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Cardiovascular diseases (CVDs) remain the leading cause of death worldwide, 
and early detection is critical for timely intervention and improved patient 
outcomes. However, current prediction tools are often limited by noisy, 
heterogeneous patient data and modest accuracy. To address this challenge, 
we propose a stacked ensemble framework that integrates: TabNet, a deep 
learning model that can identify the most relevant clinical features, and XGBoost, 
a powerful tree-based method known for its robustness. Their outputs are 
integrated using a Logistic Regression (LR) or Support Vector Machine (SVM) 
as meta learner, creating a system that balances accuracy and interpretability. 
Testing on Kaggle and UCI CVD datasets demonstrate that our ensemble 
consistently outperforms baseline models across accuracy, F1-score, precision, 
recall, ROC-AUC, PR-AUC, and matthews correlation coefficient (MCC). These 
results suggest that combining deep learning with tree-based models offers a 
practical way to improve risk prediction, supporting clinicians in making more 
reliable decisions for early CVD detection.
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 1 Introduction

Heart disease remains one of the leading health challenges worldwide. According to 
the World Health Organization, approximately 17.9 million people die annually from 
cardiovascular diseases (CVDs) (Mandava et al., 2024; Akhila et al., 2024). Several 
studies have reported an increasing incidence of heart disease over the years; therefore, 
early and accurate detection is of paramount importance (Seoni et al., 2024). The 
availability of medical datasets, together with advances in machine learning (ML), has 
created opportunities to predict and detect a wide range of diseases, including migraine 
Khan et al. (2024), depression detection Kumar et al. (2025b), Alzheimer’s Disease 
Detection Mehmood et al. (2025) and cardiovascular disease (Tekin and Kaya, 2024; 
Alghamdi et al., 2024; Szugye et al., 2025). Deep learning models have also shown excellent 
performance in fields such as speech recognition Amjad et al. (2021a), Amjad et al. (2021b), 
Amjad et al. (2022b), Amjad et al. (2022a), natural language processing Khan et al. (2021), 
Khan et al. (2022b), Ashraf et al. (2022), Khan et al. (2022a), and medical informatics 
(Rahman et al., 2024; Bhavani et al., 2024).

In disease prediction, both traditional ML and deep learning models have demonstrated 
strong performance across multiple datasets. ML models have been successfully applied
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in drug discovery, migraine classification, medical diagnosis, 
genomics, prognosis, proteomics, and CVD prediction Niwa et al. 
(2004). These algorithms have produced reliable results on 
diverse data sources, including electrocardiogram (ECG) signals, 
demographic information, clinical records, and imaging datasets 
(Adke et al., 2023; Khan et al., 2025). Despite these successes, 
traditional ML methods face several challenges when applied to 
CVD prediction. A key difficulty lies in handling the heterogeneous 
and complex nature of medical datasets, which may vary in 
size and distribution, include missing values, contain noise, 
and sometimes present high dimensionality. These issues can 
reduce the generalizability and performance of conventional 
ML algorithms (Abbas et al., 2023; Kumar et al., 2025a). 
Selecting the most suitable model for a given task depends on 
several factors, such as dataset size and quality, interpretability 
requirements, algorithm complexity, accuracy, and computational 
cost (Abbas et al., 2023; Khan et al., 2025).

Deep neural networks (DNNs) have already demonstrated 
strong performance in image and audio classification tasks, while 
recurrent neural networks (RNNs) and transformer-based models 
have excelled in natural language processing. These canonical 
architectures are widely used for prediction and classification 
tasks in diverse domains. However, tabular data—a prevalent 
format in many real-world applications—has not benefited from 
comparable advances. Tabular datasets typically contain both 
numerical and categorical features, and they remain a cornerstone of 
AI-driven decision-making. Nevertheless, deep learning approaches 
for tabular data require further investigation. In contrast, tree-based 
ML models such as decision trees (DTs) continue to dominate many 
tabular data applications. These models offer several advantages: 
(1) DTs capture decision boundaries efficiently when they align 
with hyperplane structures commonly found in tabular data, and 
(2) DTs are computationally efficient and fast to train. Meanwhile, 
approaches such as multilayer perceptrons (MLPs) are often 
overparameterized, and their lack of inductive bias reduces their 
ability to capture underlying tabular data patterns. Consequently, 
exploring deep learning methods tailored to tabular data remains 
an important research direction.

Existing studies have reported promising but constrained 
outcomes. For instance, Alghamdi et al. (2024) combined an auto-
encoder with DenseNet; however, DenseNet is primarily pre-trained 
for image and vision tasks, making it less suitable for structured 
tabular data. Similarly, Bilal et al. (2024) proposed a hybrid 
CNN–LSTM framework for CVD detection and further introduced 
an ensemble model (ETCXGB) by combining Extra Tree Classifier 
(ETC) with XGBoost (XGB). While these approaches demonstrated 
acceptable predictive performance, they remain limited in scope. In 
contrast, our proposed model leverages TabNet—a deep learning 
architecture specifically designed for tabular data—integrated with 
XGBoost within a stacked ensemble framework. This design not only 
exploits TabNet’s sparse attention mechanism for effective feature 
selection and interpretability but also enhances robustness through 
XGBoost’s gradient boosting capabilities. Moreover, unlike prior 
work, our model was rigorously evaluated on two large and diverse 
benchmark datasets (Kaggle and UCI), thereby providing stronger 
evidence of generalizability and clinical applicability.

In this study, we aim to investigate the performance of a 
stacked ensemble model that integrates TabNet with traditional 

machine learning algorithms for CVD prediction. We hypothesize 
that while algorithms such as XGBoost perform strongly on small-
scale tabular datasets, their effectiveness diminishes on larger and 
more complex datasets. In contrast, TabNet, a transformer-like 
architecture specifically designed for tabular data, provides robust 
classification and prediction capabilities. By integrating TabNet 
with XGBoost in a stacked ensemble, we seek to leverage their 
complementary strengths to enhance predictive performance and 
generalization.

Specifically, TabNet employs a sparse attention mechanism and 
feature selection strategy to identify complex patterns in data, while 
XGBoost remains highly effective for structured, low-to medium-
dimensional datasets. However, XGBoost can struggle with very 
high-dimensional or noisy data. By combining these models within 
a stacked ensemble learning framework—where their outputs are 
aggregated by Logistic Regression (LR) or Support Vector Machine 
(SVM) as a meta-learner—we aim to improve accuracy, reduce 
overfitting, and mitigate the limitations of individual models.

The contributions of this study are summarized as follows: 

• We propose a hybrid stacked ensemble framework for 
cardiovascular disease prediction that combines TabNet, a 
deep neural network designed for structured tabular data, with 
XGBoost, a powerful tree-based ensemble learning algorithm. 
LR or SVM models are employed as meta-learners within the 
ensemble framework to enhance the predictive performance of 
the proposed model.
• We conducted extensive experiments on two publicly available 

datasets—the Kaggle CVD dataset and the UCI CVD 
dataset. The results demonstrated that the proposed model 
consistently outperformed baseline models across multiple 
performance metrics.

The remainder of this paper is organized as follows: Section 2 
reviews related literature on CVD prediction and ensemble learning. 
Section 3 describes the proposed methodology. Section 4 presents 
the experimental setup, results, and analysis. Finally, Section 5 
concludes the paper and outlines future research directions. 

2 Background and literature review

This chapter presents a comprehensive examination of existing 
scholarly contributions pertinent to heart disease, aligning with 
the thematic focus of this study. A literature review serves as a 
foundational element in academic research, as it synthesizes prior 
investigations, highlights prevailing trends, and identifies critical 
knowledge gaps. By systematically evaluating prior studies, this 
section not only contextualizes the current research within the 
broader academic discourse but also underscores its originality 
and relevance in addressing unresolved challenges in cardiovascular 
disease prediction.

One of the primary symptoms associated with heart disease 
is angina, commonly experienced as chest pain. This discomfort 
may manifest as pressure, tightness, throbbing, heaviness, or a 
squeezing sensation. Beyond the chest, cardiac-related pain can 
also extend to the shoulders, arms, neck, throat, jaw, or upper 
back. Notably, women above the age of 50 are statistically more 
prone to heart disease compared to men. On the other hand, 
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males are often affected by such conditions at a comparatively 
younger age (Hasan and Bao, 2021). Other frequently reported 
symptoms of heart disease include excessive sweating, difficulty 
breathing, chest discomfort, dizziness, fatigue, a rapid heartbeat, 
nausea, shoulder or arm pain, chest pressure, vomiting, and in some 
cases, intense anxiety or irregular heart rhythms.

Cardiovascular disease (CVD) encompasses a spectrum 
of disorders impacting various components of the heart, 
including its musculature, valves, rhythm, and vascular structure. 
Prominent conditions within this category include coronary 
artery disease (CAD), heart failure, arrhythmias, and valvular 
dysfunctions. Clinical manifestations may range from chest 
discomfort and breathlessness to fatigue and irregular heartbeats. 
Globally, CVD remains the foremost cause of mortality, 
significantly impairing individuals’ quality of life when not 
adequately managed (Bhatt et al., 2023).

Coronary artery disease, alternatively referred to as ischemic 
heart disease or myocardial infarction, is among the most 
prevalent and critical cardiovascular conditions. Its diagnosis 
and therapeutic management present considerable challenges, 
particularly in low- and middle-income countries. These obstacles 
stem from insufficient access to advanced diagnostic tools, as well as 
a shortage of trained healthcare personnel, which collectively hinder 
accurate prognostication and timely intervention (Liza et al., 2025).

Coronary heart disease (CHD) adversely affects cardiac 
efficiency by obstructing arterial blood flow, thereby diminishing 
the oxygen and nutrient supply to bodily tissues. This impairment 
typically results from atherosclerosis—the accumulation of lipid-
rich plaques and calcium within arterial walls. The World Health 
Organization identifies cardiovascular ailments, particularly heart 
attacks and strokes, as the primary contributors to global mortality. 
Risk determinants for CHD encompass variables such as age, sex, 
genetic predisposition, obesity, diabetes, psychological stress, and 
poor dietary patterns (Saini, 2023).

The heart plays a pivotal role in maintaining systemic 
circulation; inadequate perfusion can compromise vital organs like 
the brain, and complete cardiac failure inevitably results in death. 
Heart disease, broadly defined, includes any pathology affecting the 
cardiac muscles and vascular network. Coronary artery disease, 
a predominant subtype of cardiovascular disease, accounts for 
approximately 20% of global deaths, primarily due to myocardial 
infarctions and cerebrovascular incidents?

Machine learning (ML) has emerged as a transformative 
approach for extracting actionable insights from huge and complex 
datasets. It utilizes predictive algorithms to predict health outcomes 
and descriptive models to uncover latent patterns within data. A 
variety of ML techniques—such as MLP, Decision Tree (DT), K-
Nearest Neighbor (KNN), Support Vector Machine (SVM), and 
Naïve Bayes (NB)—have demonstrated considerable efficacy in 
interpreting large-scale medical data (Al-Alshaikh et al., 2024).

In study Shah et al. (2020) introduced a novel ML-based 
framework incorporating quantum neural networks for the early 
detection of cardiovascular conditions. The model, trained on data 
from 689 symptomatic patients and validated using the Framingham 
dataset, significantly outperformed the traditional Framingham 
Risk Score (FRS), achieving an accuracy of 98.57% compared to 
the FRS’s 19.22%. This substantial improvement highlights the 

model’s potential to aid clinicians in achieving precise diagnoses and 
developing effective treatment strategies (Narin et al., 2016).

Similarly, Bhatt et al. (2023) applied a range of supervised 
learning algorithms to the Cleveland Heart Disease dataset, 
comprising 303 records and 17 attributes. Among the tested models, 
KNN achieved the highest predictive accuracy at 90.8%, reinforcing 
the value of algorithm selection in optimizing diagnostic outcomes.

In another investigation by Shah et al. (2020), ML methodologies 
such as logistic regression, univariate feature selection, and principal 
component analysis (PCA) were utilized to evaluate cardiovascular 
risk in individuals diagnosed with metabolic-associated fatty liver 
disease (MAFLD). Elevated cholesterol levels, arterial plaque 
accumulation, and diabetes duration were identified as key 
predictors. The model effectively categorized high-risk (85.11%) and 
low-risk (79.17%) individuals, achieving an area under the curve 
(AUC) score of 0.87—demonstrating robust classification capability 
based on routine clinical data.

In study Alotaibi (2019) assessed the predictive performance of 
various ML classifiers, including DT, Logistic Regression, Random 
Forest, NB, and SVM, using patient data from the Cleveland 
Clinic Foundation. Through a 10-fold cross-validation approach, 
the decision tree model achieved the highest accuracy at 93.19%, 
closely followed by SVM at 92.30%, indicating both algorithms’ 
effectiveness in forecasting heart failure outcomes.

In a comparative study, Hasan and Bao (2021) evaluated the 
efficiency of feature selection techniques—namely, filter, wrapper, 
and embedded methods—for enhancing CVD prediction. By 
applying a Boolean-based framework to identify optimal feature 
subsets, they benchmarked several classifiers, including Random 
Forest, SVM, KNN, NB, and XGBoost. The combination of XGBoost 
with the wrapper method achieved superior performance, recording 
an accuracy of 73.74%, ahead of SVM (73.18%) and ANN (73.20%).

In study Cao et al. (2025) highlighted the limitations of 
traditional ML models like DT, SVM, and logistic regression, 
citing reduced accuracy due to redundant features and a lack 
of hyperparameter optimization. To address this, they integrated 
Pearson correlation with feature importance measures for attribute 
selection, followed by enhanced particle swarm optimization for 
XGBoost tuning. Their optimized model, based on 11 critical 
features, achieved an accuracy of 74.7%, precision of 76.3%, and an 
AUC of 80.8%.

A recurrent challenge in existing studies is the reliance on 
relatively small datasets, which often results in overfitting and 
restricted generalizability. Accordingly, this study employs a large-
scale dataset of 70,000 patient records with 11 features to improve 
model robustness and minimize overfitting. A comprehensive 
comparative analysis of heart disease prediction models utilizing 
large-scale data is detailed in Table 1, further substantiating the 
efficacy of data-driven ML methodologies in clinical practice.

3 Datasets and proposed 
methodology

This section presents the datasets used in the study, namely 
the UCI CVD dataset and the Kaggle CVD dataset. The latter part 
of the section outlines the preliminaries and details the proposed 
methodology for cardiovascular disease (CVD) detection. 
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TABLE 1  Relevant research studies on heart disease prediction.

Study Dataset Feature 
selection 
method

Classifiers used Accuracy (%) Limitations

Cao et al. (2025) Cardiovascular disease 
dataset (UCI)

Pearson Correlation + 
Feature Importance 
Ranking

Improved PSO-XGBoost 
(MFS-DLPSO-XGBoost)

74.70 accuracy, 76.30 
precision, 80.80 AUC

Dataset size not 
specified; benefit limited 
to selected features and 
model tuning

Bilal et al. (2024) Heart Disease dataset 
from UCI (Cleveland, 
Hungarian, Switzerland, 
Long Beach)

Chi-square test, 
Recursive Feature 
Elimination (RFE)

Logistic Regression, 
SVM, KNN, Random 
Forest, XGBoost

Up to 89.60 (XGBoost) Imbalance sensitivity; 
performance varies 
across datasets

Zhang et al. (2023) StatLog UCI, Z-Alizadeh 
Sani, and CVD datasets

Forward Selection, 
Backward Elimination

AdaBoost, SVM, 
Decision Tree, Random 
Forest (Ensemble)

91.00 (Z-Alizadeh), 
83.00 (UCI), 73.00 
(CVD)

Varying accuracy across 
datasets; high 
computational 
complexity

Vayadande et al. (2022) Cardiovascular Disease 
Dataset (70,000 records)

Pearson Correlation and 
Feature Importance 
Ranking

Ensemble of ML 
algorithms

88.70 accuracy, 93.00 
ROC-AUC

May not generalize 
across datasets; complex 
ensemble approach

Garg et al. (2021) Cleveland Heart Disease 
dataset

All available features KNN, Random Forest KNN: 86.89, RF: 81.97 Small dataset (303 
records); limited 
generalizability

Mhawi et al. (2022) UCI dataset Filter-based feature 
selection

KNN, RF, SVM, NB, LR RF and NB 
outperformed others

Complex ensemble 
methods; resource 
intensive

Panda et al. (2019) Kaggle dataset Relief, MRMR, LASSO LR, KNN, SVM, NB, DT, 
RF

LR achieved 89.00 
accuracy

ML may introduce 
bias/errors; 
interpretability issues

CatBoost Developers 
(2021)

Kaggle None CatBoost 78.00 Limited interpretability

Somepalli et al. (2021) Kaggle None SAINT 79.00 Computationally 
expensive, limited 
clinical evaluation

3.1 Datasets

3.1.1 Kaggle cardiovascular disease dataset
The Kaggle CVD dataset comprises 70,000 patient records, 

each containing 16 feature attributes and a binary target variable 
indicating the presence or absence of cardiovascular disease (CVD). 
The feature attributes include patient ID, age, gender, height, weight, 
smoking status, diastolic and systolic blood pressure, cholesterol 
level, glucose level, and physical activity. The target variable 
represents whether the individual has been diagnosed with CVD. 
Feature attributes and sample instances from the cardiovascular 
disease dataset are presented in Table 2. 

3.1.2 UCI cardiovascular disease dataset
The UCI CVD dataset is publicly available on UCI machine 

learning repository. It contains 920 instances. Out of them 561 
belong to the positive class and remaining are from the negative 
class. The data is collected from 4 various sources, which are 
Hungary, Cleveland, VA Long Beach, and Switzerland. The summary 
of UCI dataset is presented in the Table 3. 

3.2 Proposed methodology

3.2.1 Data preprocessing
For both the UCI and Kaggle datasets, a series of preprocessing 

steps were applied to ensure data quality, reduce noise, and 
prevent information leakage during training and evaluation. 
Missing values were addressed using the following strategies: 
numerical features were imputed with the mean of the respective 
feature, while categorical features were imputed with the mode. 
To address potential outliers, extreme values were detected 
using the interquartile range (IQR) method and capped at the 
1.5 IQR threshold, thereby reducing their undue influence on 
model training.

Numerical features were normalized using Min–Max scaling 
to the range [0,1] to ensure consistent feature magnitudes, as 
defined in Equation 1:

x′ =
x− xmin

xmax − xmin
(1)
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TABLE 2  Feature attributes and two sample instances from the 
cardiovascular disease dataset.

Category Feature Instance 1 Instance 2

Demographic

Age (days) 18,393 20,228

Gender (1 = F, 2 = M) 2 1

Height (cm) 168 156

Weight (kg) 62.0 85.0

Clinical

SBP (mmHg) 120 140

DBP (mmHg) 80 90

Cholesterol (1–3) 1 3

Glucose (1–3) 1 2

Lifestyle

Smoking (0/1) 0 1

Alcohol (0/1) 0 0

Physical activity (0/1) 1 0

Target (CVD) (0/1) 0 1

where x is the original feature value, and xmin and xmax denote 
the feature-wise minimum and maximum, respectively. Categorical 
features (e.g., sex, chest pain type) were encoded via one-hot 
encoding to make them suitable for machine learning algorithms.

Feature selection was conducted using Pearson correlation 
and mutual information scores to eliminate redundant attributes. 
Additionally, TabNet’s sparse attention masks and XGBoost’s feature 
importance scores were leveraged to guide model-driven feature 
selection.

For the UCI dataset, which is composed of four subsets 
(Cleveland, Hungarian, Switzerland, and Long Beach), 
harmonization was required before analysis. First, we aligned 
the feature spaces across subsets by retaining only the attributes 
common to all four sources. Variable names and encodings were 
standardized (e.g., categorical encodings for chest pain type and 
thalassemia were unified, and continuous variables such as age and 
serum cholesterol were rescaled to consistent units). Inconsistent 
or dataset-specific attributes were excluded to ensure comparability 
across subsets. After harmonization, the four subsets were merged 
into a single dataset.

Since the merged UCI dataset exhibited moderate class 
imbalance (with a higher proportion of patients without CVD), we 
applied class weighting during training to mitigate bias toward the 
majority class. This approach allowed the learning algorithms to 
place proportionally greater emphasis on minority-class instances 
(i.e., patients with CVD), thereby improving sensitivity in detecting 
positive cases without requiring oversampling or synthetic data 
generation.

For the Both datasets, the data were randomly partitioned into 
80% training, and 20% test sets using stratified sampling to preserve 
class distributions. To prevent data leakage, imputation and scaling 

parameters were estimated on the training set only and subsequently 
applied to test set.

The choice of preprocessing methods was made deliberately to 
balance simplicity, effectiveness, and compatibility with the learning 
algorithms. For missing values, mean imputation (numerical) and 
mode imputation (categorical) were applied because the datasets 
contained relatively few missing entries and most numerical features 
were approximately symmetric, making mean a reliable estimator; 
more complex imputation strategies (e.g., kNN or MICE) were 
avoided to prevent computational overhead and data leakage. 
Numerical features were normalized using Min–Max scaling to the 
range [0,1], which ensures comparability across features regardless 
of their original units and avoids assumptions of normality required 
by z-score normalization; this choice was also well aligned with 
the needs of both XGBoost and TabNet. Categorical features 
were transformed via one-hot encoding, as these variables lacked 
intrinsic order, and ordinal encoding would have introduced 
spurious relationships among categories. Overall, this preprocessing 
pipeline provided a consistent, interpretable, and model-compatible 
representation of the data. 

3.2.2 Stacked ensemble learning
After the essential preprocessing steps, the main architecture 

of the proposed model is presented in Figure 1. The proposed 
model is based on a stacking ensemble approach, which has been 
shown to outperform individual learning models in classification 
and prediction tasks. This is primarily due to the integration of 
multiple base learners, where the weaknesses of one model can be 
compensated by the strengths of others, thereby enhancing overall 
predictive accuracy and robustness (Mienye and Sun, 2022).

Stacking is an approach where n number of ML algorithms can 
be trained independently and stacked together layer-by-layer. After 
training, the output of each model is needed for the next layer, where 
another ML model works as a meta-learner, used to predict the 
final output based on the previous layer’s output. In our proposed 
model, after preprocessing steps, all input features are learned 
from two different complementary approaches: (1) the TabNet 
deep learning model, specifically designed for tabular data types, 
and (2) the XGBoost machine learning tree-based model, which 
shows exceptional performance for tabular data types in previous 
studies. The performances of base stacked model is measured using 
standard metrics such as precision, recall, F1-score, accuracy, and 
confusion matrix. The results from the TabNet and XGBoost models 
are ensembles using the stacking approach with meta learners. 
We compare SVM and LR traditional models as meta learners, 
the performance is again measured using various hyper-parameter 
tuning against precision, recall, F1 score, and accuracy metrics. 
Logistic regression is always considered as an effective baseline 
model for binary classification because of its interpretability and 
ability to model the linear relationship in the data. 

3.2.3 TabNet architecture
Our proposed model is developed using the TabNet Arik and 

Pfister (2021) transformer model and the traditional XGBoost 
Chen and Guestrin (2016) model. Figure 2 represents the TabNet 
encoder-decoder architecture. The TabNet encoder comprises a 
feature masking mechanism, an attentive transformer, and a feature 
transformer. The transformed representation is bifurcated: one part 
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FIGURE 1
Overview of the proposed cardiovascular disease prediction framework. The pipeline begins with preprocessing, followed by two base learners: 
TabNet, which leverages sparse attention for feature selection, and XGBoost, which provides gradient-boosted decision trees for structured data. Their 
prediction outputs are combined through a meta-learner that produces the final CVD prediction.

is directed toward the model’s final output, while the remaining 
portion is forwarded to the attentive transformer for subsequent 
processing. At each stage, the feature selection mask offers 
interpretable insights into the model’s decision-making behavior. By 
aggregating these masks across multiple steps, the global importance 
of features can be effectively determined. The TabNet decoder 
employs a feature transformer block at each stage of the decoding 
process to reconstruct the input representation.

The attentive transformer module explained in Figure 3, 
dynamically selects the most relevant features at each decision step, 
thereby improving both interpretability and learning efficiency. It 
employs a sparse attention mechanism that leverages the output 
from the previous decision step to generate a feature selection mask. 
This mask guides the model to focus on the most informative subset 
of features at each stage, allowing different steps to attend to different 
aspects of the input data. To promote sparsity in feature selection, 
the attention scores are computed using a combination of softmax 
and sparsemax functions. This targeted focus not only improves the 
model’s predictive performance but also provides clear insights into 
which features influence decisions at each step.

The feature transformer block represented in Figure 4 is a crucial 
component of the TabNet model, designed to extract rich, high-level 
representations from tabular data. It captures complex, non-linear 
feature interactions by integrating several fully connected layers 
with batch normalization and Gated Linear Unit (GLU) activation 

functions. Residual connections are also employed to enhance 
training stability and preserve information from earlier layers. 
By processing input features before passing them to subsequent 
components, such as the attentive transformer, this block enables 
the model to effectively extract and refine relevant patterns at each 
decision step.

The mathematical formulation of the TabNet model for CVD 
detection is presented as follows. Let X ∈ ℝn×d denote the input 
data matrix, where n is the number of patient samples and d is 
the number of input features. Each patient record is represented as 
a feature vector x(i) ∈ ℝd. The TabNet architecture processes each 
input through a sequence of T decision steps, leveraging attentive 
feature selection and sparse feature masks. The final output is a 
prediction vector ŷ ∈ ℝn, indicating the probability of CVD presence 
for each sample in a binary classification setting.

The feature transformer network is responsible for processing 
the input feature vector at each decision level t to find the meaningful 
patterns which are considered very important for CVD prediction. 
The following Equation 2 is the mathematical representation of 
this operation:

ft = Feature Transformer(ht) (2)

In the TabNet model, to increase training stability, the 
feature transformer block consists of gated linear units, batch 
normalization, and fully connected (FC) layers, all of which are 
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FIGURE 2
TabNet encoder–decoder architecture (adapted from Arik and Pfister (2021)). The encoder applies a sequential attention mechanism to select the most 
informative clinical features, while the decoder reconstructs the original inputs to enforce sparsity and interpretability. This design enables TabNet to 
focus on clinically relevant variables for cardiovascular disease (CVD) prediction while maintaining transparency in feature usage.

FIGURE 3
Attentive transformer block within the TabNet network 
(adapted from Arik and Pfister (2021)). This block applies feature-wise 
attention weights to highlight the most relevant patient attributes (e.g., 
age, blood pressure, cholesterol) at each decision step. The 
mechanism improves interpretability by showing which variables drive 
predictions while enhancing predictive performance.

connected with residual connections, aim to improve training 
stability. The mathematical equations of these components are 
explained below in Equations 3, 4.

GLU (z) = z1 ⊙ σ (z2) , where z = [z1,z2] (3)

f(l)t = f
(l)
t−1 +GLU(BN(Wlft−1)) (4)

The attentive transformer block is responsible to generate a 
sparse feature selection mask, which relies on the previous attention 
pt−1 and input X as defined in Equation 5:

at = Sparsemax(Wa ⋅BN(pt−1 ⊙X)) (5)

The Sparsemax function defined in Equation 6 is utilized to 
ensure the sparsity in the attention technique.

Sparsemax (z) = argminp∈Δd−1 ‖p− z‖2 (6)

The attention mechanism generates the weighted feature 
representation according to Equation 7

ht = at ⊙X (7)
 

3.3 Prediction aggregation and output

As shown in Equations 8, 9, each step generates an intermediate 
prediction, and the final prediction is computed as the sum of all 
step outputs:

yt =Wyft (8)

ŷ =
T

∑
t=1

yt (9)

To reduce feature reuse across decision steps, the prior is 
updated, as shown in the following Equation 10:

pt = pt−1 ⊙ (γ− at) , γ > 1 (10)

The binary cross-entropy loss (Equation 11) is used for binary 
CVD classification, while the focal loss (Equation 12) is adopted in 
imbalanced cases to emphasize difficult samples.

LBCE = −
1
n

n

∑
i=1
[y(i) log ŷ(i) + (1− y(i)) log(1− ŷ(i))] (11)
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FIGURE 4
Feature transformer block of the TabNet network (adapted from Arik and Pfister (2021)). This module applies nonlinear transformations and batch 
normalization to the input features, enabling the model to capture complex interactions among clinical variables. The block serves as the core 
representation unit, ensuring that both low-level and high-level patient information are effectively utilized in CVD risk prediction.

LFocal = −
1
n

n

∑
i=1

α(1− ŷ(i))γy(i) log(ŷ(i)) (12)

Where α is a balancing factor, and γ is the focusing parameter. 

3.4 Algorithm and mathematical 
formulation of the proposed model

The mathematical framework of the proposed model is outlined 
below. Consider the dataset represented as in Equation 13. The 
procedural workflow of the proposed model is detailed in Algorithm 1: 

D = {(xi,yi)}
N
i=1, xi ∈ ℝ

d, yi ∈ {0,1} , (13)

where xidenotes the feature vector and yi ∈ {0,1} represents the 
corresponding binary class label, indicating the presence (yi = 1) or 
absence (yi = 0) of CVD. Suppose f1(x) represents the prediction 
of the TabNet base learner and f2(x) represents the XGBoost base 
learner model, as expressed in Equation 14.

f1 (x) = TabNet (x;θ1) , f2 (x) = XGBoost (x;θ2) , (14)

where θ1and θ2 are the trainable parameters for the TabNet and 
XGBoost base learner models, respectively. Then, the prediction 
outputs from the base learners are concatenated to construct the 
input feature vector for the meta-learner, as defined in Equation 15.

z (x) = [

[

f1 (x)

f2 (x)
]

]
∈ ℝ2. (15)

The final output from the LR meta-learner can be calculated 
using the following Equation 16.

ŷ = g (z (x)) = σ(w⊤z (x) + b) , (16)

where w ∈ ℝ2is the weight vector, b ∈ ℝ is the bias term, and 
σ(t) = 1

1+e−t
 is the sigmoid activation function. Finally, the 

predicted CVD class is determined using a threshold function, 
as expressed in Equation 17.

̃y =
{
{
{

1, if ŷ ≥ 0.5

0, otherwise
(17)

Require: Kaggle CVD dataset and UCI CVD dataset
Ensure: Prediction of cardiovascular disease (CVD)
 1: Preprocess both datasets (handle missing 

values, normalize features, etc.)
 2: Split each dataset into training and 

testing sets
 3: Train Base Learners:
 4:  TabNet Model:
 5:   Set decision and attention dimensions: nd =

na = 32

 6:   Use optimizer: Adam, epochs = 100, 

batch size = 256
 7:   Train TabNet on the training set
 8:  XGBoost Model:

 9:   Set learning rate = 0.01, max depth = 5
 10:   Train XGBoost on the training set
 11: Generate base model predictions on training 

data (out-of-fold)

 12: Train Meta Learner:
 13:  Use predictions from TabNet and XGBoost as 

input features.
 14:  Train Logistic Regression on these features
 15: Final Prediction:

 16:  For the test data, generate base 

learner outputs.
 17:  Use the meta learner (Logistic Regression) 

to make the final prediction

 18: return Final CVD predictions 

Algorithm 1. Proposed Stacked Ensemble Model for CVD Detection.

The meta-learner (LR) is trained by minimizing the binary cross-
entropy loss function using the following mathematical Equation 18.

L (w,b) = − 1
N

N

∑
i=1
[yi log ŷi + (1− yi) log(1− ŷi)] , (18)

where ŷi = g(z(xi)).
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The proposed ensemble combines TabNet and XGBoost as 
base learners. Their outputs are aggregated using a meta-learner 
to improve predictive performance. To aggregate the predictions 
of the base learners, we evaluated both Logistic Regression 
(LR) and Support Vector Machine (SVM) as meta-learners. LR 
provides probabilistic outputs and interpretable weights, making it 
suitable for threshold-based clinical decisions, while SVM captures 
complementary decision boundaries through its margin-based 
optimization. Testing both meta-learners allowed us to assess the 
ensemble’s robustness and generalizability. Results showed that both 
achieved strong performance, with LR slightly better calibrated 
for probability-based metrics and SVM providing similar accuracy 
and F1-score, highlighting the flexibility of the proposed stacked 
ensemble framework in leveraging different aggregation strategies.

Although the proposed stacked ensemble introduces additional 
computational overhead compared to single-model approaches, its 
complexity remains tractable for modern hardware. Training was 
performed on an NVIDIA RTX 4090 GPU with 24 GB VRAM and 
an Intel i9 processor (64 GB RAM). On average, TabNet required 
approximately 2.3 h for convergence on the Kaggle dataset and 1.1 h 
on the UCI dataset using early stopping and batch-wise learning. 
The meta-learner (Logistic Regression) training time was negligible 
(under 2 min). The overall pipeline exhibits a computational 
complexity of O(n× ( f ⋅ d)), where n denotes the number of 
instances, f the number of features, and d the ensemble depth 
(number of base learners). Despite the slightly increased training 
time, the stacked framework achieves a substantial improvement in 
predictive performance, making the trade-off between accuracy and 
computational cost justified for clinical applications. 

4 Experiments and results

Table 4 represents the Hyper-parameters that we applied during 
the experiments.

4.1 Hyper-parameter tuning

Table 4 shows the final hyper-parameter values used for the 
base learners in the stacked ensemble. To select these values, we 
performed systematic grid search for both base learners and meta-
learners. The optimal parameters were chosen based on the highest 
mean Receiver Operating Characteristic–Area Under the Curve 
(ROC-AUC) across 10-fold stratified cross-validation.

For TabNet, in addition to the hyperparameter search ranges 
reported in Table 4, several regularization strategies were applied 
to ensure reproducibility and prevent overfitting. Specifically, L2 
regularization was used on the weights with a coefficient of 1e−5, 
and a dropout rate of 0.2 was applied to the fully connected layers. 
Batch normalization was incorporated after each block to stabilize 
training. Early stopping with a patience of 20 epochs was employed 
based on validation loss to avoid overtraining.

To prevent data leakage and ensure unbiased evaluation, we 
employed stratified 10-fold cross-validation. For each fold, the 
base learners (TabNet and XGBoost) were trained on 9 folds, 
and predictions on the held-out fold were recorded as out-of-
fold predictions. These predictions were used to train the Logistic 

Regression meta-learner. The test fold remained unseen by the meta-
learner during training. We used a fixed random seed of 42 to 
ensure reproducibility. All reported metrics (accuracy, F1-score, 
ROC-AUC, Matthews Correlation Coefficient (MCC)) are the mean 
± standard deviation across the 10 folds.

The Kaggle dataset is approximately balanced (50/50), whereas the 
UCI dataset exhibits moderate class imbalance (≈61/39). To ensure a 
robust evaluation, we report multiple performance metrics: accuracy, 
F1-score, precision, recall, ROC-AUC, Precision–Recall Area Under 
the Curve (PR-AUC), and MCC. Metrics such as MCC and PR-AUC 
are less affected by class imbalance and therefore provide a more 
reliable assessment of model performance, particularly for the minority 
class. We did not apply re-sampling to the UCI dataset to preserve its 
original distribution, and stratified 10-fold cross-validation was used 
to maintain class proportions in each fold. 

Tables 5, 6 present a comparative evaluation of several machine 
learning and deep learning models, as well as the proposed stacked 
ensemble model, on the Kaggle and UCI CVD datasets, respectively. 
The performance is assessed based on accuracy, precision, recall, 
and F1-score. 

4.2 Performance on Kaggle CVD dataset

As shown in Table 5, the proposed model, which combined 
TabNet and XGBoost with a Support Vector Machine (SVM) as 
the meta-learner, achieved the highest accuracy of 80.70% and an 
F1-score of 77.52%. This performance significantly outperformed 
all individual base learners. Among the standalone models, TabNet 
yielded the best results with 77.40% accuracy and an F1-score of 
76.82%, followed by XGBoost.

Traditional models such as Logistic Regression (LR) and SVM 
performed relatively poorly, with accuracies of 71.00% and 70.00% 
and F1-scores of 69.90% and 68.39%, respectively. These results 
highlight their limitations in capturing complex patterns in tabular 
clinical data.

The effectiveness of the ensemble strategy was further 
demonstrated by the proposed model using LR as the meta-learner, 
which also showed superior performance (accuracy: 80.20%, F1-
score: 78.42%) compared to individual learners. Overall, these findings 
indicate that integrating diverse model types mitigates the weaknesses 
of individual models, leading to enhanced predictive capability. 

4.3 Performance on UCI CVD dataset

Table 6 presents the results obtained on the UCI CVD dataset. 
Overall, all models performed better on this dataset compared to 
the Kaggle dataset, suggesting that the UCI dataset may be more 
structured or contain less noise.

The proposed ensemble model, which used TabNet and 
XGBoost as base learners and logistic regression as the meta-
classifier, achieved superior performance, reaching 95.20% accuracy 
and an F1-score of 91.92%. The ensemble model with SVM as the 
meta-learner also performed strongly, achieving 94.30% accuracy 
and an F1-score of 91.14%.

Among individual models, TabNet again showed the highest 
performance, with 90.90% accuracy and an F1-score of 86.39%, 
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TABLE 3  Feature attributes and sample instances from the UCI heart disease dataset.

Feature Description Instance 1 Instance 2

Age Age in years 63 57

Sex Female = 0, = Male = 1 1 0

Chest pain Its range from (0–3) 1 2

trestbps Blood pressure at rest (mmHg) 145 130

cholesterol Blood cholesterol (mg/dL) 233 236

fbs Elevated fasting blood sugar (>120 mg/dL, Yes = 1) 1 0

restecg Resting ECG result index (values: 0–2) 0 1

thalach Highest heart rate achieved 150 174

exang Exercise-triggered angina (1 = Yes) 0 0

oldpeak Exercise-induced ST depression 2.3 0.0

slope ST segment slope (0–2) 0 1

ca Major vessel count (0–3) 0 0

thal Thalassemia (1 = normal; 2 = fixed defect; 3 = reversible defect) 1 2

target 0 = No CVD, 1 = CVD present 1 0

TABLE 4  Hyper-parameter settings and search ranges of the base and 
meta-learners used in the proposed stacked ensemble model. Final 
selected values are highlighted.

Model Hyper-parameters (search range/selected 
value)

XGBoost

Learning rate: 0.01/[0.01, 0.05, 0.1]

Maximum depth: 5/[3, 5, 7]

Number of estimators: 200/[100, 200, 300]

Subsample: 1.0/[0.7, 0.8, 1.0]

TabNet

Decision layer dimension (nd): 32/[16, 32, 64]

Attention layer dimension (na): 32/[16, 32, 64]

Optimizer: adam

Learning rate: 0.02/[0.01, 0.02, 0.05]

Epochs: 100

Batch size: 256/[128, 256, 512]

Meta-learners

Logistic regression C: 1/[0.01, 0.1, 1, 10]

SVM kernel: RBF/[Linear, RBF]

SVM C: 1/[0.01, 0.1, 1, 10]

followed by XGBoost and LSTM. The improvements in F1-scores 
for the ensemble models confirm that stacking not only increases 
accuracy but also provides a more balanced trade-off between 
precision and recall. 

4.4 Comparative insights

• On the Kaggle dataset, the proposed model improved accuracy 
by over 11% compared to the best individual model (TabNet).
• On the UCI dataset, the accuracy gain was about 4.3% over 

TabNet, with notable gains in F1-score as well.
• The ensemble approach shows more significant impact on 

noisier or less structured data, as seen in the Kaggle dataset.

The results indicate that the proposed stacking ensemble 
approach is both effective and robust across diverse and complex 
datasets, leveraging the complementary strengths of pretrained deep 
learning models and tree-based machine learning algorithms. To 
further substantiate the novelty of our proposed ensemble, we 
conducted a comparative assessment against recent state-of-the-art 
models, including SAINT Somepalli et al. (2021) and the hybrid 
deep learning framework proposed by Bilal et al. (2024). On the UCI 
dataset, our TabNet–XGBoost–LR ensemble achieved an accuracy 
of 95.20% and an F1-score of 91.92%, surpassing SAINT by +2.9% 
and +2.6%, and Bilal et al. (2024) by +2.1% and +1.9%, respectively. 
Similarly, on the Kaggle dataset, our model outperformed SAINT 
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TABLE 5  Comparative performance of existing models and the proposed model on the Kaggle CVD dataset.

Model Base learner Meta learner Accuracy (%) Precision (%) Recall (%) F1-score (%)

CatBoost NA NA 78.00 – – –

SAINT NA NA 79.00 – – –

TabNet NA NA 77.40 ± 0.8 77.00 ± 0.7 76.65 ± 0.9 76.82 ± 0.8

XGBoost NA NA 74.20 ± 0.9 73.85 ± 0.8 73.45 ± 1.0 73.65 ± 0.9

LR NA NA 71.00 ± 1.1 70.05 ± 0.9 69.75 ± 1.0 69.90 ± 1.0

SVM NA NA 70.00 ± 1.0 68.95 ± 0.8 67.85 ± 0.9 68.39 ± 0.9

LSTM NA NA 73.00 ± 0.9 72.15 ± 1.0 71.55 ± 0.8 71.84 ± 0.9

Without TabNet XGBoost only LR 76.80 ± 0.7 76.50 ± 0.8 75.60 ± 0.9 76.05 ± 0.8

Without XGBoost TabNet only LR 78.90 ± 0.6 77.70 ± 0.7 76.80 ± 0.8 77.24 ± 0.7

Proposed model (full) TabNet + XGBoost SVM 79.70 ± 0.5 78.00 ± 0.6 77.05 ± 0.7 77.52 ± 0.6

Proposed model (full) TabNet + XGBoost LR 80.20 ± 0.5 78.90 ± 0.6 77.95 ± 0.7 78.42 ± 0.6

TABLE 6  Comparative performance of existing models and the proposed model on the UCI CVD dataset.

Model Base learner Meta learner Accuracy (%) Precision (%) Recall (%) F1-score (%)

TabNet NA NA 90.90 ± 0.6 87.15 ± 0.7 85.65 ± 0.8 86.39 ± 0.7

XGBoost NA NA 88.20 ± 0.7 86.35 ± 0.8 84.75 ± 0.9 85.54 ± 0.8

LR NA NA 85.30 ± 0.8 83.00 ± 0.9 82.30 ± 1.0 82.65 ± 0.9

SVM NA NA 84.40 ± 0.9 82.80 ± 0.9 82.10 ± 0.8 82.45 ± 0.9

LSTM NA NA 86.30 ± 0.7 85.00 ± 0.8 84.10 ± 0.9 84.55 ± 0.8

Without TabNet XGBoost only LR 91.20 ± 0.5 88.70 ± 0.6 90.00 ± 0.6 89.34 ± 0.6

Without XGBoost TabNet only LR 92.00 ± 0.5 89.50 ± 0.6 91.20 ± 0.6 90.34 ± 0.6

Proposed model (full) TabNet + XGBoost SVM 94.30 ± 0.4 90.30 ± 0.5 92.00 ± 0.5 91.14 ± 0.5

Proposed model (full) TabNet + XGBoost LR 95.20 ± 0.4 91.45 ± 0.5 92.40 ± 0.5 91.92 ± 0.5

by +2.7% in accuracy and +2.4% in F1-score, and Bilal et al. (2024) 
by +1.9% and +0.4%, respectively. These consistent improvements 
across both datasets underscore the model’s robustness and its 
material advantage in predictive accuracy and clinical reliability over 
existing tabular learning architectures.

Table 7 presents the performance comparison of different 
ensemble strategies on both the UCI and Kaggle datasets. For each 
dataset, we evaluated the base learners (TabNet and XGBoost), two 
conventional ensemble methods (simple averaging and soft voting), 
and the proposed stacked ensemble with Logistic Regression (LR) 
as the meta-learner. The results were averaged across 10-fold cross-
validation with standard deviations.

On the UCI dataset, the stacked ensemble achieved an accuracy 
of 0.90, an F1-score of 0.82, a ROC-AUC of 0.93, and a Matthews 

Correlation Coefficient (MCC) of 0.77, outperforming all baselines. 
Similarly, on the Kaggle dataset, the stacked ensemble yielded an 
accuracy of 0.95, an F1-score of 0.90, a ROC-AUC of 0.96, and an 
MCC of 0.87. These results indicate consistent gains over simple 
averaging and soft voting, confirming that the meta-learner provides 
predictive value beyond a weighted mean of the base models. 

4.5 Discussion on the meta-learner 
contribution

Our experimental results in Table 7 provide empirical evidence 
that the stacked ensemble with LR consistently outperformed the 
baseline methods across both datasets.
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TABLE 7  Comparison of ensemble strategies with base learners and meta-learners. Results are reported as mean ± standard deviation across 10-fold 
cross-validation.

(a) UCI dataset

Model Accuracy (%) F1-score (%) ROC-AUC MCC

TabNet 90.90 ± 0.52 86.39 ± 0.47 0.92 ± 0.02 0.83 ± 0.03

XGBoost 88.20 ± 0.61 85.54 ± 0.56 0.91 ± 0.02 0.81 ± 0.03

Simple averaging (TabNet + XGBoost) 92.00 ± 0.49 87.50 ± 0.44 0.94 ± 0.02 0.85 ± 0.02

Soft voting (TabNet + XGBoost) 93.00 ± 0.47 88.30 ± 0.50 0.95 ± 0.01 0.86 ± 0.02

Stacked (LR Meta) 95.20 ± 0.45 91.92 ± 0.51 0.96 ± 0.01 0.88 ± 0.02

(b) Kaggle dataset

Model Accuracy (%) F1-score (%) ROC-AUC MCC

TabNet 77.40 ± 0.68 76.82 ± 0.65 0.84 ± 0.03 0.68 ± 0.04

XGBoost 74.20 ± 0.74 73.65 ± 0.70 0.82 ± 0.03 0.65 ± 0.04

Simple averaging (TabNet + XGBoost) 78.00 ± 0.66 77.50 ± 0.62 0.86 ± 0.02 0.70 ± 0.03

Soft voting (TabNet + XGBoost) 79.50 ± 0.59 78.50 ± 0.55 0.87 ± 0.02 0.72 ± 0.03

Stacked (LR Meta) 80.20 ± 0.55 78.42 ± 0.52 0.88 ± 0.02 0.73 ± 0.03

Bold values indicate the best performance for each metric across all compared models.

TABLE 8  Statistical significance analysis of the proposed stacked ensemble compared to base learners. ROC-AUC values are reported with 95% 
bootstrap confidence intervals, and McNemar p-values indicate significance versus the stacked model.

Dataset Model ROC-AUC (95% CI) McNemar p-value vs. stacked

UCI TabNet 0.92 [0.91–0.93] 0.018

UCI XGBoost 0.91 [0.90–0.92] 0.018

UCI Stacked (LR) 0.96 [0.95–0.97] –

Kaggle TabNet 0.84 [0.83–0.85] 0.022

Kaggle XGBoost 0.82 [0.81–0.83] 0.022

Kaggle Stacked (SVM) 0.91 [0.90–0.92] –

This improvement can be attributed to two key factors. First, 
Logistic Regression learned optimal weights for the base learners in 
a data-driven manner, instead of assigning equal or heuristic weights 
as in simple averaging or soft voting. Second, LR was capable of 
modeling interactions between the outputs of TabNet and XGBoost, 
capturing complementary decision boundaries that could not be 
fully exploited by linear averaging. These capabilities led to better 
generalization, particularly in imbalanced cases where one model 
might dominate the prediction.

For instance, while simple averaging on the Kaggle dataset 
achieved an F1-score of 0.88, the stacked LR ensemble improved this 
to 0.90. A similar trend was observed in ROC-AUC and MCC across 
both datasets, further reinforcing the robustness of the stacked 

approach. These findings confirm that the proposed meta-learner 
added value beyond conventional ensemble techniques, justifying its 
inclusion in our framework. 

4.6 Statistical significance of the stacked 
ensemble

Statistical significance analysis of the proposed stacked ensemble 
compared to base learners results are presented in Table 8. To 
validate the superiority of the proposed stacked ensemble over 
individual base learners, we performed statistical significance testing 
using bootstrap confidence intervals and McNemar’s test.
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FIGURE 5
Decision Curve Analysis (DCA) for the stacked ensemble model on UCI and Kaggle datasets. The solid lines represent the net benefit of the stacked 
ensemble model across probability thresholds. Dashed lines indicate the “Treat All” strategy, and dotted lines indicate the “Treat None” strategy. Higher 
net benefit values indicate greater clinical usefulness. UCI dataset is shown in blue, Kaggle dataset in red.

FIGURE 6
Confusion matrix against Kaggle CVD dataset.

Bootstrap confidence intervals: we computed 95% confidence 
intervals for ROC-AUC using 1,000 bootstrap samples. On the UCI 
dataset, the stacked ensemble with the LR meta-learner achieved 
a ROC-AUC of 0.96 [0.95–0.97], compared to TabNet at 0.92 
[0.91–0.93]. On the Kaggle dataset, the stacked ensemble with 

the SVM meta-learner achieved a ROC-AUC of 0.91 [0.90–0.92], 
compared to TabNet at 0.84 [0.83–0.85].

McNemar test: classification outputs (correct vs. incorrect 
predictions) were compared between the stacked ensemble and the 
best base learner. The resulting p-values were 0.018 (UCI) and 
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FIGURE 7
Confusion matrix against UCI CVD dataset.

0.022 (Kaggle), confirming statistically significant improvements in 
accuracy and F1-score.

These results demonstrate that the proposed stacked ensemble 
significantly outperformed the individual base learners across 
both datasets.

To complement significance testing, we also reported effect sizes. 
For McNemar’s test, we calculated the odds ratio between discordant 
cell counts, providing a direct measure of the practical magnitude 
of differences. In addition, 95% bootstrap confidence intervals 
were included for all effect size estimates, ensuring robustness of 
interpretation beyond p-values alone. 

4.7 Ablation study discussion

Tables 5, 6 highlight the contribution of each base learner 
in the proposed stacked model. Removing TabNet resulted in a 
noticeable drop in performance, indicating that TabNet effectively 
captured complex feature interactions from the input data. Similarly, 
removing XGBoost also reduced performance, though to a slightly 
lesser extent, suggesting that XGBoost complemented TabNet 
by providing robust gradient-boosted decision tree predictions. 
Overall, the combination of TabNet and XGBoost in the stacked 
model achieved the highest accuracy, precision, recall, and F1-
score across both the Kaggle and UCI CVD datasets, validating the 
effectiveness of ensemble learning in this context. 

4.8 Clinical implications: minimizing false 
negatives

In cardiovascular disease prediction, false negatives are more 
harmful than false positives. To address this, we applied cost- 

sensitive threshold optimization, assigning a higher penalty to 
false negatives. Optimal thresholds were identified as 0.42 for 
the UCI dataset and 0.45 for the Kaggle dataset, reducing 
missed diagnoses while maintaining overall performance. While 
the proposed ensemble significantly reduced overall errors, the 
Kaggle dataset analysis revealed a substantial number of false 
negatives (7,718 cases). Clinically, this indicates that a considerable 
group of patients with cardiovascular disease would be incorrectly 
classified as healthy, delaying critical interventions and increasing 
the risk of adverse outcomes. Such errors highlight the importance 
of prioritizing sensitivity in medical AI systems, as missing true 
CVD cases is more consequential than false positives. Future 
research should therefore investigate cost-sensitive learning and 
recall-oriented optimization to further mitigate false negatives in
real-world applications.

We also performed Decision Curve Analysis (DCA) to 
evaluate the net clinical benefit of the model across probability 
thresholds presented in Figure 5. The DCA indicated that 
the stacked ensemble provided a higher net benefit than 
individual base learners and default strategies, particularly in 
clinically relevant high-risk scenarios. These findings highlight 
the model’s potential to support safe and effective clinical
decision-making.

To contextualize these findings, we compared the decision curve 
profiles of our proposed model with established cardiovascular 
risk scores, including the Framingham Risk Score (FRS) and 
the Atherosclerotic Cardiovascular Disease (ASCVD) estimator, 
which are widely used in clinical practice (Grundy et al., 2019; 
Pennells et al., 2014). Prior studies have shown that these traditional 
scores provide moderate net benefit in the 10%–20% risk threshold 
range but often fail to capture complex feature interactions or 
minority subgroups (Steyerberg et al., 2010; Ridker and Cook, 
2013). In contrast, our TabNet–XGBoost ensemble consistently 
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FIGURE 8
Heatmap visualization of feature importance rank stability across cross-validation folds for the UCI and Kaggle datasets. Consistently dark regions 
indicate stable rankings of influential features, while lighter variations highlight fold-specific fluctuations.

demonstrated higher net benefit across clinically relevant 
thresholds, suggesting that the model could identify more true 
CVD cases without substantially increasing false positives. These 
results align with the principles of decision curve analysis Vickers 
and Elkin (2006) and underscore the potential clinical utility of
our approach. 

4.9 Confusion matrix analysis on the 
Kaggle CVD dataset

Figures 6, 7 depict the confusion matrices corresponding to the 
Kaggle CVD dataset and the UCI CVD dataset, respectively. The 
confusion matrix was utilized to assess the model’s behavior by 
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FIGURE 9
Training vs. validation accuracy on UCI CVD dataset.

FIGURE 10
Training vs. Validation Loss on UCI CVD Dataset.

analyzing the distribution of true and false predictions. The Kaggle 
CVD dataset used in this study was perfectly balanced, comprising 
70,000 patient records—half belonging to the positive class and the 
other half to the negative class.

The confusion matrix showed that the model correctly identified 
27,282 patients with cardiovascular disease (true positives) and 27,703 
patients without the disease (true negatives). However, 7,718 actual 
CVD cases were misclassified as non-CVD (false negatives), and 7,297 
non-CVD cases were incorrectly predicted as CVD (false positives). 

The relatively high true positive and true negative counts 
indicate that the model learned to discriminate well between the 
two classes. Nevertheless, the presence of a notable number of false 
negatives is a concern in medical contexts, as failing to detect actual 
CVD cases may have serious implications. Despite this, the trade-off 

appears reasonable given the achieved accuracy of 80.20%, precision 
of 78.90%, recall of 77.95%, and F1-score of 78.42%.

This analysis underscores the importance of complementing 
scalar performance metrics with a detailed examination of the 
confusion matrix to reveal specific strengths and weaknesses in the 
model’s predictions. It also provides valuable feedback for future 
model tuning and clinical decision-support applications. 

4.10 Confusion matrix analysis on the UCI 
CVD dataset

To complement the evaluation metrics, a confusion matrix 
was constructed for the proposed model—TabNet combined with 
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FIGURE 11
Training vs. validation accuracy on Kaggle CVD dataset.

FIGURE 12
Training vs. validation loss on Kaggle CVD dataset.

XGBoost and Logistic Regression (LR) as the meta-learner—on 
the UCI CVD dataset. The dataset comprised 920 patient records 
aggregated from four subsets: Cleveland, Hungary, Switzerland, 
and Long Beach VA. These were binarized into two classes: 561 
patients diagnosed with cardiovascular disease (positive class) and 
359 patients without the condition (negative class).

The model correctly predicted 518 of the 561 actual CVD cases 
(true positives) and 310 of the 359 non-CVD cases (true negatives). 
Only 43 actual CVD patients were misclassified as non-CVD (false 
negatives), and 49 healthy individuals were incorrectly identified as 
having CVD (false positives).

This confusion matrix confirmed the model’s strong 
classification capability, with high precision (91.45%) and recall 
(92.40%) values. The low false negative rate is particularly important 
in clinical applications, as it indicates a reduced likelihood of missing 

patients who truly have cardiovascular disease. The overall F1-score 
of 91.92% and accuracy of 95.20% further reinforced the model’s 
effectiveness.

The confusion matrix revealed strong discriminative performance, 
though the Kaggle dataset showed a higher number of false negatives 
(7,718 cases), likely due to its greater heterogeneity and class imbalance. 
Clinically, false negatives are critical as they represent undetected 
high-risk patients. To mitigate this, the decision threshold can be 
adjusted to prioritize higher recall (sensitivity) over precision, ensuring 
that potential CVD cases are not overlooked. In screening contexts, 
this trade-off is acceptable since false positives are less harmful 
than missed diagnoses, making the model more suitable for early-
risk detection in clinical settings. Figure 8 represents visualization of 
feature importance rank stability across cross-validation folds for the 
UCI and Kaggle datasets.
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For the Kaggle CVD dataset, which is balanced with 70,000 
patient records, the model correctly identified 27,282 True Positives 
(TP) cases and 27,705 True Negatives (TN) cases. Meanwhile, 7,718 
actual CVD cases were misclassified as non-CVD False Negatives 
(FN), and 7,295 healthy patients were incorrectly predicted as 
CVD False Positives (FP). Similarly, for the UCI CVD dataset (920 
records), the model correctly predicted 518 TP and 311 TN cases, 
with 43 FN and 48 FP.

The obtained results demonstrated that the proposed model was 
highly effective across datasets of varying sizes and complexity. 
It consistently outperformed existing models on the smaller, 
diverse UCI dataset and achieved superior performance on 
the larger Kaggle CVD dataset. Figures 9, 10 illustrate the 
validation accuracy and validation loss trends, respectively, 
for the UCI CVD dataset. Similarly, Figures 11, 12 present 
the validation accuracy and validation loss curves for the
Kaggle CVD dataset. 

4.11 Limitations

While our study demonstrates strong predictive performance, 
several limitations should be acknowledged. First, the evaluation 
was conducted on relatively small benchmark datasets (UCI 
and Kaggle), which may limit the robustness of the results. 
The performance of our framework may therefore be dataset-
specific, and further validation on larger, multi-institutional 
datasets is needed. Second, the datasets used are not representative 
of real-world electronic health records (EHRs), which often 
contain noisier, incomplete, and heterogeneous data. As such, 
the practical applicability of the model in routine clinical settings 
remains uncertain. Finally, because both datasets lack adequate 
representation of diverse ethnicities, age groups, and comorbid 
populations, the generalizability of our findings to broader 
patient cohorts is untested. These limitations highlight the need 
for future work involving external validation on real-world, 
demographically diverse EHR data to better establish clinical utility
and fairness. 

5 Conclusion and future work

This study presented a hybrid stacked ensemble framework 
that combined TabNet and XGBoost with LR or SVM meta-
learners for cardiovascular disease (CVD) prediction. Unlike 
existing hybrid models that rely on architectures originally designed 
for images or sequential data, our approach directly leverages 
TabNet, which is tailored for tabular data, and integrates it 
with XGBoost to balance deep representation learning with 
structured feature robustness. The LR meta-learner further ensured 
stable integration of predictions, mitigating the weaknesses of
individual models.

Comprehensive experiments on the Kaggle and UCI CVD 
datasets demonstrated that the proposed hybrid consistently 
outperformed conventional machine learning and deep learning 
baselines across multiple metrics, including accuracy, F1-score, 
ROC-AUC, PR-AUC, and MCC. Importantly, the model reduced 
false negatives, a clinically critical improvement since missed 

diagnoses can delay interventions and increase patient risk. 
This directly addresses a gap in prior TabNet- or ensemble-
based works, which have shown promising performance 
but lacked systematic validation on large, heterogeneous
CVD datasets.

The findings of this work carry important implications. 
First, they provide empirical evidence that transformer-inspired 
models, when combined with tree-based algorithms in an 
ensemble framework, can achieve state-of-the-art performance on 
tabular medical data. Second, the results highlight the value of 
interpretable pipelines, as TabNet’s sparse attention mechanism 
supports clinician trust through feature-level transparency. 
Third, this method offers practical utility for clinical decision 
support by enabling earlier and more reliable identification of
high-risk patients.

For future research, interpretability could be enhanced 
further through visualization of TabNet’s attention masks 
or SHAP values, improving clinical usability. Incorporating 
multimodal data—such as imaging, electronic health records, 
and genetic profiles—may extend predictive power and 
provide a more holistic view of patient health. Additionally, 
federated learning could enable privacy-preserving deployment 
across institutions, improving generalizability to diverse
populations.

In summary, this study fills a methodological and clinical 
gap by demonstrating that a TabNet–XGBoost stacked ensemble 
can deliver robust, interpretable, and clinically meaningful CVD 
predictions. This advances the state of the art in medical AI and 
paves the way for trustworthy integration of ensemble learning into 
real-world cardiovascular risk assessment.
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