and test sets according to an 8:1:1 ratio (corresponding 
to 401, 50, and 50 images, respectively). The dataset will be 
made available upon reasonable request for academic and non-
commercial research purposes, subject to obtaining appropriate 
ethical approval. 
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FIGURE 7
Variation of model MIoU with epoch during training.

4.2 Experience details

All experiments were implemented using the PyTorch 
framework and conducted on a workstation equipped with an 
NVIDIA GeForce RTX 3080 GPU. Input images were uniformly 
resized to 512 × 512 pixels. Each model was trained for 180 epochs 
with a batch size of 8. We used Stochastic Gradient Descent (SGD) 
as the optimizer, with a momentum of 0.9 and an initial learning rate 
of 7 × 10−3, which was decayed according to a step-based schedule 
to facilitate convergence. In order to improve generalization and 
robustness, we applied on-the-fly data augmentation, including 
random horizontal flipping, random vertical flipping, and random 
cropping during training. 

4.3 Evaluation metrics

To comprehensively assess segmentation performance on the 
melasma dataset, we employed seven metrics: Mean Intersection 
over Union (MIoU), pixel-level Accuracy (ACC), F1 Score , 
Mean Recall (MRecall), Precision, Dice coefficient, and Specificity. 
Specifically: MIoU measures the spatial overlap between predictions 
and ground truth; ACC is the ratio of correctly classified pixels 
to total pixels; the F1 Score is the harmonic mean of Precision 
and Recall, reflecting balanced performance; MRecall represents 
the average recall across all positive (lesion) pixels; Precision is 
the proportion of predicted lesion pixels that are truly lesions; the 
Dice coefficient quantifies the similarity between predicted and true 
lesion regions and is particularly sensitive to small lesions; Specificity 
measures the proportion of correctly classified background pixels, 
reflecting the model’s ability to avoid false positives. 

4.4 Loss function

Given the class imbalance inherent in skin lesion segmentation, 
we combined the Cross-Entropy Loss (Creswell et al., 2017) with 
Focal Loss (Lin et al., 2017) to form a composite objective. The 
relationship is described by Equations 17, 18:

L = λLCE + (1− λ)LFL, (17)

where

LCE = −∑
i

yi log(pi),  LFL = −α(1‐pi)
γyi log(pi) (18)

where yi is the ground-truth label and pi is the predicted probability 
for pixel i; α balances positive and negative examples; γ focuses 
training on hard-to-classify samples; and λ ∈ [0,1] controls the 
weighting between the two losses. This design leverages the stable 
convergence of cross-entropy and the hard-example emphasis of 
Focal Loss, thereby enhancing overall segmentation accuracy and 
robustness. 

4.5 Analysis of experimental results

With the aim of validating the proposed HHBSNet in 
facial melasma segmentation tasks, we conducted comparative 
experiments on several mainstream segmentation models. Table 2 
summarizes the segmentation performance of HHBSNet and 
baseline models on facial melasma lesions. In addition to standard 
metrics (mIoU, ACC, Precision, Recall, and F1-score), we report 
Dice coefficient and specificity to provide a more comprehensive 
evaluation. Statistical error margins (mean ± standard deviation 
over 5 runs) are included to demonstrate performance stability. 
HHBSNet achieves the highest mIoU (0.7889 ± 0.0016), ACC 
(0.9659 ± 0.0003), F1-score (0.8778 ± 0.0009), and Precision (0.8777 
± 0.0013), indicating robust and accurate lesion segmentation. 
It is noted that the Dice coefficient for HHBSNet is lower 
compared to some baseline models. This is primarily due to the 
small relative size of facial melasma lesions compared to the 
overall facial area, which amplifies the impact of even minor 
segmentation errors on the Dice score. Meanwhile, HHBSNet 
maintains high specificity (0.9467 ± 0.0001), confirming that the 
model effectively avoids false positives in the large background 
area. Therefore, despite the relatively low Dice value, HHBSNet 
demonstrates superior overall segmentation performance on facial
melasma lesions.

As can be seen from Table 2 and Figure 5, the median-enhanced 
spatial and channel attention module introduced by HHBSNet 
effectively improves the model’s focus on key regions in the 
feature extraction stage. Channel attention focuses on semantically 
significant channel features through global pooling operations, 
while spatial attention strengthens the model’s ability to respond 
to edge blurring and irregular regions with the help of multi-scale 
deep convolution. In addition, the HHBSNet enables the model 
to capture both the local texture details of the lesion boundaries 
and the integrity of the overall lesion morphology by integrating 
the low-level, mid-level and high-level semantic features.  The 
experimental results show that although some traditional 
models (e.g., DeepLabV3 and MALUNET) achieve high 
values  in Recall (90.15% and 88.12%, respectively), their Precision 
is obviously insufficient (72.03% and 72.51%, respectively), and 
there are more false detections. On the other hand, HHBSNet 
maintains a high Recall (88.18%) while significantly improving 
the Precision, indicating that the model significantly enhances the 
specificity while ensuring the sensitivity, and effectively suppresses 
the misidentification of non-lesion regions. Moreover, to assess the 
robustness of performance improvements, we performed paired t-
tests on the MIoU across five repeated runs (see Table 3). HHBSNet 
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FIGURE 8
Comparison of melasma segmentation visualization. (a) Binary mask results showing lesion areas. (b) Lesion boundaries overlaid on the original facial 
images for improved interpretability. Red indicates lesion boundaries, and green denotes facial contours.
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FIGURE 9
Visualization of the confusion matrix of the HHBSNet model on 
the test set.

FIGURE 10
Results of the model’s thermogram visualization of the 
melasma region.

showed statistically significant improvements over all baselines (all 
p < 0.001).

Also, in this study, we tracked and recorded the loss variation 
and segmentation accuracy improvement during model training, 
as shown in Figures 6, 7. Figure 6 presents the loss curves (red and 
orange solid lines) and their smoothing curves (green and brown 
dashed lines) on the training and validation sets. It can be seen that 
the loss drops rapidly from about 0.8 to within 0.2 at the beginning 
of training, then enters a slow decline phase between the 20th and 
80th epochs and stabilizes after about the 100th epoch, eventually 
converging to about 0.07–0.06; the validation set loss closely follows 
the training set loss curve and always remains at a similar level, 
indicating that the model does not show obvious overfitting during 
the whole training process. Figure 6 shows the curve of MIoU 
with epoch during the training process. The model achieves more 
than 50% MIoU in the first 5 epochs, and thereafter, with the 
continuous optimization of the network, the MIoU rises smoothly 

to reach about 70% in the 80th epoch, and further increases to 
about 78%–80% in the 120th-150th epochs, and finally converges. 
The smooth rise of this curve is corroborated by the continuous 
decrease of loss in Figure 7, which fully demonstrates that the 
designed HHBSNet architecture and loss function combination 
can improve the melasma segmentation accuracy stably
and efficiently. 

4.6 Visualization and analysis of 
experimental results

In order to further verify the specific performance of each 
model in the task of facial melasma segmentation, we selected 
three groups of representative case images to demonstrate the 
segmentation results of different methods. Figure 8a shows the 
visualized comparison diagram, where each row corresponds to 
one patient respectively, the first column is the original facial 
image, followed by the segmentation outputs of Unet, Unet++, 
MALUNET, DCSAU-Net, FPN, and HHBSNet proposed in this 
paper in that order. In the segmentation diagram, the red region 
represents the melasma region recognized by the model, green is 
the normal skin region, and black is the background or unlabeled 
region. In addition, we superimposed the lesion area onto the 
original facial image to better display the image content. As
shown in Figure 8b.

From the figures, the following points can be observed: the Unet 
and FPN models have obvious lesion area leakage, especially in 
the areas with blurred boundaries and uneven illumination, some 
melasma areas are not recognized, and the overall segmentation 
results are rough; Unet++ improves in capturing the lesion edges, 
and is able to recognize some of the lesions with a clearer contour, 
but there are still artifacts in the areas with a similar color to skin 
color and a lower contrast ratio. The segmentation accuracy of 
MALUNET is significantly higher than the previous models, and 
the model is able to outline the lesions more stably, but there is 
still the problem of blurring or over-expansion of the boundary 
of some lesion areas; The DCSAU-Net enhances the coherence 
and stability of lesion segmentation. However, in some instances, 
it may exhibit over-segmentation of normal regions, potentially 
leading to inaccurate segmentation outcomes. The model presented 
in this study demonstrates superior performance across various 
comparisons, characterized by smooth edges and distinct structural 
details within the identified melanoma areas. It also maintains high 
consistency and accuracy under varying angles, diverse skin tones, 
and different lighting conditions. Especially in areas with blurred 
boundaries and dense or sparse spots, its prediction results fit 
the real lesions more closely, with almost no obvious omissions
or misjudgments.

In conclusion, the advantages of the proposed model in 
maintaining the structural integrity and accuracy of the lesions are 
further verified from the visual results, which fully demonstrate that 
the model has stronger clinical adaptability in practical application 
scenarios.

And, to further evaluate the fine-grained performance of the 
HHBSNet model in the multi-category skin lesion segmentation 
task, we plotted and analyzed the confusion matrix of the model on 
the test set. Figure 9 presents the confusion matrix of HHBSNet on 
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FIGURE 11
ROC curves for each category. For the six categories in the test set (BACKGROUND, ET, HHB, XB, LF, RF), the One-vs-Rest strategy was used to draw 
ROC curves, with the horizontal axis being the False Positive Rate (FPR) and the vertical axis being the True Positive Rate (TPR). The dotted line below 
the curve indicated the random classification baseline (AUC = 0.5), and the degree of deviation of the curves of each category from the baseline 
intuitively reflected the model differentiation ability.

TABLE 4  Ablation study results on melasma segmentation.

Model MIoU (%) ACC (%) F1 (%) Mean recall (%) Precision (%) Description

Baseline 56.79 91.04 68.90 70.36 67.51 Baseline without modules, basic loss

+MCF 61.05 91.25 72.66 73.14 72.11 Introducing MFA module

+GCSA 72.05 94.70 82.37 88.98 76.68 Introducing GCSA module

FULL 74.38 95.46 84.56 84.43 84.61 Full model with all modules

FocalOnly 75.09 95.58 85.00 85.11 84.89 Only using Focal Loss

Hybrid 79.69 96.68 88.10 88.18 87.80 Hybrid loss, best performance

the test set, providing insight into its discriminative ability across 
different categories. The diagonal dominance indicates that the 
model achieves consistently high classification accuracy, especially 
for the “BACKGROUND” class, where the correct predictions 
far exceed other categories. This confirms HHBSNet’s ability to 
reliably exclude non-lesion regions, which is essential in avoiding 
false positives in clinical practice. For melasma-related subclasses 

(“ET,” “HHB,” “XB,” “LF,” “RF”), the model also demonstrates 
robust performance, with high counts of correct predictions across 
all categories. While some misclassifications are observed—for 
instance, “HHB” partially confused with “LF” or “ET”—these 
errors are attributable to the inherent similarity and boundary 
ambiguity of these lesion patterns. Importantly, the confusion 
matrix reveals that HHBSNet achieves balanced recognition across 
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FIGURE 12
Comparative visualization of ablation experiment results.

major and minor subclasses, even under challenges such as 
category overlap and data imbalance, underscoring its strong
generalization ability.

Moreover, to visualize the feature areas that the model 
may focus on, we visualized the output features of the 
model  in the final stage. Figure 10 visualizes the heatmaps generated 
from the final output features, highlighting the regions that the 
model focuses on during prediction. Most high-response regions 
(in red) are concentrated in clinically relevant areas, such as 
the cheeks and zygomatic bones, which are common sites of 
melasma occurrence. This demonstrates that HHBSNet not only 
achieves accurate segmentation but also aligns with dermatological 
knowledge, thereby enhancing interpretability. The heatmaps reveal 
that the model effectively captures both localized lesions and diffuse 
patterns, maintaining robustness against variations in skin tone and 
illumination.

Together, Figures  9, 10 complement the segmentation 
comparisons in Figure 8 by confirming that HHBSNet 
performs well across lesion categories, maintains consistent 
recognition under complex conditions, and provides clinically 
meaningful visual explanations of its predictions. Meanwhile 
, as can be seen in Figure  11, except for the category of HHB 
(melasma), the AUC (Han et al., 2024) values of the other categories 
are all above 0.90, which shows that the model has a high recognition 
accuracy in the categories of BACKGROUND, ET, XB, LF, RF, etc. 
The AUC of HHB is 0.85, which suggests that the model has a 
certain degree of error in segmenting the area of melasma, which 
is probably related to the fact that melasma is characterized by 
a large number of color distributions, blurred boundaries, and
individual differences. 

4.7 Ablation experiment

For the purpose of evaluating the respective contributions of the 
proposed modules and loss functions for melasma segmentation in our 
HHBSNet framework, we performed a series of ablation experiments. 
The results of the experiments are shown in Table 4 and Figure 12 
below. The baseline model, which excludes any enhancement modules 
and uses the basic loss function, has an average intersection over 
union (MIoU) rate of 56.79%, an F1 score of 68.90%, and an overall 
accuracy of 91.04%. After integrating the MFA module, the MIoU 
increases to 61.05%, indicating that MFA helps to enhance spatial 
features and improve segmentation quality. The GCSA module itself 
shows significant performance improvement, with MIoU increasing 
to 72.05% and F1 score increasing to 82.37%. This demonstrates the 
effectiveness of the GCSA module in capturing global contextual 
relationships, which is essential for dealing with the blurred boundaries 
often seen in melasma lesions. 

After combining the MFA and GCSA modules (FULL model), 
the performance continued to improve, reaching 74.38% for MIoU 
and 84.56% for F1 score. Furthermore, to investigate the impact 
of the loss function, we replaced the standard loss with the Focal 
Loss alone, resulting in an MIoU of 75.09% and an F1-score of 
85.00%, slightly better than the standard loss, which highlights 
the importance of addressing category imbalance in melasma 
segmentation. The best performance was obtained using a hybrid 
loss combining cross-entropy and focal loss (hybrid model) with an 
MIoU of 79.69%, an F1-score of 88.10%, and an accuracy of 96.68%. 
This confirms that module design and loss function selection are 
crucial for improving segmentation results. The experimental results 
clearly demonstrate the complementary advantages of the proposed 
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module and loss designs, validating the robustness and effectiveness 
of our HHBSNet framework. 

5 Conclusion

In this paper, we propose a lightweight deep neural network, 
HHBSNet, specifically designed for melasma segmentation. The 
model enhances feature extraction and lesion delineation through 
innovative modules. In particular, the GCSA module integrates 
channel attention, channel shuffling, and spatial attention to 
strengthen global dependency modeling of lesion areas, while the 
MCF module expands the receptive field without resolution loss 
via multi-rate dilated convolutions, thereby improving contextual 
feature capture. The integration of global average pooling further 
allows the network to fuse global semantics with local structural 
details, leading to more accurate recognition of blurred boundaries 
and irregular lesion regions. To alleviate class imbalance, we jointly 
adopt Cross-Entropy Loss and Focal Loss, which stabilizes training 
and improves recognition of minority classes.

Extensive experiments conducted on a clinical melasma dataset 
demonstrate that HHBSNet achieves state-of-the-art performance. 
Compared with competitive baselines, HHBSNet consistently attains 
the best scores across key metrics, with MIoU of 78.89% ± 0.16, ACC of 
96.59% ± 0.03, Precision of 87.77% ± 0.13, Recall of 87.81% ± 0.08, and 
F1-score of 87.78% ± 0.09. These improvements are not only significant 
in magnitude but also stable across five independent runs, as confirmed 
by the small standard deviations. Notably, HHBSNet shows balanced 
precision and recall, ensuring accurate lesion boundary detection 
without compromising sensitivity. 

Visualization results further confirm that HHBSNet is effective 
in capturing complex lesion patterns, including diffuse pigmentation 
and irregular boundaries, under varying illumination and skin 
tones. The combination of superior accuracy, robustness, and 
stability underscores the model’s clinical adaptability and real-world 
deployment potential. Future work will explore further refinements 
of HHBSNet’s architecture to extend its applicability to other 
dermatological segmentation tasks and support computer-aided 
diagnosis. In addition, we plan to validate the model on external 
public datasets (e.g., ISIC, Derm7pt) and newly collected multi-
center clinical datasets, which will further assess its generalizability 
across diverse populations and imaging conditions.
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