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stacked ensemble learning
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Cardiovascular diseases (CVDs) remain the leading cause of death worldwide,
and early detection is critical for timely intervention and improved patient
outcomes. However, current prediction tools are often limited by noisy,
heterogeneous patient data and modest accuracy. To address this challenge,
we propose a stacked ensemble framework that integrates: TabNet, a deep
learning model that can identify the most relevant clinical features, and XGBoost,
a powerful tree-based method known for its robustness. Their outputs are
integrated using a Logistic Regression (LR) or Support Vector Machine (SVM)
as meta learner, creating a system that balances accuracy and interpretability.
Testing on Kaggle and UCI CVD datasets demonstrate that our ensemble
consistently outperforms baseline models across accuracy, F1-score, precision,
recall, ROC-AUC, PR-AUC, and matthews correlation coefficient (MCC). These
results suggest that combining deep learning with tree-based models offers a
practical way to improve risk prediction, supporting clinicians in making more
reliable decisions for early CVD detection.
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1 Introduction

Heart disease remains one of the leading health challenges worldwide. According to
the World Health Organization, approximately 17.9 million people die annually from
cardiovascular diseases (CVDs) (Mandava et al, 2024; Akhila et al., 2024). Several
studies have reported an increasing incidence of heart disease over the years; therefore,
early and accurate detection is of paramount importance (Seoni et al, 2024). The
availability of medical datasets, together with advances in machine learning (ML), has
created opportunities to predict and detect a wide range of diseases, including migraine
Khan et al. (2024), depression detection Kumar et al. (2025b), Alzheimers Disease
Detection Mehmood et al. (2025) and cardiovascular disease (Tekin and Kaya, 2024;
Alghamdi et al., 2024; Szugye et al., 2025). Deep learning models have also shown excellent
performance in fields such as speech recognition Amjad et al. (2021a), Amjad et al. (2021b),
Amjad et al. (2022b), Amjad et al. (2022a), natural language processing Khan et al. (2021),
Khan et al. (2022b), Ashraf et al. (2022), Khan et al. (2022a), and medical informatics
(Rahman et al., 2024; Bhavani et al., 2024).

In disease prediction, both traditional ML and deep learning models have demonstrated
strong performance across multiple datasets. ML models have been successfully applied
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in drug discovery, migraine classification, medical diagnosis,
genomics, prognosis, proteomics, and CVD prediction Niwa et al.
(2004). These algorithms have produced reliable results on
diverse data sources, including electrocardiogram (ECG) signals,
demographic information, clinical records, and imaging datasets
(Adke et al., 2023; Khan et al., 2025). Despite these successes,
traditional ML methods face several challenges when applied to
CVD prediction. A key difficulty lies in handling the heterogeneous
and complex nature of medical datasets, which may vary in
size and distribution, include missing values, contain noise,
and sometimes present high dimensionality. These issues can
reduce the generalizability and performance of conventional
ML algorithms (Abbas et al, 2023; Kumar et al, 2025a).
Selecting the most suitable model for a given task depends on
several factors, such as dataset size and quality, interpretability
requirements, algorithm complexity, accuracy, and computational
cost (Abbas et al., 2023; Khan et al., 2025).

Deep neural networks (DNNs) have already demonstrated
strong performance in image and audio classification tasks, while
recurrent neural networks (RNNs) and transformer-based models
have excelled in natural language processing. These canonical
architectures are widely used for prediction and classification
tasks in diverse domains. However, tabular data—a prevalent
format in many real-world applications—has not benefited from
comparable advances. Tabular datasets typically contain both
numerical and categorical features, and they remain a cornerstone of
Al-driven decision-making. Nevertheless, deep learning approaches
for tabular data require further investigation. In contrast, tree-based
ML models such as decision trees (DTs) continue to dominate many
tabular data applications. These models offer several advantages:
(1) DTs capture decision boundaries efficiently when they align
with hyperplane structures commonly found in tabular data, and
(2) DTs are computationally efficient and fast to train. Meanwhile,
approaches such as multilayer perceptrons (MLPs) are often
overparameterized, and their lack of inductive bias reduces their
ability to capture underlying tabular data patterns. Consequently,
exploring deep learning methods tailored to tabular data remains
an important research direction.

Existing studies have reported promising but constrained
outcomes. For instance, Alghamdi et al. (2024) combined an auto-
encoder with DenseNet; however, DenseNet is primarily pre-trained
for image and vision tasks, making it less suitable for structured
tabular data. Similarly, Bilal et al. (2024) proposed a hybrid
CNN-LSTM framework for CVD detection and further introduced
an ensemble model (ETCXGB) by combining Extra Tree Classifier
(ETC) with XGBoost (XGB). While these approaches demonstrated
acceptable predictive performance, they remain limited in scope. In
contrast, our proposed model leverages TabNet—a deep learning
architecture specifically designed for tabular data—integrated with
XGBoost within a stacked ensemble framework. This design not only
exploits TabNet’s sparse attention mechanism for effective feature
selection and interpretability but also enhances robustness through
XGBoosts gradient boosting capabilities. Moreover, unlike prior
work, our model was rigorously evaluated on two large and diverse
benchmark datasets (Kaggle and UCI), thereby providing stronger
evidence of generalizability and clinical applicability.

In this study, we aim to investigate the performance of a
stacked ensemble model that integrates TabNet with traditional
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machine learning algorithms for CVD prediction. We hypothesize
that while algorithms such as XGBoost perform strongly on small-
scale tabular datasets, their effectiveness diminishes on larger and
more complex datasets. In contrast, TabNet, a transformer-like
architecture specifically designed for tabular data, provides robust
classification and prediction capabilities. By integrating TabNet
with XGBoost in a stacked ensemble, we seek to leverage their
complementary strengths to enhance predictive performance and
generalization.

Specifically, TabNet employs a sparse attention mechanism and
feature selection strategy to identify complex patterns in data, while
XGBoost remains highly effective for structured, low-to medium-
dimensional datasets. However, XGBoost can struggle with very
high-dimensional or noisy data. By combining these models within
a stacked ensemble learning framework—where their outputs are
aggregated by Logistic Regression (LR) or Support Vector Machine
(SVM) as a meta-learner—we aim to improve accuracy, reduce
overfitting, and mitigate the limitations of individual models.

The contributions of this study are summarized as follows:

e We propose a hybrid stacked ensemble framework for
cardiovascular disease prediction that combines TabNet, a
deep neural network designed for structured tabular data, with
XGBoost, a powerful tree-based ensemble learning algorithm.
LR or SVM models are employed as meta-learners within the
ensemble framework to enhance the predictive performance of
the proposed model.

We conducted extensive experiments on two publicly available
datasets—the Kaggle CVD dataset and the UCI CVD
dataset. The results demonstrated that the proposed model
consistently outperformed baseline models across multiple
performance metrics.

The remainder of this paper is organized as follows: Section 2
reviews related literature on CVD prediction and ensemble learning.
Section 3 describes the proposed methodology. Section 4 presents
the experimental setup, results, and analysis. Finally, Section 5
concludes the paper and outlines future research directions.

2 Background and literature review

This chapter presents a comprehensive examination of existing
scholarly contributions pertinent to heart disease, aligning with
the thematic focus of this study. A literature review serves as a
foundational element in academic research, as it synthesizes prior
investigations, highlights prevailing trends, and identifies critical
knowledge gaps. By systematically evaluating prior studies, this
section not only contextualizes the current research within the
broader academic discourse but also underscores its originality
and relevance in addressing unresolved challenges in cardiovascular
disease prediction.

One of the primary symptoms associated with heart disease
is angina, commonly experienced as chest pain. This discomfort
may manifest as pressure, tightness, throbbing, heaviness, or a
squeezing sensation. Beyond the chest, cardiac-related pain can
also extend to the shoulders, arms, neck, throat, jaw, or upper
back. Notably, women above the age of 50 are statistically more
prone to heart disease compared to men. On the other hand,
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males are often affected by such conditions at a comparatively
younger age (Hasan and Bao, 2021). Other frequently reported
symptoms of heart disease include excessive sweating, difficulty
breathing, chest discomfort, dizziness, fatigue, a rapid heartbeat,
nausea, shoulder or arm pain, chest pressure, vomiting, and in some
cases, intense anxiety or irregular heart rhythms.

Cardiovascular disease (CVD) encompasses a spectrum
of the
including its musculature, valves, rhythm, and vascular structure.

of disorders impacting various components heart,
Prominent conditions within this category include coronary
artery disease (CAD), heart failure, arrhythmias, and valvular
dysfunctions. Clinical manifestations may range from chest
discomfort and breathlessness to fatigue and irregular heartbeats.
Globally, CVD remains the foremost cause of mortality,
significantly impairing individuals’ quality of life when not
adequately managed (Bhatt et al., 2023).

Coronary artery disease, alternatively referred to as ischemic
heart disease or myocardial infarction, is among the most
prevalent and critical cardiovascular conditions. Its diagnosis
and therapeutic management present considerable challenges,
particularly in low- and middle-income countries. These obstacles
stem from insufficient access to advanced diagnostic tools, as well as
ashortage of trained healthcare personnel, which collectively hinder
accurate prognostication and timely intervention (Liza et al., 2025).

Coronary heart disease (CHD) adversely affects cardiac
efficiency by obstructing arterial blood flow, thereby diminishing
the oxygen and nutrient supply to bodily tissues. This impairment
typically results from atherosclerosis—the accumulation of lipid-
rich plaques and calcium within arterial walls. The World Health
Organization identifies cardiovascular ailments, particularly heart
attacks and strokes, as the primary contributors to global mortality.
Risk determinants for CHD encompass variables such as age, sex,
genetic predisposition, obesity, diabetes, psychological stress, and
poor dietary patterns (Saini, 2023).

The heart plays a pivotal role in maintaining systemic
circulation; inadequate perfusion can compromise vital organs like
the brain, and complete cardiac failure inevitably results in death.
Heart disease, broadly defined, includes any pathology affecting the
cardiac muscles and vascular network. Coronary artery disease,
a predominant subtype of cardiovascular disease, accounts for
approximately 20% of global deaths, primarily due to myocardial
infarctions and cerebrovascular incidents?

Machine learning (ML) has emerged as a transformative
approach for extracting actionable insights from huge and complex
datasets. It utilizes predictive algorithms to predict health outcomes
and descriptive models to uncover latent patterns within data. A
variety of ML techniques—such as MLP, Decision Tree (DT), K-
Nearest Neighbor (KNN), Support Vector Machine (SVM), and
Naive Bayes (NB)—have demonstrated considerable efficacy in
interpreting large-scale medical data (Al-Alshaikh et al., 2024).

In study Shah et al. (2020) introduced a novel ML-based
framework incorporating quantum neural networks for the early
detection of cardiovascular conditions. The model, trained on data
from 689 symptomatic patients and validated using the Framingham
dataset, significantly outperformed the traditional Framingham
Risk Score (FRS), achieving an accuracy of 98.57% compared to
the FRSs 19.22%. This substantial improvement highlights the
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model’s potential to aid clinicians in achieving precise diagnoses and
developing effective treatment strategies (Narin et al., 2016).

Similarly, Bhatt et al. (2023) applied a range of supervised
learning algorithms to the Cleveland Heart Disease dataset,
comprising 303 records and 17 attributes. Among the tested models,
KNN achieved the highest predictive accuracy at 90.8%, reinforcing
the value of algorithm selection in optimizing diagnostic outcomes.

In another investigation by Shah et al. (2020), ML methodologies
such as logistic regression, univariate feature selection, and principal
component analysis (PCA) were utilized to evaluate cardiovascular
risk in individuals diagnosed with metabolic-associated fatty liver
disease (MAFLD). Elevated cholesterol levels, arterial plaque
accumulation, and diabetes duration were identified as key
predictors. The model effectively categorized high-risk (85.11%) and
low-risk (79.17%) individuals, achieving an area under the curve
(AUC) score of 0.87—demonstrating robust classification capability
based on routine clinical data.

In study Alotaibi (2019) assessed the predictive performance of
various ML classifiers, including DT, Logistic Regression, Random
Forest, NB, and SVM, using patient data from the Cleveland
Clinic Foundation. Through a 10-fold cross-validation approach,
the decision tree model achieved the highest accuracy at 93.19%,
closely followed by SVM at 92.30%, indicating both algorithms’
effectiveness in forecasting heart failure outcomes.

In a comparative study, Hasan and Bao (2021) evaluated the
efficiency of feature selection techniques—namely, filter, wrapper,
and embedded methods—for enhancing CVD prediction. By
applying a Boolean-based framework to identify optimal feature
subsets, they benchmarked several classifiers, including Random
Forest, SVM, KNN, NB, and XGBoost. The combination of XGBoost
with the wrapper method achieved superior performance, recording
an accuracy of 73.74%, ahead of SVM (73.18%) and ANN (73.20%).

In study Cao et al. (2025) highlighted the limitations of
traditional ML models like DT, SVM, and logistic regression,
citing reduced accuracy due to redundant features and a lack
of hyperparameter optimization. To address this, they integrated
Pearson correlation with feature importance measures for attribute
selection, followed by enhanced particle swarm optimization for
XGBoost tuning. Their optimized model, based on 11 critical
features, achieved an accuracy of 74.7%, precision of 76.3%, and an
AUC of 80.8%.

A recurrent challenge in existing studies is the reliance on
relatively small datasets, which often results in overfitting and
restricted generalizability. Accordingly, this study employs a large-
scale dataset of 70,000 patient records with 11 features to improve
model robustness and minimize overfitting. A comprehensive
comparative analysis of heart disease prediction models utilizing
large-scale data is detailed in Table 1, further substantiating the
efficacy of data-driven ML methodologies in clinical practice.

3 Datasets and proposed
methodology

This section presents the datasets used in the study, namely
the UCI CVD dataset and the Kaggle CVD dataset. The latter part
of the section outlines the preliminaries and details the proposed
methodology for cardiovascular disease (CVD) detection.
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TABLE 1 Relevant research studies on heart disease prediction.

Dataset

Feature
selection
method

Classifiers used

Accuracy (%)

10.3389/fphys.2025.1665128

Limitations

Cao et al. (2025)

Cardiovascular disease
dataset (UCI)

Pearson Correlation +
Feature Importance
Ranking

Improved PSO-XGBoost
(MFS-DLPSO-XGBoost)

74.70 accuracy, 76.30
precision, 80.80 AUC

Dataset size not
specified; benefit limited
to selected features and
model tuning

Bilal et al. (2024)

Heart Disease dataset
from UCI (Cleveland,
Hungarian, Switzerland,
Long Beach)

Chi-square test,
Recursive Feature
Elimination (RFE)

Logistic Regression,
SVM, KNN, Random
Forest, XGBoost

Up to 89.60 (XGBoost)

Imbalance sensitivity;
performance varies
across datasets

Zhang et al. (2023)

StatLog UCI, Z-Alizadeh
Sani, and CVD datasets

Forward Selection,
Backward Elimination

AdaBoost, SVM,
Decision Tree, Random
Forest (Ensemble)

91.00 (Z-Alizadeh),
83.00 (UCI), 73.00
(CVD)

Varying accuracy across
datasets; high
computational
complexity

Vayadande et al. (2022)

Cardiovascular Disease
Dataset (70,000 records)

Pearson Correlation and
Feature Importance
Ranking

Ensemble of ML
algorithms

88.70 accuracy, 93.00
ROC-AUC

May not generalize
across datasets; complex
ensemble approach

Garg et al. (2021) Cleveland Heart Disease All available features KNN, Random Forest KNN: 86.89, RF: 81.97 Small dataset (303
dataset records); limited
generalizability
Mbhawi et al. (2022) UCI dataset Filter-based feature KNN, RE, SVM, NB, LR RF and NB Complex ensemble
selection outperformed others methods; resource
intensive
Panda et al. (2019) Kaggle dataset Relief, MRMR, LASSO LR, KNN, SVM, NB, DT, LR achieved 89.00 ML may introduce
RF accuracy bias/errors;
interpretability issues
CatBoost Developers Kaggle None CatBoost 78.00 Limited interpretability
(2021)
Somepalli et al. (2021) Kaggle None SAINT 79.00 Computationally

expensive, limited
clinical evaluation

3.1 Datasets

3.1.1 Kaggle cardiovascular disease dataset

The Kaggle CVD dataset comprises 70,000 patient records,
each containing 16 feature attributes and a binary target variable
indicating the presence or absence of cardiovascular disease (CVD).
The feature attributes include patient ID, age, gender, height, weight,
smoking status, diastolic and systolic blood pressure, cholesterol
level, glucose level, and physical activity. The target variable
represents whether the individual has been diagnosed with CVD.
Feature attributes and sample instances from the cardiovascular
disease dataset are presented in Table 2.

3.1.2 UCI cardiovascular disease dataset

The UCI CVD dataset is publicly available on UCI machine
learning repository. It contains 920 instances. Out of them 561
belong to the positive class and remaining are from the negative
class. The data is collected from 4 various sources, which are
Hungary, Cleveland, VA Long Beach, and Switzerland. The summary
of UCI dataset is presented in the Table 3.

Frontiers in Physiology

3.2 Proposed methodology

3.2.1 Data preprocessing

For both the UCI and Kaggle datasets, a series of preprocessing
steps were applied to ensure data quality, reduce noise, and
prevent information leakage during training and evaluation.
Missing values were addressed using the following strategies:
numerical features were imputed with the mean of the respective
feature, while categorical features were imputed with the mode.
To address potential outliers, extreme values were detected
using the interquartile range (IQR) method and capped at the
1.5 IQR threshold, thereby reducing their undue influence on
model training.

Numerical features were normalized using Min-Max scaling
to the range [0,1] to ensure consistent feature magnitudes, as
defined in Equation 1:

X = X = Xmin (1)
— X,

max min
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TABLE 2 Feature attributes and two sample instances from the
cardiovascular disease dataset.

Category  Feature ‘ Instance 1 ‘ Instance 2
Age (days) 18,393 20,228
Gender (1=FE2=M) 2 1
Demographic
Height (cm) 168 156
Weight (kg) 62.0 85.0
SBP (mmHg) 120 140
DBP (mmHg) 80 90
Clinical
Cholesterol (1-3) 1 3
Glucose (1-3) 1 2
Smoking (0/1) 0 1
Lifestyle Alcohol (0/1) 0 0
Physical activity (0/1) 1 0
Target (CVD) (0/1) 0 1
where x is the original feature value, and x,_;, and x,, denote

the feature-wise minimum and maximum, respectively. Categorical
features (e.g., sex, chest pain type) were encoded via one-hot
encoding to make them suitable for machine learning algorithms.

Feature selection was conducted using Pearson correlation
and mutual information scores to eliminate redundant attributes.
Additionally, TabNet’s sparse attention masks and XGBoost’s feature
importance scores were leveraged to guide model-driven feature
selection.

For the UCI dataset, which is composed of four subsets
(Cleveland, and Long Beach),
harmonization was required before analysis. First, we aligned

Hungarian, Switzerland,
the feature spaces across subsets by retaining only the attributes
common to all four sources. Variable names and encodings were
standardized (e.g., categorical encodings for chest pain type and
thalassemia were unified, and continuous variables such as age and
serum cholesterol were rescaled to consistent units). Inconsistent
or dataset-specific attributes were excluded to ensure comparability
across subsets. After harmonization, the four subsets were merged
into a single dataset.

Since the merged UCI dataset exhibited moderate class
imbalance (with a higher proportion of patients without CVD), we
applied class weighting during training to mitigate bias toward the
majority class. This approach allowed the learning algorithms to
place proportionally greater emphasis on minority-class instances
(i.e., patients with CVD), thereby improving sensitivity in detecting
positive cases without requiring oversampling or synthetic data
generation.

For the Both datasets, the data were randomly partitioned into
80% training, and 20% test sets using stratified sampling to preserve
class distributions. To prevent data leakage, imputation and scaling

Frontiers in Physiology

05

10.3389/fphys.2025.1665128

parameters were estimated on the training set only and subsequently
applied to test set.

The choice of preprocessing methods was made deliberately to
balance simplicity, effectiveness, and compatibility with the learning
algorithms. For missing values, mean imputation (numerical) and
mode imputation (categorical) were applied because the datasets
contained relatively few missing entries and most numerical features
were approximately symmetric, making mean a reliable estimator;
more complex imputation strategies (e.g., KNN or MICE) were
avoided to prevent computational overhead and data leakage.
Numerical features were normalized using Min-Max scaling to the
range [0,1], which ensures comparability across features regardless
of their original units and avoids assumptions of normality required
by z-score normalization; this choice was also well aligned with
the needs of both XGBoost and TabNet. Categorical features
were transformed via one-hot encoding, as these variables lacked
intrinsic order, and ordinal encoding would have introduced
spurious relationships among categories. Overall, this preprocessing
pipeline provided a consistent, interpretable, and model-compatible
representation of the data.

3.2.2 Stacked ensemble learning

After the essential preprocessing steps, the main architecture
of the proposed model is presented in Figure 1. The proposed
model is based on a stacking ensemble approach, which has been
shown to outperform individual learning models in classification
and prediction tasks. This is primarily due to the integration of
multiple base learners, where the weaknesses of one model can be
compensated by the strengths of others, thereby enhancing overall
predictive accuracy and robustness (Mienye and Sun, 2022).

Stacking is an approach where n number of ML algorithms can
be trained independently and stacked together layer-by-layer. After
training, the output of each model is needed for the next layer, where
another ML model works as a meta-learner, used to predict the
final output based on the previous layer’s output. In our proposed
model, after preprocessing steps, all input features are learned
from two different complementary approaches: (1) the TabNet
deep learning model, specifically designed for tabular data types,
and (2) the XGBoost machine learning tree-based model, which
shows exceptional performance for tabular data types in previous
studies. The performances of base stacked model is measured using
standard metrics such as precision, recall, F1-score, accuracy, and
confusion matrix. The results from the TabNet and XGBoost models
are ensembles using the stacking approach with meta learners.
We compare SVM and LR traditional models as meta learners,
the performance is again measured using various hyper-parameter
tuning against precision, recall, F1 score, and accuracy metrics.
Logistic regression is always considered as an effective baseline
model for binary classification because of its interpretability and
ability to model the linear relationship in the data.

3.2.3 TabNet architecture

Our proposed model is developed using the TabNet Arik and
Pfister (2021) transformer model and the traditional XGBoost
Chen and Guestrin (2016) model. Figure 2 represents the TabNet
encoder-decoder architecture. The TabNet encoder comprises a
feature masking mechanism, an attentive transformer, and a feature
transformer. The transformed representation is bifurcated: one part
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FIGURE 1

Overview of the proposed cardiovascular disease prediction framework. The pipeline begins with preprocessing, followed by two base learners:
TabNet, which leverages sparse attention for feature selection, and XGBoost, which provides gradient-boosted decision trees for structured data. Their
prediction outputs are combined through a meta-learner that produces the final CVD prediction.

is directed toward the model’s final output, while the remaining
portion is forwarded to the attentive transformer for subsequent
processing. At each stage, the feature selection mask offers
interpretable insights into the model’s decision-making behavior. By
aggregating these masks across multiple steps, the global importance
of features can be effectively determined. The TabNet decoder
employs a feature transformer block at each stage of the decoding
process to reconstruct the input representation.

The attentive transformer module explained in Figure 3,
dynamically selects the most relevant features at each decision step,
thereby improving both interpretability and learning efficiency. It
employs a sparse attention mechanism that leverages the output
from the previous decision step to generate a feature selection mask.
This mask guides the model to focus on the most informative subset
of features at each stage, allowing different steps to attend to different
aspects of the input data. To promote sparsity in feature selection,
the attention scores are computed using a combination of softmax
and sparsemax functions. This targeted focus not only improves the
model’s predictive performance but also provides clear insights into
which features influence decisions at each step.

The feature transformer block represented in Figure 4 is a crucial
component of the TabNet model, designed to extract rich, high-level
representations from tabular data. It captures complex, non-linear
feature interactions by integrating several fully connected layers
with batch normalization and Gated Linear Unit (GLU) activation

Frontiers in Physiology

functions. Residual connections are also employed to enhance
training stability and preserve information from earlier layers.
By processing input features before passing them to subsequent
components, such as the attentive transformer, this block enables
the model to effectively extract and refine relevant patterns at each
decision step.

The mathematical formulation of the TabNet model for CVD
detection is presented as follows. Let X € R™“ denote the input
data matrix, where n is the number of patient samples and d is
the number of input features. Each patient record is represented as
a feature vector x € R%. The TabNet architecture processes each
input through a sequence of T decision steps, leveraging attentive
feature selection and sparse feature masks. The final output is a
prediction vector y € R", indicating the probability of CVD presence
for each sample in a binary classification setting.

The feature transformer network is responsible for processing
the input feature vector at each decision level f to find the meaningful
patterns which are considered very important for CVD prediction.
The following Equation 2 is the mathematical representation of
this operation:

f, = Feature Transformer (h,)

2

In the TabNet model, to increase training stability, the
feature transformer block consists of gated linear units, batch
normalization, and fully connected (FC) layers, all of which are
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informative clinical features, while the decoder reconstructs the original inputs to enforce sparsity and interpretability. This design enables TabNet to
focus on clinically relevant variables for cardiovascular disease (CVD) prediction while maintaining transparency in feature usage.
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FIGURE 3

Attentive transformer block within the TabNet network

(adapted from Arik and Pfister (2021)). This block applies feature-wise
attention weights to highlight the most relevant patient attributes (e.g.,
age, blood pressure, cholesterol) at each decision step. The
mechanism improves interpretability by showing which variables drive
predictions while enhancing predictive performance.

connected with residual connections, aim to improve training
stability. The mathematical equations of these components are
explained below in Equations 3, 4.

GLU(z) =z,00(z,), where z=[z,,2,] (3)

1 I
£ = £, + GLU(BN(W,_,)) (4)
The attentive transformer block is responsible to generate a

sparse feature selection mask, which relies on the previous attention
P,_; and input X as defined in Equation 5:

a, = Sparsemax (W, - BN (p,_; @ X)) (5)

Frontiers in Physiology

The Sparsemax function defined in Equation 6 is utilized to
ensure the sparsity in the attention technique.

Sparsemax (z) = arg MiNpepd lp—zl? (6)

The attention mechanism generates the weighted feature
representation according to Equation 7

h,=a,0X @)

3.3 Prediction aggregation and output

As shown in Equations 8, 9, each step generates an intermediate
prediction, and the final prediction is computed as the sum of all
step outputs:

Vo= W1, (8)
T

y= ZY: ©)]
=1

To reduce feature reuse across decision steps, the prior is
updated, as shown in the following Equation 10:
y>1

P:=P1@(y-a), (10)

The binary cross-entropy loss (Equation 11) is used for binary
CVD classification, while the focal loss (Equation 12) is adopted in
imbalanced cases to emphasize difficult samples.

n
Ly = —% Z [J’(i) log)‘/(i) + (1 —J’(i))log(l _j’(i))] 1
-1
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FIGURE 4

Feature transformer block of the TabNet network (adapted from Arik and Pfister (2021)). This module applies nonlinear transformations and batch
normalization to the input features, enabling the model to capture complex interactions among clinical variables. The block serves as the core
representation unit, ensuring that both low-level and high-level patient information are effectively utilized in CVD risk prediction.

n
£F0c31 = _% ZDC(I _)A/U))yy(i) lOg (jl(i)) (12)
i=1

Where « is a balancing factor, and y is the focusing parameter.

3.4 Algorithm and mathematical
formulation of the proposed model

The mathematical framework of the proposed model is outlined
below. Consider the dataset represented as in Equation 13. The
procedural workflow of the proposed model is detailed in Algorithm 1:

D={(x.y)}Y,, xeR% yefo1l}, (13)

where x;denotes the feature vector and y, € {0,1} represents the
corresponding binary class label, indicating the presence (y, = 1) or
absence (y, =0) of CVD. Suppose f,(x) represents the prediction
of the TabNet base learner and f,(x) represents the XGBoost base
learner model, as expressed in Equation 14.

f1(x) = TabNet (x;0,),  f, (x) = XGBoost (x;0,), (14)

where 6,and 0, are the trainable parameters for the TabNet and
XGBoost base learner models, respectively. Then, the prediction
outputs from the base learners are concatenated to construct the
input feature vector for the meta-learner, as defined in Equation 15.

fi ()
()

The final output from the LR meta-learner can be calculated

z(x) = e R (15)

using the following Equation 16.

J=g(zx) =0(w'z(x) +b), (16)

where w € R%s the weight vector, b€ R is the bias term, and
a(t) = ﬁ is the sigmoid activation function. Finally, the
predicted CVD class is determined using a threshold function,

as expressed in Equation 17.
1, ify>05

y= ) (17)
0, otherwise
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Require: Kaggle CVD dataset and UCI CVD dataset
Ensure: Prediction of cardiovascular disease (CVD)
1: Preprocess both datasets (handle missing
values, normalize features, etc.)

2: Split each dataset into training and
testing sets

3: Train Base Learners:

4: TabNet Model:

5: Set decision and attention dimensions:
.=32

6: Use optimizer: Adam,
batch size = 256

7: Train TabNet on the training set

8: XGBoost Model:

9: Set learning rate = 0.01, max depth = 5

Ny =
n

epochs = 100,

10: Train XGBoost on the training set

11: Generate base model predictions on training
data (out-of-fold)

12: Train Meta Learner:

13: Use predictions from TabNet and XGBoost as
input features.

14: Train Logistic Regression on these features
15: Final Prediction:

16: For the test data, generate base
learner outputs.

17: Use the meta learner (Logistic Regression)
to make the final prediction

18: return Final CVD predictions

Algorithm 1. Proposed Stacked Ensemble Model for CVD Detection.

The meta-learner (LR) is trained by minimizing the binary cross-
entropy loss function using the following mathematical Equation 18.

N
Lonb) == Y [y logh, + (1-p)log(1-3)],  (18)
i=1

where ¥, = g(z(x))).
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The proposed ensemble combines TabNet and XGBoost as
base learners. Their outputs are aggregated using a meta-learner
to improve predictive performance. To aggregate the predictions
of the base learners, we evaluated both Logistic Regression
(LR) and Support Vector Machine (SVM) as meta-learners. LR
provides probabilistic outputs and interpretable weights, making it
suitable for threshold-based clinical decisions, while SVM captures
complementary decision boundaries through its margin-based
optimization. Testing both meta-learners allowed us to assess the
ensemble’s robustness and generalizability. Results showed that both
achieved strong performance, with LR slightly better calibrated
for probability-based metrics and SVM providing similar accuracy
and Fl1-score, highlighting the flexibility of the proposed stacked
ensemble framework in leveraging different aggregation strategies.

Although the proposed stacked ensemble introduces additional
computational overhead compared to single-model approaches, its
complexity remains tractable for modern hardware. Training was
performed on an NVIDIA RTX 4090 GPU with 24 GB VRAM and
an Intel 19 processor (64 GB RAM). On average, TabNet required
approximately 2.3 h for convergence on the Kaggle datasetand 1.1 h
on the UCI dataset using early stopping and batch-wise learning.
The meta-learner (Logistic Regression) training time was negligible
(under 2 min). The overall pipeline exhibits a computational
complexity of O(nx(f-d)), where n denotes the number of
instances, f the number of features, and d the ensemble depth
(number of base learners). Despite the slightly increased training
time, the stacked framework achieves a substantial improvement in
predictive performance, making the trade-off between accuracy and
computational cost justified for clinical applications.

4 Experiments and results

Table 4 represents the Hyper-parameters that we applied during
the experiments.

4.1 Hyper-parameter tuning

Table 4 shows the final hyper-parameter values used for the
base learners in the stacked ensemble. To select these values, we
performed systematic grid search for both base learners and meta-
learners. The optimal parameters were chosen based on the highest
mean Receiver Operating Characteristic-Area Under the Curve
(ROC-AUC) across 10-fold stratified cross-validation.

For TabNet, in addition to the hyperparameter search ranges
reported in Table 4, several regularization strategies were applied
to ensure reproducibility and prevent overfitting. Specifically, L2
regularization was used on the weights with a coefficient of 1™,
and a dropout rate of 0.2 was applied to the fully connected layers.
Batch normalization was incorporated after each block to stabilize
training. Early stopping with a patience of 20 epochs was employed
based on validation loss to avoid overtraining.

To prevent data leakage and ensure unbiased evaluation, we
employed stratified 10-fold cross-validation. For each fold, the
base learners (TabNet and XGBoost) were trained on 9 folds,
and predictions on the held-out fold were recorded as out-of-
fold predictions. These predictions were used to train the Logistic
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Regression meta-learner. The test fold remained unseen by the meta-
learner during training. We used a fixed random seed of 42 to
ensure reproducibility. All reported metrics (accuracy, Fl-score,
ROC-AUC, Matthews Correlation Coefficient (MCC)) are the mean
+ standard deviation across the 10 folds.

The Kaggle dataset is approximately balanced (50/50), whereas the
UCI dataset exhibits moderate class imbalance (=61/39). To ensure a
robust evaluation, we report multiple performance metrics: accuracy,
F1-score, precision, recall, ROC-AUC, Precision-Recall Area Under
the Curve (PR-AUC), and MCC. Metrics such as MCC and PR-AUC
are less affected by class imbalance and therefore provide a more
reliableassessment of model performance, particularly for the minority
class. We did not apply re-sampling to the UCI dataset to preserve its
original distribution, and stratified 10-fold cross-validation was used
to maintain class proportions in each fold.

Tables 5, 6 present a comparative evaluation of several machine
learning and deep learning models, as well as the proposed stacked
ensemble model, on the Kaggle and UCI CVD datasets, respectively.
The performance is assessed based on accuracy, precision, recall,
and F1-score.

4.2 Performance on Kaggle CVD dataset

As shown in Table 5, the proposed model, which combined
TabNet and XGBoost with a Support Vector Machine (SVM) as
the meta-learner, achieved the highest accuracy of 80.70% and an
Fl-score of 77.52%. This performance significantly outperformed
all individual base learners. Among the standalone models, TabNet
yielded the best results with 77.40% accuracy and an Fl-score of
76.82%, followed by XGBoost.

Traditional models such as Logistic Regression (LR) and SVM
performed relatively poorly, with accuracies of 71.00% and 70.00%
and Fl-scores of 69.90% and 68.39%, respectively. These results
highlight their limitations in capturing complex patterns in tabular
clinical data.

The effectiveness of the ensemble strategy was further
demonstrated by the proposed model using LR as the meta-learner,
which also showed superior performance (accuracy: 80.20%, F1-
score: 78.42%) compared to individual learners. Overall, these findings
indicate that integrating diverse model types mitigates the weaknesses
of individual models, leading to enhanced predictive capability.

4.3 Performance on UCI CVD dataset

Table 6 presents the results obtained on the UCI CVD dataset.
Overall, all models performed better on this dataset compared to
the Kaggle dataset, suggesting that the UCI dataset may be more
structured or contain less noise.

The proposed ensemble model, which used TabNet and
XGBoost as base learners and logistic regression as the meta-
classifier, achieved superior performance, reaching 95.20% accuracy
and an Fl-score of 91.92%. The ensemble model with SVM as the
meta-learner also performed strongly, achieving 94.30% accuracy
and an F1-score of 91.14%.

Among individual models, TabNet again showed the highest
performance, with 90.90% accuracy and an Fl-score of 86.39%,
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TABLE 3 Feature attributes and sample instances from the UCI heart disease dataset.

Feature Description ’ Instance 1 Instance 2
Age Age in years 63 57
Sex Female = 0, = Male = 1 1 0
Chest pain Its range from (0-3) 1 2
trestbps Blood pressure at rest (mmHg) 145 130
cholesterol Blood cholesterol (mg/dL) 233 236
fbs Elevated fasting blood sugar (>120 mg/dL, Yes = 1) 1 0
restecg Resting ECG result index (values: 0-2) 0 1
thalach Highest heart rate achieved 150 174
exang Exercise-triggered angina (1 = Yes) 0 0
oldpeak Exercise-induced ST depression 2.3 0.0
slope ST segment slope (0-2) 0 1
ca Major vessel count (0-3) 0 0
thal Thalassemia (1 = normal; 2 = fixed defect; 3 = reversible defect) 1 2
target 0=No CVD, 1 = CVD present 1 0

TABLE 4 Hyper-parameter settings and search ranges of the base and
meta-learners used in the proposed stacked ensemble model. Final
selected values are highlighted.

Hyper-parameters (search range/selected

value)

Learning rate: 0.01/[0.01, 0.05, 0.1]

Maximum depth: 5/(3, 5, 7]

XGBoost
Number of estimators: 200/[100, 200, 300]
Subsample: 1.0/[0.7, 0.8, 1.0]
Decision layer dimension (n,): 32/[16, 32, 64]
Attention layer dimension (n,): 32/[16, 32, 64]
Optimizer: adam

TabNet

Learning rate: 0.02/[0.01, 0.02, 0.05]

Epochs: 100

Batch size: 256/[128, 256, 512]

Meta-learners

Logistic regression C: 1/[0.01, 0.1, 1, 10]

SVM kernel: RBF/[Linear, RBF]

SVM C: 1/[0.01, 0.1, 1, 10]
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followed by XGBoost and LSTM. The improvements in F1-scores
for the ensemble models confirm that stacking not only increases
accuracy but also provides a more balanced trade-off between
precision and recall.

4.4 Comparative insights

e On the Kaggle dataset, the proposed model improved accuracy
by over 11% compared to the best individual model (TabNet).

e On the UCI dataset, the accuracy gain was about 4.3% over
TabNet, with notable gains in F1-score as well.

e The ensemble approach shows more significant impact on
noisier or less structured data, as seen in the Kaggle dataset.

The results indicate that the proposed stacking ensemble
approach is both effective and robust across diverse and complex
datasets, leveraging the complementary strengths of pretrained deep
learning models and tree-based machine learning algorithms. To
further substantiate the novelty of our proposed ensemble, we
conducted a comparative assessment against recent state-of-the-art
models, including SAINT Somepalli et al. (2021) and the hybrid
deep learning framework proposed by Bilal et al. (2024). On the UCI
dataset, our TabNet-XGBoost-LR ensemble achieved an accuracy
of 95.20% and an F1-score of 91.92%, surpassing SAINT by +2.9%
and +2.6%, and Bilal et al. (2024) by +2.1% and +1.9%, respectively.
Similarly, on the Kaggle dataset, our model outperformed SAINT
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TABLE 5 Comparative performance of existing models and the proposed model on the Kaggle CVD dataset.

Model Base learner Meta learner Accuracy (%) Precision (%) ’ Recall (%) F1-score (%)
CatBoost NA NA 78.00 - - -

SAINT NA NA 79.00 - - -

TabNet NA NA 77.40 £0.8 77.00 £0.7 76.65+0.9 76.82+£0.8
XGBoost NA NA 74.20+£0.9 73.85+£0.8 7345+ 1.0 73.65+£0.9
LR NA NA 71.00 £ 1.1 70.05+0.9 69.75+ 1.0 69.90 + 1.0
SVM NA NA 70.00 + 1.0 68.95+0.8 67.85+£0.9 68.39£0.9
LSTM NA NA 73.00 +0.9 7215+ 1.0 71.55+0.8 71.84+0.9
Without TabNet XGBoost only LR 76.80 +0.7 76.50 £ 0.8 75.60 £0.9 76.05+0.8
Without XGBoost TabNet only LR 78.90 + 0.6 77.70 £ 0.7 76.80 + 0.8 77.24 £0.7
Proposed model (full) TabNet + XGBoost SVM 79.70 £ 0.5 78.00 + 0.6 77.05+0.7 77.52 +0.6
Proposed model (full) TabNet + XGBoost LR 80.20 + 0.5 78.90 + 0.6 77.95+ 0.7 78.42 + 0.6

TABLE 6 Comparative performance of existing models and the proposed model on the UCI CVD dataset.

Base learner Meta learner Accuracy (%) Precision (%) Recall (%) F1-score (%)

TabNet NA NA 90.90 £ 0.6 87.15+£0.7 85.65+0.8 86.39 £ 0.7
XGBoost NA NA 88.20 £ 0.7 86.35+ 0.8 84.75+0.9 85.54+0.8
LR NA NA 85.30+0.8 83.00£0.9 8230+ 1.0 82.65+0.9
SVM NA NA 84.40 0.9 82.80+0.9 82.10 £ 0.8 82.45+0.9
LSTM NA NA 86.30 £ 0.7 85.00£0.8 84.10+£ 0.9 84.55+0.8
Without TabNet XGBoost only LR 9120+ 0.5 88.70+ 0.6 90.00 + 0.6 89.34+ 0.6
Without XGBoost TabNet only LR 92.00 £ 0.5 89.50 £ 0.6 91.20 £ 0.6 90.34 £ 0.6
Proposed model (full) TabNet + XGBoost SVM 94.30 + 0.4 90.30 + 0.5 92.00 + 0.5 91.14 £ 0.5
Proposed model (full) TabNet + XGBoost LR 95.20 +£ 0.4 91.45+ 0.5 92.40 + 0.5 91.92+0.5

by +2.7% in accuracy and +2.4% in F1-score, and Bilal et al. (2024)  Correlation Coefficient (MCC) of 0.77, outperforming all baselines.

by +1.9% and +0.4%, respectively. These consistent improvements  Similarly, on the Kaggle dataset, the stacked ensemble yielded an

across both datasets underscore the model’s robustness and its  accuracy of 0.95, an Fl-score of 0.90, a ROC-AUC of 0.96, and an

material advantage in predictive accuracy and clinical reliability over =~ MCC of 0.87. These results indicate consistent gains over simple

existing tabular learning architectures. averaging and soft voting, confirming that the meta-learner provides
Table 7 presents the performance comparison of different  predictive value beyond a weighted mean of the base models.

ensemble strategies on both the UCI and Kaggle datasets. For each

dataset, we evaluated the base learners (TabNet and XGBoost), two

conventional ensemble methods (simple averaging and soft voting), 4.5 Discussion on the meta-learner

and the proposed stacked ensemble with Logistic Regression (LR) ~ contribution

as the meta-learner. The results were averaged across 10-fold cross-

validation with standard deviations. Our experimental results in Table 7 provide empirical evidence
On the UCI dataset, the stacked ensemble achieved an accuracy  that the stacked ensemble with LR consistently outperformed the

of 0.90, an F1-score of 0.82, a ROC-AUC of 0.93, and a Matthews  baseline methods across both datasets.
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TABLE 7 Comparison of ensemble strategies with base learners and meta-learners. Results are reported as mean + standard deviation across 10-fold
cross-validation.

(a) UCI dataset

Accuracy (%) F1-score (%) ROC-AUC MCC
TabNet 90.90 £ 0.52 86.39 +0.47 0.92 +£0.02 0.83 +£0.03
XGBoost 88.20 + 0.61 85.54 +0.56 0.91 +0.02 0.81 +0.03
Simple averaging (TabNet + XGBoost) 92.00 + 0.49 87.50 + 0.44 0.94 +0.02 0.85 +0.02
Soft voting (TabNet + XGBoost) 93.00 + 0.47 88.30 + 0.50 0.95+0.01 0.86 + 0.02
Stacked (LR Meta) 95.20 + 0.45 91.92 +0.51 0.96 +0.01 0.88 +0.02

(b) Kaggle dataset

Accuracy (%)

F1-score (%)

ROC-

TabNet 77.40 £ 0.68 76.82 £ 0.65 0.84 +£0.03 0.68 +0.04
XGBoost 74.20 +£0.74 73.65 +0.70 0.82+0.03 0.65 + 0.04
Simple averaging (TabNet + XGBoost) 78.00 + 0.66 77.50 + 0.62 0.86 +0.02 0.70 +0.03
Soft voting (TabNet + XGBoost) 79.50 + 0.59 78.50 + 0.55 0.87 +0.02 0.72 +0.03
Stacked (LR Meta) 80.20 £ 0.55 78.42 £ 0.52 0.88 +0.02 0.73+£0.03

Bold values indicate the best performance for each metric across all compared models.

TABLE 8 Statistical significance analysis of the proposed stacked ensemble compared to base learners. ROC-AUC values are reported with 95%

bootstrap confidence intervals, and McNemar p-values indicate significance versus the stacked model.

Dataset Model ROC-AUC (95% Cl) McNemar p-value vs. stacked
ucl TabNet 0.92[0.91-0.93] 0.018

uct XGBoost 0.91[0.90-0.92] 0.018

ucl Stacked (LR) 0.96 [0.95-0.97) -

Kaggle TabNet 0.84 [0.83-0.85] 0.022

Kaggle XGBoost 0.82 [0.81-0.83] 0.022

Kaggle Stacked (SVM) 0.91 [0.90-0.92] -

This improvement can be attributed to two key factors. First,

approach. These findings confirm that the proposed meta-learner

Logistic Regression learned optimal weights for the base learnersin ~ added value beyond conventional ensemble techniques, justifying its

a data-driven manner, instead of assigning equal or heuristic weights ~ inclusion in our framework.

as in simple averaging or soft voting. Second, LR was capable of

modeling interactions between the outputs of TabNet and XGBoost,

capturing complementary decision boundaries that could not be 4.6 Statistical significance of the stacked

fully exploited by linear averaging. These capabilities led to better ~ensemble

generalization, particularly in imbalanced cases where one model

might dominate the prediction. Statistical significance analysis of the proposed stacked ensemble
For instance, while simple averaging on the Kaggle dataset  compared to base learners results are presented in Table 8. To

achieved an F1-score of 0.88, the stacked LR ensemble improved this  validate the superiority of the proposed stacked ensemble over

t00.90. A similar trend was observed in ROC-AUC and MCCacross  individual base learners, we performed statistical significance testing

both datasets, further reinforcing the robustness of the stacked  using bootstrap confidence intervals and McNemar’s test.
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Decision Curve Analysis (DCA) for Stacked Ensemble Model

04 ‘"‘"‘"'"“"“‘""""""""""“"""‘"'-'"-'"“"'---i----""""'l'!EE':":‘
_10 E
&2 —201
=
[
g \
@ 1
7} ]
: :
—30 L)
[
[
n
"
n
—— Stacked Ensemble - UCI H
—40 4 ——- Treat All - UCI ‘I'
----- Treat None - UCI '|
—— Stacked Ensemble - Kaggle :
—-=-=- Treat All - Kaggle :
504 Treat None - Kaggle
0.0 0.2 0.4 0.6 0.8 1.0

Probability Threshold

FIGURE 5

Decision Curve Analysis (DCA) for the stacked ensemble model on UCI and Kaggle datasets. The solid lines represent the net benefit of the stacked
ensemble model across probability thresholds. Dashed lines indicate the “Treat All" strategy, and dotted lines indicate the “Treat None" strategy. Higher
net benefit values indicate greater clinical usefulness. UCI dataset is shown in blue, Kaggle dataset in red

Confusion Matrix - Proposed Model (Kaggle Dataset)
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|
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FIGURE 6
Confusion matrix against Kaggle CVD dataset.

Bootstrap confidence intervals: we computed 95% confidence
intervals for ROC-AUC using 1,000 bootstrap samples. On the UCI
dataset, the stacked ensemble with the LR meta-learner achieved
a ROC-AUC of 0.96 [0.95-0.97], compared to TabNet at 0.92
[0.91-0.93]. On the Kaggle dataset, the stacked ensemble with
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the SVM meta-learner achieved a ROC-AUC of 0.91 [0.90-0.92],
compared to TabNet at 0.84 [0.83-0.85].

McNemar test: classification outputs (correct vs. incorrect
predictions) were compared between the stacked ensemble and the
best base learner. The resulting p-values were 0.018 (UCI) and
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FIGURE 7
Confusion matrix against UCI CVD dataset.
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0.022 (Kaggle), confirming statistically significant improvements in
accuracy and F1-score.

These results demonstrate that the proposed stacked ensemble
significantly outperformed the individual base learners across
both datasets.

To complement significance testing, we also reported effect sizes.
For McNemar'’s test, we calculated the odds ratio between discordant
cell counts, providing a direct measure of the practical magnitude
of differences. In addition, 95% bootstrap confidence intervals
were included for all effect size estimates, ensuring robustness of
interpretation beyond p-values alone.

4.7 Ablation study discussion

Tables 5, 6 highlight the contribution of each base learner
in the proposed stacked model. Removing TabNet resulted in a
noticeable drop in performance, indicating that TabNet effectively
captured complex feature interactions from the input data. Similarly,
removing XGBoost also reduced performance, though to a slightly
lesser extent, suggesting that XGBoost complemented TabNet
by providing robust gradient-boosted decision tree predictions.
Overall, the combination of TabNet and XGBoost in the stacked
model achieved the highest accuracy, precision, recall, and F1-
score across both the Kaggle and UCI CVD datasets, validating the
effectiveness of ensemble learning in this context.

4.8 Clinical implications: minimizing false
negatives

In cardiovascular disease prediction, false negatives are more
harmful than false positives. To address this, we applied cost-
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sensitive threshold optimization, assigning a higher penalty to
false negatives. Optimal thresholds were identified as 0.42 for
the UCI dataset and 0.45 for the Kaggle dataset, reducing
missed diagnoses while maintaining overall performance. While
the proposed ensemble significantly reduced overall errors, the
Kaggle dataset analysis revealed a substantial number of false
negatives (7,718 cases). Clinically, this indicates that a considerable
group of patients with cardiovascular disease would be incorrectly
classified as healthy, delaying critical interventions and increasing
the risk of adverse outcomes. Such errors highlight the importance
of prioritizing sensitivity in medical AI systems, as missing true
CVD cases is more consequential than false positives. Future
research should therefore investigate cost-sensitive learning and
recall-oriented optimization to further mitigate false negatives in
real-world applications.

We also performed Decision Curve Analysis (DCA) to
evaluate the net clinical benefit of the model across probability
thresholds presented in Figure 5. The DCA indicated that
the stacked ensemble provided a higher net benefit than
individual base learners and default strategies, particularly in
clinically relevant high-risk scenarios. These findings highlight
the model’s potential to support safe and effective clinical
decision-making.

To contextualize these findings, we compared the decision curve
profiles of our proposed model with established cardiovascular
risk scores, including the Framingham Risk Score (FRS) and
the Atherosclerotic Cardiovascular Disease (ASCVD) estimator,
which are widely used in clinical practice (Grundy et al., 2019;
Pennells et al., 2014). Prior studies have shown that these traditional
scores provide moderate net benefit in the 10%-20% risk threshold
range but often fail to capture complex feature interactions or
minority subgroups (Steyerberg et al., 2010; Ridker and Cook,
2013). In contrast, our TabNet-XGBoost ensemble consistently
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Feature Importance Rank Stability Across Folds (UCI + Kaggle)

UCI-Age

UCI-Sex - 0.90

UCI-ChestPain - 0.61

UCI-BP -
0.85

UCI-Cholesterol

UCI-FastingBS
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UCI-MaxHR
0.75

Kaggle-Age -

Stability (0-1)

Kaggle-Sex
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-0.60
Kaggle-ECG

Kaggle-MaxHR 0.58 0.68 0.59

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

FIGURE 8
Heatmap visualization of feature importance rank stability across cross-validation folds for the UCI and Kaggle datasets. Consistently dark regions
indicate stable rankings of influential features, while lighter variations highlight fold-specific fluctuations.

demonstrated higher net benefit across clinically relevant 4.9 Confusion matrix analysis on the
thresholds, suggesting that the model could identify more true ~Kaggle CVD dataset
CVD cases without substantially increasing false positives. These

results align with the principles of decision curve analysis Vickers Figures 6, 7 depict the confusion matrices corresponding to the
and Elkin (2006) and underscore the potential clinical utility of ~ Kaggle CVD dataset and the UCI CVD dataset, respectively. The
our approach. confusion matrix was utilized to assess the model’s behavior by
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FIGURE 9
Training vs. validation accuracy on UCI CVD dataset.
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analyzing the distribution of true and false predictions. The Kaggle
CVD dataset used in this study was perfectly balanced, comprising
70,000 patient records—half belonging to the positive class and the
other half to the negative class.

The confusion matrix showed that the model correctly identified
27,282 patients with cardiovascular disease (true positives) and 27,703
patients without the disease (true negatives). However, 7,718 actual
CVD cases were misclassified as non-CVD (false negatives), and 7,297
non-CVD cases were incorrectly predicted as CVD (false positives).

The relatively high true positive and true negative counts
indicate that the model learned to discriminate well between the
two classes. Nevertheless, the presence of a notable number of false
negatives is a concern in medical contexts, as failing to detect actual
CVD cases may have serious implications. Despite this, the trade-off

Frontiers in Physiology

appears reasonable given the achieved accuracy of 80.20%, precision
of 78.90%, recall of 77.95%, and F1-score of 78.42%.

This analysis underscores the importance of complementing
scalar performance metrics with a detailed examination of the
confusion matrix to reveal specific strengths and weaknesses in the
model’s predictions. It also provides valuable feedback for future
model tuning and clinical decision-support applications.

4.10 Confusion matrix analysis on the UCI
CVD dataset

To complement the evaluation metrics, a confusion matrix
was constructed for the proposed model—TabNet combined with
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XGBoost and Logistic Regression (LR) as the meta-learner—on
the UCI CVD dataset. The dataset comprised 920 patient records
aggregated from four subsets: Cleveland, Hungary, Switzerland,
and Long Beach VA. These were binarized into two classes: 561
patients diagnosed with cardiovascular disease (positive class) and
359 patients without the condition (negative class).

The model correctly predicted 518 of the 561 actual CVD cases
(true positives) and 310 of the 359 non-CVD cases (true negatives).
Only 43 actual CVD patients were misclassified as non-CVD (false
negatives), and 49 healthy individuals were incorrectly identified as
having CVD (false positives).

This the models strong
classification capability, with high precision (91.45%) and recall
(92.40%) values. The low false negative rate is particularly important
in clinical applications, as it indicates a reduced likelihood of missing

confusion matrix confirmed
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patients who truly have cardiovascular disease. The overall F1-score
of 91.92% and accuracy of 95.20% further reinforced the model’s
effectiveness.

The confusion matrix revealed strong discriminative performance,
though the Kaggle dataset showed a higher number of false negatives
(7,718 cases), likely due to its greater heterogeneity and class imbalance.
Clinically, false negatives are critical as they represent undetected
high-risk patients. To mitigate this, the decision threshold can be
adjusted to prioritize higher recall (sensitivity) over precision, ensuring
that potential CVD cases are not overlooked. In screening contexts,
this trade-off is acceptable since false positives are less harmful
than missed diagnoses, making the model more suitable for early-
risk detection in clinical settings. Figure 8 represents visualization of
feature importance rank stability across cross-validation folds for the
UCI and Kaggle datasets.
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For the Kaggle CVD dataset, which is balanced with 70,000
patient records, the model correctly identified 27,282 True Positives
(TP) cases and 27,705 True Negatives (TN) cases. Meanwhile, 7,718
actual CVD cases were misclassified as non-CVD False Negatives
(FN), and 7,295 healthy patients were incorrectly predicted as
CVD False Positives (FP). Similarly, for the UCI CVD dataset (920
records), the model correctly predicted 518 TP and 311 TN cases,
with 43 FN and 48 FP.

The obtained results demonstrated that the proposed model was
highly effective across datasets of varying sizes and complexity.
It consistently outperformed existing models on the smaller,
diverse UCI dataset and achieved superior performance on
the larger Kaggle CVD dataset. Figures9, 10 illustrate the
validation accuracy and validation loss trends, respectively,
for the UCI CVD dataset. Similarly, Figures1l, 12 present
the validation accuracy and validation loss curves for the
Kaggle CVD dataset.

4.11 Limitations

While our study demonstrates strong predictive performance,
several limitations should be acknowledged. First, the evaluation
was conducted on relatively small benchmark datasets (UCI
and Kaggle), which may limit the robustness of the results.
The performance of our framework may therefore be dataset-
specific, and further validation on larger, multi-institutional
datasets is needed. Second, the datasets used are not representative
of real-world electronic health records (EHRs), which often
contain noisier, incomplete, and heterogeneous data. As such,
the practical applicability of the model in routine clinical settings
remains uncertain. Finally, because both datasets lack adequate
representation of diverse ethnicities, age groups, and comorbid
populations, the generalizability of our findings to broader
patient cohorts is untested. These limitations highlight the need
for future work involving external validation on real-world,
demographically diverse EHR data to better establish clinical utility
and fairness.

5 Conclusion and future work

This study presented a hybrid stacked ensemble framework
that combined TabNet and XGBoost with LR or SVM meta-
learners for cardiovascular disease (CVD) prediction. Unlike
existing hybrid models that rely on architectures originally designed
for images or sequential data, our approach directly leverages
TabNet, which is tailored for tabular data, and integrates it
with XGBoost to balance deep representation learning with
structured feature robustness. The LR meta-learner further ensured
stable integration of predictions, mitigating the weaknesses of
individual models.

Comprehensive experiments on the Kaggle and UCI CVD
datasets demonstrated that the proposed hybrid consistently
outperformed conventional machine learning and deep learning
baselines across multiple metrics, including accuracy, Fl-score,
ROC-AUC, PR-AUC, and MCC. Importantly, the model reduced
false negatives, a clinically critical improvement since missed
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diagnoses can delay interventions and increase patient risk.
This directly addresses a gap in prior TabNet- or ensemble-
based works, which have
but lacked

CVD datasets.

The findings of this work carry important implications.

shown promising performance

systematic validation on large, heterogeneous

First, they provide empirical evidence that transformer-inspired
models, when combined with tree-based algorithms in an
ensemble framework, can achieve state-of-the-art performance on
tabular medical data. Second, the results highlight the value of
interpretable pipelines, as TabNet’s sparse attention mechanism
supports clinician trust through feature-level transparency.
Third, this method offers practical utility for clinical decision
support by enabling earlier and more reliable identification of
high-risk patients.

For future research, interpretability could be enhanced
further through visualization of TabNets attention masks
or SHAP values, improving clinical usability. Incorporating
multimodal data—such as imaging, electronic health records,
and genetic profiles—may extend predictive power and
provide a more holistic view of patient health. Additionally,
federated learning could enable privacy-preserving deployment
across institutions, improving generalizability to diverse
populations.

In summary, this study fills a methodological and clinical
gap by demonstrating that a TabNet-XGBoost stacked ensemble
can deliver robust, interpretable, and clinically meaningful CVD
predictions. This advances the state of the art in medical Al and
paves the way for trustworthy integration of ensemble learning into

real-world cardiovascular risk assessment.
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